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Abstract
We show that the geodesic ray transform is injective on scalar functions on spherically
symmetric reversible Finsler manifolds where the Finsler norm satisfies a Herglotz
condition. We use angular Fourier series to reduce the injectivity problem to the
invertibility of generalized Abel transforms and by Taylor expansions of geodesics
we show that these Abel transforms are injective. Our result has applications in lin-
earized boundary rigidity problem on Finsler manifolds and especially in linearized
elastic travel time tomography.

Keywords Inverse problems · Geodesic ray transform · Integral geometry

Mathematics Subject Classification 44A12 · 53A99 · 86A22

1 Introduction

In this paper, we study the following mathematical inverse problem arising in integral
geometry: If we know the integrals of a scalar function f over all geodesics of a
Finsler manifold (M, F), can we determine f ? Since the problem is linear, we can
formulate it in terms of the kernel of the geodesic ray transform I: If I f (γ ) = 0
for all geodesics γ , does it follow that f = 0? In other words, is the geodesic ray
transform I injective on scalar fields? This inverse problem (and its generalization
to tensor fields) has been usually studied on Riemannian manifolds and a variety of
results under different types of assumptions is known in the Riemannian setting [28,
42, 47]. We show that in the case of spherical symmetry, reversibility and a Herglotz
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condition the answer is positive for Finsler manifolds as well: I is injective on scalar
fields.

A Finsler norm F is a non-negative function F : T M → [0,∞) such that for every
x ∈ M the map y �→ F(x, y) defines a Minkowski norm in TxM (see Sect. 2.1
for details). We focus on spherically symmetric and reversible Finsler norms. We
show that if M ⊂ R

n is an annulus centered at the origin and F is a spherically
symmetric reversible Finsler norm on M which satisfies the Herglotz condition [see
Eq. (1) and Sect. 2.2], then the geodesic ray transform I is injective on L2-functions
(see Sect. 1.1 and Theorem 1.1). This generalizes earlier Riemannian results in [14,
46] to the Finslerian case and our theorem can be seen as a Helgason-type support
theorem on Finsler manifolds (see, e.g. [14, 22]). An example of a non-Riemannian
geometrywhere ourmain theorem applies is a Finsler norm arising from an anisotropic
sound speed which is reversible and spherically symmetric and satisfies the Herglotz
condition (see Sect. 2.2).

We use angular Fourier series to reduce the inverse problem to the invertibility
of certain Abel-type integral transforms. This approach was used in [14] where the
authors proved various injectivity results of generalizedAbel transformswhichwe also
use in the proof of our main result. By a careful treatment of the Taylor expansions of
geodesics near their lowest point to the origin we show that the Abel transforms we
encounter are indeed injective.

Our result is related to the travel time tomography or the boundary rigidity problem.
Travel time tomography is an imaging method used in seismology where one wants
to determine the speed of sound inside the Earth by measuring travel times of seismic
waves on the surface of the Earth [55]. The ray paths correspond to geodesics and
travel times to lengths of geodesics. The boundary rigidity problem is a more general
geometric inverse problem where one wants to determine a Riemannian metric or
more generally a Finsler norm from the distances between boundary points [55].

The travel time tomography problem was already solved in the 1900s for radial
sound speeds satisfying the Herglotz condition [23, 57]. However, it is observed that
the Earth exhibits more complicated and especially anisotropic behavior with respect
to the sound speed [11, 20, 51]. In the anisotropic case, seismic rays propagate along
geodesics of a Finsler norm [4, 58] andRiemannian geometry is not enough to describe
the most general types of anisotropies. The boundary rigidity problem is already a dif-
ficult non-linear inverse problem in the Riemannian case and anisotropies complicate
things even more.

It is known that Finsler norms arising in elasticity are reversible [13] (see also
Sect. 5.3) which puts some constraints on the geometry. Invariance under rotations is
a natural physical requirement for the Finsler norm (or sound speed) since the Earth is
(roughly) spherically symmetric. OurHerglotz condition (1) is a natural generalization
of the usual Herglotz condition to anisotropic sound speeds [see Eq. (11)] and it
implies that certain geodesics behave nicely (see Sect. 2.2). We can further simplify
the problem by linearizing it. If the variations of the Riemannian metric or Finsler
norm are conformal, then linearization of the boundary rigidity problem leads to the
geodesic ray transformof scalar functions on the basemanifold (see [47] andSect. 5.2).
This especially holds for a family of conformal Finsler norms induced by a conformal
family of stiffness tensors.
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Our main theorem implies boundary rigidity up to first order for a conformal family
of spherically symmetric reversible Finsler norms satisfying the Herglotz condition.
In terms of elasticity, if we have a conformal family of stiffness tensors (a family of
factorized anisotropic inhomogeneous media [9, 58]) such that the induced family
of Finsler norms give the same distances between boundary points and satisfy the
assumptions of Theorem 1.1, then the stiffness tensors are equal up to first order (see
Sect. 5.3).

1.1 TheMain Theorem

Let us first quickly introduce the key definitions and notation. More details can be
found in Sect. 2.

Let M be a smooth manifold. A Finsler norm F : T M → [0,∞) is a non-negative
function on the tangent bundle T M so that the map y �→ F(x, y) is a positively
homogeneous (but not necessarily homogeneous) norm in the tangent space TxM for
each x ∈ M . Finsler norm F is reversible if F(x,−y) = F(x, y) for all x ∈ M and
y ∈ TxM . A reversible Finsler norm defines a homogeneous norm in TxM . The length
of a curve γ : [a, b] → M is defined as L(γ ) = ∫ b

a F(γ (t), γ̇ (t))dt . The geodesics of
a Finsler norm are critical points of the length functional γ �→ L(γ ), or equivalently
they satisfy the geodesic equation [see Eq, (4)].

Our manifold will eventually be an annulus M ⊂ R
2 with outer boundary centered

at the origin. The inner boundary of the annulus is not included in M so ∂M only
consists of the outer boundary. We say that a Finsler norm F on M is spherically
symmetric, if U∗F = F for all U ∈ SO(2). Let (x1, x2) = (r , θ) be the polar
coordinates onM . These coordinates induce a coordinate basis {∂r , ∂θ } in every tangent
space T(r ,θ)M . If y = y1∂r + y2∂θ ∈ T(r ,θ)M , then we denote its coordinates by
(y1, y2) = (ρ, φ); see Fig. 1. We can then equivalently say that the Finsler norm F
on M is spherically symmetric if it is independent of the angular variable θ , i.e.
F = F(r , ρ, φ).

We say that a spherically symmetric reversible Finsler norm F = F(r , ρ, φ) on M
satisfies the Herglotz condition, if

∂r F
2(r , 0, φ) > 0 (1)

for all r ∈ (R, 1] and φ �= 0. Here R ∈ (0, 1) is the inner radius of the annulus.
The Herglotz condition implies that (M, F) admits a strictly convex foliation and
geodesics, which are initially tangential to circles, reach the outer boundary in finite
time (see Lemmas 2.1 and 2.2). More generally, we say that a spherically symmetric
reversible Finsler norm F on an n-dimensional annulus M ⊂ R

n satisfies the Herglotz
condition if F satisfies the two-dimensional Herglotz condition (1) on all slices M∩ P
where P ⊂ R

n is a two-dimensional subspace.
The geodesic ray transform I takes a sufficiently regular scalar field f on M

and integrates it over geodesics, i.e. I f (γ ) = ∫
γ
f ds where γ is a geodesic of the

Finsler norm F . The Herglotz condition guarantees that geodesics which are initially
tangential to circles have a unique closest point to the origin and the integrals exist for
such geodesics.
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Fig. 1 Our manifold M and the coordinate system (r , θ, ρ, φ) on T M . The coordinate vector fields ∂r
and ∂θ form a basis in each tangent space T(r ,θ)M and the coordinates of y ∈ T(r ,θ)M with respect to this
basis are (ρ, φ). The components are given by ρ = dr(y) and φ = dθ(y). We use polar coordinates only
on M ; the induced coordinates on T(r ,θ)M are Euclidean. The inner boundary (dashed) is not included
in M

Our main theorem is the following injectivity result. The proof of the theorem can
be found in Sect. 3.

Theorem 1.1 Let n ≥ 2, M = B̄(0, 1)\ B̄(0, R) ⊂ R
n where R ∈ (0, 1) and equip M

with a smooth spherically symmetric reversible Finsler norm F which satisfies the
Herglotz condition. Then the geodesic ray transform I is injective on L2(M).

Remark 1.2 It is enough to prove Theorem 1.1 in two dimensions. Namely, if we
intersect a higher-dimensional annulus M ⊂ R

n with any two-dimensional linear
subspace P ⊂ R

n , we get a totally geodesic submanifold M ∩ P ⊂ M since F
is reversible and spherically symmetric. Also, by [14, Lemma 17] it holds that if
f ∈ L2(M), then f |M∩P ∈ L2(M ∩ P) for almost every two-dimensional plane P .
Hence if Theorem 1.1 is true for n = 2, then it is also true for all n ≥ 2.

Remark 1.3 We assume that the Finsler norm F in Theorem 1.1 is smooth. This reg-
ularity assumption could be weakened: From the proof of Theorem 1.1 one sees that
a finite number of derivatives with respect to the variables x ∈ M and y ∈ TxM
is enough. However, we are not going to quantify or optimize the needed regularity
assumptions in this paper.

In Theorem 1.1 we assume that the Finsler norm is reversible since it simplifies
the proof and Finsler norms arising in elasticity are reversible. Our main application
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of Theorem 1.1 is the seismic imaging of the Earth and therefore we let M to be an
annulus and F to be spherically symmetric. We could formulate Theorem 1.1 in terms
of a general family of curves satisfying certain properties (see Remark 1.4). In fact,
in the proof of Theorem 1.1 we only use integrals of f over geodesics which have
a unique lowest point to the origin. Due to the Herglotz condition geodesics cannot
have more than one point where the radial speed ṙ vanishes. However, we do not know
whether our manifold is non-trapping, i.e. we do not know if all geodesics reach the
boundary in finite time or if there exists trapped geodesics.

Theorem 1.1 is proved in the following way (see Sects. 2, 3 and 4 for more details).
Since our manifold is annulus we can express any L2-function f as an angular Fourier
series. Using this and the reversibility of F the geodesic ray transform of f can be
written as a sum of generalized Abel transforms acting on the Fourier components
of f . By the Taylor expansions of geodesics and careful treatment of the error terms
we show that these Abel transforms are injective. From this, it follows that the Fourier
components of f all vanish giving the claim.

Theorem 1.1 can be seen as a generalization of the corresponding Riemannian
result in [14] (see also [46]) and the proof is similar in spirit. In fact, we use the theory
of Abel transforms introduced in [14] to prove our result. However, many formulas
which were explicit in [14] become implicit and less tractable in our Finslerian case.
For this reason,we use the Taylor expansions of geodesics near their lowest point to
show the needed regularity properties of the integral kernels of the Abel transforms
(see Sect. 4).

Remark 1.4 We could express Theorem 1.1 in terms of amore general family of curves
than geodesics. From the proof of our main theorem, one sees that the curves only
need to be “sufficiently smooth”with respect to the Taylor expansions and “sufficiently
symmetric”with respect to the Finsler norm. The family of curves can be characterized
by the following properties (compare to the assumptions in [5]):

(A1) All the curves in the family are smooth with unit speed.
(A2) For every x ∈ M and y ∈ TxM there is unique curve going through x to the

direction y.
(A3) The curves depend smoothly on the initial conditions x and y.
(A4) Every curve reaches the boundary in finite time and has unique closest point to

the origin where ṙ0 = 0 and r̈0 > 0.
(A5) The curves are symmetric with respect to the lowest point and they consist of

two parts where ṙ > 0 and ṙ < 0.
(A6) The curves satisfy the weak reversibility condition (18).

The assumptions (A1)–(A6) allow the existence of conjugate points on M : if F is for
example induced by the Riemannian metric g = c−2(r)e where c = c(r) is smooth
and satisfies the Herglotz condition and e is the Euclidean metric, then the (non-radial)
geodesics of g satisfy conditions (A1)–(A6) (see, e.g. [32, 34, 43]). We also note that
the regularity assumptions for the admissible curves could be weakened (finite number
of derivatives is enough, see remark 1.3).

Remark 1.5 Theorem 1.1 can also be seen as a generalization of the famous Helgason
support theorem in Euclidean geometry [22] (see also [14, Remark 31]). According
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to Helgason’s theorem, if a function integrates to zero on all lines not intersecting
a given convex and compact set, then the function has to vanish outside that set.
Since the Herglotz condition allows the presence of conjugate points (see [32]) and
on Riemannian manifolds the existence of conjugate points implies instability for the
geodesic ray transform [33], we do not expect stability for our injectivity or uniqueness
result.

Remark 1.6 By combining our approach with the ideas and methods of the proof
of Theorem 29 in [14] we could also prove (with minor changes in the proof of
Theorem 1.1) that the attenuated geodesic ray transform is injective on (sufficiently
smooth) scalar fields on our manifold (M, F) when the attenuation is a sufficiently
regular radial function. See [25, 40] for results on attenuated transforms on manifolds.

1.2 Related Results

The geodesic ray transform has beenwidely studied butmost of the results are obtained
in the Riemannian setting. If (M, g) is a compact simple Riemannian manifold with
boundary (and smooth metric), then the geodesic ray transform is known to be injec-
tive [37]. Recently it was proved in [26] that injectivity holds also when the simple
Riemannian metric is only C1,1-regular. Injectivity is known in the presence of conju-
gate points as well: If the Riemannian metric is of the form g = c−2(r)ewhere e is the
Euclidean metric and the radial sound speed c = c(r) satisfies the Herglotz condition,
then I is injective on scalar fields [14, 32, 46, 56] (see also [43] and the generalization
to tensor fields in [49]). In this case, the Herglotz condition is equivalent to that the
manifold has a foliation with strictly convex hypersurfaces (see also Lemma 2.1). Our
main theorem is also related to the Helgason support theorem in Euclidean space [22]
(see [14, Remark 31]).

When the geodesic ray transformoperates on tensor fields, the uniqueness results are
known as solenoidal injectivity since one can only uniquely determine the solenoidal
part of the tensor field [42, 47]. Solenoidal injectivity is known for example on two-
dimensional compact simple manifolds [41], on simply connected compact manifolds
with strictly convex boundary and non-positive curvature [39, 44, 47], on certain non-
compact Cartan–Hadamard manifolds [31] and on manifolds which admit strictly
convex foliation [16, 49, 54, 56]. A more comprehensive treatment of the geodesic
ray transform on Riemannian manifolds can be found in [28, 42, 47].

There are some injectivity results in the Finslerian case. It is known that the geodesic
ray transform is injective on scalar fields on simple Finsler manifolds [29, 48]. The
geodesic ray transform is also injective on a certain family of curves on general Finsler
surfaces [5]. This result extends to one forms as well when uniqueness is understood
modulo potential fields. Compared to the results in [5, 29, 48] our theorem allows the
existence of conjugate points (see, e.g. [32]). We also note that we could express our
main theorem in terms of a family of general geodesic-like curves satisfying certain
assumptions (see Remark 1.4 and compare to the assumptions in [5]). Other injectivity
results for a general family of curves can be found in [21, 24, 36, 50].

The geodesic ray transform arises naturally in the linearization of the travel time
tomography or the boundary rigidity problem where one wants to uniquely determine
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(up to a gauge) the Riemannian metric (more generally a Finsler norm) from the
distances between boundary points [47]. When we have conformal variations then
the linearized problem reduces to the injectivity of the geodesic ray transform in the
background geometry (see Sect. 5.2). The travel time tomography problemwas solved
over a century ago for radial sound speeds satisfying the Herglotz condition [23, 57]
(see also [43]). In this case, the solution of the problem reduces to the inversion of an
Abel transform [38, 51]. There are also recent spectral rigidity results for radial sound
speeds which satisfy the Herglotz condition [19].

In the more general setting boundary rigidity is known for two-dimensional com-
pact simpleRiemannian surfaces [45], formanifolds admitting strictly convex foliation
[53, 55] and for compact simple Riemannian manifolds which are in the same con-
formal class [12, 37, 55]. There are some Finslerian results as well including Randers
metrics [35], reversible Finsler norms which satisfy a strictly convex foliation [17]
and projectively flat Finsler norms in the plane [2, 3, 30]. Our main result can be seen
as a boundary rigidity result up to first order for a conformal family of spherically
symmetric reversible Finsler norms satisfying the Herglotz condition (see Sect. 5.2).
A survey of the boundary rigidity or the travel time tomography problem can be found
in [55].

1.3 Organization of the Paper

In Sect. 2 we go through basic definitions and properties of Finsler manifolds and
Abel transforms and we study the Herglotz condition. We prove our main theorem in
Sect. 3. In Sect. 4 we prove the regularity properties of the integral kernel of the Abel
transforms. Finally, in Sect. 5 we discuss the linearization of the boundary rigidity
problem on Finsler manifolds and the application of our result to linearized elastic
travel time tomography.

2 Preliminaries

In this section, we go through definitions, notation and lemmas which are needed in
the proof of our main theorem. The basic theory of Finsler geometry can be found in
[1, 6, 10, 52] and the geodesic ray transform is treated in detail in [47]. Generalized
Abel transforms are studied for example in [14, 27].

2.1 Finsler Manifolds

Let M be a smooth manifold with or without a boundary. We use x ∈ M to denote the
base point and y ∈ TxM to denote the direction in the tangent space. A non-negative
function F : T M → [0,∞) of the tangent bundle is called a Finsler norm if it satisfies
the following conditions:

(i) F is smooth in T M \ {0}
(ii) F(x, y) = 0 if and only if y = 0
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(iii) F(x, λy) = λF(x, y) for every λ ≥ 0

(iv) 1
2

∂2F2(x,y)
∂ yi ∂ y j is positive definite for all y �= 0.

The pair (M, F) is called a Finsler manifold. In other words, the map y �→ F(x, y)
defines aMinkowski norm in TxM for every x ∈ M . The length of a piecewise smooth
curve γ : [a, b] → M is defined as L(γ ) = ∫ b

a F(γ (t), γ̇ (t))dt . In this way, a Finsler
norm F defines a (not necessarily symmetric) distance function on M .

Finsler norm F is reversible, if F(x,−y) = F(x, y) for all x ∈ M and y ∈ TxM .
Riemannianmetrics are a special case of reversible Finsler norms: If g is a Riemannian

metric, then Fg(x, y) =
√
gi j (x)yi y j defines a reversible Finsler normwhere we have

used the Einstein summation convention under the square root. A distance function
induced by a reversible Finsler norm is symmetric. Not all Finsler norms are reversible:
Examples include Randers metrics F = Fg +β where g is a Riemannian metric and β

is a one-form. On the other hand, there are reversible Finsler norms which are not
induced by any Riemannian metric.

Using convexity property (iv) we can define the Finslerian metric tensor

gi j (x, y) = 1

2

∂2F2(x, y)

∂ yi∂ y j
. (2)

If F = Fg is induced by a Riemannian metric, then gi j (x, y) = gi j (x) is independent
of y ∈ TxM . Using the Finslerian metric tensor one can define the Legendre transfor-
mation L : T M → T ∗M which in the Riemannian case corresponds to the musical
isomorphisms. Legendre transformation allows us to define the co-Finsler norm (or
dual norm) F∗ : T ∗M → [0,∞) so that for every ω ∈ T ∗

x M we have

F∗(x, ω) = sup
y∈Tx M

F(x,y)=1

ω(y). (3)

Let γ : [a, b] → M be a smooth curve on M . We call γ a geodesic if it is a critical
point of the length functional γ �→ L(γ ). Equivalently, we say that γ is geodesic if it
satisfies the geodesic equation

γ̈ i (t) + 2Gi (γ (t), γ̇ (t)) = 0 (4)

where Gi = Gi (x, y) are the spray coefficients defined as

Gi (x, y) = 1

4
gil(x, y)

(

yk
∂2F2(x, y)

∂xk∂ yl
− ∂F2(x, y)

∂xl

)

. (5)

Here gi j (x, y) is the inverse matrix of gi j (x, y) and we have used the Einstein sum-
mation convention. Geodesics correspond to straightest possible paths on a Finsler
manifold and theyminimize distances locally. It follows that if F is a reversible Finsler
norm and γ is a geodesic of F , then the reversed reparametrization ←−γ (t) = γ (−t) is
also a geodesic of F .
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2.2 The Herglotz Condition

Let M ⊂ R
2 be an annulus centered at the origin and let (x1, x2) = (r , θ) be the usual

polar coordinates on M . The coordinate vector fields ∂r and ∂θ form a basis in every
tangent space T(r ,θ)M . The coordinates of a tangent vector y ∈ T(r ,θ)M in this basis
are denoted by (y1, y2) = (ρ, φ) (see Fig. 1). The components of y can be calculated
using the differentials ρ = dr(y) and φ = dθ(y). Hence we can identify ρ ↔ dr and
φ ↔ dθ .

We say that F is a spherically symmetric Finsler norm on M ifU∗F = F for every
U ∈ SO(2) where the pullback of a Finsler norm via smooth map 
 is defined as
(
∗F)(x, y) = F(
(x), d
x (y)). Spherical symmetry implies that F = F(r , ρ, φ)

is independent of θ and the angular momentum L(r , ρ, φ) = 1
2∂φF2(r , ρ, φ) is con-

served along geodesics. Further, we say that a spherically symmetric reversible Finsler
norm F on M satisfies the Herglotz condition, if

∂r F
2(r , 0, φ) > 0 (6)

for all r ∈ (R, 1] and φ �= 0 where R ∈ (0, 1).
If γ is a geodesic on (M, F), we write it in polar coordinates as γ (t) = (r(t), θ(t)).

The geodesic equation for the radial coordinate becomes

r̈(t) = −g1l(γ (t), γ̇ (t))

2

(
γ̇ k(t)∂xk∂yl F

2(γ (t), γ̇ (t)) − ∂xl F
2(γ (t), γ̇ (t))

)
. (7)

If ṙ(t0) = 0, then by spherical symmetry ∂θ F2(x, y) = 0 and

r̈(t0) = 1

2
g11(γ (t0), γ̇ (t0))∂r F

2(γ (t0), γ̇ (t0)). (8)

Since the Finslerian metric tensor gi j (x, y) is positive definite one sees that the Her-
glotz condition (6) is equivalent to that

if ṙ(t0) = 0, then r̈(t0) > 0. (9)

Equation (9) means that geodesics which are initially tangential to circles curve out-
wards.One can also see from the geodesic equations that theHerglotz condition forbids
circles being geodesics.

An example of a spherically symmetric reversible Finsler norm satisfying (6) is the
Finsler norm (see also [58])

F2(r , ρ, φ) = ρ2 + r2φ2

c2(r , ρ, φ)
(10)
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where the (anisotropic) sound speed c = c(r , ρ, φ) is reversible c(r ,−ρ,−φ) =
c(r , ρ, φ) and satisfies the Herglotz condition

∂

∂r

(
r

c(r , 0, φ)

)

> 0 (11)

for all r ∈ (R, 1] and φ �= 0. Note that if c = c(r) is radial (i.e. F is Riemannian),
then this reduces to the usual Herglotz condition

d

dr

(
r

c(r)

)

> 0

for all r ∈ (R, 1] and the Finsler norm defined by Eq. (10) is a natural generalization
of the Riemannian metric

g = dr2 + r2dθ2

c2(r)
.

We say that a Finslermanifold (M, F)with boundary has a strictly convex foliation,
if there is a smooth function ψ : M → R such that

(a) ψ−1{0} = ∂M , ψ−1(0, S] = int(M) and ψ−1(S) has empty interior.
(b) For each s ∈ [0, S) the set �s = ψ−1(s) is a strictly convex smooth surface in the

sense that dψ �= 0 and any geodesic γ having initial conditions in T�s satisfies
d2

dt2
ψ(γ (t))|t=0 < 0.

For more details and discussion see [17]. The Herglotz condition (6) implies that M
has strictly convex foliation, i.e. circles ‖x‖ = r are strictly convex.

Lemma 2.1 Let M = B̄(0, 1) \ B̄(0, R) ⊂ R
2 where R ∈ (0, 1) and equip M with a

spherically symmetric reversible Finsler norm F which satisfies the Herglotz condi-
tion (6). Then (M, F) admits a strictly convex foliation.

Proof Define the function ψ(x) = 1 − ‖x‖2. Then ψ is smooth, dψ(x) = −2x �= 0
and it is easy to check the requirements in (a). The level sets of ψ are circles.
Let γ be a geodesic which is initially tangential to a circle. We need to check that
d2

dt2
ψ(γ (t))|t=0 < 0. We can calculate d

dt ψ(γ (t)) = −2γ (t) · γ̇ (t) and hence
d2

dt2
ψ(γ (t))|t=0 = −2(γ̇ (0) · γ̇ (0) + γ (0) · γ̈ (0)). By spherical symmetry we can

assume without loss of generality that θ(0) = 0. Since ṙ(0) = 0 we have r̈(0) > 0
due to theHerglotz condition (9). Therefore γ (0)·γ̈ (0) = r(0)r̈(0) > 0which implies
that d2

dt2
ψ(γ (t))|t=0 < 0. This proves that (M, F) has a strictly convex foliation. ��

Lemma 2.2 Let (M, F) be as in Lemma 2.1. If γ is a geodesic such that ṙ(0) = 0,
then γ reaches the boundary ∂M in finite time from both ends and γ consists of two
symmetric parts (with respect to (r(0), θ(0))) where ṙ < 0 and ṙ > 0.
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Proof Let γ be a geodesic such that ṙ(0) = 0. By spherical symmetry we can assume
without loss of generality that θ(0) = 0. Let ψ(x) = 1 − ‖x‖2 be as in the proof of
Lemma2.1.According to [17, Lemma14], if η is a geodesic such that d

dt ψ(η(t))|t=0 <

0, then η reaches the boundary in finite time as t increases. Now d
dt ψ(γ (t))|t=0 =

−2γ (0) · γ̇ (0) = 0 so we can not directly use [17, Lemma 14]. The Herglotz condition
implies that r̈(0) > 0 so there is ε1 > 0 such that ṙ(t) > 0 for all t ∈ (0, ε1).
Since γ has unit speed and F is homogeneous we have 1 = F(r(0), 0, 0, θ̇ (0)) =∣
∣θ̇ (0)

∣
∣ F(r(0), 0, 0, 1) so

∣
∣θ̇ (0)

∣
∣ �= 0, which implies that the angular variable θ(t)

is either increasing or decreasing at t = 0. In either case there is ε2 > 0 such that
θ(t)θ̇(t) > 0 for all t ∈ (0, ε2). These observations imply that there is ε > 0 such
that γ (ε) · γ̇ (ε) = r(ε)ṙ(ε) + r2(ε)θ(ε)θ̇(ε) > 0. Now defining η(t) = γ (t + ε)

we obtain that d
dt ψ(η(t))|t=0 < 0 so η and hence γ reaches the boundary in finite

time as t increases. Using similar reasoning for the reversed geodesic ←−γ (t) = γ (−t)
we obtain that γ has finite length and reaches the boundary from its both ends. The
symmetry of γ with respect to (r(0), θ(0)) follows from the reversibility and spherical
symmetry of F . The Herglotz condition in turn implies that ṙ cannot have more than
one zero since all critical points of r(t) have to be local minima. Hence γ consists of
a rising part where ṙ > 0 and a descending part where ṙ < 0. ��

Lemma 2.2 implies that those geodesics which are initially tangential to circles
have finite length. This is enough for us since we only use this type of geodesics in
the proof of Theorem 1.1. We note that in the Riemannian case (i.e. for the metric
g = c−2(r)e) the Herglotz condition implies that the whole manifold is non-trapping
(see, e.g. [34, 43]). We do not know if this is true also in our Finslerian setting.

TheHerglotz condition also allows us tomake a change of coordinates on geodesics
which are initially tangential to circles. We can interchange between the time parame-
ter t and the radial coordinate r since by the Herglotz condition we have ∂r/∂t > 0 on
the rising part and ∂r/∂t < 0 on the descending part of geodesics (see Lemma 2.2).
Here we have a partial derivative since generally r also depends on the lowest point
(r0, θ0) of the geodesic. In particular, we can change between the coordinates (r0, t)
and (r0, r). This coordinate transformation is treated inmoredetail inSects. 4.1 and4.2.

2.3 Geodesic Ray Transform and Abel Transforms

Throughout this section, we assume that M ⊂ R
2 is an annulus centered at the

origin equipped with a spherically symmetric reversible Finsler norm F satisfying the
Herglotz condition (6).

The geodesic ray transform of a scalar field f : M → R is defined as

I f (γ ) =
∫

γ

f ds

where γ is a unit speed geodesic. The integrals are finite for sufficiently regular func-
tions when the geodesic γ has finite length (e.g. if γ has unique lowest point to the
origin).
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We use the following angular Fourier series expansion which allows us to write the
geodesic ray transform of f in terms of the geodesic ray transforms of the component
functions fk(r , θ) = ak(r)eikθ .

Lemma 2.3 [14, Lemma 20] If f ∈ L2(M), then it can be written as an angular
Fourier series

f (r , θ) =
∑

k∈Z
ak(r)e

ikθ (12)

where ak ∈ L2([R, 1]) and the series convergences to f with respect to the L2(M)-
norm.

Let γ : [−T , T ] → M , γ (t) = (r(t), θ0 + ω(t)), be a geodesic with lowest point
(r0, θ0) and highest point at r = 1. Since F is reversible γ is symmetric with respect to
(r0, θ0) (see Lemma 2.2), i.e. (r(−t), θ(−t)) = (r(t), θ0−θ(t)). Using this symmetry
and change of variables t → r (which is also possible due to Lemma 2.2) we obtain
the following formula for the Fourier components

I fk(r0, θ0) =
∫ T

−T
ak(r(t))e

ik(θ0+ω(t))dt = 2eikθ0
∫ T

0
ak(r(t)) cos(kω(t))dt

= 2eikθ0
∫ 1

r0
(r − r0)

−1/2 K̃k(r0, r)ak(r)dr = 2eikθ0Akak(r0) (13)

where K̃k(r0, r) = K (r0, r) cos(kω(r0, r)), K (r0, r) = (r − r0)1/2(ṙ(r0, r))−1 and

Akh(x) =
∫ 1

x
(y − x)−1/2 K̃k(x, y)h(y)dy. (14)

We call the integral transform Ak in (14) a generalized Abel transform.
The Abel transformsAk are a special case of the more general integral transforms

I α
Kh(x) =

∫ 1

x
(y − x)−αK(x, y)h(y)dy (15)

where K : � → R is any bounded function, α ∈ [0, 1), � = {(u1, u2) ∈ R
2 : 0 ≤

u1 ≤ u2 ≤ 1} and h : [0, 1] → R is regular enough so that the integral in (15) is
well-defined. These type of integral transforms were studied in [14] and they satisfy
the following important properties:

Lemma 2.4 [14, Theorem 4] The transform I α
K : L p([0, 1]) → Lq([0, 1]) is well-

defined and continuous when α + 1/p < 1 + 1/q. In particular, this holds when
p > 1/(1−α), q < 1/α or p = q. The norm of this mapping satisfies

∥
∥I α

K
∥
∥
L p→Lq =

O(sup� |K|).
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Lemma 2.5 [14, Theorem 12] Let α ∈ [0, 1). Suppose K : � → R is bounded every-
where, non-zero on the diagonal {(u, u) ∈ R

2 : 0 ≤ u ≤ 1} and Lipschitz continuous
in some neighborhood of the diagonal. If h ∈ L1([0, 1]) satisfies I α

Kh(x) = 0 for
almost all x ≥ r for some r ∈ [0, 1), then h(x) = 0 for almost all x ≥ r . In
particular, Iα

K : L1([0, 1]) → L1([0, 1]) is injective.
The above lemmas hold also ifwe replace�with�R = {(u1, u2) ∈ R

2 : R ≤ u1 ≤
u2 ≤ 1} (see [14] for details). We show in Sects. 3 and 4 that the Abel transforms Ak

defined by Eq. (14) satisfy the assumptions in Lemmas 2.4 and 2.5.

3 Proof of theMain Theorem

In this section, we prove our main theorem. The idea of the proof is the following.
Using angular Fourier series the injectivity problem can be reduced to the invertibil-
ity problem of generalized Abel transforms acting on the Fourier components of f .
Writing the Taylor expansions of geodesics and analyzing the error terms we show in
Sect. 4 that the integral kernel K̃k = K̃k(r0, r) satisfies the regularity properties which
are needed in Lemmas 2.4 and 2.5. From this, it follows that the Abel transforms Ak

are injective, implying that the Fourier components of f all have to vanish, which
proves the claim.

The following two lemmas form the core of our proof since they imply that the
integral kernel K̃k is locally regular enough so that we can use the theory of Abel
transforms developed in [14] (i.e. Lemmas 2.4 and 2.5).

Lemma 3.1 Let R ∈ (0, 1) and �R = {(u1, u2) ∈ R
2 : R ≤ u1 ≤ u2 ≤ 1}. Define

the integral kernel K : �R → R as

K (r0, r) = (r − r0)
1/2(ṙ(r0, r))

−1

where ṙ = ṙ(r0, t) is obtained from the solution γ (r0, t) = (r(r0, t), θ(r0, t)) of the
geodesic equationwith initial conditions r(0) = r0 and ṙ(0) = 0 andwe have changed
the parameter t → r using Lemma 2.2. Then K = K (r0, r) is bounded everywhere
in �R, non-zero on the diagonal {(u, u) : R ≤ u ≤ 1} and Lipschitz continuous in a
small neighborhood of the diagonal.

Lemma 3.2 Letω(r0, t) = θ(r0, t)−θ0 be the angular change of a geodesic with low-
est point (r0, θ0) and R ∈ (0, 1). The map (r0, r) �→ ω2(r0, r) is Lipschitz continuous
in a small neighborhood of the diagonal {(u, u) : R ≤ u ≤ 1}.

The above lemmas are quite technical and laborious to prove. Therefore, we have
devoted our own section to the proofs (see Sect. 4). Lemmas 3.1 and 3.2 imply the
following important result for the Abel transforms Ak .

Lemma 3.3 LetAk be theAbel transformsdefinedbyEq. (14). ThenAk : L2([R, 1]) →
L2([R, 1]) are equicontinuous. Furthermore, the transforms Ak : L1([R, 1]) →
L1([R, 1]) are injective.
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Proof By Lemma 3.1 the kernel K = K (r0, r) is bounded. This implies that
K̃k(r0, r) = K (r0, r) cos(kω(r0, r)) is bounded too and we can use Lemma 2.4 to
deduce that Ak are equicontinuous on L2([R, 1]). From Lemmas 3.1 and 3.2 we get
that K = K (r0, r) and (r0, r) �→ ω2(r0, r) are Lipschitz in a small neighborhood
of the diagonal of �R and K is non-zero on the diagonal. The Lipschitz continuity
of (r0, r) �→ cos(kω(r0, r)) in a neighborhood of the diagonal follows from the fact
that cos(z) = h(z2) where h is an analytic function formed from the Taylor series
of cosine by replacing the powers z2n with zn . Therefore K̃k is bounded, non-zero
on the diagonal and Lipschitz in a small neighborhood of the diagonal. We can use
Lemma 2.5 to obtain that Ak are injective on L1([R, 1]). ��

Now we are ready to prove our main theorem. The proof is short since it relies on
many auxiliary (and technical) lemmas.

Proof of Theorem 1.1 As was mentioned in Remark 1.2 it is enough to prove the claim
for n = 2. We have to show that if

∫
γ
f ds = 0 for all geodesics γ , then f = 0. Using

Lemma 2.3 we write f as angular Fourier series

f (r , θ) =
∑

k∈Z
ak(r)e

ikθ =
∑

k∈Z
fk(r , θ) (16)

where ak ∈ L2([R, 1]) and convergence is in L2(M). We consider geodesics γ which
have unique lowest point and hence finite length due to Lemma 2.2. By Lemma 3.3 the
Abel transformsAk are equicontinuous which implies that I is continuous on L2(M).
Hence the geodesic ray transform I f can be calculated termwise and we obtain [see
Eq. (13)]

I f (r , θ) =
∑

k∈Z
I fk(r , θ) = 2

∑

k∈Z
Akak(r)e

ikθ (17)

where we have parameterized geodesics with their closest point (r , θ) to the origin.
Since I f (γ ) = 0 for all geodesics γ we have that I f (r , θ) = 0 for all r ∈ (R, 1].
This implies thatAkak(r) = 0 for all r ∈ (R, 1]. Using injectivity ofAk (Lemma 3.3)
we see that ak(r) = 0 for all r ∈ (R, 1]. Therefore f = 0, giving the claim. ��

4 Regularity of the Integral Kernel

In this section, we prove Lemmas 3.1 and 3.2. The quite technical proofs are based on
careful treatment of the Taylor expansions of component functions of geodesics.

4.1 Taylor Expansions andWeak Reversibility

Let (r0, θ0) ∈ M . As F is reversible there is unique geodesic γ (r0, t) =
(r(r0, t), θ(r0, t)) modulo orientation so that (r0, θ0) is its lowest point. Here we
have explicitly written down the dependence on r0 since we need to know the reg-
ularity of the integral kernel K̃k = K̃k(r0, r) with respect to r0. Reversibility of F
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also implies that r(r0, t) = r(r0,−t) and θ(r0, t) = θ0 − θ(r0,−t) (see Lemma 2.2).
Differentiating this with respect to t we obtain

{...
r (r0, 0) = 0

θ̈ (r0, 0) = 0.
(18)

Condition (18) can be called “weak reversibility” of a Finsler norm since it does not
necessarily require reversibility.

Using weak reversibility we write the Taylor expansion for the second derivative
of the radial coordinate

r̈(r0, t) = a(r0) + E1(r0, t), E1(r0, t) = O(t2),

where a(r0) = r̈(r0, 0) > 0 for all r0 ∈ (R, 1) by the Herglotz condition. Since
ṙ(r0, 0) = 0 we can integrate the expansion for r̈(r0, t) to obtain that

ṙ(r0, t) = a(r0)t + E2(r0, t) with E2(r0, t) = O(t3) and

r(r0, t) − r0 = a(r0)t2

2
+ E3(r0, t) with E3(r0, t) = O(t4).

Here f (t) = O(h(t)) means that | f (t)| ≤ M |h(t)| for small t where M > 0 is
constant. Note that the maps (r0, t) �→ r(r0, t) and (r0, t) �→ θ(r0, t) are smooth
because of smooth dependence on initial conditions. Therefore a = a(r0) is bounded
both from above and below by a positive constant.

4.2 Changing Between Time and Radial Coordinate

From the Taylor expansion of r = r(r0, t) we get an important relation t2 ≈ r − r0
for small t , i.e. there is constant C > 0 such that

1

C
t2 ≤ r − r0 ≤ Ct2

when t (or equivalently r − r0) is small enough. Therefore when we write estimates
using the Taylor expansions, it does not matter whether we express them in terms of t
or r − r0.

When we change between t and r we need to know how the derivatives transform.
We introduce the coordinates

z = (x, t) = (r0, t)

z̃ = (y, r) = (r0, r).

Coordinate transformation z → z̃ is well-defined because the Herglotz condition
implies that ∂r/∂t > 0 on the rising part of the geodesic and ∂r/∂t < 0 on the
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descending part (see Lemma 2.2). Using the chain rule we see that

∂

∂ y
= ∂

∂ z̃1
= ∂

∂x
+ ∂t

∂ y

∂

∂t
∂

∂r
= ∂

∂ z̃2
= ∂t

∂r

∂

∂t
.

Notice that ∂t/∂r = (∂r/∂t)−1 which can be seen for example by looking at the
Jacobian matrices of the transformations z = �(z̃) and z̃ = �−1(z).

4.3 Proofs of the Lemmas

The strategy to prove Lemmas 3.1 and 3.2 is the following. We use the Taylor expan-
sions for the coordinate functions of geodesics to calculate the derivatives with respect
to the variables r0 and r . By a careful treatment of the error terms we show that both of
the derivatives are bounded when t (or equivalently r − r0) is small. Using the mean
value theorem we obtain that K = K (r0, r) and (r0, r) �→ ω2(r0, r) are Lipschitz in
a small neighborhood of the diagonal of �R = {(u1, u2) ∈ R

2 : R ≤ u1 ≤ u2 ≤ 1}.
We start by proving Lemma 3.1.

Proof of Lemma 3.1 Wewrite ṙ−1(r0, r) := (ṙ(r0, r))−1 etc. The leading order behav-
ior of the kernel K can be seen by writing the expansion

K (r0, r) = (r − r0)
1/2ṙ−1(r0, r) =

(√
a(r0)

2
t + O(t3)

)(
1

a(r0)t
+ O(t)

)

= 1√
2a(r0)

+ O(t2).

From this, we easily see that K is non-zero on the diagonal and bounded everywhere
in �R .

We then focus on the derivative ∂r K (r0, r). Using the chain rule we get

∂r K (r0, r) = ∂

∂r

(
(r − r0)

1/2ṙ−1) = ṙ−3(r − r0)
−1/2

(
1

2
ṙ2 − (r − r0)r̈

)

.

The Taylor expansions from Sect. 4.1 imply that

1

2
ṙ2 = a2(r0)

2
t2 + O(t4)

(r − r0)r̈ = a2(r0)

2
t2 + O(t4)

ṙ3 = a3(r0)t
3 + O(t5).
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From the expression for ṙ3 we obtain

1

ṙ3
= 1

a3(r0)t3 + O(t3)
= 1

a3(r0)t3
+ O(t−1) = O(t−3).

Thus finally we have

∂r K (r0, r) = O(t−3) · O(t−1) · O(t4) = O(1)

which implies that the derivative ∂r K (r0, r) is boundedwhen t is small, or equivalently
when r − r0 is small.

The estimate for the derivative ∂r0K (r0, r) is a little bit trickier. We use the coor-
dinates (x, t) = (r0, t) and (y, r) = (r0, r) introduced in Sect. 4.2. First we obtain
that

∂y K (y, r) = ∂

∂ y

(
(r − y)1/2ṙ−1) = −(r − y)−1/2

2
ṙ−1 − (r − y)1/2ṙ−2 ∂ ṙ

∂ y
.

We use the derivative transformations from Sect. 4.2 to see that

∂ ṙ

∂ y
= ∂ ṙ

∂x
+ ∂t

∂ y

∂ ṙ

∂t
= ∂ ṙ

∂x
+ ∂t

∂ y
r̈

where

∂ ṙ

∂x
= a′(r0)t + ∂x E2.

The Taylor expansion for r allows us to write

t(y, r) =
√

2

a(y)
((r − y) − E3(y, r))

which can be differentiated with respect to y

∂t

∂ y
= −a(y)(1 + ∂y E3) + a′(y)((r − y) − E3)

a2(y)t
. (19)

Therefore the derivative becomes

∂y K (y, r) = −(r − y)−1/2

2
ṙ−1 − (r − y)1/2ṙ−2

(

(a′(y)t + ∂x E2)

− a(y)(1 + ∂y E3) + a′(y)((r − y) − E3)

a2(y)t
(a(y) + E1)

)

.

We estimate the different terms separately.
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First of all

(r − y)1/2ṙ−2 = O(t) · O(t−2) = O(t−1).

Now E2(x, 0) = 0 for all x and therefore ∂x E2(x, 0) = 0. Compactness and smooth
dependence on initial conditions give us that ∂x E2 is Lipschitz with respect to t . Thus
∂x E2(x, t) = O(t) and

(r − y)1/2ṙ−2 · (a′(y)t + ∂x E2) = O(t−1) · O(t) = O(1).

Similarly (r − y) = O(t2) and E3 = O(t4) = O(t2) so

(r − y)1/2ṙ−2 · a
′(y)((r − y) − E3)

a2(y)t
= O(t−1) · O(t) = O(1).

Additionally E1 = O(t2) and

(r − y)1/2ṙ−2 · a(y)E1

a2(y)t
= O(t−1) · O(t) = O(1).

Next, we take a look at the term ∂y E3. From the transformation law ∂
∂ y = ∂

∂x + ∂t
∂ y

∂
∂t

we get

∂y E3 = ∂x E3 − ∂t E3
a(y) + a(y)∂y E3 + a′(y)((r − y) − E3)

a2(y)t

⇔ ∂y E3 = a2(y)t∂x E3 − ∂t E3(a(y) + a′(y)((r − y) − E3))

a2(y)t + a(y)∂t E3
.

Now ∂x E2 = O(t) and

Ei (x, t) =
∫ t

0
Ei−1(x, s)ds, i ∈ {2, 3}.

By smoothness we have

∂x E3(x, t) =
∫ t

0
∂x E2(x, s)ds

so ∂x E3 = O(t2). Also ∂t E3 = E2 = O(t3) andwe have an estimate for the derivative

∂y E3 = O(t3)

a2(y)t + a(y)∂t E3
= O(t2)(1 + O(t2)) = O(t2).

Thus

(r − y)1/2ṙ−2 · a(y)∂y E3

a2(y)t
= O(t−1) · O(t) = O(1).
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Finally, the y-derivative of the integral kernel is

∂y K (y, r) = −(r − y)−1/2

2
ṙ−1 + (r − y)1/2ṙ−2 1

t
+ O(1)

= ṙ−2(r − y)−1/2t−1
(

− ṙ t

2
+ (r − y)

)

+ O(1)

= ṙ−2(r − y)−1/2t−1
(

− a(y)t2

2
− t E2

2
+ a(y)t2

2
+ E3

)

+ O(1)

= O(t−4) · O(t4) + O(1) = O(1).

This implies that ∂r0K (r0, r) is bounded for small t , or equivalently for small r − r0.
Let ε > 0 be small enough so that both ∂r K (r0, r) and ∂r0K (r0, r) are bounded

when r − r0 < ε. Now if (r0, r), (r̃0, r̃) ∈ �ε
R = {(u1, u2) ∈ �R : u2 − u1 < ε},

then the mean value theorem implies that

|K (r0, r) − K (r̃0, r̃)| ≤ |∇K (r̂0, r̂)| |(r0, r) − (r̃0, r̃)|
≤ M(

∣
∣∂r0K (r̂0, r̂)

∣
∣ + |∂r K (r̂0, r̂)|) |(r0, r) − (r̃0, r̃)|

≤ M̃ |(r0, r) − (r̃0, r̃)| .

Here we used the fact that the point (r̂0, r̂) belongs to the segment connecting (r0, r)
and (r̃0, r̃) so r̂−r̂0 < ε since�ε

R is a convex set. Therefore K = K (r0, r) is Lipschitz
in a small neighborhood of the diagonal of �R . ��

Next, we prove Lemma 3.2. The proof is similar to the proof of Lemma 3.1.

Proof of Lemma 3.2 Using fundamental theorem of calculus we can write

ω(r0, t) = θ(r0, t) − θ0 =
∫ t

0
θ̇ (r0, s)ds =

∫ r

r0
θ̇ (r0, u)ṙ−1(r0, u)du.

Since ṙ−1(r0, t) = O(t−1) and θ̇ (r0, t) = O(1) (by compactness and smooth depen-
dence on initial conditions) we have by the chain rule

∂rω(r0, r) = θ̇ (r0, r)ṙ
−1(r0, t) = O(1) · O(t−1) = O(t−1).

Using ṙ−1 = O(t−1) and t−1 ≈ (r − r0)−1/2 for small t we obtain

|ω(r0, r)| ≤ M
∫ r

r0
|ṙ−1(r0, u)|du ≤ M̂

∫ r

r0
(u − r0)

−1/2du = M̃(r − r0)
1/2

for small r − r0 which implies ω(r0, r) = O(t). Hence

∂rω
2(r0, r) = 2ω(r0, r)∂rω(r0, r) = O(t) · O(t−1) = O(1).

Thus the derivative ∂rω
2(r0, r) is bounded for small t (or for small r − r0).
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For the derivative ∂r0ω(r0, r) we write

ω(r0, r) =
∫ r

r0
θ̇ (r0, u)(u − r0)

−1/2K (r0, u)du =
∫ r

r0
(u2 − r20 )−1/2ϕ(r0, u)du

where
ϕ(r0, r) = θ̇ (r0, r)K (r0, r)(r + r0)

1/2.

The weak reversibility condition θ̈ (r0, 0) = 0 implies that

θ̈ (r0, t) =
∫ t

0

...
θ (r0, s)ds

so θ̈ (r0, t) = O(t) since
...
θ (r0, t) = O(1) by compactness and smooth dependence

on initial conditions. The transformation rules for the derivatives imply that

∂r θ̇ (y, r) = ṙ−1(y, r)θ̈ (y, r) = O(t−1) · O(t) = O(1)

and

∂y θ̇ (y, r) = ∂x θ̇ (x, t) + ∂t

∂ y
θ̈ (y, r) = O(1) + O(t−1) · O(t) = O(1).

Herewe used the calculations from the proof of lemma 3.1 to deduce that ∂t
∂ y = O(t−1)

[(see Eq. (19)] and ∂x θ̇ (x, t) = O(1) by compactness and smooth dependence on
initial conditions. Thus θ̇ = θ̇ (r0, r) is Lipschitz for small r − r0. Because K =
K (r0, r) and (r0, r) �→ (r + r0)1/2 are Lipschitz for small r − r0 also the map
ϕ = ϕ(r0, r) is Lipschitz for small r − r0 (the terms in ϕ are bounded). Therefore the
derivatives ∂r0ϕ and ∂rϕ are bounded for small r − r0 and ϕ = O(1).

The derivative ∂r0ω(r0, r) becomes (see, e.g. [14, Proposition 15])

∂r0ω(r0, r) =
∫ r

r0
(u2 − r20 )−1/2

(

∂r0ϕ(r0, u) − r0
u2

ϕ(r0, u) + r0
u

∂uϕ(r0, u)

)

du

− r0(r
2 − r20 )−1/2ϕ(r0, r).

The term inside the big parenthesis isO(1) because ϕ and its derivatives are bounded
and u ≥ r0 > R > 0. Hence the term coming from the integral is O(t). The latter
term is O(t−1) and thus ∂r0ω(r0, r) = O(t−1). Finally, we have

∂r0ω
2(r0, r) = 2ω(r0, r)∂r0ω(r0, r) = O(t) · O(t−1) = O(1)

which implies that the derivative ∂r0ω
2(r0, r) is bounded for small t , or equivalently for

small r − r0. The Lipschitz continuity of (r0, r) �→ ω2(r0, r) in a small neighborhood
of the diagonal of �R then follows from the mean value theorem as in the proof of
Lemma 3.1. ��
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5 Linearized Travel Time Tomography on Finsler Manifolds

In this section, we consider the linearization of the boundary rigidity problem on
Finsler manifolds: If two Finsler norms give the same distances between boundary
points, are they equal up to a gauge? We show that the linearization of boundary
distances for a general family of Finsler norms leads to the geodesic ray transform of
a function on the sphere bundle SM . We also show that if the family of Finsler norms
arises from conformal variations, then linearization leads to the geodesic ray transform
of scalar fields on M . This implies that if the geodesic ray transform is injective on
scalar fields, then we have boundary rigidity in the first-order approximation.

The linearization of the boundary rigidity problem has been done earlier for Rie-
mannian metrics for example in [50, Section 3.1]. We show that the Riemannian
linearization result follows from the linearization of Finsler norms as a special case.

5.1 Linearization for General Finsler Norms

Let M be a smooth compact manifold with boundary ∂M . Let x, x ′ ∈ ∂M , ε > 0
and s ∈ (−ε, ε). Assume that we have a family of curves γs : [0, T ] → M smoothly
depending on s and connecting x to x ′ such that each γs is a unit speed geodesic of a
Finsler norm Fs . We denote by γ̇s the derivative of γs = γs(t) with respect to t . Let
dFs (x, x

′) be the length of the geodesic γs with respect to Fs , i.e. we assume that γs
minimizes the distance from x to x ′.

The derivative of dFs (x, x
′) with respect to the parameter s at zero is

∂dFs (x, x
′)

∂s

∣
∣
∣
∣
s=0

=
∫ T

0

∂

∂s
(Fs(γs(t), γ̇s(t)))

∣
∣
∣
∣
s=0

dt . (20)

A calculation shows that

∂

∂s
(Fs(γs(t), γ̇s(t)))

∣
∣
∣
∣
s=0

= ∂Fs(γ0(t), γ̇0(t))

∂s

∣
∣
∣
∣
s=0

+ ∂

∂s
(F0(γs(t), γ̇s(t)))

∣
∣
∣
∣
s=0

and we obtain

∂dFs (x, x
′)

∂s

∣
∣
∣
∣
s=0

=
∫ T

0

∂Fs(γ0(t), γ̇0(t))

∂s

∣
∣
∣
∣
s=0

dt + ∂

∂s

∫ T

0
F0(γs(t), γ̇s(t))dt

∣
∣
∣
∣
s=0

.

The second term vanishes since γ0 is a geodesic of F0 and hence a critical point of the
length functional. Thus, we obtain

∂dFs (x, x
′)

∂s

∣
∣
∣
∣
s=0

= ISMh(γ0) (21)
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where the function h : SM → R is defined as

h(x, y) = ∂Fs(x, y)

∂s

∣
∣
∣
∣
s=0

(22)

and ISM is the geodesic ray transform on the sphere bundle SM .

If Fs(x, y) =
√
gsi j (x)y

i y j where gs = gsi j (x) is a family of Riemannian metrics,

then

∂Fs(γ0(t), γ̇0(t))

∂s

∣
∣
∣
∣
s=0

= 1

2
√
g0i j (γ0(t))γ̇

i
0(t)γ̇

j
0 (t)

∂gsi j (γ0(t))

∂s

∣
∣
∣
∣
s=0

γ̇ i
0(t)γ̇

j
0 (t)

= 1

2

∂gsi j (γ0(t))

∂s

∣
∣
∣
∣
s=0

γ̇ i
0(t)γ̇

j
0 (t)

where we used the fact that γ0 is a unit speed geodesic of g0. Hence

∂dgs (x, x
′)

∂s

∣
∣
∣
∣
s=0

= I2h(γ0) (23)

where the components of the 2-tensor field h = hi j (x) are

hi j (x) = 1

2

∂gsi j (x)

∂s

∣
∣
∣
∣
s=0

(24)

and I2 is the geodesic ray transform of 2-tensor fields.
If there are no constraints on the family Fs of Finsler geometries, then any smooth

function h : SM → R can be realized as a variation in the sense of Eq. (22). Therefore
the linearized problem in general Finsler geometry is that of finding the kernel of ISM .
This kernel characterization in the Finsler setting is surprisingly simple: ISMh = 0 if
and only if h = Xu for a smooth function u : SM → R with u|∂SM = 0, where X
is the geodesic vector field. The claim can be proved by defining u to be the integral
of h over forward geodesics. Constraints on h induce constraints on the potential u as
is the case in Riemannian linearizations and tomography of 2-tensors.

If one studies the Riemannian version of linearized travel time tomography, then the
deformation has the special form h(x, y) = hi j (x)yi y j with coefficients as in (24).
This structure of h : SM → R (rank two tensor field) implies a special structure for
u : SM → R (rank one tensor field), and it is proving this structural implication that
makes the Riemannian problem hard in comparison to the general Finslerian one. See
[28, 42, 47] for Riemannian results. If one studies the linearized problem in the family
of Finsler metrics arising from elasticity (see Sect. 5.3), the difficulty returns: One
needs a structural characterization of possible variation fields h and the corresponding
structure for the potential u. Neither of these structures is known in the general elastic
setting.
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5.2 Linearization for Conformal Variations

Let us consider the case Fs(x, y) = cs(x)F0(x, y) where cs = cs(x) is a family of
positive functions on M such that c0 ≡ 1 and F0 is some fixed Finsler norm. Now

∂Fs(γ0(t), γ̇0(t))

∂s

∣
∣
∣
∣
s=0

= ∂cs(γ0(t))

∂s

∣
∣
∣
∣
s=0

(25)

where we used the fact that F0(γ0(t), γ̇0(t)) = 1 since γ0 is a unit speed geodesic
of F0. We obtain

∂dFs (x, x
′)

∂s

∣
∣
∣
∣
s=0

= I f (γ0) (26)

where the function f : M → R is defined as

f (x) = ∂cs(x)

∂s

∣
∣
∣
∣
s=0

. (27)

Hence the linearization of boundary distances of conformal family of Finsler norms
leads to the geodesic ray transform of scalar fields on the Finsler manifold (M, F0).

If all the geodesics γs give the same boundary distances dFs (x, x
′), then the deriva-

tive with respect to s vanishes and

I f (γ0) = 0 (28)

for all geodesics γ0 of F0 connecting two points on the boundary. If the geodesic ray
transform is injective on (M, F0), then to first order in s we have

Fs ≈ F0 + s · ∂Fs
∂s

∣
∣
∣
∣
s=0

= F0 (29)

since the derivative satisfies

∂Fs(x, y)

∂s

∣
∣
∣
∣
s=0

= ∂cs(x)

∂s

∣
∣
∣
∣
s=0

F0(x, y) = f (x)F0(x, y) = 0 (30)

where we used the fact that f = 0 whenever I is injective on (M, F0). In this case,
we have boundary rigidity up to first order in the parameter s.

5.3 Conformally Linearized Elastic Travel Time Tomography

Next, we consider the travel time tomography problem in R
3 arising in elasticity.

Basic theory of elasticity can be found for example in [9, 51]. The stiffness tensor
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ci jkl = ci jkl(x) describes the elastic properties of a given material. The stiffness
tensor has the symmetries

ci jkl = c jikl = ckli j . (31)

The density-normalized elastic modulus is

ai jkl(x) = ci jkl(x)

ρ(x)
(32)

where ρ = ρ(x) is the density of the material.
If p is the momentum covector, then the Christoffel matrix is �il(x, p) =∑
j,k ai jkl(x)p j pk . The Christoffel matrix is symmetric and we also assume that it is

positive definite so it has three positive eigenvalues λi = λi (x, p) where i ∈ {1, 2, 3}.
Let us assume that λ1 > λi for i ∈ {2, 3}. It was shown in [13] that √λ1(x, p) defines
a co-Finsler norm in T ∗

R
3. Using the Legendre transformation we obtain a Finsler

norm in TR3.
Assume that the stiffness tensor ci jkl = ci jkl(x) is fixed and consider the con-

formal variations csi jkl(x) = fs(x)ci jkl(x) where fs = fs(x) is a smooth family of
positive functions such that f0 ≡ 1 (i.e. we have a family of “factorized anisotropic
inhomogeneous media", see, e.g. [7–9, 58]). The density-normalized elastic modulus
becomes

asi jkl(x) = csi jkl(x)

ρ(x)
= fs(x)ai jkl(x). (33)

Thus, we have a family of Christoffel matrices �s
il(x, p) = fs(x)�il(x, p). Since the

eigenvalues only get scaled by fs , the largest eigenvalue corresponds to λs1(x, p) =
fs(x)λ1(x, p). We obtain a family of co-Finsler norms F∗

s (x, p) = √
fs(x)F∗(x, p)

where F∗ is the co-Finsler norm corresponding to the stiffness tensor ci jkl . Now
as the Legendre transformation acts fiberwise, we obtain a family of Finsler norms
Fs(x, y) = √

fs(x)F(x, y) where F is the Legendre transformation of F∗.
We have shown that conformal variations of the stiffness tensor leads to confor-

mal variations of the Finsler norm induced by the background stiffness tensor. If we
consider the travel time tomography or the boundary rigidity problem for the family
of induced Finsler norms Fs , then using the observations done in Sect. 5.2 we obtain
that

∂ fs(x)

∂s

∣
∣
∣
∣
s=0

= 0 (34)

whenever the geodesic ray transform is injective on scalar fields on the base manifold
(M, F). This in turn implies that the stiffness tensors csi jkl = fsci jkl all agree to first
order in s, i.e.,

csi jkl ≈ ci jkl + s · ∂csi jkl
∂s

∣
∣
∣
∣
s=0

= ci jkl . (35)
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We note that it was shown in [18] that the linearization of the elastic travel time
tomography problem for a family of isotropic stiffness tensors leads to the geodesic
ray transform of scalar fields on Riemannian manifolds (and more generally to an
integral geometry problem of 4-tensor fields). Our conformal linearization allows
general anisotropies for csi jkl (the background stiffness tensor ci jkl can be anisotropic)
and therefore the geometry is Finslerian; in [18] the authorsmainly study perturbations
around isotropic elasticity (weakly anisotropic medium). Other difference is that our
linearization applies to qP-waves and the linearization in [18] to S-waves and qS-
waves. For more linearization results in elastic travel time tomography see [15, 18,
47].
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