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Abstract. Most recently, there has been a growing need for developing very  large-scale integration (VLSI) 

circuits with low energy consumption and high speed for use in fast transmission systems. In addition, the main 

challenge in designing irreversible integrated circuits is heat generation due to data loss. Thus, in recent years, 

reversible design has been preferred for low-power VLSI circuits because the data is not lost. In this article, a 

new design of parity-preserving-reversible (PPR) floating-point divider is suggested. A floating-point divider 

structure includes parallel adder, multiplexer, register, and left-shift register. To optimize these circuits, first, 

we propose a 5×5 PPR block and a PPR D-latch. Second, using the proposed circuits, a ripple-carry-adder 

(RCA), a register, and an efficient parallel-input-parallel-output (PIPO)-left-shift register, rounding-register, 

and normalization register circuits are introduced in PPR logic. The comparisons illustrate that the suggested 

circuits are preferable to the circuits presented in previous works in terms of various criteria such as quantum 

cost, constant inputs, and garbage outputs. 

Keywords: Quantum-computing; reversible-logic; parity-preserving (PP); floating-point divider; quantum-

cost. 

 

1. Introduction 

Currently, the construction of Nano-scaled logic circuits and transistors is particularly important. Moreover, 

most designs are playing a vital role in the current society. One of the significant advantages of such designs 

is their low power consumption. Thus, if these circuits can be designed using reversible logic, the power 

consumption, heat generation in the transistor, and the complexity and density of the circuits will be 

significantly reduced. Besides, in future designs, logic circuits will not be feasible without the use of 

nanotechnology, quantum computing, and reversible*logic, because the current designs, according to Moore's 

Law, cause high power consumption and heat production, thus leading to power dissipation.  

Furthermore, the reliable scheme of Parity-Preserving-Reversible (PPR) circuits reduces the possibility of 

computational errors due to the compactness of the circuits. Landauer (1961) showed that in irreversible logic 

computation, KTLn2 Joules of thermal energy is released for all bits of data lost, where K is the 

Boltzmann*constant and T is the absolute temperature at which the computations are performed [1]. Given that 

the losing*heat of a data bit would be (2.9 ×10-21) Joules, which is a minimal amount. Moor (1965) has 

indicated that the number of elements will be approximately twice every eighteen months in digital circuits. 

So, power dissipation will become a significant challenge in the structures of VLSI circuits in the future[2]. 

Bannet (1973) demonstrated that reversible-gates in circuits would prevent energy dissipation and reduce 

power consumption in circuits[3]. Moreover, the application of reversible*logic in diverse fields like low-

power CMOS circuit structure [4], quantum processing[5], and nanotechnology[6] has led to the design of 

complex circuits considered by researchers. One solution to optimizing power consumption in low-power 

CMOS is to apply quantum computing and reversible-logic [7]. Computations in current computer systems are 

all irreversible. Thus, deleted data is lost and cannot be restored. A circuit becomes reversible when a one-to-

one mapping among the outputs and inputs of each of its logic gates[8]. The main challenges in designing 

irreversible circuits are heat generation and high energy consumption due to the loss of data. Thus, reversible 

design is used for low-power VLSI circuits because the data is not lost. Therefore, it is expected that due to the 

unique characteristics of reversible circuits, in the near future we will see their use in the design and 

implementation of special purpose hardware in the field of computational intelligence, neural networks and 



robotics[9-13]. Reversible circuits can be designed with parity-preserving capacity. PPR gates are important 

elements in the design of these models of circuits. Designing a reversible circuit using Parity-Preserving (PP) 

gates can detect computational errors in the circuit. Thus, PP capacity can be incorporated into the designs of 

reversible gates to reduce the possibility of computational errors. The division operation has been counted as 

one of the basic operations in the arithmetic logic unit(ALU)[14]. The divider is one of the most complex 

computational circuits implemented in digital systems, and the floating-point divider is of particularly 

importance for the design of microprocessors. A floating-point divider circuit consists of  multiplexer, RCA 

adder, register, and PIPO-left-shift-register. The first n-bit-reversible divider scheme for positive integers using 

the non-restoring division algorithm was introduced in 2009 and did not have the PP ability [15]. Two different 

approaches to reversible dividers were proposed in 2011 with the structure of a PPR-PIPO-left-shift-register. 

The first and second approaches have slight differences in architecture[16]. In 2016, a fault-tolerant reversible 

floating-point divider was designed. This scheme was presented using PPR divider components, containing: 

RCA adder, normalization register, PIPO left-shift-register, register, rounding-register, and a reversible 

divider[17].  

In this article, we have proposed an efficient PPR floating-point divider, which can be used in digital systems 

to improve efficiency significantly. The scientific of this article will be as follows: 

• Introducing a novel PPR block  

• Proposing a RCA based on the suggested block 

• Introducing a PPR D-latch  

• Designing register, PIPO left-shift register, rounding register, and normalization register circuits using 

the proposed D-latch 

• Designing an efficient PPR floating-point divider using the proposed circuits 

This manuscript is organized as follows: Sec.2 presents an introduction to reversibility logic and division 

techniques. Sec.3 discusses the procedure used to design the proposed divider. Sec.4 presents the results of 

evaluations and comparisons. Finally, the manuscript is finished with a conclusion in Sec.5 

2. Preliminaries 

In this section, at first, the fundamental concepts of reversible logic are reviewed, and then division algorithms 

are discussed.  

 

2.1 Reversible logic 

A circuit will be reversible when there is a single-to-single mapping among the inputs and outputs of each of 

its logic gates, and each output can be retrieved from its unique input, and data will be lost if it is not possible 

to retrieve inputs from outputs. As a result, due to the single-to-single mapping among inputs and outputs in 

reversible-circuits, data is not lost. Thus, using reversible computations, circuits with zero power loss can be 

developed. If the input vector in the reversible gate is 𝐼𝑣 = {𝐼1. 𝐼2 … 𝐼𝑛} and if the output vector is 𝑂𝑣 =

{𝑂1. 𝑂2 … 𝑂𝑛}, Eq. (1) is permanently established [8, 18]:  

Iv = Ov (1) 

               

Besides, a reversible-circuit will be named PP when the-Exclusive-OR (XOR) of the input vector must be the 

same with the XOR of outputs (Eq.2). Thus, any error occurring in the output can be found out if the reversible-

circuit is made only of PPR blocks [19].  

      

The main challenges to the design of reversible-circuits are the optimization of criteria such as Constant-Inputs 

(CI), Garbage-Outputs (GO), and Quantum Cost (QC) [20, 21]. 

I1 ⊕ I2 ⊕ … ⊕ In−1 ⊕ In = O1 ⊕ O2 ⊕ … ⊕ On−1 ⊕ On    (2) 



- GO: The number of additional outputs that have not been used as input to other gates or blocks, 

making a gate function reversible. 

- CI: The number of inputs that have been kept constant with values of '0' or '1'. 

- QC: The total quantum cost of reversible gates or blocks is considered [22]. 

                                         

2.2 Reversible gates 

Reversible gates are classified as follows: 

NOT-gate: A-NOT-gate is a-1×1-quantum gate with QC equal to one, as illustrated in Fig. (1) [23]: 

 

A P = A 
 

Fig. (1): Quantum circuit of a NOT gate[23] 

 

CNOT gate: This gate, also called the Feynman-Gate-(FG), is a-2×2 reversible-gate with control input A and 

target input B. The output generated by P = A and Q = A⊕B. As illustrated in Fig. (2), when the control input 

is A = '1', the inverse of the target input (B̄) will be at the output. In other respects, the target B will be moved 

to Q unchanged [24]. 

A P = A 

B  Q = A   B
 

Fig. (2): Quantum circuit of a CNOT gate[24] 

 

Control gates V and V+: Control gates V and -V+ are 2×2 quantum gates[23, 25-27]. When control line is 

A='0', the input is sent to the output unchanged. Besides, if control input A is '1', the controlled V and-

controlled--V+ gates are sent to the output as V(B)*and-V+(B) outputs, in order. Their QC is equal to one. The 

quantum representations of these gates are illustrated in Fig. (3):  

A A 

B If A then V(B)

Else B

A A 

B If A then V+(B)

Else B

(a) (b)

V+
V

 

Fig. (3): Quantum circuits of control gates (a) V, (b)V+ [23, 25-27]- 

 

The matrices V and V + are derived from Eqs. (3) and (4), as displayed below:  

 

V =
1 + i

2
(

1 −i
−i 1

) 
(3) 

 



V+ =
1

i + 1
(1 − 1

i⁄

i 1
) 

(4) 

 

The properties of the matrices are displayed using Eqs. (5), (6), and (7), as follows[28, 29]: 

V × V = NOT                                                                                        (5) 

V+ × V = V × V+ = I (6) 
V+ × V+ = NOT (7) 

 

In order to detect bit errors of reversible-circuits, we can design them with PP ability [30-34]. In the following 

section, we introduce three PPR logic blocks, including Double Feynman Gate (DFG), FRedkin-Gate (FRG), 

and Bolhassani Haghparast Parity-Preserving Full-adder (BHPF) gates.  

 DFG: It is a well-known reversible gate, which is a 3×3 PPR gate. Its QC is equal to two [19]. Also, quantum 

circuit of the DFG gate is illustrated in Fig. (4).  

A

B

C

P = A

Q = A   B

R = A   C
 

Fig. (4): Quantum circuit of the DFG gate [19]  

 

FRG: This is a famous gate, which is a 3× 3 PPR gate illustrated in Fig. (5)[35]. Its outputs are P = A, Q = 

A′B⊕AC, and-R = A′C⊕AB. Besides, its QC is equal to five.  

A

B

C

P = A

VV V+ Q = A B   AC

R = A C   AB

 

Fig. (5):Quantum circuit of the FRG-gate [35] 

  

BHPF gate: The BHPF gate is a 4×4 PPR block with output equations P = A,Q = A⊕B, R = B⊕C, and S = 

A⊕B⊕D[32]. The quantum circuit of the BHPF-gate is illustrated in Fig. (6). Its QC is three. 

A

B

C

P = A

D

Q = A   B

R = B   C

S = A   B   D

 

Fig. (6): Quantum circuit of the BHPF gate[32] 

 

2.3 Division techniques  

The division is considered as one of the most important operations in arithmetic computing. According to Eq. 

(8), a division algorithm is a method which, given dividend (D) and divisor (V), calculate their quotient (Q) 

and the remainder (R).  



D = (Q × V) + R           (8) 

 

In the following, two-division algorithms will be examined. 

2.3.1 Restoring division algorithm 

One type of division method is the restoring division algorithm. The division is performed in each step based 

on the operation 𝑅𝑖+1 =  2𝑅𝑖 − 𝑉. If the subtraction outcome is negative, the partial remainder value is 

calculated with the true value and restored in the addition-operation 𝑅𝑖+1 =  2𝑅𝑖 + 𝑉. Fig. (7) shows the 

flowchart of restoring-division algorithm [36].  
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and Reminder 

in A
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Fig. (7): Flowchart for restoring-division-algorithm [36]  

The steps taken in the restoring algorithm are as follows [36]: 

1. Save count = 0 and zero in register A. 

2. Start repeating loops n times. 

3. Shift to left A & Q. 

4. Subtract M from A and store the answer in A. 



5. If A <0, Set Q0 = 0 and add M to A (restore A). 

6. Else Q0 = 1. 

7. If count = n-1, then stop the loop. 

 

2.3.2 Non-restoring algorithm 

Another division method is the non-restoring division algorithm [15]. In this division method, if the subtraction 

outcome is negative, the partial remainder will not be stored immediately, and the continuation of the operation 

depends on the possibility of combining the computational step 𝑅𝑖 = 𝑅𝑖 + 𝑉. Partial remainder 𝑅𝑖+1 = 2𝑅𝑖 − 𝑉 

followed by calculating the partial remainder in the next step 𝑅𝑖+1 = 2𝑅𝑖 + 𝑉 can be integrated into a single 

operation. Thus, if the quotient is 𝑞𝑖 = 1, the next remainder is calculated by subtraction. If the quotient is 𝑞𝑖 =
0, instead of storing the partial remainder value, the next step is performed by adding the divisor to the partial 

remainder. If the quotient is equal to 0, then the partial-remainder will be negative due to -subtraction, so an 

inherent correction is made by adding the divisor and the remainder [36]. Fig. (8) shows the flowchart for the 

non-restoring algorithm.  
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Fig. (8): Flowchart for non-restoring division algorithm [37] 

 

3. The suggested PPR floating-point divider 

This section describes the implementation of the proposed components of a PPR divider circuit-based 

reversible gates and blocks as follows. The ingredients of the reversible floating point divider circuit include 



an RCA adder, reversible multiplexer, reversible register, PIPO left-shift register, rounding register, and 

normalization register. 

3.1 The suggested PPR logic block 

In order to design the circuits that are used in the proposed PPR divider. First, we propose a novel PPR block 

called TMB1. Its quantum representation is illustrated in Fig. (9). The suggested PPR block is a 5×5 block. 

The outputs are resulted via Eqs (9) to (13). The QC of the TMB1 block is eight. 

P=A’                                                                                 (9) 

Q=(A⊕B)’                                                                    (10) 

R=A⊕B⊕C⊕D                                                         (11) 

S= (A⊕B)(C⊕D)⊕(AB⊕D)                                        (12) 

T=(A⊕B)(C⊕D)⊕(A’B⊕D)⊕E                           (13) 

 

A

B

C

D

E

V V V V+

P = A 

Q = (A   B) 

R = A   B   C   D

S = (A   B) (C   D)   (AB   D)

T = (A   B) (C   D)   (A B    D)   E

TMB1

 

Fig. (9): The quantum-circuit of the TMB1block  

 

3.2 The suggested PPR adder 

As mentioned, one of the consisting components of the proposed PPR divider is adder circuit. Here, we 

introduce an efficient PPR adder using the proposed TMB1 block. For this purpose, inputs D and E of the 

proposed TMB1 logic block are tuned to '0'; so the proposed block will turn into one-bit PPR full-adder. As 

can be seen in Fig. (10), the outputs Sum and Carry are resulted from the outputs R and S, respectively, and 

the remaining outputs of the circuit are garbage-outputs. The-QC of the PPR full-adder circuit is eight. 

A

B

C

0

0

V V V V+

G

R = A   B   C

S = (A   B) (C   AB )

G

G

 

Fig. (10): The quantum circuit of the suggested one-bit PPR full-adder circuit using the TMB1 block 

Fig. (11) shows an (n + 1)-bit PPR-RCA-adder using the suggested full-adder and the BHPF gate. The proposed 

circuit has (n + 1) gates, (n + 4) constant-inputs, (3n + 2) garbage-outputs, and a QC equal to (8n + 3).  
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Fig. (11): The proposed (n + 1)-bit PPR-RCA-adder circuit 

 

3.3 The suggested PPR D-latch  

One of the consisting components of the divider circuits, in order to store intermediate results, is the latch 

circuit[38]. In the following, we first introduce PPR E1 block [39] and then apply it to design an effective D-

Latch. Quantum circuit of the E1 block is illustrated in Fig. (12), with QC =6. 

A

B

C

D V V+
V

Q = B

P = A   D

R =AB    C   B D

S = AB   B D

 

Fig. (12): The quantum circuit of the PPR E1 block [39] 

As shown in Fig. (13), in order to design an effective PPR D-Latch, we set the inputs A, B, and C of the E1 

block to D, CLK, and '0', respectively. Moreover, the output S is entered into the input D. The suggested E1 

D-Latch has CI=1, GO=2, and QC=6. 

Qt+1 = D ∙ CLK + CLK̅̅ ̅̅ ̅ ∙ Qt (14) 

        

D

CLK

0

Qt
V V

+V

g1

g2

Qt+1

E1

            

Fig. (13): The quantum circuit of the proposed E1 D-Latch 

By connecting a cascade of n E1 D-Latches, as illustrated in Fig. (14), an n-bit PPR register can be resulted 

with criteria including CI=n, GO=n, and QC= 6n.  
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Fig. (14): The quantum circuit of the proposed n-bit register using the proposed E1 D-Latch 

Moreover, we suggest a novel PPR rounding register using the proposed E1 D-Latch and the DFG gate (Fig. 

(15)). As illustrated, the proposed circuit has CI=2, GO=2, and QC=8. 
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Fig. (15): The quantum circuit of the proposed PPR rounding register 

Also, the proposed PPR normalization register designed using the E1 D-Latch is illustrated in Fig. (16). As can 

be seen, the proposed circuit has CI=1, GO=1, and QC=6. 
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V V
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g1
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Yi

Yi
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Fig. (16): The quantum circuit of the proposed PPR normalization register 

3.4 The suggested PPR-PIPO left-shift register  

In this section, we are going to propose a novel PPR-PIPO left-shift register using the proposed E1 D-Latch, 

called TMP1. In the proposed circuit, all bits will be loaded with one clock in the register, and after the shift 

operation, all bits can be sent to the output at once. The TMP1 consists of one D-latch, two FRG gates, and 

one DFG gate, as illustrated in Fig. (17a). The proposed design has CI=3, GO=4, and QC=18. The logical 

schema of the TMP1 cell is illustrated in Fig. (17b). By sequencing TMP1 cells, an n-bit PPR-PIPO-left-shift-

register circuit can be designed and realized, as illustrated in Fig.-(18). 
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Fig. (17): The proposed PPR-PIPO left-shift register, (a) quantum circuit, and (b) logical circuit of the TMP1 cell 

 

As illustrated in Table 1, in the TMP1, the control values are determined based on SV and E, and implemented 

according to Eq. (15).  

Qi = SV′ ∙ E ∙ Ii + SV′ ∙ E′ ∙ Qi−1 + SV ∙ Qi                (15) 

 

So that when the clock pulse is applied [15]: 

1. If SV = 0 and E = 0, then the left-shift operation will be performed. 

2. If SV = 0 and E = 1, the input bits will be sent parallel to the output. 

3. If SV = 1, the PIPO register stores the current value, and there will be no change. 

 

Table 1: The control functions of PIPO left-shift-register inputs 

Operations Output Qi Control mode 

E SV 

Left-Shift 𝑄𝑖−1 0 0 

Parallel load 𝐼𝑖 1 0 

No change 𝑄𝑖 × 1 
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Fig. (18): The logical circuit of the proposed n-bit PIPO-left-shift register circuit using TMP1 cell 

 

3.5 PPR floating-point division circuit  

In this section, the details of the proposed design of non-restoring reversible divider will be expressed. A logical 

block diagram of PPR floating-point divider based on the existing design in [17] is provided. Our proposed 

design in terms of Parametric and optimizing the divider circuit components effectively has been improved, 

which is shown in Fig. (19). As observed, it consists of following main modules: 

• Two PPR multiplexers (MUXs) 

• Two PPR-PIPO left-shift registers (TMP1) 

• An n-bit PPR reversible register 

• A PPR D-Latch (E1) 

• A rounding register 

• A normalization register for the divisor at each step (normalization means placing data into a domain 

when they are not in one domain). 

• PPR RCA adder (TMB1) 

In the initialization of the divider circuit, the initial values are zero. These values include B (Bn-1, Bn-2, …, B0) 

= 0, S = 0, Dividend = D (Dn-1, Dn-2, …, D0), Divisor = Y (Yn-1, Yn-2, …, Y0), and Control = 0. Besides, the 

registers are the quotient = X (Qn-1, Qn-2, …, Q0) and the remainder = Z (Bn-1, Bn-2, …, B0). When the division 

operation starts, if select = 1, the inputs of the (n + 1)-bit multiplexer will be S = 0 and B (Bn-1, Bn-2, …, B0) = 

0, and the n-bit multiplexer will be equal to Dividend = D (Dn-1, Dn-2, …, D0). When the clock pulse is applied, 

if SV2 = 0 and E = 1, the input is S1 = 1 and the output of the (n + 1)-bit multiplexer is placed in parallel in 

the (n + 1)-bit PIPO left-shift register. If E = 1 and SV1 = 0, the output of the n-bit multiplexer is placed in 

parallel in the n-bit PIPO left-shift register. If E = 0, both PIPO left-shift registers perform the shift operation. 

The SO output of the n-bit register X is connected to the SI of the (n + 1)-bit register Z. After the shift operation, 

the value S is transferred to S1 to detect the subtraction or addition operations that will be performed on Z and 

Y. If S1 = 1, then the operation Z + Y is calculated; else if S1 = 0, the operation Z-Y will be calculated, and 

the result of the addition or subtraction operation will be sent to the (n + 1)-bit RCA-adder. Then, when select 

= 0, the complement of the Most Significant Bit (MSB) of the adder is placed in bit Q0 of register X, and with 

the next clock, the total computation of the adder shifts to register Z. The n-bit divisor is inserted into the 

rounding register via the F2G gate. In the next clock, the divisor bits are rounded against Y and placed in the 

normalization register through the other DFG gate. At each clock, the remainder of the division is obtained 

from the normalization register and placed in the (n + 1)-bit TMB1-adder. Thus, X stores the quotient value. 

If value S of Z register is equal to zero, then the remainder does not need to be restored, and B saves the 

remainder. If S= 1, the remainder needs to be restored. With the next clock pulse, if E = 1, the remaining value 

is stored in the (n + 1)-bit Z register. After restoring the remainder, S must be equal to zero. As a result, SV2 

= 1, and B will store the remainder. 
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Fig. (19): The n-bit PPR floating-point division circuit 

 

4. Evaluations and comparisons 

This section examines the details of the proposed designs. All the presented criteria were evaluated in terms of 

implementation, independent of technology.  

Evaluating PPR registers  

As mentioned, the PPR register includes n E1 D-Latches sequenced in a cascade to develop an n-bit PPR 

register. Table 2 presents a comparison of the proposed n-bit PPR register with the existing design in [40] in 

terms of evaluation metrics. 

 

Table 2: Comparison results of n-bit PPR-registers 

QC GO CI Designs 

6n n n Proposed design 

7n n+1 n Design in [40]   



 
As can be seen, although the proposed design is similar to the design [40] in terms of constant input, it is 

better from the point of view of garbage output and quantum cost. 

 

Evaluating PPR-PIPO left-shift registers (TMP1)  

This section compared the n-bit TMP1 with the two existing n-bit reversible designs developed in previous 

studies [16, 17]. Table 3 compares the proposed n-bit PPR-PIPO register with previous designs in terms of 

evaluation metrics. 

Table 3: Comparison of PPR-PIPO left-shift registers 

QC GO CI Designs 

18n 3n + 2 3n Proposed design 

19n 3n + 2 3n Design in [16]   

22n 3n + 1 3n Design in [17]  

 
As can be seen from Table 3, the suggested design is superior to the designs developed in [16, 17] in terms of  

quantum-cost.  
 

Evaluating PPR-RCA-adder  

Comparison results of the proposed (n+1)-bit PPR-RCA-adder with previous designs in [16, 17, 41] are given 

in Table 4. 

Table 4: Comparison-of (n+1)-bit PPR-RCA-adder circuits 

QC GO CI Designs 

8n + 3 3n + 2 n + 4 Proposed design 

14n + 4 3n + 2 2n Existing in [16]   

9n + 3 3n + 2 n + 2 Existing in [17] 

12n + 12 3n + 3 2n Existing in [41] 

 

As can be observed, the proposed design is better than previous designs in [16] and [41] from quantum-cost 

metrics viewpoints.  Moreover, although the proposed design is close to the existing design in [17] in terms of 

constant inputs and garbage outputs, it is better than them from quantum cost. 

Evaluating n-bit PPR floating-point divider  

This section evaluates the suggested n-bit PPR floating-point divider. It can be claimed that the suggested 

structure in this study is more efficient and cost-effective compared to other designs in [16, 17] that have been 

implemented using a similar approach. The evaluation parameters for the proposed scheme are QC = 66n + 68, 

GO = 15n + 18 and CI = 13n + 18. The evaluation of the circuit parameters is equal to the sum of the evaluation 

of all the components of the divider circuit as follows: 

1. The n-bit PPR MUX: CI = n, GO=n, and QC = 5n  

2. The (n+1)-bit PPR MUX: CI = n, GO=n, and QC = 5n + 5  

3. The n-bit PPR register: CI = n, GO = n, and QC = 6n 

4. The n-bit PPR-PIPO left-shift register: CI = 3n, GO=3n+2, and QC = 18n 

5. The (n +1)-bit PPR-PIPO left-shift register: CI = 3n, GO = 3n+5, and QC = 18n + 18 

6. The PPR E1 D-Latch: CI = 1, GO = 2, and QC = 6 

7. The PPR rounding register: CI = 3, GO=2, and QC = 8 



8. The PPR normalization register: CI = 1, GO=1, and QC = 6 

9. The n-bit PPR-RCA-adder: CI = n + 4, GO = 3n + 2, and QC = 8n + 3 

Other gates/blocks: 

10. FRG: CI = 2, GO=2, and QC = 10 

11. DFG: CI = 3n + 7, GO=3n+2, and QC = 6n + 12 

Also, the components specifications of the proposed divider are summarized in Table 5.  

 

Table 5: Component characteristics of the suggested n-bit PPR divider 

QC GO CI Designs 

5n n n  (n)-bit-MUX 

5n + 5 n n (n+1)-bit-MUX 

6n n n (n)-bit register 

18n 3n + 2 3n (n)-bit PIPO left-shift register 

18n + 18 3n + 5 3n (n+1)-bit-PIPO-left-shift-register 

6 2 1 D-Latch 

8 2 3 Round-register 

6 1 1 Normalization-register 

8n + 3 3n + 2 n + 4 (n+1)-bit PPR-RCA-adder 

6n + 22 3n + 4 3n + 9 Other interface gates 

 
Table 6 compares the suggested PPR floating–point divider with the schemes introduced in [16, 17].  

Table 6: Comparison-of different- n-bit PPR divider circuits 

QC GO CI Designs 

66n + 68 15n + 18 13n + 18 Proposed design 

75n + 60 12n + 20 11n + 14 Existing design in [16]   

67n + 69 12n + 17 10n + 17 Existing design in [17]  

 

As seen, although the proposed scheme is close to previous designs in terms of constant-inputs and garbage-

outputs viewpoints, it is superior to them in terms of quantum cost. 

 

5. Conclusion 

Divider circuits play an important role in developing computational units such as arithmetic logic units. The 

floating-point divider is one of the most complex computational circuits implemented in digital systems and 

the design of microprocessors.  We proposed an efficient PPR floating-point divider, which can be used in 

digital systems to improve efficiency significantly. This paper introduced new designs for various components 

of a PPR floating-point divider circuit using the proposed TMB1 block and the proposed PPR E1 D-Latch. The 

proposed circuits were utilized to design various circuits, including an (n+1)-bit PPR-RCA-adder, an-(n +1)-

bit PPR-register, an (n+1)-bit PPR-PIPO left-shift-register, a PPR rounding-register, and a PPR normalization 

register. Finally, using the proposed components, a PPR floating-point divider was introduced with the 

evaluation parameters, including QC=66n+68, GO=15n+18, and CI=13n+18. The evaluation results indicated 

that the proposed design has improved compared to the existing counterparts. 
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