This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details. Author(s): Wu, Peng; Ward, Jas S.; Rissanen, Kari; Bolm, Carsten **Title:** Cyclic Sulfoximine and Sulfonimidamide Derivatives by Copper-Catalyzed Cross-Coupling Reactions with Elemental Sulfur **Year:** 2023 Version: Published version Copyright: © 2023 The Authors. Advanced Synthesis & Catalysis published by Wiley-VCH Gmk Rights: CC BY 4.0 Rights url: https://creativecommons.org/licenses/by/4.0/ ### Please cite the original version: Wu, P., Ward, J. S., Rissanen, K., & Bolm, C. (2023). Cyclic Sulfoximine and Sulfonimidamide Derivatives by Copper-Catalyzed Cross-Coupling Reactions with Elemental Sulfur. Advanced Synthesis and Catalysis, 365(4), 522-526. https://doi.org/10.1002/adsc.202201408 6154196, 2023, 4, Downloaded from https://onlinelibrary.wiely.com/doi/10.1002/adsc.202201408 by University Of Jyűskylä Library, Wiley Online Library on [23/02/2023]. See the Tems and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons. Licensea. # Cyclic Sulfoximine and Sulfonimidamide Derivatives by Copper-Catalyzed Cross-Coupling Reactions with Elemental Sulfur Peng Wu, a Jas S. Ward, Kari Rissanen, and Carsten Bolma,* - Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany Phone: (+49)-241-8094675 - E-mail: Carsten.Bolm@oc.RWTH-Aachen.de - University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, FI-40014 Jyväskylä, Finland Manuscript received: December 28, 2022; Revised manuscript received: January 21, 2023; Version of record online: Februar 9, 2023 Supporting information for this article is available on the WWW under https://doi.org/10.1002/adsc.202201408 © 2023 The Authors. Advanced Synthesis & Catalysis published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Abstract: Copper-catalyzed cross-coupling reactions of α -bromoaryl NH-sulfoximines with elemental sulfur lead to benzo[d][1,3,2]dithiazole-1-oxides, which represent a new class of three-dimensional heterocycles. The reactions proceed under mild conditions showing good functional group and heterocycle tolerance. By imination/oxidation, the initial cross-coupling products can be converted to unprecedented cyclic sulfonimidamides derivatives. Furthermore, a seven-membered heterocycle was obtained by a ruthenium-catalyzed ring-expansion with ethyl propiolate. **Keywords:** copper catalysis; elemental sulfoximines; sulfonimidamides; cross-coupling reactions Sulfoximines have attracted considerable attention over the past several decades. As typical high oxidation state sulfur compounds, their molecular architectures offer attractive properties for drug and crop protection chemistry including metabolic stability, hydrogen-bond donor/acceptor capabilities, and structural diversity.^[1] As response to the needs of organic synthesis and industrial applications, N-functionalizations of NH-sulfoximines have been greatly advanced.[2] In this context, the synthesis of threedimensional heterocycles has become an important research area.[3] A high degree of saturation and the presence of stereogenic centers are important factors in the drug discovery process.^[4] Synthesizing threedimensional heterocycles with sulfur cores has been an ongoing research interest of our group, and we devised various protocols for accessing compounds such as and derivatives benzothiazines benzo[c]isothiazole 2-oxides, [6] and other related compounds. [7] In this series, however, cyclic structures resulting from formal N-sulfenylations and ring closures are still lacking. This is surprising in light of the large number of recent straightforward methods for the generation of new N-S bonds from NH-sulfoximines with reagents such as RSCl, RSH, RSSR, and R'R''NSR. [8,9] In order to close this synthetic gap, we decided to focus on heterocycles 2 as molecular targets (Scheme 1). Considering substrate accessibility, 2bromoaryl sulfoximines 1 were identified as attractive starting materials.^[10] In addition, we envisaged avoiding the aforementioned toxic and odorous sulfur reagents and applying easy-to-use elemental sulfur (S₈) instead.[11] As the result of a long-lasting endeavor, we can now report a copper-catalyzed cross-coupling **Scheme 1.** *N*-Thiolations of sulfoximines. reactions of S-2-bromophenyl NH-sulfoximines $\mathbf{1}$ with elemental sulfur under very mild reaction conditions leading to benzo[d][1,3,2]dithiazole1-oxides $\mathbf{2}$, which can then be further converted into novel cyclic sulfonimidamides $\mathbf{3}$ by imination/oxidation protocols (Scheme 1). [12] Preliminary studies had indicated that a combination of diaryl *N*H-sulfoximine **1a** and 2.0 equiv. of elemental sulfur led to heterocycle **2a** in 53% yield (as determined by NMR spectroscopy with CH₂Br₂ as internal standard) when a reagent mixture of 1.3 equiv. of K₂CO₃, 20 mol% of CuI, and 20 mol% of 2,2′-bipyridine (L¹) was applied in DMF at room temperature for 12 h (Table 1, entry 1). An inert atmosphere was not required. Encouraged by this result, a screening of the reaction conditions was initiated. The results are shown in Table 1. Changing the copper source from CuI to CuOAc or copper(I) thiophen-2-carboxylate (CuTc) proved unsuitable leading to **2a** in only trace quantities (Table 1, entries 2 and 3). While the **Table 1.** Optimization of reaction conditions. [a] | O, S, N
Br | H ligand (S ₈ (2. base (1) | (0.2 equiv.) 0.2 equiv.) 0 equiv.) .3 equiv.) lyent t ,12 h | O.S.N. | |---------------|--|---|---------| | | $\bigvee_{N}^{Me}\bigvee_{N}^{Me}$ | fBu N N | tBu N=N | | entry | Cu salt | ligand | base | solvent | yield ^[b] | |------------|---------|--------|---------------------------------|---------|--------------------------| | 1 | CuI | L^1 | K ₂ CO ₃ | DMF | 53% | | 2 | CuOAc | L^1 | K_2CO_3 | DMF | Trace | | 3 | CuTc | L^1 | K_2CO_3 | DMF | Trace | | 4 | CuI | L^1 | K_2CO_3 | THF | 20% | | 5 | CuI | L^1 | K_2CO_3 | DCE | Trace | | 6 | CuI | L^1 | K_2CO_3 | DMSO | 65% | | 7 | CuI | L^1 | K_3PO_4 | DMSO | Trace | | 8 | CuI | L^1 | Cs_2CO_3 | DMSO | Trace | | 9 | CuI | L^1 | Na ₂ CO ₃ | DMSO | 46% | | 10 | CuI | L^2 | K_2CO_3 | DMSO | 68% | | 11 | CuI | L^3 | K_2CO_3 | DMSO | 63% | | 12 | CuI | L^4 | K_2CO_3 | DMSO | 86% (81%) ^[c] | | 13 | CuI | _ | K_2CO_3 | DMSO | 5% | | $14^{[d]}$ | CuI | L^4 | K_2CO_3 | DMSO | 53% | | 15 | - | L^4 | K_2CO_3 | DMSO | 0% | $^{^{\}rm [a]}$ Reaction conditions: **1a** (0.20 mmol), S₈ (12.8 mg, 0.40 mmol), base (0.26 mmol), Cu salt (0.04 mmol), and ligand (0.04 mmol) in the solvent (2.0 mL) at rt in air for 12 h. solvents THF and DCE were inferior to DMF, the use of DMSO raised the yield of 2a to 65% (Table 1, entries 1 and 4–6). With K₃PO₄, Cs₂CO₃, or Na₂CO₃ as the base in DMSO, the yield of 2a dropped as compared to K₂CO₃ (Table 1, entries 7–9). Using substituted bipyridines L² (4,4'-dimethyl-2,2'-bipyridine) and L³ (4,4'-di-tert-butyl-2,2'-bipyridine) instead of L¹ as ligand affected the yield of 2a to a minor degree (Table 1, entries 10 and 11). Finally, the application of 1,10-phenanthroline (1,10-phen, L⁴) proved beneficial leading to 2 a in 86% yield. Isolation by column chromatography gave 2a in 81% yield (Table 1, entry 12). Without a ligand or reducing the amount of CuI from 20 mol% to 10 mol% afforded 2 a in yields of only 5% and 53%, respectively (Table 1, entries 13 and 14). Without a metal salt, no reaction occurred (Table 1, entry 15). With the optimized reaction conditions in hand, the substrate scope was investigated. The results are shown in Scheme 2. In general, reactions with *S,S*-diaryl sulfoximines showed a broad functional group tolerance, and substrates with various substituents on the two arenes including methyl, methoxy, halo, trifluoromethyl, and nitro groups reacted well, providing the corresponding products $2 \, a$ -v in yields ranging from 41-86%. Neither electronic factors of the **Scheme 2.** Substrate scope (0.2 mmol scale) and X-ray crystal structure of 2 w.^[14] [[]b] Determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as the internal standard. ^[c] In parentheses, yield of **2a** after isolation by column chromatography. [[]d] Use of 10 mol% of CuI. 16154619, 2023, 4, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adsc.202201408 by University Of Jyväskylä Libbary, Wiley Online Library on [23/02/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons. Licensea substituents nor their position on the arene had a clear effect. To highlight three particular aspects: First, also substrates with heteroarenes could be applied, as illustrated by the conversions of sulfoximines 10 and 1p with S-2-thienyl and S-4-pyridinyl substituents, respectively, which afforded 20 and 2p in 80% and 57% yield, respectively. Second, in the reaction of S-2bromophenyl-S-2-chlorophenyl-sulfoximine (1 k) a high halo selectivity was observed providing 2k in 72% yield. Apparently, the bromo arene side reacted faster in the heterocycle formation leaving the C-Cl bond of the other arene intact. Third, as revealed in conversions of 1 q-v the reaction tolerated a wide range of substituents at the bromo-substituted arene, but the yields of the corresponding products (2q-v)varied significantly. For example, while 1r and 1t bearing a methoxy and a chloro group at the para position gave 2 r and 2 t in only moderate yields (46% and 41%, respectively), analogously substituted 1s and 1u with a para-fluoro and a para-trifluoromethyl group led to 2s and 2u in higher yields of 71% and 86%, respectively. Noteworthy is also that in the reaction of dibromo derivative 1 f only cyclized 2 f and no other sulfide was observed (by LCMS analysis) revealing a high regioselectivity in the halo activation. Reactions of S-alkyl-S-aryl sulfoximines proved more challenging due to a rapid decomposition of the starting materials under standard conditions. In this case, a change of the copper source offered a solution. Thus, applying Cu(OTf), instead of CuI gave 2-alkyl-substituted products 2 w-y in yields of 46% (2w), 33% (2x), and 52% (2y). The molecular structure of 2 w (Scheme 2) was confirmed by singlecrystal X-ray analysis. [14] Performing the reactions of 1a and 1f on a 4 mmol scale led to 0.73 g of 2a and 1.04 g of 2f corresponding to yields of 74% and 80%, respectively. Imidation with or without subsequent oxidation of lower oxidation-state sulfur compounds in combination with a hypervalent iodine reagent and ammonium carbamate is a powerful strategy for the synthesis of sulfoximines and sulfonimidamides.^[15] Applying this approach here on compounds 2 led to cyclic sulfonimidamides 3 with structures reminiscent saccharin and analogous aza bioisosteres (Scheme 3).[13,16] Thus, in a single step, products 3 a-g were obtained from the corresponding heterocycles 2 in yields ranging from 69% to 80% with d.r. values between 1:1 and 1:2. Significant substitution effects were not observed. The synthetic potential of products 2 was further demonstrated by a ruthenium-catalyzed ring expansion reaction of 2a with ethyl propiolate (4), which gave the seven-membered heterocycle 5 in 51% yield (Scheme 4).[17,18] **Scheme 3.** Imination/oxidation reactions of **2** (0.2 mmol scale). Scheme 4. Ring expansion of 2 a (0.1 mmol scale). Based on the aforementioned experimental results and literature reports, [19] we propose a mechanistic pathway for the formation of heterocycles 2 as depicted in Scheme 5. [20] Starting from Cu(I), oxidative addition into the C-Br bond leads to a Cu(III) intermediate, which upon loss of HX provides copperbased heterocycle I. Sulfur insertion gives II. Finally, reductive elimination of II results in the formation of product 2 and regenerates the Cu(I) catalyst, which reenters the catalytic cycle. Alternatively, a C-S bond could be formed first, which upon S-N coupling provides the product.[19] In summary, we developed a copper-catalyzed cross-coupling reactions of α-bromoaryl NH-sulfoximines with elemental sulfur leading **Scheme 5.** Proposed mechanism. asc.wiley-vch.de 16154619, 2023, 4, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adsc.202201408 by University Of Jyväskylä Libbary, Wiley Online Library on [23/02/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons. Licensea benzo[*d*][1,3,2]dithiazole1-oxides. The transformations occur under mild reaction conditions (at room temperature in air), show good functional group tolerance, and lead to structurally interesting three-dimensional heterocycles. Through a combined imination/oxidation process the initial products can be converted into new heterocyclic sulfonimidamide derivatives. Alternatively, seven-membered heterocycles can be prepared by alkyne insertion into the S–N bond under ruthenium catalysis. ## **Experimental Section** General procedure for the preparation of cyclic sulfoximines derivatives. A mixture of sulfoximine 1 (0.20 mmol), S_8 (12.8 mg, 0.40 mmol, 2 equiv.), CuI (7.6 mg, 20 mol%), 1,10-phen (1,10-phenanthroline) (7.2 mg, 20 mol%), K_2CO_3 (35.9 mg, 0.26 mmol, 1.3 equiv.), and DMSO (2 mL) in a 10 mL sealed vial was stirred at room temperature for 12 h. Upon completion, ethyl acetate (10 mL) was added to dilute the mixture, which was then washed with an aqueous solution of ammonia (4 mL) and brine (10 mL). The organic layer was separated, dried over Mg_2SO_4 and evaporated under reduced pressure. The product was purified by flash column chromatography to give product 2. #### Acknowledgements P. W. is grateful to the China Scholarship Council (CSC) for a predoctoral stipend, and we acknowledge the Alexander von Humboldt Foundation for support of K. R. (AvH research award). Open Access funding enabled and organized by Projekt DEAL. #### References - [1] For recent overviews on the use of sulfoximines in medicinal and crop protection chemistry, see: a) U. Lücking, Angew. Chem. Int. Ed. 2013, 52, 9399-9408; Angew. Chem. 2013, 125, 9570-9580; b) M. Frings, C. Bolm, A. Blum, C. Gnamm, Eur. J. Med. Chem. 2017, 126, 225-245; c) U. Lücking, Org. Chem. Front. 2019, 6, 1319-1324; d) P. Mäder, L. Kattner, J. Med. Chem. 2020, 63, 14243-14275; e) Y. Han, K. Xing, J. Zhang, T. Tong, Y. Shi, H. Cao, H. Yu, Y. Zhang, D. Liu, L. Zhao, Eur. J. Med. Chem. 2021, 209, 112885; f) M. J. Tilby, M. C. Willis, Expert Opin. Drug Discovery 2021, 16, 1227-1231; g) U. Lücking, Chem. Eur. J. 2022, 528, e202201993; h) K. E. Arndt, D. C. Bland, N. M. Irvine, S. L. Powers, T. P. Martin, J. R. McConnell, D. E. Podhorez, J. M. Renga, R. Ross, G. A. Roth, B. D. Scherzer, T. W. Toyzan, Org. Process Res. Dev. 2015, 19, 454-462; i) T. C. Sparks, G. B. Watson, M. R. Loso, C. Geng, J. M. Babcock, J. D. Thomas, Pest. Biochem. Phys. **2013**, 107, 1–7. - [2] For recent overviews on transformations of NH-sulfoximines, see: a) P. Ghosh, B. Ganguly, S. Das, Asian J. - *Org. Chem.* **2020**, *9*, 2035–2082; b) W. Zheng, X. Chen, F. Chen, Z. He, Q. Zeng, *Chem. Rec.* **2021**, *21*, 396–416; c) M. Andresini, A. Tota, L. Degennaro, J. A. Bull, R. Luisi, *Chem. Eur. J.* **2021**, *27*, 17293–17321. - [3] a) F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752–6756; b) F. Lovering, MedChemComm. 2013, 4, 515–519. - [4] a) P. Ertl, S. Jelfs, J. Muhlbacher, A. Schuffenhauer, P. Selzer, J. Med. Chem. 2006, 49, 4568–4573; b) W. R. Pitt, D. M. Parry, B. G. Perry, C. R. Groom, J. Med. Chem. 2009, 52, 2952–2963; c) F. W. Goldberg, J. G. Kettle, T. Kogej, M. W. D. Perry, N. P. Tomkinson, Drug Discovery Today 2015, 20, 11–17. - [5] a) W. Dong, L. Wang, K. Parthasarathy, F. Pan, C. Bolm, Angew. Chem. Int. Ed. 2013, 52, 11573–11576; Angew. Chem. 2013, 125, 11787–11790; b) Y. Cheng, C. Bolm, Angew. Chem. Int. Ed. 2015, 54, 12349–12352; Angew. Chem. 2015, 127, 12526–12529; c) L. Wang, D. L. Priebbenow, X. Y. Chen, F.-F. Pan, C. Bolm, Eur. J. Org. Chem. 2015, 3338–3343; d) J. Wen, D. P. Tiwari, C. Bolm, Org. Lett. 2017, 19, 1706–1709; e) J.-H. Schöbel, P. Elbers, K.-N. Truong, K. Rissanen, C. Bolm, Adv. Synth. Catal. 2021, 363, 1322–13. - [6] a) P. Lamers, L. Buglioni, S. Koschmieder, N. Chatain, C. Bolm, *Adv. Synth. Catal.* 2016, 358, 3649–3653; b) P. Lamers, C. Bolm, *Org. Lett.* 2018, 20, 116–118; c) H. Yu, Z. Li, C. Bolm, *Angew. Chem. Int. Ed.* 2018, 57, 12053–12056; *Angew. Chem.* 2018, 130, 12229–12232. - [7] a) R. A. Bohmann, Y. Unoh, M. Miura, C. Bolm, *Chem. Eur. J.* 2016, 22, 6783–6786; b) H. Wang, M. Frings, C. Bolm, *Org. Lett.* 2016, 18, 2431–2434; c) Y. Cheng, W. Dong, H. Wang, C. Bolm, *Chem. Eur. J.* 2016, 22, 10821–10824; d) J. Wen, H. Cheng, G. Raabe, C. Bolm, *Org. Lett.* 2017, 19, 6020–6023; e) Y. Cheng, W. Dong, K. Parthasarathy, C. Bolm, *Org. Lett.* 2017, 19, 726–729; f) D. Zhang, H. Wang, H. Cheng, J. G. Hernández, C. Bolm, *Adv. Synth. Catal.* 2017, 359, 4274–4277; g) P. Shi, Y. Tu, C. Wang, D. Kong, D. Ma, C. Bolm, *Org. Lett.* 2020, 22, 8842–8845; h) R. Hommelsheim, H. M. Núñez Ponce, K.-N. Truong, K. Rissanen, C. Bolm, *Org. Lett.* 2021, 23, 3415–3420; i) D. Ma, D. Kong, C. Wang, K.-N. Truong, K. Rissanen, C. Bolm, *Org. Lett.* 2021, 23, 8287–8290. - [8] a) K. Akutagawa, N. Furukawa, S. Oae, Bull. Chem. Soc. Jpn. 1984, 57, 518–524; b) Y. Peng, Y. Lin, R. Nie, Y. Zheng, Y. Liu, L. Guo, Y. Wu, Eur. J. Org. Chem. 2018, 844–850; c) L. Yang, J. Feng, M. Qiao, Q. Zeng, Org. Chem. Front. 2018, 5, 24–28; d) H. Zhu, J.-T. Yu, J. Cheng, Chem. Commun. 2016, 52, 11908–11911; e) D. Kong, D. Ma, P. Wu, C. Bolm, ACS Sustainable Chem. Eng. 2022, 10, 2863–2867; f) Y. Lin, L. Ü. Guanghui, Y. Liu, Y. Zheng, R. Nie, L. Guo, Y. Wu, Catal. Commun. 2018, 112, 68–73; g) Y. Lin, Y. Liu, Y. Zheng, R. Nie, L. Guo, Y. Wu, ACS Sustainable Chem. Eng. 2018, 6, 13644–13649; h) H. Wang, D. Zhang, M. Cao, C. Bolm, Synthesis 2019, 51, 271–275. - [9] For N-trifluoromethylthiolations of sulfoximines, see:a) C. Bohnen, C. Bolm, Org. Lett. 2015, 17, 3011–3013; 16154619, 2023, 4, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adsc.202201408 by University Of Jyväskylä Libbary, Wiley Online Library on [23/02/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons. Licensea - b) N. Thota, P. Makam, K. K. Rajbongshi, S. Nagiah, N. S. Abdul, A. A. Chuturgoon, A. Kaushik, G. Lamichhane, A. M. Somboro, H. G. Kruger, T. Govender, T. Naicker, P. I. Arvidsson, *ACS Med. Chem. Lett.* **2019**, *10*, 1457–1461; c) A. Zupanc, M. Jereb, *J. Org. Chem.* **2021**, *86*, 5991–6000. - [10] For the synthesis and previous use of such compounds, see: a) M. Harmata, K. O. Rayanil, M. G. Gomes, P. Zheng, N. L. Calkins, S. Y. Kim, Y. Fan, V. Bumbu, D. R. Lee, S. Wacharasindhu, X. Hong, *Org. Lett.* 2005, 7, 143–145; b) H. Zhou, W. Chen, Z. Chen, *Org. Lett.* 2018, 20, 2590–2594; c) X. Chen, H. Zhou, Z. Chen, *Org. Chem. Front.* 2019, 6, 3415–3419; d) C. Wu, R. Huang, M. Zhang, Z. Chen, *J. Org. Chem.* 2020, 85, 841–850; e) A. Banerjeea, G. Panda, *Org. Biomol. Chem.* 2022, 20, 7112–7126. - [11] For overviews on the use of elemental sulfur in organic synthesis, see: a) T. B. Nguyen, Adv. Synth. Catal. 2017, 359, 1066–1130; b) T. Szabó, M. Milen, Chem. Heterocylc. Comp. 2019, 55, 126–128; c) S. Liu, G.-J. Deng, H. Huang, Synlett 2021, 32, 142–158; d) T. B. Nguyen, Adv. Synth. Catal. 2020, 362, 3448–3484. - [12] For reviews on metal-catalyzed cross-couplings providing sulfides, see: a) C. C. Eichman, J. P. Stambuli, *Molecules* 2011, 16, 590–608; b) F. Abedinifar, S. Bahadorikhalili, B. Larijani, M. Mahdavi, F. Verpoort, *Appl. Organomet. Chem.* 2022, 36, e6482. - [13] To the best of our knowledge, compound **3** are unprecedented. The closest analogs are molecules with ArSO₂N- instead of Ar-SO(NH)N- units and R=CF₃. Those compounds have theoretically been investigated as CF₃ transfer agents, see: a) M. Li, X-S. Xue, J. Guo, Y. Wang, J.-P. Cheng, *J. Org. Chem.* **2016**, *81*, 3119–3126; b) M. Li, W. Wang, X.-S. Xue, J.-P. Cheng, *Asian J. Org. Chem.* **2017**, *6*, 235–240. - [14] For the X-ray of **2w** shown in Scheme, the thermal ellipsoids were set to the standard 50% probability level. CCDC 2225023 contains the supplementary crystallographic data for **2w**. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data request@ccdc.cam.ac.uk, or by contacting - The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. - [15] a) M. Zenzola, R. Doran, L. Degennaro, R. Luisi, J. A. Bull, Angew. Chem. Int. Ed. 2016, 55, 7203–7207; Angew. Chem. 2016, 128, 7319–7323; b) J.-F. Lohier, T. Glachet, H. Marzag, A.-C. Gaumont, V. Reboul, Chem. Commun. 2017, 53, 2064–2067; c) B. Verbelen, E. Siemes, A. Ehnbom, C. Rauber, K. Rissanen, D. Wöll, C. Bolm, Org. Lett. 2019, 21, 4293–4297; d) E. L. Briggs, A. Tota, M. Colella, L. Degennaro, R. Luisi, J. Bull, Angew. Chem. Int. Ed. 2019, 58, 14303–14310; Angew. Chem. 2019, 131, 14441–14448; e) F. Izzo, M. Schäfer, R. Stockman, U. Lücking, Chem. Eur. J. 2017, 23, 15189–15193; f) M. Ding, Z.-X. Zhang, T. Q. Davies, M. C. Willis, Org. Lett. 2022, 24, 1711–1715. - [16] Y. Chen, C.-J. Aurell, A. Pettersen, R. J. Lewis, M. A. Hayes, M. Lepistö, A. C. Jonson, H. Leek, ACS Med. Chem. Lett. 2017, 8, 672–677. - [17] For a related catalysis with acyclic sulfenamides, see: T. Kondo, A. Baba, Y. Nishi, T. Mitsudo, *Tetrahedron Lett.* **2004**, *45*, 1469–1471. - [18] Under the same conditions, dimethyl acetylendicarboxylate (DMAD) did not react with **2a**. The attempt to add DMAD to **2a** in the presence of CsF (25 mol%) in MeCN under argon at 60 °C for 6 h remained unsuccessful as well. For a guiding reference for the latter approach, see: C. Spitz, J.-F. Lohier, J. S. O. Santos, V. Reboul, P. Metzner, *J. Org. Chem.* **2009**, *74*, 3936–3939. - [19] a) B. S. Bhakuni, S. J. Balkrishna, A. Kumar, S. Kumar, Tetrahedron Lett. 2012, 53, 1354–1357; b) T. Li, L. Yang, K. Ni, Z. Shi, F. Li, D. Chen, Org. Biomol. Chem. 2016, 14, 6297–6303; c) J. Xiong, G. Zhong, Y. Liu, Adv. Synth. Catal. 2019, 361, 550–555; d) F.-J. Chen, G. Liao, X. Li, J. Wu, B.-F. Shi, Org. Lett. 2014, 16, 5644–5647. - [20] Radicals appear to be irrelevant here as suggested by a reaction of 1 a under standard conditions in the presence of 1 equiv. of TEMPO as radical trap. In this experiment, product 2 a was obtained in 74% yield after isolation by column chromatography. For details, see the Supporting Information.