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Singular Spectrum Analysis

Definition

Singular Spectrum Analysis (SSA) is a family of methods for time series analysis and

forecasting, which seeks to decompose the original series into a sum of a small number

of interpretable components such as trend, oscillatory components, and noise.

Introduction

Singular Spectrum Analysis (SSA) aims at decomposing the observed time series into

the sum of a small number of independent and interpretable components such as a

slowly varying trend, oscillatory components, and noise (Elsner and Tsonis, 1996;

Golyandina et al, 2001). SSA can be used, for example, for finding trends and sea-

sonal components (both short and large period cycles) in time series, smoothing, and

forecasting. When SSA is used as an exploratory tool, one does not need to know the

underlying model of the time series.
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The origins of SSA are usually associated with nonlinear dynamics studies (Broomhead

and King, 1986a,b), and over time, the method has gained a lot of attention. As stated

in (Golyandina et al, 2001), SSA has proven to be very successful in time series analysis

and is now widely applied in the analysis of climatic, meteorological, and geophysical

time series. Many variants of SSA exist. However, in the following we focus on a specific

SSA method, often referred to as basic SSA.

Singular spectrum analysis

We define x = {xt : t = 1, . . . , N} for an observable time series. The SSA algorithm

consists of the following four steps (Golyandina et al, 2018).

1. Embedding: First, the so-called l × k-dimensional trajectory matrix

T (x) =



x1 x2 x3 · · · xk

x2 x3 x4 · · · xk+1

x3 x4 x5 · · · xk+2

...
...

...
. . .

...

xl xl+1 xl+1 · · · xN


(1)

is constructed. Here N is the time series length, l is so-called window length and

k = N − l+ 1. The trajectory matrix T is a linear map mapping x ∈ RN into a

l×k-dimensional Hankel matrix, i.e., to l×k-dimensional matrixX = T (x) with

equal elements on the off-diagonals. Columns xi = (xi, . . . , xi+l−1)
′, i = 1, . . . , k,

ofX are called as lagged vectors of dimension l. Golyandina et al (2001) suggests

that l should be smaller than N/2, but sufficiently large so that l-lagged vector

xi, i = 1, . . . , k, incorporates the essential part of the behaviour in the initial

time series x.
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2. Decomposition: Once the time series x is embedded into a trajectory matrix

X, it is decomposed into a sum of rank-1 matrices. Denote now S = XX ′ and

write S = UΛU ′ for an eigendecomposition of S. Here Λ is a l × l diagonal

matrix with non-negative eigenvalues, λ1 ≥ · · · ≥ λl, as diagonal values and

U = (u1, . . . ,ul)
′, ui ∈ Rl, is an l × l orthogonal matrix that includes the

corresponding eigenvectors as columns. If we further write vi = X ′ui/
√
λi,

i = 1, . . . d, where d = rank(X), then X can be decomposed into a sum of

rank-1 matrices as follows

X =
d∑

i=1

X i =
d∑

i=1

√
λi uiv

′
i. (2)

Notice that ui ∈ Rl and vi ∈ Rk are left and right singular vectors of X,

respectively, and
√
λi > 0 are the corresponding singular values. In SSA litera-

ture these ordered singular values are often referred to as the singular spectrum

thus giving the name to the method (Elsner and Tsonis, 1996). It is important

to mention that the above method, where X is being decomposed into rank-1

components using singular value decomposition, is called basic SSA. In practice,

also other decompositions can be used. For more details, see (Golyandina et al,

2001), for example.

3. Grouping: In this step, the rank-1 components in decomposition (2) are

grouped into predefined groups, where the group membership is described by a

set of indices I = {i1, . . . , ip} ⊂ {1, . . . , d}, p ≤ d. Then, the matrix correspond-

ing to the group I is defined as XI = X i1 + · · · + X ip . If the set of indices

{1, . . . , d} is partitioned into m disjoint subsets I1, . . . , Im, m ≤ d, then one

obtains so-called grouped decomposition of matrix X,

X = XI1 + · · ·+XIm . (3)
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Especially, if Ik = k, for k = 1, . . . , d, the grouping is called elementary and the

corresponding components in (3) are called elementary matrices. Furthermore,

if only one group I ⊂ {1, . . . , d} is specified, one proceeds by assuming that the

given partition is {I, Ic}, where Ic = {1, . . . , d} \ I. In that case, XI usually

corresponds to the pattern of interest, while XIc = X −XI is treated as the

residual.

4. Reconstruction: As final step, matrices XIj , j = 1, . . . ,m, from decomposi-

tion (3) are transformed into new time series of length N . Reconstructed x̃Ik are

obtained by sequentially averaging the elements of matrix XIk , k = 1, . . . ,m,

that lay on the off-diagonals, i.e.,

[x̃Ik ]t =
1

|St|
∑

i+j=t+1

[XIk ]i,j, (4)

where |St| denotes the cardinality of the finite set St = {(i, j) : i + j = t + 1}.

In the literature, this process is known as diagonal averaging. If one applies

the given reconstruction to all components in group decomposition (3) and,

for simplicity of the notation, denotes x̃k := x̃Ik , k = 1, . . . ,m, the resulting

decomposition of initial time series x is given by

x = x̃1 + · · ·+ x̃m. (5)

In the case of basic SSA for univariate time series, the tuning parameters one needs

to specify a priori are window length l and the partition of the set of indices. In more

general SSA, the trajectory matrix, as well as its rank-1 decomposition, can be chosen

more freely.

Separability

A central concept in SSA is separability, which to some extent ensures the validity of

the method. Assume that one can decompose the time series into two univariate series,
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that is, x = x1 +x2. This representation is usually associated with a signal plus noise

model, trend plus the remainder model and other structured models. (Approximate)

separability of the components x1 and x2 implies that there exist a grouping (see

Step 4) such that reconstructed x̃1 and x̃2 are (approximately) equal to x1 and x2,

respectively, i.e., x̃i ≈ xi, i = 1, 2. In basic SSA, the (approximate) separability

corresponds to (approximate) orthogonality of the trajectory matrices.

Consider as an example a time series of length N . If N is large enough, the trend, which

is a slowly varying smooth component, and periodic components are (approximately)

separable and both are (approximately) separable from the noise. For illustration see

Figure 1, where a trend and a periodic component are separated from a noise compo-

nent. In Figure 1 (a), the trend is extracted using the first three significant elementary

components, with window length size l = 100. In Figure 1 (b), the seasonal component

is extracted using the first six significant elementary components, with window length

size l = 150. The extracted components are approximately equal to the theoretical

trend and seasonal component.

In order to check the separability of the reconstructed components x̃1 and x̃2, with cor-

responding trajectory matrices X̃1 and X̃2, respectively, the normalized orthogonality

measure given in (Golyandina et al, 2018) is

ρ(X̃1, X̃2) =
〈X̃1, X̃2〉F
‖X̃1‖F‖X̃2‖F

,

where 〈·〉F and ‖ · ‖F are Frobenius matrix inner product and norm, respectively.

This orthogonality measure further induces dependence measure between two time

series called w-correlation (Golyandina and Korobeynikov, 2014). A large value of w-

correlation between a pair of elementary components suggests that, in the grouping

step, these should perhaps be in the same group. Furthermore, additive sub-series can

be identified using the principle that the form of an eigenvector resembles the form
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(a) Extraction of the trend

0
5

10

O
rig
in
al

0
2

4
6

8

S
ea
so
na
lit
y

-2
0

2
4

0 50 100 150 200 250 300

R
es
id
ua
ls

Time

Reconstructed Series

(b) Extraction of the oscillatory component

Fig. 1: Left: extraction of the polynomial trend in time series xt = (0.05(t− 1)− 5)2 +

yt, t = 1, . . . , 200, where yt is MA(0.9) process. Right: extraction of the oscillatory

component in time series xt = atyt, where at = 1, for t = 1, . . . , 100, at = 0.9 for

t = 101, . . . , 200 and at = 0.92 for t = 201, . . . , 300. yt = (0.1(t − 1) − 5)2 + zt, where

zt is MA(0.9) process.

of the sub-series produced by the eigenvector. For example, the eigenvectors produced

by a slowly-varying component (trend) are slowly-varying and the eigenvectors pro-

duced by a sine wave (periodic component) are again sine waves with the same period

(Golyandina and Korobeynikov, 2014). Therefore, plots of eigenvectors are often used

in the process of identification. For more details, see (Golyandina and Korobeynikov,

2014; Golyandina et al, 2018), for example.
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Prediction using SSA

A class of time series especially suited for SSA are so-called finite-rank time series,

where we say that the time series x is of finite-rank if its trajectory matrix is of rank

d < min(k, l) and does not depend on window length l, for l large enough. In that case,

under mild conditions, there exists one-to-one correspondence between the trajectory

matrix of the time series x and a linear recurrent relation (LRR)

xt+d =
d−1∑
i=1

aixt+i, t = 1, . . . , N − d, (6)

that governs the time series x. Furthermore, the solution to LRR (6) can then be ex-

pressed as sums and products of polynomial, exponential and sinusoidal components,

whose identification leads to the reconstruction of trend and various periodic compo-

nents, among others. If one applies obtained LRR (6) to the last terms of the initial

time series x, one obtains the continuation of x which serves as a prediction of the

future.

The real-data time series are not in general finite-rank time series. However, if time

series x is a sum of a finite-rank signal x1 and additive noise, then SSA may approxi-

mately separate the signal component and one can further use the methods designed for

analysis and forecasting of the finite-rank series, thus obtaining the continuation (fore-

cast) of a signal component x1 of x (Golyandina and Korobeynikov, 2014; Golyandina

et al, 2001). Such a problem is known as forecasting the signal (trend, seasonality...) in

the presence of additive noise. The confidence intervals for the forecast can be obtained

using bootstrap techniques. For more details, see (Golyandina et al, 2001; Golyandina

and Korobeynikov, 2014).
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Example

To illustrate the SSA method, we use the average monthly temperatures (in ◦C) mea-

sured at the Jyväskylä airport, in Finland, from 1960 to 2000. To perform basic SSA

as described above, we use the R (R Core Team, 2020) package Rssa (Golyandina et al,

2015). As suggested in (Golyandina et al, 2001), for extracting a periodic component in

short time series, it is preferable to take the window length l proportional to the period.

Thus, we take l = 48. After investigating the singular values and paired scatter plots of

the left singular vectors, we identify the first component as depicting a slowly varying

trend, and the grouped fifth and sixth components to depict the yearly seasonality of

the average monthly temperature. The original time series is shown together with its

decomposition into seasonal component, trend component and residuals in Figure 2. As

seen in Figure 2, the seasonal component is clearly dominating. However, there exists

also a trend that looks almost linear. Eliminating the noise and using only the re-

constructed trend and yearly seasonality, we predict the average monthly temperature

for years 2000 and 2001 based on the components shown in Figure 2. The predictions

together with the true observed values are shown in Figure 3. Figure 3 shows that SSA

can be used to predict the temperatures in Jyväskylä quite nicely. For more details

and guidelines for grouping and identification of trend and oscillatory components, we

refer to Golyandina et al (2001).

Extensions and relations to other approaches

SSA has been extended to multivariate time series in which case it is known as multi-

dimensional or multi-channel SSA (M-SSA) and for the analysis of images where it is

known as 2D singular spectrum analysis (2D-SSA).
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Fig. 2: Top to bottom: Average monthly temperature (◦C) at the Jyväskylä airport

from 1960 to 2000, the reconstructed seasonal component with 12 month period, re-

constructed trend component, and residuals.

While usually time series analysis is either performed in the time or the frequency

domain one can see SSA as a compromise, as a time-frequency method. For example,

SSA can be seen as a method that chooses an adaptive basis generated by the time

series itself while, for example, Fourier Analysis uses a fixed basis of sine and cosine

functions. For more detailed discussions and interpretations of SSA, we refer to Elsner

and Tsonis (1996); Golyandina et al (2001); Ghil et al (2002).



10

A
ve

ra
ge

 te
m

pe
ra

tu
re

1996 1997 1998 1999 2000 2001 2002

-1
0

0
5

10

Fig. 3: The predicted average monthly temperature (◦C) at the Jyväskylä airport in ◦C

for 2000 and 2001 (blue line). The dashed black line shows the true observed average

temperatures.

Summary

Singular Spectrum Analysis (SSA) is a model-free family of methods for time series

analysis, that can be used, for example, for eliminating noise in the data, identifying

interpretable components such as trend and oscillatory components, forecasting and

imputing missing values. The method consists of the four main steps: embedding,

decomposition, grouping, and reconstruction. The method is currently widely applied

in the analysis of climatic, meteorological, and geophysical time series.

Cross References

Chaos and Singularity Analysis in Geosciences, Singular Value Decomposition, Time

Series Analysis, Time Series Analysis in the Geosciences
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