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Abstract

In diagnosing sleep disorders, sleep stage classification is a very essential yet time-consuming process. Various existing
state-of-the-art approaches rely on hand-crafted features and multi-modality polysomnography (PSG) data, where prior
knowledge is compulsory and high computation cost can be expected. Besides, it is a big challenge to handle the task with
raw single-channel electroencephalogram (EEG). To overcome these shortcomings, this paper proposes an end-to-end
framework with a deep neural network, namely SingleChannelNet, for automatic sleep stage classification based on raw
single-channel EEG. The proposed model utilizes a 90s epoch as the textual input and employs two multi-convolution
blocks and several max-average pooling layers to learn different scales of feature representations. To demonstrate the
efficiency of the proposed model, we evaluate our model using different raw single-channel EEGs (C4/A1 and Fpz-Cz)
on two public PSG datasets (Cleveland children’s sleep and health study: CCSHS and Sleep-EDF database expanded:
Sleep-EDF). Experimental results show that the proposed architecture can achieve better overall accuracy and Cohen’s
kappa (CCSHS: 90.2%-86.5%, Sleep-EDF: 86.1%-80.5%) compared with state-of-the-art approaches. Additionally, the
proposed model can learn features automatically for sleep stage classification using different single-channel EEGs with
distinct sampling rates and without using any hand-engineered features.

Keywords: Sleep stage classification, Raw single-channel EEG, Contextual input, Convolutional neural network

1. Introduction

Sleep occupies one-third of human life, which plays a
vitally important role in restoring body and mind [1].
Whereas roughly 33% of the population in the world suf-
fers from insomnia disorder [2]. Correctly identifying sleep5

stage using whole-night PSG data is essential to diag-
nose and treat sleep-related disorders [3, 4, 5, 6]. The
PSG recordings comprise of the EEG, electrocardiogram
(ECG), electrooculogram (EOG), electromyogram (EMG)
and other respiration signals [7].10

According to the guidelines of the Rechtschaffen and
Kales (R&K) [8] or American Academy of Sleep Medicine
(AASM) [9], the PSG data should be first segmented into
30s epochs typically, then these sequential epochs are de-
fined as different stages. Some sleep-related disorders have15

particular sleep structure, it is therefore beneficial to diag-
nose them with accurate sleep stage classification. Tradi-
tionally, the sleep stage classification task is conducted by
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experts manually following the R&K or AASM rule which
is often time-consuming, labor-intensive and prone to sub-20

jective mistakes [6]. Hence, there is an urgent need for
automatic sleep stage classification approach to assist the
clinician’s work and achieve reliable results.

Some methods based on machine learning have been
proposed to identify the sleep stage. These approaches25

generally extract either time-domain features [3, 10, 11]
or frequency-domain features [12, 13, 14, 15, 16] from the
PSG signals and these pre-extracted features are then fed
into the conventional classifier, such as support vector ma-
chine (SVM) [4, 14, 17, 18], k-nearest neighbors (KNN)30

[16, 19, 20], random forest [21, 22, 23, 24] and so on. The
performance tremendously relies on the categories and the
number of features, which are extracted based on the char-
acteristics of experimental datasets. Therefore, these ap-
proaches may not be robust enough to be generalized to35

different datasets because of the distinct properties be-
tween datasets.

In recent years, the deep networks show great capacity
for automatic features learning from data, and it can avoid
the reliance on hand-engineered features. Meanwhile, a40
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series of deep learning methods are applied to sleep stage
classification. Here, we categorize these approaches into
multi-channel [6, 25, 26, 27, 28, 29] versus single-channel
schemes [30, 31, 32, 33, 34, 35] based on the number of in-
put channels. Following the multi-channel scheme, Phan45

et al. [6] first transformed the raw signals into the time-
frequency image through the short-time Fourier transform
as the input of the proposed convolutional neural network
(CNN). The overall accuracy achieved was equal to 82.3%,
in which there is room for improvement. Besides, the50

time-frequency image relies much on many preprocessing
steps, it would be time-consuming and in need of prior
knowledge of signal processing. Aiming at this, Chambon
et al. [27] proposed a novel network architecture of low
computational cost adopting multivariate and multimodal55

time series from EEG, EMG and EOG, but the classifi-
cation performance is not good enough with the accuracy
of 80% compared to state-of-the-art methodologies [7, 30].
One important reason is that the convolutional layers with
fixed filter size were stacked sequentially, which can not60

learn multiscale features simultaneously. A promising ap-
proach was proposed by Zhang et al. [29], who employed
the CNN and recurrent neural network (RNN) to capture
temporal and spatial information simultaneously from the
PSG data. The architecture attained an accuracy of 87%.65

Although the combination of CNNs and RNNs can en-
hance the model performance to some extent, the high
computational cost of RNNs should be taken into con-
sideration. To the best of our knowledge, the training
speed of CNNs would be dozens of times faster than that70

of RNNs under the same GPU acceleration when imple-
menting long time-series input. To sum up, despite the
fact that multi-channel PSG data can provide additional
referenced information compared to single-channel EEG,
there is also some irrelevant information being introduced.75

Furthermore, multi-channel recordings can limit the prac-
tical application on account of more complex operation
and equipment costs.

Compared to the multi-channel scheme, the single-
channel scheme can reduce the related cost and be much80

easier for data acquisition. Under the single-channel
scheme, Supratak et al. [30] introduced a deep learning
model called DeepSleepNet. DeepSleepNet utilizes the ca-
pacity of deep learning to extract time-invariant features
automatically, the proposed model can be adapted to dif-85

ferent datasets. However, the accuracy obtained from
DeepSleepNet was 82%, which can not outperform the
state-of-the-art approaches. A promising CNN model was
proposed by Sors et al. [31], who used raw single-channel
EEG to classify the sleep stage without any preprocessing.90

The architecture attained an accuracy of 87%, whereas
the model complexity is high with 12 convolutional lay-
ers. Furthermore, the filer size was chosen among 7, 5, 3,
the performance of larger size filters should be compared
considering the long length of input.95

To tackle these problems, this paper proposes the Sin-
gleChannelNet (SCNet), a model for automatic sleep stage

classification based on raw single-channel EEG, which can
learn different scale features simultaneously. We aim to
automate the sleep stage classification completely by uti-100

lizing the capabilities of the proposed model. The main
contributions of this work are as follows:

• We propose a new deep learning model with low model
complexity for sleep stage classification using 90s raw
single-channel EEG.105

• We implement two multi-convolution (MC) blocks
with different filter sizes in our model. In addition,
the max-average (M-Apooling) layer is applied to take
place of the conventional max-pooling layer. Two
strategies are used for capturing more feature repre-110

sentations from different scales to enhance the capac-
ity of the feature extraction.

• The results demonstrate that our model can ob-
tain promising performance on different raw single-
channel EEGs (C4/A1, Fpz-Cz) from CCSHS and115

Sleep-EDF datasets, without modifying the architec-
ture and hyper-parameters of model and training al-
gorithm. Moreover, all features are learned by the
proposed model automatically.

2. Experimental datasets120

Two public datasets are employed to evaluate the per-
formance of the proposed framework in this work, namely
Cleveland Children’s Sleep and Health Study (CCSHS)
[36, 37] and Sleep-EDF Database Expanded (Sleep-EDF,
2018 version) [38]. It should be noted that all hypnograms125

of experimental datasets are manually scored according to
the R&K manual rather than the AASM rule.

2.1. Cleveland children’s sleep and health study (CCSHS)

The CCSHS dataset comprises of overnight PSG record-
ings from 515 subjects aged 16-19 years, which is one of the130

largest population-based pediatric cohorts studied with
objective sleep studies. Each 30s epoch is manually di-
vided by experts into several stages: Wake (W), Rapid Eye
Movement (REM), Non-REM1 (N1), Non-REM2 (N2),
and Non-REM3 (N3). In this work, single-channel EEG135

C4/A1 sampled at 128 Hz is selected.

2.2. Sleep-EDF database expanded (Sleep-EDF)

The Sleep-EDF dataset consists of two subsets: sleep-
cassette (SC) contains 78 healthy Caucasians aged from 25
to 101 years and sleep-telemetry (ST) comprises 22 Cau-140

casians receiving temazepam treatment. In this study,
we use subjects from SC for evaluating the model per-
formance. Each participant was recorded two subsequent
night PSG data except the subject 13, subject 36 and
subject 52, from the SC subset who had only a one-night145

record. Each epoch of recordings is manually labelled by
clinicians according to the R&K rule into W, N1, N2, N3,
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Fig. 1. Illustration of 90s epochs and labels used in this paper, n denotes the number of 30s epochs for a subject, Zm is comprised of Xm−1,
Xm and Xm+1, 2 ≤ m ≤ n− 1.

Table 1: Number of 90s Epochs for Each Sleep Stage from Experi-
mental Datasets

Dataset W N1 N2 N3 REM Total

CCSHS 211030 19221 249681 110188 100252 690372

Sleep-EDF 69518 21522 69132 13039 25835 199046

Sleep-EDF-v1 10197 2804 17799 5703 7717 44220

N4, REM, MOVEMENT and UNKNOWN stages respec-
tively. In addition, MOVEMENT and UNKNOWN are
discarded, as they do not belong to the six stages. The150

PSG data include two-channel EEGs (Fpz-Cz and Pz-Oz),
single-channel EOG, single-channel EMG and the event
marker (sampled at 1 Hz). The sampling rate fs of EEG,
EOG, and EMG is 100 Hz. Single-channel EEG Fpz-Cz
is adopted in our experiment. For the Sleep-EDF dataset,155

stages N3 and N4 are merged into stage N3 which is con-
sistent with the AASM manual. Additionally, resampling
operation is not applied to C4/A1 and Fpz-Cz EEGs. We
also found that most previous studies use the Sleep-EDF
dataset of the first 20 subjects (Sleep-EDF-v1). For a160

fairer comparison, we also experiment with the Sleep-EDF-
v1 dataset. We employ 30 minutes samples of stage W
before and after other sleep stages as the recommendation
of [30, 33].

2.3. Contextual input165

In previous works, most schemes use a single 30s epoch
as the classifier input [7, 35, 31] and then produce a single
output label. Although being straightforward, this clas-
sification method ignores the existing correlation and de-
pendency between surrounding epochs. It is considered
that the sleep stage classification depends not only on the
local epoch, but also on the prior and following temporal
features [6, 9]. For this reason, an extension of single 30s
epoch input is conducted by combining it with its neigh-
boring epochs to make a contextual input. Furthermore,
we employ 90s epoch (Zm) as contextual input of the pro-
posed model, and it contains three sequential epochs: prior
30s epoch (Xm−1), 30s epoch (Xm) and subsequent 30s
epoch (Xm+1). The ground truth label of Zm is ym which
also denotes Xm’s label. As in

Zm = (Xm−1,Xm,Xm+1) 7→ ym. (1)

Details are illustrated in Fig. 1. As shown in Table 1, we
summarize the number of 90s epochs for each sleep stage
from CCSHS, Sleep-EDF and Sleep-EDF-v1 datasets in
our experiments. The distribution of the number of five
stages is imbalanced. For all datasets, W and N2 stages170

account for more than 60% of all 90s epochs. By contrast,
the proportion of stages N1 and N3 is the smallest.

3. Proposed SCNet

Fig. 2 shows the overall architecture of the SCNet. The
convolution block performs three operations sequentially:175

one-dimensional convolutional layer (Conv1D), batch nor-
malization and M-Apooling1D. Similarly, each MC Block
is followed by batch normalization, M-Apooling1D and
Dropout layer in sequence. In our model, we employ the
concatenation of max-pooling and average-pooling to take180

place of the max-pooling for capturing more representable
features. Similar to the inception module [39], the MC
block contains different sizes of convolutional filters to cap-
ture the corresponding information. Besides, we use the
Global Average Pooling (GAP) layer to replace the tradi-185

tional fully connected layer, and it is proved to be more
robust spatial translations of the input without parameter
optimization[40].

3.1. Model specification

In Table 2, we relate detailed parameters of the proposed190

model. The size of the model’s input is (90× fs, 1), where
fs is the sampling rate. To be specific, the fs of EEG C4
and Fpz-Cz is 128 Hz and 100 Hz, respectively. Here, the
SCNet does not restrict the length of input which can be
applied to different datasets.195

The first convolutional layer with 128 filters of size 128
and a stride of 2 is applied to obtain the feature map from
raw single-channel EEG. The activation function of this
layer is rectified linear unit (ReLU) which is defined as the
positive part of its argument:

f(x) = max(0, x) (2)

where x is the input of a neuron. To normalize the prior
layer output, we apply the batch normalization technique.
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Fig. 2. An overall architecture of the proposed SCNet.

Besides, the M-Apooling layer can get the combination
of maximum and average values from each of a cluster of
neurons at the previous layer.200

We implement two MC blocks in our model, and the fil-
ter sizes are selected among 1, 3, 16 and 64 to obtain mul-
tiscale representative features. More specifically, the small
filter is prone to learn temporal information (i.e., when
certain EEG patterns appear for a specific sleep stage),205

while the large filter is better to capture frequency infor-
mation [30]. Considering the long length of input (128×90,
100× 90), we optimize the filter sizes from the small sizes
(3, 5 and 7), medium sizes (16 and 32) and big sizes (64,
128 and 256). The filter size of 1 is to improve the nonlin-210

earity of the network and reduce the dimension of previ-
ous layer output. It would not reduce the size of the fea-
ture map but can enhance the nonlinearity of the network
through the nonlinear activation function. The filter sizes
are chosen with 1, 3, 16 and 64 based on the optimized215

results. Furthermore, after concatenating the output of
all convolutional layers, the dimension of the MC block1
output is (⌈45 × fs/2⌉, 272). The following M-Apooling
layer can get (⌈45 × fs/4⌉, 544) dimension feature map.
Each MC block is followed by a batch normalization layer,220

a M-Apooling layer with size of 3 and a dropout layer with
the probability of 0.1. To find appropriate strides, we test
4 strides: 1, 2, 3 and 5. The stride of two MC blocks is
set to 1, while the stride of the M-Apooling layer and the
first convolutional layer is 2. The GAP layer is applied225

to flat the previous output before the final decision layer.
Through a drop layer with drop rate of 0.5, the dense layer

Table 2: Parameters of the Proposed Model

Layer Layer Type Filters Size Stride Activation Output dimension

1 Input - - - - (90 × fs, 1)

2 Conv1D 128 128 2 Relu (45 × fs, 128)

3 M-Apooling1D - 3 2 - (⌈45 × fs/2⌉, 256)

4 MC Block1 - - 1 Relu (⌈45 × fs/2⌉, 272)

5 M-Apooling1D - 3 2 - (⌈45 × fs/4⌉, 544)

6 Dropout(0.1) - - - - (⌈45 × fs/4⌉, 544)

7 MC Block2 - - 1 Relu (⌈45 × fs/4⌉, 272)

8 M-Apooling1D - 3 2 - (⌈45 × fs/8⌉, 544)

9 Dropout(0.1) - - - - (⌈45 × fs/8⌉, 544)

10 GAP - - - - 544

11 Dropout(0.5) - - - - 544

12 Dense - - - Softmax 5

using softmax as the activation function makes the final
decision. Softmax function can calculate the probabilities
of five stages, the stage with maximum probability is as230

the consequence of the predicted sleep stage.

3.2. Regularization

We adopt two regularization approaches to help pre-
vent the overfitting problem. The first technique is L2
regularization that adds squared magnitude of coefficient235

as penalty term to the loss function. It is important to
choose a proper regularization rate (lambda), if lambda is
very large, it would add too much weight causing an un-
derfitting issue. By contrast, a very small lambda would
make the model more complex, then the model would learn240

4



 	� 	� 	� ���

��������������



	�

	�

	�

���

��
��
���
��
�

0.96 0.01 0.02 0.00 0.01

0.29 0.31 0.19 0.00 0.20

0.02 0.01 0.91 0.04 0.03

0.00 0.00 0.14 0.85 0.00

0.02 0.01 0.05 0.00 0.92

��������������������������

 	� 	� 	� ���

��������������

0.95 0.01 0.02 0.00 0.01

0.26 0.33 0.21 0.00 0.20

0.01 0.01 0.91 0.04 0.02

0.00 0.00 0.13 0.86 0.00

0.02 0.02 0.06 0.00 0.91

��������������������������

 	� 	� 	� ���

��������������

0.96 0.01 0.02 0.00 0.01

0.29 0.33 0.17 0.00 0.21

0.02 0.01 0.91 0.04 0.03

0.00 0.00 0.14 0.86 0.00

0.02 0.01 0.04 0.00 0.93

��������������������������

 	� 	� 	� ���

��������������

0.96 0.01 0.02 0.00 0.01

0.30 0.32 0.19 0.00 0.20

0.02 0.01 0.92 0.03 0.03

0.00 0.00 0.16 0.84 0.00

0.02 0.01 0.05 0.00 0.92

��������������������������

 	� 	� 	� ���

��������������

0.95 0.01 0.02 0.00 0.01

0.23 0.36 0.21 0.00 0.20

0.01 0.01 0.92 0.04 0.02

0.00 0.00 0.14 0.86 0.00

0.02 0.02 0.05 0.00 0.91

��������������������������

(a)


 �� �� �� ���
��������������




��

��

��

���

	�
��
���
��
�

0.95 0.03 0.01 0.00 0.01

0.18 0.45 0.29 0.00 0.08

0.01 0.05 0.89 0.02 0.03

0.00 0.00 0.23 0.77 0.00

0.02 0.04 0.06 0.00 0.87


 �� �� �� ���
��������������

0.95 0.03 0.01 0.00 0.01

0.17 0.45 0.31 0.00 0.08

0.01 0.04 0.89 0.03 0.03

0.00 0.00 0.19 0.80 0.00

0.02 0.04 0.06 0.00 0.88


 �� �� �� ���
��������������

0.96 0.03 0.01 0.00 0.01

0.18 0.46 0.28 0.00 0.08

0.01 0.05 0.88 0.03 0.03

0.00 0.00 0.19 0.80 0.00

0.03 0.04 0.06 0.00 0.88


 �� �� �� ���
��������������

0.95 0.04 0.01 0.00 0.01

0.16 0.49 0.27 0.00 0.08

0.01 0.06 0.88 0.03 0.03

0.00 0.00 0.19 0.81 0.00

0.01 0.04 0.04 0.00 0.90


 �� �� �� ���
��������������

0.95 0.04 0.01 0.00 0.00

0.15 0.51 0.27 0.00 0.07

0.01 0.06 0.88 0.03 0.03

0.00 0.00 0.20 0.80 0.00

0.02 0.06 0.06 0.00 0.87

(b)

Fig. 3. The normalized confusion matrices of each fold cross-validation. (a) CCSHS dataset and (b) Sleep-EDF dataset.

too much about the particularities of the training data, L2
regularization therefore has little effect on avoiding over-
fitting. Hence, we test four lambda values: 10−1, 10−2,
10−3 and 10−4, the results show that 10−3 achieves the
best performance. The L2 regularization is applied to all245

convolutional layers, including the MC block.
Another regularization method is dropout, which ran-

domly drops units from the model during training with a
specific probability from 0 to 1. We evaluate two dropout
rates (0.1 and 0.5) in the process of hyper-parameters op-250

timization. Dropout layers with a probability of 0.1 and
0.5 are employed for the MC block and GAP layer, respec-
tively.

Table 3: Mean Confusion Matrix of 5-Fold Cross-validation on Raw
Single-channel EEG C4/A1 from the CCSHS Dataset

Predicted Per-class Metrics Overall Metrics

W N1 N2 N3 REM PR(%)RE(%)F1(%)ACC(%)K(%)

W 40450 440 934 124 392 94.7 95.5 95.1

N1 1039 1253 740 1 765 52.8 33.0 40.6

N2 766 382 45679 1739 1359 88.8 91.5 90.1 90.2 86.5

N3 60 0 3126 18791 8 91.0 85.5 88.1

REM 384 299 971 6 18358 87.9 91.7 89.8

3.3. Training setup

We select Adam as the network optimizer whose pa-255

rameters ((learning rate) lr, beta1 and beta2) are set to
10−3, 0.9 and 0.999 respectively. Moreover, ReduceLROn-
Plateau of Callback in Keras is implemented to reduce the
lr. Specifically, when the model monitors the validation
accuracy showing no improvement within 3 epochs, the lr260

would drop to half of it. The minimum lr is set to 10−7.

Table 4: Mean Confusion Matrix of 5-Fold Cross-validation on Raw
Single-channel EEG Fpz-Cz from the Sleep-EDF Dataset

Predicted Per-class Metrics Overall Metrics

W N1 N2 N3 REMPR(%)RE(%)F1(%)ACC(%)K(%)

W 14650 498 142 8 82 94.1 95.3 94.7

N1 712 2020 1214 11 330 58.4 47.1 52.1

N2 109 705 12255 385 383 84.9 88.6 86.7 86.1 80.5

N3 4 5 532 2127 4 84.0 79.6 81.7

REM 99 233 299 1 4573 85.1 87.9 86.5

To find out appropriate batch size of mini-batch, size of 32,
64, 128, and 256 are evaluated, we select 64 as the size of
mini-batch finally. The categorical cross entropy is chosen
as the loss function of the model which is always used for265

classifying multi-class tasks. The model converges to the
optimal solution within 40 iterations, hence the number of
iteration is set to 40.

There are two types of methods to split the training and
test sets [30]. One is the subject-wise scheme which splits270

the training and test datasets based on the subjects. An-
other one is the epoch-wise method in which the split is
conducted by epochs rather than subjects. In the epoch-
wise scheme, We use 20% of whole data set as the test set
and the remaining 80% epochs as the training set. As for275

the subject-wise approach, 80% subjects are selected as the
training set, the other 20% subjects are used as the test
set. Furthermore, we use the 5-fold cross-validation (80%
training set for training, 20% training set for validation)
scheme to train and evaluate our model for both datasets.280

In addition, only 90s epochs from the CCSHS dataset are
used to determine the hyper-parameters of the proposed
model. Once achieving optimal hyper-parameters, they
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(a)

(b)

Fig. 4. The comparison between hypnogram labeled by the clinician and the model’s prediction. The solid black line is the ground truth,
the dotted red line donates the hypnogram labeled by the prediction of the proposed model. (a) CCSHS dataset (ccshs-trec-1800905) and
(b) Sleep-EDF dataset (SC4091).

would be used in all experiments. To be specific, when the
model is applied to another dataset, there would be no285

need to modify the architecture and hyper-parameters of
the model except for the input length which should adapt
to the fs of EEG from different datasets. To show the
effect of using the contextual input, we also conduct the
experiments employing the 30s epochs with the same train-290

ing setup.
Graphic card Nvidia Tesla P100 with 16 Gbytes memory

is used for model training. The implementation is written
in Keras[41] with the Tensorflow backend[42].

4. Experimental results295

4.1. Performance metrics

We evaluate the model performance (epoch-wise) using
overall accuracy (ACC), precision (PR), recall (RE), F1
score (F1), and Cohen’s kappa coefficient (K). ACC is
the proportion of correct predictions made by the model
to the total predications. PR calculates the ratio of cor-
rectly predicted positives to all positives. RE means the
fraction between true positives and all predications in the
actual class. F1 represents the weighted average of PR
and RE. K measures the agreement between true labels
and predicted labels. A large value of K can indicate good
performance of the model.They are calculated as follows:

ACC =
TP + TN

TP + FN + TN + FP
. (3)

PR =
TP

TP + FP
. (4)

RE =
TP

TP + FN
. (5)

F1 = 2 · RE · PR

RE + PR
. (6)

K =

∑n
i=1 xii

N −
∑n

i=1(
∑n

j=1 xij
∑n

j=1 xji)
N2

1−
∑n

i=1(
∑n

j=1 xij
∑n

j=1 xji)
N2

. (7)

where TP , TN , FN and FP stand for the true positives,
true negatives, false negatives and false positives, respec-
tively. N is the number of 90s epochs of the test set, n
represents the number of classes. In this work, n equals300

5, xii (1 ≤ i ≤ 5) represents the diagonal value of the
confusion matrix.

To show the performance of each fold cross-validation
from the CCSHS and Sleep-EDF datasets, we present the
normalized confusion matrices (CM) in Fig. 3. Firstly, we305

use single-channel EEG C4/A1 (90s epochs) from the CC-
SHS dataset to tune the hyper-parameters. Once getting
the best performance, the hyper-parameters and model ar-
chitecture are fixed for all experiments. Table 3 provides
the mean CM of 5-fold cross-validation from the CCSHS310

dataset, we can see that the overall accuracy and K are
respectively 90.2% and 86.5%. The proposed model shows
the best ability to detect the W stage with the PR of
94.7%. By contrast, the performance of stage N1 classifi-
cation is the worst which is consistent with the results of315

existing works. To be specific, there are 33.0% of N1 90s
epochs being recognized correctly. In addition, 27.4% of
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N1 samples are misclassified as W, 19.5% as N2 and 20.1%
as REM. Stages N2, N3 and REM have similar classifica-
tion results in terms of the PR corresponding to 88.8%,320

91.0% and 87.9% respectively.

Table 5: Mean Confusion Matrix of 5-Fold Cross-validation on Raw
Single-channel EEG C4/A1 from the CCSHS Dataset with the 30s
Input Length

Predicted Per-class Metrics Overall Metrics

W N1 N2 N3 REM PR(%)RE(%)F1(%)ACC(%)K(%)

W 40760 417 606 85 472 95.1 96.3 95.7

N1 742 1068 636 1 1351 46.0 28.1 34.9

N2 746 430 44952 1586 2211 88.2 90.0 89.2 89.1 85.0

N3 72 1 3665 18235 12 91.6 82.9 87.0

REM 520 407 1062 9 18020 81.7 90.0 85.6

Table 6: Mean Confusion Matrix of 5-Fold Cross-validation on Raw
Single-channel EEG Fpz-Cz from the Sleep-EDF Dataset with the
30s Input Length

Predicted Per-class Metrics Overall Metrics

W N1 N2 N3 REM PR(%)RE(%)F1(%)ACC(%) K(%)

W 14522 443 181 11 223 91.8 94.4 93.1

N1 840 1370 1338 19 720 48.2 32.0 38.4

N2 218 644 11831 376 768 82.3 85.5 83.9 82.0 74.8

N3 8 7 508 2140 9 83.9 80.1 81.9

REM 225 380 511 5 4086 70.4 78.5 74.2

To demonstrate the generalization capability of the
proposed architecture, we also conduct the 5-fold cross-
validation using the same model determined by the CC-
SHS dataset (i.e., without any hyper-parameters modifica-325

tion except for the input length) on the Sleep-EDF dataset.
As can be seen from Table 1, the distribution of the num-
bers of five stages is different. Stage W has the biggest
proportion and the number of N3 is the smallest in Sleep-
EDF dataset, whereas the largest percentage is stage N2330

in the CCSHS dataset. Besides, the EEG channel used in
two datasets is also distinct, C4/A1 for the CCSHS dataset
and Fpz-Cz for the Sleep-EDF dataset. It is worthy to
note that despite the EEG channel and the size of the in-
put length (90 × fs, 1) are quite different, the proposed335

model can obtain promising performance on two different
datasets by comparing Tables 3 and 4.

The performance of the conventional 30s input is illus-
trated in Table 5 and Table 6. Employing with the con-
textual input, the ACC achieves an enhancement of 1.1%340

and 4.1% respectively on the CCSHS, Sleep-EDF datasets
compared to the ACC of 30s input length. Likewise, theK
could be improved respectively by 1.5% and 5.7%. We fur-
ther reveal the hypnogram comparison labeled by experts
and the model’s prediction for one subject of CCSHS and345

Sleep-EDF datasets in Fig. 4.

4.2. Performance comparison

We make a comparison between the proposed model
(epoch-wise and subject-wise) with some existing works

using the same datasets in terms of the ACC and K in350

Tables 7 and 8. Table 7 reveals that the proposed frame-
work can achieve higher ACC and K using raw single-
channel C4/A1 EEG compared to approaches using multi-
channel PSG data [43] or the single-channel EEG [44] on
the CCSHS dataset. For the Sleep-EDF and Sleep-EDF-355

v1 databases, the proposed model also achieves compa-
rable performance compared to state-of-the-art methods.
Some studies [25, 34] extract features manually or some
methods adopt single-channel EEG [33, 45, 46]. Consid-
ering results of the comparison, the proposed framework360

can achieve promising performance on CCSHS, Sleep-EDF
and Sleep-EDF-v1 datasets.

5. Discussion and conclusion

In this paper, we propose an end-to-end framework with
CNNs, namely SCNet, which combines the feature learn-365

ing ability and classification capacity. The proposed model
is applied to classify sleep stages automatically from raw
single-channel EEG without using any hand-engineered
features and any other preprocessing (e.g., signal filter-
ing and resample implementation). There are two main370

advantages that we train and evaluate the model with raw
single-channel EEG. Comparing with those methods with
hand-crafted features [4, 12, 47], where extracting hand-
engineered features is conducted with priori knowledge and
not in a data-driven way, and it is time-consuming for the375

researchers. Moreover, the selection of types and number
of features would result in different model performance,
there is no gold standard about the extraction of hand-
crafted features. The second advantage is that it is much
easier and more comfortable to record single-channel EEG380

data compared to the multi-channel scheme [6, 28] either
at the hospital or home. Moreover, multi-channel PSG
data used as input can increase the computational cost.
Considering practical applications, the use of raw single-
channel EEG can simplify the measurement scheme and385

reduce the related cost.
Comparing with the conventional deep neural network

based on CNNs, where the convolutional layers with the
fixed filter size are assembled in sequence. In such a case,
it is not capable of capturing features representation from390

different scales. To address this issue, our model employs
two MC blocks, which are the concatenation of several con-
volutional layers with four distinct filer sizes, to extract
different scale features. Instead of using the traditional
max-pooling layer, we adopt the M-Apooling layer to add395

average feature representation with maximum features si-
multaneously, which further improve the proposed model’s
ability of feature learning. In addition, the SCNet model
is quite simple and compact with a total 5× 105 parame-
ters compared to the methods in [45] which has 2.1× 107400

parameters and [30] in which the number of parameters of
the representation learning and sequence residual learning
parts has up to 6 × 105 and 2 × 107 respectively. More-
over, the proposed SCNet model can achieve the compara-
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Table 7: Performance Comparison between The Proposed Method and Previous Methods on the CCSHS Dataset

Study Database Method Input channel Preprocessing Input type Subjects ACC(%) K(%)

Nakamura et al. [43] CCSHS HMM C4/A1 + C3/A2 Yes Spectrogram 515 - 73

Li et al. [44] CCSHS Random Forest C4/A1 Yes Features 116 86.0 80.5

Proposed (subject-wise) CCSHS Deep CNN C4/A1 No Time series 515 88.2 83.8

Proposed (epoch-wise) CCSHS Deep CNN C4/A1 No Time series 515 90.2 86.5

Table 8: Performance Comparison between The Proposed Method and Previous Methods on the Sleep-EDF and Sleep-EDF-v1 Datasets

Study Database Method Input channel Preprocessing Input type Subjects ACC(%) K(%)

Phan et al. [25] Sleep-EDF RNN Fpz-Cz Yes Time-frequency image 78 82.6 76

Mousavi et al. [45] Sleep-EDF CNN + LSTM Fpz-Cz No Time series 78 80.0 73

Supratak et al. [46] Sleep-EDF CNN + LSTM Fpz-Cz No Time series 78 83.1 77

Proposed (subject-wise) Sleep-EDF Deep CNN Fpz-Cz No Time series 78 83.9 77.8

Proposed (epoch-wise) Sleep-EDF Deep CNN Fpz-Cz No Time series 78 86.1 80.5

Supratak et al. [30] Sleep-EDF-v1 CNN + LSTM Fpz-Cz No Time series 20 82.0 76

Seo et al. [32] Sleep-EDF-v1 CNN + LSTM Fpz-Cz No Time series 20 83.9 78

Wei et al. [33] Sleep-EDF-v1 Deep CNN Fpz-Cz Yes Time series 20 84.3 78

Phan et al. [34] Sleep-EDF-v1 1-max CNN Fpz-Cz Yes Time-frequency image 20 82.6 76

Proposed (subject-wise) Sleep-EDF-v1 Deep CNN Fpz-Cz No Time series 20 86.2 81.1

Proposed (epoch-wise) Sleep-EDF-v1 Deep CNN Fpz-Cz No Time series 20 91.0 87.8

ble performance with less computing resources occupied.405

Concerning online and realtime applications (e.g., sleep
monitoring), our model with raw single-channel EEG is
more reasonable to reduce the time latency and obtain
reliable results.

As the use of textual input, it is considered that the410

sleep stage classification depends not only on the local
epoch, but also on prior and following temporal features
[9]. For instance, the beginning of stage N2 is decided
by the occurrence of K-complex or beta-frequency spin-
dle activity in the early or last half of the prior 30 epoch415

[7]. Inspired by this, we choose the 90s epoch as textual in-
put of proposed model despite the higher computable cost.
The performance comparison in Table 5 also demonstrates
the advantage of contextual input. To validate the gen-
eralization of the proposed architecture, different single-420

channel EEGs from two datasets are adopted. The length
of input is not restricted to a fixed number, our model
can be adapted to different length of input relating to
the fs of EEG efficiently. Experimental results show that
the proposed model can obtain promising performance on425

two datasets (CCSHS: ACC-90.2%, K-86.5%; Sleep-EDF:
ACC-86.1%, K-80.5%), which indicate the desirable gen-
eralization of the SCNet model.

It is challenging to train on dataset A and test on B, not
only for the proposed SCNet but also for typical CNNs.430

CNNs are running in a data-driven way which means the
model must learn some crucial features from the training
samples. Otherwise, it cannot perform well on an unfa-
miliar dataset. This is also the biggest difference (gen-
eralization ability) between machine and human, human435

beings are good at deducing and inducing. To further

show the generalization ability of the proposed model, we
perform two additional experiments. Firstly, we train our
model with the CCSHS database, the obtained model then
is tested on the Sleep-EDF dataset without any training,440

the accuracy is 65.9%. In reverse, The proposed model
is trained on the Sleep-EDF dataset and tested with the
CCSHS database, the accuracy achieved is 70.2%. In our
future work, we will try to construct a more brain-inspired
model with some cognitive neural dynamic from neuro-445

science [48] to increase the generalization ability for the
sleep stage classification task. On the other hand, the
class distribution of PSG datasets is highly imbalanced,
this class imbalance problem has not been solved well in
this work. As a representation of the monitory class, the450

recognition rate of N1 is still much lower than that of
other stages. It is worthy of investigating appropriate data
argumentation methods to balance the samples of PSG
datasets. Also, it is valuable to adopt clinic datasets that
have rarely been explored in previous studies.455
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