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Abstract: A novel series of isatin-s-triazine hydrazone derivatives has been synthesized and reported
herein. The synthetic methodology involved the reaction of s-triazine hydrazine precursors with
isatin derivatives in the presence of CH3COOH as a catalyst and EtOH as solvent to afford the
corresponding target products 6a-e in high yields and purities. The characterization data obtained
from elemental analysis, FT-IR, NMR (1H- and 13C-) were in full agreement with the expected
structures. Furthermore, an X-ray single crystal diffraction study of one of the target s-triazine
hydrazone derivatives, 6c confirmed the structure of the desired compounds. It crystallized in the
triclinic crystal system and P-1 space group with a = 10.3368(6) Å, b = 11.9804(8) Å, c = 12.7250(5) Å,
α = 100.904(4)◦, β = 107.959(4)◦ and γ = 109.638(6)◦. The different non-covalent interactions which
contributed in the molecular packing of 6c were analyzed using Hirshfeld analysis. The molecular
packing of the organic part of the crystal structure showed important O . . . H (7.1%), C . . . H (16.4%),
C . . . C (1.6%), H . . . H (34.8%), N . . . H (8.0%) and C . . . N (4.0%) interactions while for the crystal
solvent, the O . . . H (21.3%), H . . . H (61.2%) and N . . . H (8.1%) contacts are the most significant.
The studied compound 6c is polar and has a net dipole moment of 5.6072 Debye based on DFT study.

Keywords: s-triazine; isatin; hydrazone derivatives; Hirshfeld; DFT; non-covalent interactions

1. Introduction

s-Triazine derivatives have attracted the attention of many researchers due to their
remarkable uses in a variety of sectors, including those in the pharmaceutical industry,
polymers, and corrosion inhibitors [1–3]. The substantial biological activity of substi-
tuted s-triazine derivatives, such as their antibacterial, antifungal, antimalarial, anticancer,
anti-inflammatory, and antileishmanial effects, have made them desirable candidates in
medicinal chemistry [4–10].

On the other hand, isatin derivatives have diverse applications in biology and phar-
maceutics [11,12]. Additionally, isatin derivatives are considered as starting materials for
the synthesis of many heterocycles [13,14]. These compounds are also used as anticancer,
antibiotic and antidepressant [15–20]. Shanmugakala et al. reported some metal complexes
of indolin-3-one/1,3,5-triazine hybrid as organic ligand. The in vivo studies revealed a
potential anticonvulsant as well as anti-inflammatory actions of these complexes [21].

In continuation to our interest in developing a new s-triazine hydrazone derivatives
with isatin to explore new derivatives of compounds incorporated the two moieties, s-
triazine and istain, with hydrazone linkage. The supramolecular structural properties of
one of the synthesized s-triazine derivatives 6c were explored using single crystal X-ray
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diffraction analysis augmented with Hirshfeld calculations. Additionally, DFT calculations
were performed to analyze the molecular and electronic aspects of this compound.

2. Experimental
2.1. Materials and Methods

All materials and methods details are given in Method S1 (Supplementary Data).

2.2. Synthetic Methodology

Synthesis of the compounds 2–4 was performed using the reported method [22] and
their spectral characterizations are described in details in Method S2 (Supplementary Data).

2.2.1. General Method for the Synthesis of 1,3,5-Triazine-Hydrazone Derivatives, 6a–e

Substituted isatin 5a–e (2 mmoles) was dissolved in 30 mL ethanol and 2–3 drops of
acetic acid (AcOH). Then s-triazine hydrazine 4 (2 mmoles) was added portion wise on
the hot solution and stirred. After complete addition, the reaction mixture was refluxed
for 3–4 h (the reaction followed by TLC using ethylacetate-hexane 2:1). At the end, the
reaction was left to cool slowly to room temperature and then the product was collected by
filtration, washed with cold ethanol, and dried to produce the pure products, as indicated
from the spectral data.

Synthesis of 3-(2-(4-((4-Chlorophenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-
yl)hydrazineylidene)indolin-2-one, 6a

The product was obtained as a white solid in yield 94%; mp 254–256 ◦C; IR (KBr,
cm−1): 3281 (NH), 1581(C=N), 1488, 1412 (C=C); 1H NMR (DMSO-d6): δ = 1.49 (s, 4H,
2CH2), 1.59 (s, 2H, CH2), 3.72 (d, J = 62.1 Hz, 4H, 2CH2), 7.06–6.88 (m, 4H, 4CH), 7.47–7.46
(m, 3H, 3CH), 7.74 (s, 1H, CH), 9.75 (s, 1H, NH), 11.26 (s, 1H, NH-CO), 12.56 (s, 1H, NH-N=)
ppm; 13C NMR (DMSO-d6): δ = 24.2, 25.4, 43.9, 64.3, 110.9, 119.9, 120.4, 121.2, 122.5, 125.6,
128.4, 130.4, 132.9, 138.9, 141.3, 163.1, 163.9 ppm. Anal. Calc. for C22H21ClN8O (448.91): C,
58.86; H, 4.72; N, 24.96. Found: C, 58.99; H, 4.65; N, 24.87.

5-Bromo-3-(2-(4-((4-Chlorophenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-
yl)hydrazineylidene)indolin-2-one, 6b

The product was obtained as a yellow solid in yield 92%; mp 290–291 ◦C; IR (KBr,
cm−1): 3151 (NH), 1581(C=N), 1486, 1412 (C=C); 1H NMR (DMSO-d6): δ = δ1.45 (d, J =
65.0 Hz, 4H, 2CH2), 1.66 (m, 2H, CH2),3.81–3.59 (m, 4H, 2CH2), 6.7 (m, 4H, 4CH), 7.38–7.15
(m, 2H, 2CH), 7.5 (s, 1H, CH), 9.5 (s, 1H, NH), 11.11 (s, 1H, NH-CO), 12.32 (s, 1H, NH-N=)
ppm; 13C NMR (DMSO-d6): δ = 24.2, 25.4, 59.7, 112.9, 114.0, 121.1, 121.9, 122.6, 125.6, 128.3,
131.6, 132.4, 138.86, 140.3, 162.6, 163.7, 164.2, 170.3 ppm. Anal. Calc. for C22H20BrClN8O
(527.80): C, 50.06; H, 3.82; N, 21.23. Found C, 50.23; H, 3.95; N, 21.51.

5-Chloro-3-(2-(4-((4-Chlorophenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-
yl)hydrazineylidene)indolin-2-One, 6c

The product was obtained as a yellow solid in yield 99%; mp 291–293 ◦C; IR (KBr,
cm−1): 3291 (NH), 1582(C=N), 1488, 1418 (C=C); 1H NMR (DMSO-d6): δ = 1.49 (s, 4H,
2CH2), 1.59 (s, 2H, CH2), 3.71 (m, 4H, 2CH2), 6.9–6.88 (m, 4H, 4CH), 7.38–7.2 (m, 2H, 2CH),
7.72 (s, 1H, CH), 9.73 (s, 1H, NH), 11.26 (s, 1H, NH-CO), 12.48 (s, 1H, NH-N=) ppm; 13C
NMR (DMSO-d6): δ = 24.2, 25.5, 43.9, 112.44, 119.3, 121.1, 121.2, 122.2, 125.6, 126.5, 128.3,
129.7, 131.8, 138.9, 139.94, 162.9, 163.7, 164.2, 172.1 ppm. Anal. Calc. for C22H20Cl2N8O
(483.35): C, 54.67; H, 4.17; N, 23.18. Found C, 54.89; H, 4.31; N, 23.36.

3-(2-(4-((4-Chlorophenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)hydrazineylidene)-5-
fluoroindolin-2-one, 6d

The product was obtained as a yellow solid in yield 93%; mp 276–278 ◦C; IR (KBr,
cm−1): 3220 (NH), 1582(C=N), 1486, 1420 (C=C); 1H NMR (DMSO-d6): δ = 1.49 (s, 4H,
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2CH2), 1.59 (s, 2H, CH2), 3.72 (m, 4H, 2CH2), 7.21–6.87 (m, 4H, 4CH), 7.31–7.29 (m, 2H,
2CH), 7.73 (s, 1H, CH), 9.73 (s, 1H, NH), 11.17 (s, 1H, NH-CO), 12.57 (s, 1H, NH-N=) ppm;
13C NMR (DMSO-d6): δ = 24.2, 25.4, 43.9, 106.8, 106.9, 111.9, 112.0, 116.6, 116.8, 121.2, 121.7,
125.6, 128.4, 132.4, 137.6, 138.9, 157.3, 159.2, 163.2, 163.8, 164.2,172.0 ppm. Anal. Calc. for
C22H20ClFN8O (466.90): C, 56.59; H, 4.32; N, 24.00. Found C, 56.71; H, 4.48; N, 24.23.

3-(2-(4-((4-Chlorophenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)hydrazineylidene)-5-
methylindolin-2-one, 6e

The product was obtained as a yellow solid in yield 77%; mp 296–297 ◦C; IR (KBr,
cm−1): 3287 (NH), 1581 (C=N), 1494, 1422 (C=C); 1H NMR (DMSO-d6): δ = 1.49 (s, 4H,
2CH2), 1.59 (s, 2H, CH2), 2.26 (s, 3H, CH3), 3.72 (m, 4H, 2CH2), 7.26–6.76 (m, 4H, 4CH),
7.30–7.29 (m, 2H, 2CH), 7.72 (s, 1H, CH), 9.73 (s, 1H, NH), 11.05 (s, 1H, NH-CO), 12.55 (s,
1H, NH-N=) ppm; 13C NMR (DMSO-d6): δ = 24.2, 25.4, 43.9, 106.8, 107.0, 112.0, 112.0, 116.6,
116.8, 121.2, 121.8, 125.6, 128.4, 132.4, 137.6, 138.9, 157.4, 159.2, 163.2, 163.8, 164.2, 172.1 ppm.
Anal. Calc. for C23H23FN8O (446.48): C, 61.87; H, 5.19; N, 25.10. Found C, 61.96; H, 5.32;
N, 25.35.

2.3. X-ray Structure Determinations

The crystal of 6c was solved using the method described in Method S3 (Supplementary
Data) [23–26]. The crystallographic details are summarized in Table 1.

Table 1. Crystal data for 6c.

6c

CCDC 2214508
empirical formula C26H28Cl2N8O3
Fw 571.46
temp (K) 120(2)
λ (Å) 0.71073
cryst syst Triclinic
space group P 1
a (Å) 10.3368(6)
b (Å) 11.9804(8)
c (Å) 12.7250(5)
α (deg) 100.904(4)
β (deg) 107.959(4)
γ(deg) 109.638(6)
V (Å3) 1334.36(14)
Z 2
ρcalc (Mg/m3) 1.422
µ (Mo Kα) (mm−1) 0.289
No. reflns. 12754
Unique reflns. 7212
Completeness to θ = 67.684◦ 100%
GOOF (F2) 1.031
Rint 0.0286
R1

a (I ≥ 2σ) 0.0482
wR2

b (I ≥ 2σ) 0.0953
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2.

2.4. Hirshfeld and DFT Computations

The details of the topology [27] and DFT [28–30] calculations are summarized in
Method S4 (Supplementary Data).
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3. Results and Discussion
3.1. Synthesis and Characterizations

The initial step for the synthesis of the target products involved the reaction of cya-
nuric chloride 1 with p-chloroaninline via nucleophilic aromatic substitution of one of the
chlorine atoms at 0 ◦C in the presence of the alkaline medium of NaHCO3 following the
previously reported method [22] to afford the derivative 2. The second step involved a
further displacement of the second chlorine atom by piperidine as a nucleophile at room
temperature to give the derivative 3 [22] in a good yield and purity, as indicated from
the spectral data (Supporting Information, Figures S1 and S2). Then, the derivative 3
was treated with hydrazine hydrate (80%) in ethanol overnight under reflux to afford the
hydrazine derivative 4, which reacted directly without further purification with isatin
derivatives 5a–e in ethanol as a solvent in the presence of catalytic amount of acetic acid to
afford the products 6a–e in good yield and purities (Scheme 1).
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Scheme 1. Synthetic route for preparation of s-triazine hydrazone derivatives.

3.2. X-ray Structure Description

The structure of 6c is presented in Figure 1. Its crystal system is triclinic and the space
group is P-1. The asymmetric unit comprised one molecule of the target compound and a
co-crystallized ethyl acetate as a crystal solvent. The triclinic parameters are a = 10.3368(6)
Å, b = 11.9804(8) Å, c = 12.7250(5) Å, α = 100.904(4)◦, β =107.959(4)◦ and γ = 109.638(6)◦. The
unit cell volume is 1334.36 Å3 while the calculated density is 1.422 mg/m3 (Table 1). The
target compound comprising one s-triazine core with three different substituents attached
to the 2, 4 and 6 positions. The s-triazine core has almost planar structure where the CNCN
dihedral angles do not exceed 5.1◦ (C14N3C8N2). The 1,3,5-triazine ring makes an angle of
14.78 and 5.99◦ with the aryl and indole moieties, respectively. The former showed a larger
twist with respect to the triazine moiety compared to the latter. For the piperidine moiety,
the ring showed a clear chair configuration. The most important geometrical parameters
are listed in Table 2 and Table S1.
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Figure 1. X-ray structure of 6c.

Table 2. Selected bond lengths [Å] for 6c a.

Atoms Distance Atoms Distance

Cl1-C3 1.746 N4-C7 1.3592
Cl2-C20 1.7472 N5-C8 1.3462
O1-C16 1.2352 N5-C13 1.4632
N1-C7 1.3632 N5-C9 1.4652
N1-C6 1.4132 N6-N7 1.3352
N2-C7 1.3292 N6-C14 1.3862
N2-C8 1.3502 N7-C15 1.3012
N3-C14 1.3322 N8-C16 1.3622
N3-C8 1.3502 N8-C17 1.3982
N4-C14 1.3252

a List of bond angles in 6c are given in Table S1 Supplementary Data.

The X-ray structure of the titled compound showed a molecule of ethylacetate as a
crystal solvent where both molecules are stabilized by some intra-molecular interactions
including the classical N1-H1...O3 hydrogen bond and the non-classical C21-H21...O2 inter-
actions, where the N1 . . . O3 and C21...O2 distances are 2.931(2) and 3.433(3) Å, respectively.
In addition, the crystal solvent shared in the packing scheme of 6c by the intermolecular
C26-H26A...N3 interaction with C26...N3 distance of 3.461(3) Å. The donor(D)-hydrogen(H)
. . . acceptor(A) angles are 149, 175(2) and 159◦, respectively. Additionally, the molecules of
the target compound are connected with each other via strong and classical N8-H8...O1 hy-
drogen bonds where the H . . . A and D . . . A distances are 1.98 and 2.854(2) Å, respectively,
while the D-H . . . A angle is 170◦. It is worth noting that the structure of the target organic
molecule showed numerous intra-molecular interactions including the non-classical C-H
. . . N interactions and the classical N6-H6 . . . O1 hydrogen bond (Figure 2). List of these
contacts are depicted in Table 3 while the packing scheme of this compound is shown in
Figure 3.
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Table 3. Hydrogen bonds for 6c [Å and ◦].

D-H...A d(D-H) d(H . . . A) d(D . . . A) <(DHA) Symm.
Codes

N1-H1 . . . O3 0.88(2) 2.05(2) 2.931(2) 175(2)
C21-H21 . . . O2 0.95 2.53 3.433(3) 159
N6-H6 . . . O1 0.88 2.04 2.755(2) 137
N8-H8 . . . O1 0.88 1.98 2.854(2) 170 2-x, 1-y, 1-z
C1-H1A . . . N2 0.95 2.35 2.922(3) 118
C9-H9A . . . N2 0.99 2.31 2.750(3) 106
C13-H13B . . . N3 0.99 2.31 2.747(3) 106
C26-H26A . . . N3 0.98 2.59 3.461(3) 149 1-x, 1-y, 1-z
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C13-H13B…N3 0.99 2.31 2.747(3) 106  

C26-H26A…N3 0.98 2.59 3.461(3) 149 1-x, 1-y, 1-z 
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Figure 3. Molecular packing showing the intra- and inter-molecular C-H . . . O and
C-H . . . N interactions.

3.3. Hirshfeld Surface Analysis

There are many weak and strong intra- and inter-molecular interactions in the crystal
structure of 6c. These non-covalent interactions could be simply analyzed using Hirshfeld
calculations. The resulting dnorm, shape index and curvedness maps as well as the finger-
print plot could give a full picture not only about all possible non-covalent interactions but
also about the contributions of all these contacts. The studied crystal structure comprised
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one molecule of the target organic compound and one ethylacetate as a crystal solvent per
asymmetric unit. Hence, the Hirshfeld surfaces were performed for each molecule and the
resulting maps are collected in Figure 4.
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significant contacts; A, B, C, D, E and F refer to the short O . . . H, C . . . H, C . . . C, H . . . H, N . . . H
and C . . . N interactions, respectively.

The most significant contacts appeared as red spots in the dnorm map. For simplicity,
these contacts are labelled in Figure 4 by letters A to E which corresponds to the O . . . H,
C . . . H, C . . . C, H . . . H, N . . . H and C . . . N contacts, respectively. The decomposed
dnorm maps and fingerprint plots of these interactions are presented in Figures 5 and 6 for
the target organic molecule and the crystal solvent, respectively. The red regions could
be detected close to the atoms which share significant interactions with other molecules
outside the surface. For the target organic molecule, there are many O...H contacts occurred
between the surface and the surrounding molecules. The O2 . . . H21 (2.408 Å) and O3 . . .
H1 (1.925 Å) interactions occur between the organic target molecule and the crystal solvent.
In addition, there are O3 . . . H24A (2.513 Å) and O1 . . . H8 (1.857 Å) short contacts. The
former occurs between two molecules of the crystal solvent while the latter occurs between
two of the target organic molecule. The N3 . . . H26A contact (2.498 Å) is another polar
interaction is found to occur between the N3 atom of the s-triazine core and H26A from the
crystal solvent. In addition, other non-polar contacts such as C . . . H, H . . . H and C . . . C
interactions were detected. The C . . . H contacts which belong to the C-H . . . π interaction
occurred between C7 atom of the s-triazine core and H10B from the piperidine moiety
where the corresponding C7 . . . H10B interaction distance is 2.712 Å. On the other hand,
the most important hydrogenic interactions are H18 . . . H26B (2.103 Å) and H19 . . . H9B
(2.058 Å). The former occurs between H18 from the organic target molecule and H26B from
the crystal solvent while the latter occurs between H19 and H9B from two neighboring
units of the organic target molecule. Interestingly, the Hirshfeld analysis detected many C
. . . C and C . . . N contacts which reveal the presence of some interactions between the π-
system of the studied molecule. The C5 . . . C16 (3.299 Å), C7 . . . C16 (3.218 Å), C14 . . . C15
(3.388 Å) and C14 . . . N7 (3.230 Å) are the most important. All these π-π interactions occur
between two of the organic target molecules. The π-π interactions appeared as red/blue
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triangles in the shape index map and green flat area in curvedness. For better clarity, the
regions included in the π-π interactions are marked by black rectangle in Figure 4.
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In addition, the area of the decomposed fingerprint plots of the O . . . H, C . . . H, C . . .
C, H . . . H, N . . . H and C . . . N interactions represents the contribution of this contact in
the molecular packing (Figure 5). For the organic target molecule, the percentages of these
contacts are 7.1, 16.4, 1.6, 34.8, 8.0 and 4.0, respectively. In the case of the crystal solvent,
the Hirshfeld analysis of this part of the crystal structure indicated the importance of the O
. . . H, H . . . H and N . . . H contacts (Figure 6). Their percentages are 21.3, 61.2 and 8.1%,
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respectively. There are many other contracts presented along with their percentages are
summarized in Figure 7. These interactions have low importance in the molecular packing
compared to the above-mentioned contacts.
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3.4. DFT Analyses

The calculated structure of 6c is shown in Figure 8A. In the same figure, the overlay of
the X-ray structure over the calculated one is shown in Figure 8B. There is general great
agreement between both structures. Additionally, there are good correlations between the
calculated and optimized geometric parameters (Figure 9). List of the bond distances and
angles are collected in Table S2 (Supplementary Data).
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The natural atomic charges are presented in Figure 10. Detailed natural charges are
shown in Table S3. In general, the O, N, Cl and most of C-atoms have negative charge while
the opposite is true for the hydrogen atoms and other carbon atoms bonded to oxygen and
nitrogen. The compound has a net dipole moment of 5.6072 Debye indicating a highly
polar system. In addition, the electron density mapped over electrostatic potential showing
the negatively charged regions colored by red and the positively charged regions colored
by blue is shown in Figure 8C.
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In the same figure, the HOMO and LUMO levels are presented (Figure 8D,E). These
orbitals are mainly distributed over the π-systems of the indolone and s-triazine moieties.
The energies of these molecular orbitals are calculated to be −5.5378 and −2.3097 eV,
respectively. Hence, the HOMO-LUMO energy gap is 3.2281 eV. Based on the energies of
the HOMO and LUMO levels, the ionization potential (I), electron affinity (A), hardness
(η), electrophilicity index (ω) and chemical potential (µ) are calculated to be 5.5378, 2.3097,
3.2281, 2.3847 and −3.9238 eV, respectively [31–37].

4. Conclusions

The present work represents the synthesis of some s-triazine hydrazone derivatives
incorporating isatin moiety. The structure of 6c was confirmed using X-ray diffraction of
single crystal. The crystal comprised one of the organic target molecule in addition to
a co-crystallized ethyl acetate as a crystal solvent. The supramolecular structure of the
organic system and the crystal solvent is analyzed using Hirshfeld analysis. In the former,
the molecular packing is controlled by the O . . . H (7.1%), C . . . H (16.4%), C . . . C (1.6%),
H . . . H (34.8%), N . . . H (8.0%) and C . . . N (4.0%) interactions. On the other hand, the
packing of the latter is dominated by O . . . H (21.3%), H . . . H (61.2%) and N . . . H (8.1%)
contacts. DFT optimized geometry agreed very well with the reported X-ray structure.
Different electronic and spectroscopic parameters for the studied system were predicted.
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