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Abstract—Accurate sleep stage classification is vital to assess
sleep quality and diagnose sleep disorders. Numerous deep learn-
ing based models have been designed for accomplishing this labor
automatically. However, the class imbalance problem existing in
polysomnography (PSG) datasets has been barely investigated in
previous studies, which is one of the most challenging obstacles
for the real-world sleep staging application. To address this
issue, this paper proposes novel methods with signal-driven and
image-driven ways of noise addition to balance the imbalanced
relationship in the training dataset samples. We evaluate the
effectiveness of the proposed methods which are integrated into a
convolutional neural network (CNN) based model. Experimental
results evaluated on Sleep-EDF-V1, Sleep-EDF and CCSHS
databases demonstrate that the proposed balancing approaches
with specific tensity Gaussian white noise could enhance the
overall or stage N1 recognition to some degree, especially the
combination of two types of Data augmentation (DA) strategies
shows the superiority of overall accuracy improvement.

Index Terms—Sleep stage classification, Class imbalance prob-
lem, Data augmentation, Time-frequency image

I. INTRODUCTION

Sleep is one of the most important human activities, which
makes great contributions to one’s mental and physical health
and recovery [1], [2]. However, millions of people around
the world suffer from different degrees and types of sleep-
related issues [3]. It is a time-consuming and labor-intensive
procedure to diagnose and treat them, thereinto correct sleep
stage classification is an essential step. Clinically, whole-night
sleep PSG data, including electroencephalogram (EEG), elec-
tromyogram (EMG), electrocardiogram (ECG), electrooculo-
gram (EOG), etc, are divided into 30s epochs with labels of
Wake (W), Rapid Eye movement (REM), Non-REM1 (N1),
Non-REM2 (N2) and Non-REM3 (N3) by hands [4]. Although
large amounts of deep learning methods have been proposed to
handle this task automatically [5]–[12], it seems that there is
still a gap from real-world implementation, one of possibilities
is that the class imbalance problem (CIP) of PSG datasets
which has not been paid enough attention and solved well.

1 Equal contribution to this work, ∗ Corresponding author:
xuqi@dlut.edu.cn

In simple terms, the CIP in sleep scoring refers to the
duration of each sleep stage is not equal because of the special
sleep structure. For instance, stage W and N2 occupy the
dominant proportion of samples (more than 60%). By contrast,
the N1 stage usually accounts for 2%-5% of overnight sleep
time. It is not fair for minority classes when training a deep
neural network model with the imbalanced dataset. In such
a way, the major categories contribute the leading weight
updating, while the contribution of minority ones is biased
during the back-propagation. Whether the overall accuracy or
the recognition rate is limited by the CIP, which is worth
further exploration. As the representation of minority groups,
N1 stage suffers from heavy discrimination with the highest
misclassification rate. Only a few of works have focused on
the solutions for CIP in the sleep scoring. Supratak et al.
[6] duplicated the minority sleep stages in the training set
in which each sleep stage is equally shown. Similarly, Dong
et al. [13] used oversampling to generate new samples to
keep the same percentage of all sleep stages. However, if
increasing the number of minority classes in a mechanical way
to reach a state that all sleep stags have an equal number of
samples, the initial sleep structure was totally destroyed. Fan et
al. [14] applied five DA methods to assess the enhancement
of overall accuracy and N1 classification rate, although the
overall performance was improved, the N1 accuracy showed
a slight drop sadly.

To remedy the CIP in the sleep scoring task with deep
learning based models, we aim to balance the dataset samples
by only increasing the number of N1 stage in the original
training set with Gaussian white noise addition, this way could
retain the original sleep architecture as much as possible.
Additionally, we further investigate two categories of Gaussian
white noise addition to the EEG signal. One is to add Gaussian
white noise to the raw EEG signals (signal-driven) and then
transform the noisy EEG signals to time-frequency images.
Another one is to convert the EEG signals to time-frequency
images then add the noise to the images (image-driven). These
two balancing methods are embedded into a CNN based
model to show the effectiveness of the relatively balanced state



TABLE I
THE SCHEME OF SIGNAL-DRIVEN AND IMAGE-DRIVEN APPROACHES

Intensity signal-driven image-driven

low 10 dB mean = 0, variance = 0.05

moderate 5 dB mean = 0, variance = 0.1

high 1 dB mean = 0, variance = 0.2

between the imbalanced training data and model. Both signal-
driven and image-driven balancing methods could improve
overall accuracy or N1 accuracy to varying degrees.

The rest of this paper is organized as follows: The Sec.II
describes the class imbalance problem and defines the class
imbalance factor of PSG datasets. We present the experiments
and experimental results in Sec. III and IV, respectively. The
final conclusion and discussion are included in Sec.V.

II. CLASS IMBALANCE PROBLEM

Class imbalance is a common yet easily overlooked issue
in the sleep stage classification task, the class distribution of
the PSG dataset not only depends on the physical or mental
conditions but also depends on the ages and genders. When the
number of each category is severely unequal, we can say the
dataset suffers from the CIP. Here, we define a class imbalance
factor (CIF) to quantify the degree of CIP as follow:

CIF =
N

2 · c ·min{Ni}
i ∈ {1, 2, . . . , c} (1)

Where the N is the total samples, c refers to the number
of sleep stages, and Ni represents the number of each stage.
If the CIF = 0.5, it means the dataset is balanced. If the
CIF > 0.5 in eq. (1), that dataset could be regarded as
an imbalanced one. Furthermore, the larger CIF means that
the PSG dataset is more imbalanced. The CIP mainly affects
the training procedure of the deep model which leads to
erroneous results in pattern classification tasks. For example,
one of the most popular used training rules in deep learning
is the back-propagation (BP) algorithm, in which the major
classes are responsible for prime parts of weight update. As a
consequence, the minority categories become the biased ones
with relatively lower recognition rate.

The straightforward way is to increase the number of
minority classes to keep equivalent with others [6]. However,
the original sleep architecture is broken completely in such
a way. Therefore, we only generate new epochs for the N1
stage in training set with the noise addition to maintain the
intact sleep structure as far as possible. In this study, we
adopt the scheme with a time-frequency image input, which
is generally considered as a higher-level representation of the
raw signal and can get a faster training speed [11], [15].
Furthermore, we also investigate whether the sequence order
of Gaussian white noise addition (i.e., before and after the
time-frequency transform) would affect the final result. To
be specific, the same type of noise (Gaussian white noise)

(a) (b)

(c) (d)

Fig. 1. (a) is the time-frequency image of raw EEG signal (N1 stage, Sleep-
EDF-V1), the x-axis represents the time, the y-axis denotes the frequency.
Subfigures (b), (c) and (d) illustrate the time-frequency images of raw EEG
signal with 10, 5 and 1 dB Gaussian white noise addition respectively.

with three intensities is designed for comparison. The first
method is to add the Gaussian white noise with 10, 5 and 1
dB (low, moderate and high intensities) to the raw EEG signal,
respectively, then the noisy EEG signals are converted to
time-frequency image using the short-time Fourier transform
(STFT), it is a signal-driven approach to conduct the noise
addition. As a comparison, the second scheme, the image-
driven way, adds the similar intensities of Gaussian white
noise (the mean (M) is 0, the variances (V) are 0.05, 0.1,
0.2 respectively) to the time-frequency image rather than the
raw EEG signal. The scheme of two Gaussian white noise
addition methods is demonstrated in Table I.

(a) (b)

(c) (d)

Fig. 2. (a) is the time-frequency image of raw EEG signal (N1 stage, Sleep-
EDF-V1) which is the same as Fig. 1. The x-axis represents the time, the
y-axis denotes the frequency. (a). Subfigures (b), (c) and (d) present the
time-frequency images with three intensities of Gaussian white noise addition
(variances are respectively 0.05, 0.1 and 0.2).

When attaining the optimal intensity of two balancing
methods, the efficiency of the combination of two proposed



methods is further tested. We visualize the time-frequency
images of two noise addition methods in Fig. 1 and Fig. 2.

III. EXPERIMENTS

A. Experimental Datasets

1) Sleep-EDF-V1: The Sleep-EDF-V1 dataset has two sub-
sets: sleep-cassette (SC) and sleep-telemetry (ST). In this
study, we choose the 20 individuals with 39 overnight PSG
recordings from the SC cohort, the age ranges from 25 to 34
years. As the suggestion of the American Academy of Sleep
Medicine (AASM) manual, the frontal lobes Fpz-Cz channel
EEG with a sampling rate of 100 Hz is adopted. More details
are described in [16], [17]. The whole PSG recording was
labeled with different sleep stages (i.e., W, N1-N4 and REM)
based on the Rechtschaffen and Kales (R&K) [18], we merged
the stages N3 and N4 into stages N3 for being consistent with
the latest AASM standard.

2) Sleep-EDF: The Sleep-EDF dataset is the expanded
version, including 78 subjects whose age stretches to 101
years. It has a higher proportion of N1 stages with the increase
of age. In order to mitigate the negative impact of the long W
stage period on overall accuracy (e.g., stage W has the highest
classification accuracy), 30 minutes of W stages before and
after regular sleep stages are employed for both versions of
Sleep-EDF datasets.

3) CCSHS: The last PSG dataset used in this study is
the Cleveland Children’s Sleep and Health Study (CCSHS),
which includes 515 children aged from 16-19 years. Due the
absence of the FPz-Cz, we employ the the C4/A1 (sampled
at 128 Hz) channel EEG instead. The main description can
be found in [19], [20]. Here, we implement the many-to-one
scheme which treats the combination of one 30 s epoch and its
neighboring epochs as the contextual input (i.e., 90 s epoch).
In Table II, we conclude the number of each sleep stage, the
CIF is respectively 6.3%, 6.6% and 2.8% for the Sleep-EDF-
V1, Sleep-EDF and CCSHS datasets. Although the sleep stage
with the minimum number of Sleep-EDF is different from the
other two datasets, we adopt the proposed balancing method
only to increase the samples of stage N1 on all experimental
datasets.

4) Data preprocessing: In this work, we adopt the STFT
with a window size of two seconds and 50% overlap to
convert the EEG signal to the image. Firstly, the EEG signal
(with/without Gaussian white noise addition) is filtered by a
notch filter, a high-pass filter and a low-pass filter in sequence.
Hamming window and 256 points Fast Fourier Transform
(FFT) [21] are further conducted to obtain the time-frequency
image (efficient frequency band: 0.5-30 Hz).

B. Experimental setting

The whole dataset is divided into the training and test sets
randomly based on the ratio of 4 to 1 (i.e., 80% subjects as the
training set, 20% subjects as the test set). We use the Adam
optimizer to train the model within 30 iterations, the model
with the best performance in the test set is saved in all epochs.
In addition, the learning rate would drop to half value when the

TABLE II
THE DATA DISTRIBUTION OF THE EXPERIMENTAL DATASETS

Stage Sleep-EDF-V1 Sleep-EDF CCSHS

W 10197 (23.1%) 69518(34.9%) 211030 (30.6%)

N1 2804 (6.3%) 21522 (10.8%) 19211 (2.8%)

N2 17799 (40.3%) 69132 (34.7%) 249681 (36.2%)

N3 5703 (13.0%) 13039 (6.6%) 110188 (16.0%)

REM 7717 (17.5%) 25835 (13.0%) 100252 (14.5%)

test accuracy shows no enhancement within three epochs. The
categorical cross-entropy is chosen as the model loss function.
To find out a proper batch size, we assess four batch sizes
(32, 64, 128 and 256), the batch size of 64 achieves the best
performance. In our cases, a workstation with two Inter Xeon
E5-2640 V4 CPUs and four Nvidia Tesla P100 GPUs with 16
GB memory is applied to conduct all experiments.

Conv2D(256, (3, 3)@(2, 2))

BatchNormalization

M-Apooling2D((3, 3) @(2, 2))

BatchNormalization

Dropout(0.1)

GlobalAveragePooling2D

Dropout(0.5)

Dense(5, softmax)

Max-pooling2D

Average-pooling2D

Input

Time-frequency image

Sleep Stage

MC Block

M-Apooling2D((3, 3) @(2, 2))

Output

(a) Proposed model

(b) M-Apooling2D

Conv2D(16, (1, 1))

Conv2D(96, (3, 3))

Conv2D(48, (7, 7))

Conv2D(32, (1, 1))M-Apooling2D((3, 3))

Conv2D(64, (1, 1))

Conv2D(64, (1, 1))

Output

(c) MC Block

Input

Fig. 3. The overall construct of the evaluation model.

C. The evaluation model

We construct a convolutional neural network based model
to assess the efficiency of the proposed balancing method, it is
treated as the baseline model (shown as Fig.3). The baseline
model is mainly composed of a two-dimensional convolu-
tional (Conv2D) layer, a multi-convolution (MC) block, two
Max-Apooling2D layers and several BatchNormalization and
dropout layers. The MC block, containing three filter sizes
(1× 1, 3× 3, 7× 7), is inspired by the inception module [24]
to obtain the multi-scale feature representations. Similarly,
we concatenate the outputs of Max-pooling2D and Average-
pooling2D layers to rebuild as the Max-Apooling layer. The
dropout layer aims to prevent the overfitting problem with
a drop rate of 0.1 and 0.5. In addition, the Global Average
Pooling (GAP) layer is used to replace the fully connected
layer, which is considered more robust spatial translations
of the input without parameter optimization [25]. The final
dense layer employing the softmax as the activation function
is implemented for predicting the sleep stage. We also apply
the shortcut connection strategy to combine the input of the



TABLE III
PERFORMANCE COMPARISON OF DIFFERENT INTENSITIES OF THE GAUSSIAN NOISE ADDITION (SIGNAL-DRIVEN AND IMAGE-DRIVEN WAYS) IN THIS

WORK

Sleep-EDF-V1 Sleep-EDF CCSHS

ACC (%)K (%)RE N1 (%)ACC (%)K (%)RE N1 (%)ACC (%)K (%)RE N1 (%)

Without DA 86.3 81.1 38.9 84.5 79.0 24.6 87.0 82.0 22.9

DA (signal-driven, 10 dB) 85.4 80.0 35.2 84.5 79.0 26.1 87.3 82.4 25.7

DA (signal-driven, 5 dB) 86.8 81.1 42.7 84.3 78.6 18.7 87.2 82.3 24.1

DA (signal-driven, 1 dB) 87.1 82.3 34.8 84.7 79.3 24.0 87.5 82.5 27.3

DA (image-driven, V = 0.05) 87.0 82.1 30.8 84.6 79.0 15.6 87.1 82.1 21.9

DA (image-driven, V = 0.1) 87.0 82.2 34.5 84.6 79.1 21.1 87.3 82.3 22.2

DA (image-driven, V = 0.2) 86.1 80.7 30.3 84.6 79.1 25.9 87.3 82.3 23.0

DA (Combination, 1 dB & V = 0.1 ) 87.2 82.4 28.5 84.9 79.4 19.1 87.9 82.9 20.7

TABLE IV
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHODS AND PREVIOUS METHODS ON THE CCSHS DATASET

Study Method Input channel Input type Subjects ACC(%) K(%) RE N1

Nakamura et al. [22] HMM C4/A1 + C3/A2 Spectrogram 515 - 73.0 -

Li et al. [23] Random Forest C4/A1 Features 116 86.0 80.5 7.3

Baseline CNN C4/A1 Time-frequency image 515 87.0 82.0 22.9

DA (signal-driven, 1 dB) CNN C4/A1 Time-frequency image 515 87.5 82.5 27.3

DA (image-driven, V = 0.1) CNN C4/A1 Time-frequency image 515 87.3 82.3 23.0

MC block with features learned from the MC block, in which
240 filters with size of 1× 1 are used to unify the dimension.

IV. EXPERIMENTAL RESULTS

A. Overall performance

We employ the overall accuracy (ACC), Cohen’s kappa
coefficient (K) and class-wise recall of N1 (RE N1) to assess
the performance. The RE, ACC and K are defined as follows:

RE =
TP

TP + FN
. (2)

ACC =

∑n
i=1 xii

N
(3)

K =

∑n
i=1 xii

N −
∑n

i=1(
∑n

j=1 xij
∑n

j=1 xji)
N2

1−
∑n

i=1(
∑n

j=1 xij
∑n

j=1 xji)
N2

. (4)

where TP and FN denote the true positives and false neg-
atives respectively, N is the total number of all sleep stages,
xii represents the diagonal value of the confusion matrix, n
refers to the number of classes.

Table III illustrates the results of the baseline model without
DA methods and different intensities Gaussian white noise
addition using two balancing methods. We can see that the 1
dB Gaussian white addition could obtain the most significant
improvement of ACC and K for the signal-driven DA on
three datasets (Sleep-EDF-V1: ACC-0.8%, K-1.2%; Sleep-
EDF: ACC-0.2%, K-0.3%; CCSHS: ACC-0.5%, K-0.5%).
In terms of the RE of N1 stage, the 5, 10 and 1 dB achieve

3.8%, 1.5% and 4.4% enhancement from 38.9%, 24.6%
and 22.9% on the Sleep-EDF-V1, Sleep-EDF and CCSHS
datasets, respectively. Regarding the image-driven DA, the
low and moderate intensities (V = 0.05 and 0.1) have the
same ACC improvement on Sleep-EDF-V1 and Sleep-EDF
datasets. Nevertheless, only the heavy intensity (V = 0.2)
gains a gentle enhancement (1.3% and 0.1%) of RE N1 on
the Sleep-EDF and CCSHS databases. It is pleasant that the
combination of two intensities (1 dB and V = 0.1) realise
the most considerable ACC and K improvement (ACC-
0.9%, K-1.3%; ACC-0.4%, K-0.4%; ACC-0.9%, K-0.9%)
on the experimental datasets, but an unfavorable decrease in
the RE N1 on three datasets. In addition, two balancing
approaches fail to show remarkable distinctions concerning
the accuracy improvement with the experimental datasets.

B. Performance comparison

In order to further validate the efficiency of proposed
methods, we also compare the overall and N1 accuracies
with other works on the same dataset in Tables IV and V.
It can be observed in Table IV that the proposed methods can
outperform [22], [23] on the CCSHS dataset. Similarly, the
baseline model shows better overall accuracy than the perfor-
mance of [14], [15], [21] on the Sleep-EDF-V1 and Sleep-
EDF datasets. Moreover, the performance (i.g., accuracies of
all stages and N1) obtain further enhancement with proposed
balancing methods.



TABLE V
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHODS AND PREVIOUS METHODS ON THE SLEEP-EDF-V1 AND SLEEP-EDF DATASETS

Study Database Method Input type Subjects ACC(%) K(%) RE N1

Ref. [14] Sleep-EDF-V1 Deep CNN Time series 20 74.8 66.0 -

Ref. [21] Sleep-EDF-V1 1-max CNN Time-frequency image 20 82.6 76 29.9

Ref. [15] Sleep-EDF-V1 CNN Spectrogram 20 86.1 81.0 -

Baseline Sleep-EDF-V1 CNN Time-frequency image 20 86.3 81.1 38.9

DA (signal-driven, 5 dB) Sleep-EDF-V1 CNN Time-frequency image 20 86.8 81.1 42.7

DA (image-driven, V = 0.1) Sleep-EDF-V1 CNN Time-frequency image 20 87.0 82.2 34.5

Ref. [26] Sleep-EDF CNN + LSTM Time series 78 80.0 73 -

Ref. [27] Sleep-EDF CNN + LSTM Time series 78 83.1 77 -

Ref. [11] Sleep-EDF RNN Time series 78 84.0 77.8 -

Baseline Sleep-EDF CNN Time-frequency image 78 84.5 79.0 24.6

DA (signal-driven, 10 dB) Sleep-EDF CNN Time-frequency image 78 84.5 79.0 26.1

DA (image-driven, V = 0.2) Sleep-EDF CNN Time-frequency image 78 84.6 79.1 25.9

V. CONCLUSION AND DISCUSSION

The inherent CIP existing in the PSG datasets has hindered
the real-world application of automatic sleep scoring models
greatly. In this paper, we try to explore the solutions for
the CIP in the sleep stage classification procedures. We first
define the CIF to quantify the imbalance degree in three
common PSG datasets. Two balancing methods are further
introduced to mitigate the undesirable effect from the types
of noise addition. The first one is to add different intensities
of Gaussian white noise to the raw EEG signal, the noisy
EEG signals are then converted to the time-frequency images.
In this way, extra frequency components could be added to
the time-frequency images, it is called the signal-driven way.
Another noise addition way is to add the Gaussian white noise
to the time-frequency image directly, it is more similar to
the implementation in the computer vision field, we name
it the image-driven method. Different from previous studies
balancing the PSG datasets with equal proportion [6], [13],
[14], we argue that it would break the original overnight sleep
structure and hide the physiological mechanism related to
sleep. By contrast, we only increase the number of the minority
class (N1 stage in this study) that we intend to improve to keep
consistent with the test set as much as possible. The proposed
methods are validated on a CNN based model with three public
PSG datasets.

According to the experimental results, although there is no
fixed intensity Gaussian white noise suitable for the enhance-
ment of ACC, K and the recognition of N1 stage on exper-
imental PSG datasets, the overall and N1 stage classification
rate could be improved with different intensities. In addition,
two DA methods do not show significant differences regard
to the improvement of model performance. It can be inferred
that it should be tailored to adopt the different intensities and
types of Gaussian white noise addition based on the practical
results on different properties of PSG datasets. In future work,

we will explore more data argumentation methods to deal with
the CIP of PSG datasets. Except for balancing the samples,
how to balance the deep network is another aspect that can be
considered.
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Jyväskylä. We also thank Prof. Hämäläinen Timo from Uni-
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