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Alleviating Class Imbalance Problem in Automatic
Sleep Stage Classification

Dongdong Zhou, Qi Xu∗, Jian Wang, Hongming Xu, Lauri Kettunen, Zheng Chang, Senior Member, IEEE, and
Fengyu Cong, Senior Member, IEEE

Abstract—For real-world automatic sleep stage classification
tasks, various existing deep learning based models are biased
towards the majority with high proportion. Because of the unique
sleep structure, most of the current polysomnography datasets
suffer an inherent class imbalance problem (CIP), in which the
number of each sleep stage is severely unequal. In this study,
we first define the class imbalance factor (CIF) to describe
the level of CIP quantitatively. Afterwards, we propose two
balancing methods to alleviate this problem from the dataset
quantity and the relationship between the class distribution and
the applied model respectively. The first one is to employ the
data augmentation (DA) with the generative adversarial network
(GAN) model and different intensities Gaussian white noise to
balance samples, thereinto, Gaussian white noise addition is
specifically tailored to deep learning based models, which can
work on raw electroencephalogram (EEG) data while preserving
their properties. In addition, we try to balance the relationship
between the imbalanced class and biased network model to
achieve a balanced state with the help of class distribution and
neuroscience principles. We further propose an effective deep
convolutional neural network (CNN) model utilizing bidirectional
Long Short-Term Memory (Bi-LSTM) with single-channel EEG
as the Baseline. It is used for evaluating the efficiency of two
balancing approaches on three imbalanced polysomnography
datasets (CCSHS, Sleep-EDF and Sleep-EDF-V1). The qualitative
and quantitative evaluation of experimental results demonstrates
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that the proposed methods could not only show the superiority
of class balancing through the confusion matrix and class-wise
metrics, but also get better N1 stage and whole stages classifi-
cation accuracies compared to other state-of-the-art approaches.

Index Terms—Sleep stage classification, Class imbalance prob-
lem, Deep neural network, Data augmentation, Generative ad-
versarial network, Network connection.

I. INTRODUCTION

CORRECT sleep stage classification with overnight
polysomnography (PSG) recordings plays an essential

role in diagnosing and treating sleep-related disorders [1]–[3].
The PSG data consist of the EEG, electromyogram (EMG),
electrocardiogram (ECG), electrooculogram (EOG), etc [4].
Clinically, the PSG data are divided into sequential 30-second
(30s) epochs and then each epoch is labeled as one of the sleep
stages by clinicians manually following the guidelines of the
Rechtschaffen and Kales (R&K) [5] or the American Academy
of Sleep Medicine (AASM) [6]. Regarding the AASM manual,
the sleep stages can be defined as Wake (W), Rapid Eye
Movement (REM), Non-REM1 (N1), Non-REM2 (N2) and
Non-REM3 (N3).

However, it is cumbersome, time-consuming and prone to
be subjective errors for the manual approach with visual
inspection of PSG recordings [3]. Hence a large body of
automatic sleep stages classification methods including the
conventional machine learning [7]–[9] and the deep networks
[10]–[15] have been proposed. Although these methodologies
achieve promising performance in terms of overall accuracy,
the inherent class imbalance problem (CIP) of PSG datasets
have been barely explored. The class distribution of PSG
databases is highly imbalanced on account of the specific sleep
architecture. Additionally, the structure of whole-night sleep is
greatly related to the subject’s physiological and psychological
condition and data acquisition environment. Hereinto, the stage
N1 is the most challenging to be recognized and regarded as
a representative of minority groups which usually accounts
for 2%-5% of total sleep time, and the N1 stage plays the
role of indicator in some sleep disorders. Typically, stage
N1 would start within minutes of going to sleep, whereas
insomnia may delay the beginning of the N1 stage. Moreover,
people who have insomnia show a higher proportion of the N1
stage [16]. Besides, the sufferer with apnea may experience
abnormal breathing during sleep, which would awaken the
brain from deeper sleep. This could lead to an increase in stage
N1 [17]. The N1 stage is also highly related to narcolepsy
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[18]. Considering the importance of stage N1 recognition, the
high misclassification rate of N1 has tremendously limited the
practical application of automatic sleep stages classification
approaches.

Only a few literature attempt to address the CIP in the
sleep stage classification task. Sun et al. [19] introduced a
DA approach employing the synthetic minority oversampling
technique algorithm. A range of 8–14 dB white noise were
added to enable the equal number of each sleep stage. It can
be more appropriate to apply the DA to stage N1 rather than
all sleep stages to maintain original structure of whole-night
sleep maximally. In addition, the scope of signal noise ratio
(SNR) of white noise could be extended to investigate the
efficiency of different intensities noise. Tsinalis et al. [20]
used class-balanced random sampling across sleep stages to
avoid biased performance on the side of the most represen-
tative sleep stages and significantly improve the recall of
the stage N1. But the overall accuracy achieved was 78%,
which is not good enough compared to other state-of-the-art
methodologies. One important reason is that the class-balanced
random sampling diminished the importance of major classes
making the primary contribution to classification performance.
It should be noted that keeping a sensible equilibrium among
different distribution classes. Fan et al. [21] investigated the
efficiency of five DA approaches for sleep EEG signals.
New training datasets were created with each class equals in
number by means of DA algorithms. The overall classification
performance was improved, nevertheless, the stage N1 showed
a slight drop in terms of F1 scores. Apart from applying DA
methods to balance the class distribution of PSG datasets, the
correlation between categories and the trained model should
not be ignored. CIP poses a big challenge for the prediction
model as most machine learning or deep learning algorithms
for classification were designed based on the assumption of the
same number of samples in each category. The loss weight of
each class is equal, which may lead to discrimination against
the minority class.

We initially introduce CIP and define the class imbalance
factor (CIF) in sleep PSG datasets systematically. To tackle
the CIP in the field of automatic sleep stage classification,
two solutions are introduced. The first one is to balance the
database quantity by means of the DA approaches using the
generative adversarial network (GAN) model and Gaussian
white noise (GWN) addition, which increases the number
of the N1 stage in the training set. The second method is
to balance the relationship between the trained model and
the original imbalanced dataset through setting different class
weights (CW) in the loss function. To assess the efficiency
of DA and CW methods, we further propose an efficient deep
model that implements Bi-LSTM and CNNs to extract features
across temporal and spatial scales with single-channel EEG
simultaneously. In this paper, the proposed model is regarded
as the Baseline, the proposed framework with the DA of GAN
model, the DA of Gaussian white noise and CW are named
the Baseline + GAN , the Baseline + GWN and the Baseline
+ CW, respectively. The main contributions of this work are
summarized as follows:

i) We systematically analyze the class imbalance problem

in PSG datasets. Furthermore, we propose two solutions
to tackle the CIP from the database quantity and the
correlation between classes and the applied model.

ii) We explore the GAN model and the method with Gaus-
sian white noise addition to balance the PSG dataset
samples. We further search for the balanced network
connection from the perspectives of class distribution and
neurology.

iii) We develop a novel model that utilizes one convolution
block and two multi-convolution (MC) blocks with dif-
ferent filter sizes as the spatial feature extractor. Another
temporal feature extractor consisting of one CNN and Bi-
LSTM can learn the information of sleep stage transition
rules.

iv) The overall performance and recognition of the N1 stage
could be improved to different extents by proposed meth-
ods on three public datasets.

The rest of this paper is organized as follows. We demon-
strate the experimental datasets and methodologies in Sec. II.
In Sec. III, the experimental results are represented. The final
discussion and conclusion are included in Sec. VI and Sec. V.

II. MATERIALS AND METHODS

A. Data Description

We employ three public PSG datasets in this study:
Cleveland Children’s Sleep and Health Study (CCSHS) [22],
[23], Sleep-EDF Database (Sleep-EDF-V1, version 2013) and
Sleep-EDF Database Expanded (Sleep-EDF, version 2018)
[24]. As the recommendation of the AASM manual, the central
and frontal lobes are used. More specifically, C4/A1 and Fpz-
Cz EEG channels are selected from the CCSHS and Sleep-
EDF datasets respectively.

The CCSHS database is one of the largest pediatric cohorts,
including 515 children whose ages range from 16-19 years. In
our experiments, C4/A1 channel EEG signals sampled at 128
Hz are used. Each 30s epoch was labeled by trained-well sleep
experts.

There are two subsets: sleep-cassette (SC) and sleep-
telemetry (ST) in the Sleep-EDF dataset (Sleep-EDF-V1). We
use 39 whole-night PSG recordings from 20 subjects aged
25 to 34 years in the SC cohort. Each subject has two full
night PSG recordings except for subject 13. The number of
individuals in SC subset is increased to 78 with 153 over-night
sleep recordings in Sleep-EDF Database Expanded (Sleep-
EDF). The oldest subject is 101 years. In our study, we employ
Fpz-Cz EEG signals with a sampling rate (i.e., fs) of 100Hz.
It is worthy that the resampling method is not applied to
restrict the sampling rate, which means our model can be
adaptable to different input lengths. Besides, we only adopt 30
minutes of W epochs before and after sleep stages, as there
are long W stages at the start and end of the whole-night
sleep in Sleep-EDF and Sleep-EDF-V1 datasets. Considering
the correlation and dependency between surrounding epochs,
we use the many-to-one scheme described in our prior study
that combines one 30s epoch with its neighboring epochs (i.e.,
three sequential 30s epochs) as the 90s epoch [25]. There is
60s overlap between the adjacent 90s epochs and the label
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TABLE I
THE NUMBER OF 90S EPOCHS FOR EACH SLEEP STAGE FROM

EXPERIMENTAL DATASETS

Stage CCSHS Sleep-EDF Sleep-EDF-V1

W 211030 (30.6%) 69518(34.9%) 10197 (23.1%)

N1 19211 (2.8%) 21522 (10.8%) 2804 (6.3%)

N2 249681 (36.2%) 69132 (34.7%) 17799 (40.3%)

N3 110188 (16.0%) 13039 (6.6%) 5703 (13.0%)

REM 100252 (14.5%) 25835 (13.0%) 7717 (17.5%)

Total 690372 199046 44220

CIF 3.6 1.5 1.6

TABLE II
THE NUMBER AND PROPORTION OF N1 STAGE BEFORE AND AFTER DATA

AUGMENTATION (GAN MODEL) IN THE TRAINING SET

Status CCSHS Sleep-EDF Sleep-EDF-V1

Before 15721 (2.8%) 19284 (11.2%) 2024 (5.4%)

After 31442 (5.5%) 38568 (20.1%) 4048 (10.3%)

of the 90s epoch is the same as the label from the middle
30s epoch. We show in Table I the number and percentage
of 90s epochs for each sleep stage from three datasets in our
experiments, the class with the smallest number of samples is
labeled in bold. The N1 stage occupies the smallest percentage,
which equals 2.8% and 6.3% respectively in CCSHS and
Sleep-EDF-V1 datasets. While the proportion of N1 in the
Sleep-EDF dataset is 10.8% and the N3 stage has the smallest
number of samples. Sleep architecture changes with ages [26],
sleep efficiency would decline with the increase of age due
to frequent arousals from sleep, these changes result in an
increment of N1 stage.

B. Class Imbalance Problem

In computer vision (CV), the equal number of each category
of some image datasets (e.g., CIFAR-10 database) can be
guaranteed. However, the sleep pattern differs from ages,
genders and physical conditions of individuals [26], [27], the
sleep PSG database suffers severe CIP with imbalanced class
distribution. In other words, some sleep stages occupy the
dominant proportion, whereas the other stages become the
minority classes. For instance, the number of the N2 stage
is several times that of the N1 stage. When training a model,
the majority class contributes the leading weight updating and
therefore the performance of minority classes is biased with a
higher misclassification rate. The severity of CIP is described
using the class imbalance factor (CIF), which is calculated as
follow:

CIF =
N

2 · c ·min{Ni}
i ∈ {1, 2, . . . , c} (1)

Where c is the number of classes, N represents the number
of all epochs, Ni refers to the number of epochs of class i. We
argue that the dataset suffers CIP when CIF is greater than or
equal to 1. The greater the CIF is, the more imbalanced the
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Fig. 1. The framework of the GAN model. Demonstrate the structure: (a)
Generator, (b) Discriminator.

database is. In this study, the CIF of CCSHS, Sleep-EDF, and
Sleep-EDF-V1 datasets are 3.6, 1.5 and 1.6, respectively.

In order to alleviate the negative effect of CIP on clas-
sification performance, we propose two balancing solutions.
The first one is to raise the number of N1 stage with the
DA method, which could improve the severity of imbalance
to some extent. Another one is to find out the inner network
connection between classes and the trained model while main-
taining the original dataset quantity, that is to say, setting
different class weights for each category depend on the specific
class distribution and the neuroscience rule.

C. Balance the Dataset Samples

The imbalanced class distribution has negative effect on the
training procedure, which means the applied model could not
be trained efficiently. Hence, it is natural and straightforward
to increase the number of minority classes to achieve the same
proportion, whereas this would break the original architecture
of whole-night sleep. By contrast, we choose to produce new
epochs of the N1 stage in the training set to maintain the
physiologic sleep structure maximally, but the test set is kept
independent without balancing sample operation.

The generative adversarial network model has attained sig-
nificant achievement in the CV field, however, this technology
is barely adopted to augment synthetic EEG signals. We use
the GAN model as the first method to generate artificial EEG
signals of the N1 stage in this study. The GAN is generally
comprised of two opposing networks (i.e., generator (G) and
discriminator (D)) as shown in Fig. 1. The generator mainly
includes three one-dimensional convolutional (Conv1D) lay-
ers, thereinto, the first two Conv1D layers are assembled with
LeakyReLU (the activation function) and the batch normaliza-
tion and the last one is used to generate the demanded length
signals. In addition, the padding is set as casual to keep the
length unchanged. In terms of the discriminator, the Conv1D
layer is followed by the LeakyReLU, batch normalization
and MaxPooling1D sequentially. The final dense layer makes
the prediction for the inputting signal. Given a latent vector



4

-200

0

200

-200

0

200

-200

0

200

-200

0

200

-200

0

200

0 500 1000 1500 2000 2500 3000 3500

Point

-200

0

200

A
m

p
li

tu
d
e/

V
(a)

(d)

(c)

(b)

(f)

(e)

Fig. 2. Raw EEG signal (N1 stage) and Gaussian white noise addition with
four SNR. (a) Raw EEG. (b) Gaussian white noise addition with 10 dB. (c)
Gaussian white noise addition with 5 dB. (d) Gaussian white noise addition
with 2 dB. (e) Gaussian white noise addition with 1 dB. (f) Artificial signal
by the proposed GAN model.
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Fig. 3. Spectrogram of raw EEG signal and artificial signals generated by the
Gaussian white noise addition with 10 dB, 5 dB, 2 dB, 1 dB and the GAN
model.

z following the standard normal distribution (N (0,1)), the
generator maps it to the input space and learns a distribution
Pg to approach the distribution Pdata. The discriminator is
designed for distinguishing the fake signals generated by the
generator and real signals by estimating the correspondence
between Pg and Pdata. It can be defined as the minimax
objective:

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pg(z)[log(1−D(G(z)))]
(2)

where D(x) means the probability of x sampled from
the real samples Pdata. G(z) stands for the artificial signals
produced by the generator. Additionally, we adopt the loss
function presented by Gulrajani et al. [28]:

L (Pdata,Pg) = Exr∼Pdata
[D(x)]

−Exg∼Pg
[D (xg)] + P (x̃)

(3)

P (x̃) = λ · Ex̂∼X̃

[
max (0, ∥∇x̂D(x̂)∥2 − 1)

2
]

(4)

where P (x̃) is defined as the one-sided gradient penalty,
λ denotes the the penalty coefficient and X̃ includes points
sampling alone the straight line between Pdata and Pg . We
employ the Adam optimizer to update the model parameters
and choose five iterations to train the generator for each
iteration of the discriminator. We demonstrate the number and
the proportion of N1 in the training set before and after the
data augmentation with the GAN model in Table II.

The second method for balancing the dataset samples is the
noise addition. Unlike repeating samples of the minority stage
directly [11], the data augmentation method with Gaussian
white noise addition is implemented in this work for two
important reasons. On the one hand, the acquisition of EEG
signals always accompanies with noise, a Gaussian noise
that imitates the line-related noise that is commonly found
in electrophysiology recordings, hence the data generated
by noise addition can be more real-like sleep EEG signals.
On the other hand, generated data with noise addition can
provide the trained model with new features and enhance the
generalization. To be specific, we investigate the efficiency of
the DA algorithm with four different intensities Gaussian white
noise ranging from 1-10 dB. Fig. 2 and Fig. 3 show an example
of this DA procedure with different intensities and the DA
with GAN model in terms of the amplitude and spectrogram,
we can find that these implementations with Gaussian white
noise addition retain wave properties of the raw EEG signal.
We further explore the effectiveness of various times noise
addition. Specifically, once obtaining the optimal intensity (x
dB), the intensities of three and five times noise addition
are defined as (x - 0.2, x, x + 0.2) dB and (x - 0.2, x
- 0.1, x, x + 0.1, x + 0.2) dB with a type of arithmetic
progression, respectively. Compared with the way of repeating
corresponding times noise addition with x dB, this could
provide with the trained model with additional information.

D. Balance Relationship Between the Imbalanced Dataset and
Trained Model

The CIP is not only the imbalance of class distribution
but also the imbalanced network connection. Although the
DA method could mitigate the imbalance of PSG datasets,
whether DA with the GAN model or DA with noise addition,
the generated data are still fake. More importantly, we could
not ignore the corresponding physiological information behind
the PSG dataset for real-world application. In other words,
it would be more meaningful to achieve the performance
improvement without changing the distribution of class. There-
fore, another alternative is to balance the network connection
between the sample distribution and the trained model with
the original imbalance PSG dataset. By default, the weight
of each class is the same. As a consequence, the majority
class occupies the dominant weight updating with a more
considerable length of the gradient component. Furthermore,
the performance of the minority classes is prejudiced by the
trained model. To eliminate the discrimination, we reassign
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Fig. 4. The schematic diagram of the proposed model.

TABLE III
PARAMETERS OF THE PROPOSED MODEL

Layer Layer Type Filters Size Stride Activation Output dimension

SFE1 Input - - - - (90× fs, 1)

SFE2 Convolution block 128 128 2 relu (⌈45× fs/2⌉, 256)

SFE3 MC block1 - - - - (⌈45× fs/4⌉, 544)

SFE4 MC block2 - - - relu (⌈45× fs/8⌉, 544)

SFE5 GAP - - - - 544

SFE6 Dropout (0.5) - - - - 544

TFE1 Input - - - (90× fs, 1)

TFE2 Conv1D 128 128 16 relu (⌈(90× fs − 128)/16⌉, 128)

TFE3 BatchNormalization - - - - (⌈(90× fs − 128)/16⌉, 128)

TFE4 M-Apooling1D - 1 16 - (⌈(90× fs − 128)/256⌉, 256)

TFE5 Bi-LSTM 64 - - tanh 128

Decision Dense - - - softmax 5

the weight (W ) of each class based on the class distribution
and the brain-inspired rule, namely CW (Ratio), CW (Log R)
and CW (E I), respectively. The Wi, Wj using CW (Ratio),
CW (Log R) methods are shown in equations (5), (6):

Wi =
N

Ni
i ∈ {1, 2, . . . , 5} (5)

Wj = ln
N

Nj
j ∈ {1, 2, . . . , 5} (6)

Where N , Ni and Nj are respectively the numbers of whole
classes, class i and j samples. The CW (Ratio) is a direct
way to get the Wi by calculating the ratio of the numbers
of all samples and each class. Additionally, we attempt a
more moderate and sensible approach, the CW (Log R),
to attain the natural logarithm of Wi of the CW (Ratio)
method. The CW (E I) algorithm considers the allocation
of neurons during information processing procedures in the
human brain [29], [30], namely the ratio of excitatory neurons
to inhibitory neurons. Zeng et al. [29] investigated the effect

of the proportion of inhibitory neurons on the spiking neural
networks. As a result, the 15% of inhibitory neurons are the
optimal for good performance. Inspired by this brain-inspired
rule, we regard the samples of N1 stage as the excitatory
neurons, other stages as the inhibitory neurons. To be specific,
we set the weight of N1 stage with the value of 8.5, other
stages with the weight of 1.5. Three CW methods adopted in
this study aim to strengthen the contribution of the minority
class and ultimately mitigate the bias towards the majority
class.

E. Proposed Model

To evaluate the efficiency of two balancing methods used in
this study, we propose a CNN based model for automatic sleep
stage classification. The proposed framework is composed of
two key parts as illustrated in Fig. 4. The first part is the
temporal feature extractor (TFE), which could learn the tempo-
ral information (e.g., transition rules between stages). Another
part is the spatial feature extractor (SFE) for extracting spatial
features. The concatenation of feature maps extracted from the
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temporal and spatial feature extractors is fed into the dense
layer with the activation function of softmax to make the final
decision.

The temporal feature extractor consists of a one-dimensional
convolutional (Conv1D) layer, batch normalization, M-
Apooling layer and Bi-LSTM layer. The main function of the
Conv1D is to attain the feature map from the raw EEG signal.
Then the Bi-LSTM is responsible for leaning the temporal
information, such as the transition rule between successive
stages. Practically, the clinicians decide the next probable stage
based on the prior stage on some occasions.

The spatial feature extractor includes four components: a
convolution block, two multi-convolution (MC) blocks (in-
spired by the inception module [31]), a GlobalAveragePooling
(GAP) layer and a dropout layer. The convolution block is
followed by a Conv1D layer with 128 filters of size 128
and a stride of 2, batch normalization and M-Apooling layer
in sequence. Analogously, the MC block comprises different
sizes of filters, batch normalization, M-Apooling layer and
dropout layer. The purpose of different filter sizes is to capture
feature representations in multi-scales. We optimize the filter
sizes with small (3, 5 and 7), medium (16 and 32) and large
(64, 128 and 256) sizes to adapt to the long input length.
In addition, the filter size of 1 is applied to enhance the
nonlinearity of the network. The filter sizes are selected with
1, 3, 16 and 64 as they provide the optimal results in our
testing. We use the M-Apooling layer, the concatenation of
the average-pooling and max-pooling layer, to replace the
conventional max-pooling layer in our model. The GAP layer
plays the role of the traditional fully connected layer to flat the
previous output without introducing extra trainable parameters,
which can prevent the overfitting problem efficiently [32].
Table III shows the detailed information of the proposed
model, the length of input is 90× fs, which is related to the
sampling rate.

F. Experimental Setup

We divide the whole dataset into the training and test
sets randomly based on the subject-wise scheme (i.e., 80%
subjects for training, 20% subjects for test). Only recordings
from the CCSHS dataset are employed to tune the hyper-
parameters of the proposed model. Besides, we choose the
Adam as the model optimizer with the algorithm of learning
rate (LR) reducing, and the LR would decrease to half of it
when the accuracy of test set shows no improvement within
three epochs. The value of LR ranges from 10−7 to 10−3. In
addition, the size of mini-batch is set to 64 chosen from four
batch sizes (32, 64, 128, and 256). We select the categorical
cross entropy as the loss function, which is always employed
for the multi-class model. The number of iteration is 40 as the
proposed model could achieve the convergence state within
40 epochs. Furthermore, we save the model with the best test
accuracy in all iterations.

To prevent the overfitting problem, we adopt two regular-
ization strategies in this study. The first strategy is the L2
regularization, which adds a squared magnitude of coefficient
as penalty term to the loss function. Then we test four

regularization rates (10−1, 10−2, 10−3, 10−4), and 10−3 is
adopted finally. The second technology is the dropout that
drops units from the model with a probability from 0-1. In
the MC block and dropout layer, the probabilities are set to
0.1 and 0.5 respectively.

In our cases, we conduct the experiments on a workstation
with two Inter Xeon E5-2640 V4 CPUs and four Nvidia Tesla
P100 GPUs with 16 Gbytes memory.

III. EXPERIMENTAL RESULTS

A. Performance Metrics

We use class-wise recall (RE), overall accuracy (ACC) and
Cohen’s kappa coefficient (K) to evaluate the performance.
Similar to the binary classification, we regard each class as a
positive class, other classes as a negative class to compute the
class-wise metrics. The calculation of RE, ACC and K are
shown as follows:

RE =
TP

TP + FN
. (7)

ACC =

∑n
i=1 xii

N
(8)

K =

∑n
i=1 xii

N −
∑n

i=1(
∑n

j=1 xij
∑n

j=1 xji)
N2

1−
∑n

i=1(
∑n

j=1 xij
∑n

j=1 xji)
N2

. (9)

where TP and FN, respectively, stand for the true positive
and false negative, N is the total number of test epochs, c
represents the number of classes. In this study, c equals 5,
xii (1 ≤ i ≤ 5) refers to the diagonal value of the confusion
matrix.

B. Efficiency of Balancing the Dataset Samples

Table IV illustrates the performance of DA methods with
proposed GAN model and different intensities and times
Gaussian white noise addition, the bold format stands for the
best performance of each index. Compared to the Baseline
model, the proposed GAN model can improve the overall
accuracy, however, show an slight decrease in terms of the
RE of N1 stage (RE N1) on the experimental datasets. By
contrast, the ACC, K and RE N1 have been enhanced to
a different extent on three datasets with the GWN method.
Specifically, the RE N1 has an increase of 9.7%, 16.2%,
12.0% with systems of Baseline + GWN (1 dB), Baseline
+ GWN (1 dB) and Baseline + GWN (10 dB) on the CCSHS,
Sleep-EDF, Sleep-EDF-V1 databases, respectively. In addition,
ACC and K are also improved with a range of 0.1% to 2.2%.
The improvement of N1 performance (RE N1) is the priority
thing to be considered in the situation of comparable ACC
and K. Besides, the enhancement of N1 recognition should not
sacrifice the overall performance. Considering the overall and
N1 performance, the optimal intensity of Gaussian white noise
addition is set as 1 dB. Hence, the intensities of GWN methods
with three and five times are respectively set to (0.8, 1.0, 1.2)
dB and (0.8, 0.9, 1.0, 1.1, 1.2) dB. Generating more samples
of N1 stage could not achieve better overall (ACC and K)
and N1 (RE N1) performance simultaneously compared to the
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TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED GAN MODEL AND DIFFERENT INTENSITIES AND TIMES GAUSSIAN WHITE NOISE ADDITION IN THIS

WORK

CCSHS Sleep-EDF Sleep-EDF-V1

ACC (%) K (%) RE N1 (%) ACC (%) K (%) RE N1 (%) ACC (%) K (%) RE N1 (%)

Baseline 88.2 83.8 23.0 86.4 81.1 24.7 85.4 79.9 33.6

Baseline + GAN 88.5 84.3 21.4 86.9 82.0 20.4 86.5 81.5 32.1

Baseline + GWN (1 dB) 88.3 84.0 32.7 86.5 81.5 40.9 86.3 81.4 44.6

Baseline + GWN (2 dB) 88.3 84.0 30.0 86.7 81.7 28.3 86.8 82.1 35.9

Baseline + GWN (5 dB) 88.4 84.1 28.4 86.6 81.5 26.7 86.1 80.9 34.6

Baseline + GWN (10 dB) 88.4 84.0 29.0 87.0 82.2 32.4 86.0 80.9 45.6

Baseline + GWN (three times) 88.6 84.3 28.2 86.2 80.9 38.2 85.8 80.8 49.0

Baseline + GWN (five times) 88.4 83.9 31.0 86.5 81.6 30.2 85.9 80.9 47.4

TABLE V
THE WEIGHT OF EACH CLASS WITH DIFFERENT CW METHODS

CCSHS Sleep-EDF Sleep-EDF-V1

CW (Ratio) CW (Log R) CW (E I) CW (Ratio) CW (Log R) CW (E I) CW (Ratio) CW (Log R) CW (E I)

W 3.3 1.2 1.5 2.5 0.9 1.5 3.7 1.3 1.5

N1 34.9 3.6 8.5 9.0 2.2 8.5 18.4 2.9 8.5

N2 2.8 1.0 1.5 3.1 1.1 1.5 2.6 1.0 1.5

N3 6.3 1.8 1.5 19.4 3.0 1.5 8.0 2.1 1.5

REM 6.9 1.9 1.5 8.6 2.1 1.5 5.9 1.8 1.5

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT CW METHODS IN THIS WORK

CCSHS Sleep-EDF Sleep-EDF-V1

ACC (%) K (%) RE N1 (%) ACC (%) K (%) RE N1 (%) ACC (%) K (%) RE N1 (%)

Baseline 88.2 83.8 23.0 86.4 81.1 24.7 85.4 79.9 33.6

Baseline + CW (Ratio) 85.3 80.3 75.0 86.5 81.5 30.4 87.3 82.7 42.6

Baseline + CW (Log R) 87.8 83.4 51.3 86.3 81.1 33.9 85.9 80.8 36.4

Baseline + CW (E I) 86.6 81.8 67.7 85.9 80.4 35.7 85.8 80.8 34.5

Baseline + GWN (1 dB). It is noteworthy that we do not
apply the DA operation to the test set, which means the sleep
structure of the test set is not destroyed. Employing more times
noise addition stands for the worse consistency of training and
test sets, which may hinder the classifier from achieving better
performance.

C. Efficiency of Balancing the Network Connection

Table V shows the class weight of the training set using
three CW methods from the experimental datasets. To further
demonstrate how different CW methods may affect the per-
formance, we make a performance comparison in Table VI.
The performance obtained by CW methods differs significantly
on three datasets. It can be seen that the RE N1 shows a
dramatic increase by all CW approaches, corresponding to
52.0%, 28.3%, and 44.7% (by CW (Ration), CW (Log R) and
CW (E I) respectively) on the CCSHS dataset. Nevertheless,
ACC and K decrease slightly instead. By contrast, on the
Sleep-EDF and Sleep-EDF-V1 databases, ACC and K attain

slight improvements except by the CW (Log R) and CW
(E I) methods on the Sleep-EDF dataset. Additionally, the
improvements of RE N1 is relatively lower than those on the
CCSHS dataset.

We show in Fig. 5 the confusion metrics of three datasets
utilizing four systems (the Baseline, the Baseline + GAN, the
Baseline + GWN, and the Baseline + CW). For both CCSHS
and Sleep-EDF datasets, the Baseline + GWN (1 dB) and the
Baseline + CW (Log R) are selected as the optimal decision
considering the overall performance and the accuracy rate of
N1 stage. Whereas, we choose the Baseline + GWN (1 dB)
and the Baseline + CW (Ratio) based on experimental results
of the Sleep-EDF-V1 database. We further in Fig. 6 reveal the
hypnogram comparison labeled by experts and the predictions
of four systems for one subject (ccshs-trec-1800905) of the
CCSHS dataset. Fig. 7 demonstrates the distribution of weights
in the layer with the largest number of parameters (without
and with the CW method). We also calculate the kurtosis
and skewness of two weight distributions, the kurtosis and
skewness of the weight distribution without and with the
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Fig. 5. The confusion matrices of three datasets with four systems. (a) the CCSHS dataset. (b) the Sleep-EDF dataset and (c) the Sleep-EDF-V1 dataset.

CW (Log R) method are (0.034, -0.414) and (0.094, -0.090),
respectively. The CW method more closely resembles a normal
distribution (i.e., (0,0)). In such way the network convergence
velocity becomes faster [33] and achieving more efficient
training procedure for the minority class.

D. Performance Comparison

To see an overall picture, we demonstrate the performance
comparison with previous works on the three datasets in Tables
VII and VIII. Only a few studies employ the CCSHS dataset,
the proposed systems (the Baseline, the Baseline + GWN (1
dB)) could achieve better performance compared to [34], [35].
Similarly, we compare the performance of the Baseline, the
Baseline + GWN (1 dB) with [25], [36]–[39] on the Sleep-
EDF database, the best ACC, K and RE N1 are obtained by
the Baseline + GWN (1 dB). Those literature [21], [38], [40],
[41] utilize the Sleep-EDF-V1 dataset to develop automatic
sleep stage classification model, the Baseline + CW (Ratio)
framework shows a better ACC, K and a more favorable
RE N1 compared with them.

IV. DISCUSSION

Class imbalance problem is one of the critical factors in
real-world automatic sleep stage classification tasks especially
using deep learning based models. Here in this paper, we
introduce the CIP and define the CIF in the currently common
PSG datasets. Correspondingly, this paper introduces two bal-
ancing methods to alleviate its negative effect from the dataset
quantity and the relationship between the class distribution and
the applied model respectively. One is to balance the dataset
quantity through increasing the number of samples in the N1
stage, the other aims to balance the relationship between the
original imbalanced datasets and deep neural networks while
keeping the original dataset quantity. Embedding with two
introduced methods, this paper propose a deep convolution
neural network based model with Bi-LSTM units for automatic
sleep stage classification tasks with single-channel EEG.

In order to enhance the ability of feature extraction, we
use the MC block with four sizes of filters to capture spatial
features from different scales. The small and large filters
are responsible for capturing local features and big context,
respectively [10]. In addition, the Bi-LSTM is designed as the
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(a)

(b)

(c)

(d)

(e)

Fig. 6. Hypnogram of one subject from the test set (ccshs-trec-1800905). (a) the ground truth. (b) the prediction of the Baseline. (c) the prediction of the
Baseline + GAN. (d) the prediction of the Baseline + GWN (1 dB). (e) the prediction of the Baseline + CW (Log R).

(a) imbalanced network connection (b) balanced network connection

Fig. 7. The distribution of weights, black lines represent the curve of normal
distribution, Y-axis refers to the probability density. (a) without the CW
method, (b) with the CW (Log R) method.

temporal feature extractor to learn the information of sleep
stage transition rules. It further enriches features learned from
the proposed model. The principle of the DA method here is
quite different from previous studies [19], [21], in which the
number of each category is designed as the same proportion.
However, doing so, the original sleep structure is seriously
destroyed. We argue that the physiological correlation between
successive sleep stages should not be ignored. That is to
say, the initial architecture of whole-night sleep needs to
be intact maximally for clinical significance. By contrast,
we only increase the number of N1 stage as it is typically
considered as the archetype of minority classes with the high-
est misclassification rate. Different from duplicating selected
samples from minority classes in [11], this paper adopts two
DA methods with the proposed GAN model and Gaussian
white noise addition to generate EEG signals. Although the
under-sampling method can also improve the proportion of
the minority class and does not need to generate new samples,

the evaluation model may suffer from the underfitting problem
with the decrease in the training samples. Employing the
proposed DA methods, we could not only achieve the goal
of increasing the samples of the minority class, but also
introduce additional features to enhance the generalization of
the applied model. As can be seen from Table IV, the applied
GWN method could obtain different degrees of improvement
of overall accuracy and recall of N1 stage simultaneously
on three datasets compared to those of the baseline model.
Nevertheless, the performance of N1 stage showed a slight
decrease in [21]. Unlike the image database with independent
classes, it is not necessary to keep the equal percentage of each
class for mitigating the CIP in PSG datasets. More importantly,
we should take into consideration in maintaining inherent
characteristics of PSG datasets when employing DA methods.
On the other hand, we should develop tailor made DA methods
(e.g., different intensities and times noise addition) to deal
with the diversity of subjects in different PSG datasets. For
instance, both the macro-level (including the sleep stages and
duration) and micro-level (such as the quality and quantity of
sleep oscillations) structure of sleep would change with the
older age [42] and sleep disorders.

Nevertheless, the generated EEG signals by the DA ap-
proaches are still artificial. Apart from balancing the class
distribution of datasets, another method is to discover the
balanced network connection with the original imbalanced
dataset. Compared to the DA method, this method could
enable the original architecture of sleep and handle general
imbalanced PSG datasets. More specifically, we try to balance
the relationship between the class and the trained model from
the data distribution and the brain-inspired rule. According
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TABLE VII
PERFORMANCE COMPARISON BETWEEN THE PROPOSED SYSTEMS AND PREVIOUS METHODS ON THE CCSHS DATASET

Study Method Input channel Input type Subjects ACC(%) K(%) RE N1

Ref. [34] HMM C4/A1 + C3/A2 Spectrogram 515 - 73.0 -
Ref. [35] Random Forest C4/A1 Features 116 86.0 80.5 7.3
Baseline CNN + LSTM C4/A1 Time series 515 88.2 83.8 23.0
Baseline + GWN (1 dB) CNN + LSTM C4/A1 Time series 515 88.3 84.0 32.7

TABLE VIII
PERFORMANCE COMPARISON BETWEEN THE PROPOSED SYSTEMS AND PREVIOUS METHODS ON THE SLEEP-EDF AND SLEEP-EDF-V1 DATASETS

Study Database Method Input channel Input type Subjects ACC(%) K(%) RE N1

Ref. [25] Sleep-EDF CNN Fpz-Cz Time series 78 83.9 77.8 -
Ref. [36] Sleep-EDF CNN + LSTM Fpz-Cz Time series 78 80.0 73 -
Ref. [37] Sleep-EDF CNN + LSTM Fpz-Cz Time series 78 83.1 77 -
Ref. [38] Sleep-EDF RNN Fpz-Cz Time series 78 84.0 77.8 -
Ref. [39] Sleep-EDF CNN Fpz-Cz Spectrogram 78 83.4 76.7 -
Baseline Sleep-EDF CNN + LSTM Fpz-Cz Time series 78 86.4 81.1 24.7
Baseline + GWN (1 dB) Sleep-EDF CNN + LSTM Fpz-Cz Time series 78 86.5 81.5 40.9
Ref. [21] Sleep-EDF-V1 Deep CNN Fpz-Cz Time series 20 74.8 66.0 -
Ref. [38] Sleep-EDF-V1 RNN Fpz-Cz Time series 20 83.9 77.1 -
Ref. [40] Sleep-EDF-V1 CNN + LSTM Fpz-Cz Time series 20 83.9 78.0 40.0
Ref. [41] Sleep-EDF-V1 1-max CNN Fpz-Cz Time-frequency image 20 82.6 76 29.9
Baseline Sleep-EDF-V1 CNN + LSTM Fpz-Cz Time series 20 85.4 79.9 33.6
Baseline + CW (Ratio) Sleep-EDF-V1 CNN + LSTM Fpz-Cz Time series 20 87.3 82.7 42.6

to the experimental results demonstrated in Table VI, we
conclude some important findings. Firstly, it is essential to
keep a sensible equilibrium between minority and majority
classes, there is a trade-off between the overall accuracy and
the recognition of the N1 stage on the CCSHS dataset, the RE
improvement of the N1 stage is accompanied by the sacrifice
of ACC and K. Secondly, even the same rule of relationship
may result in different results on experimental datasets. The
overall and N1 performance could be improved simultaneously
on the Sleep-EDF and Sleep-EDF-V1 databases, but much
lower enhancement of N1 stage than that on the CCSHS
dataset. As mentioned in Sec. II. A, three experimental datasets
comprise of subjects from different age groups (CCSHS: 16-19
years, Sleep-EDF: 25-101 years, Sleep-EDF-V1: 25-34 years).

In summary, the CW method is suitable for avoiding
generating new EEG samples and keeping the dataset intact
for retaining overnight sleep structure. In addition, when
recognizing the N1 stage for diagnosing some related sleep
disorders, the CW method is prone to show better performance
(CCSHS dataset). If we prefer to enhance the performance
of all stages and N1 simultaneously, the GWN method can
improve the accuracy of the N1 stage without the sacrifice of
overall accuracy. In this study, although the GAN model can
enhance the overall accuracy, the stage N1 shows a slight drop
in recall on three datasets.

V. CONCLUSION

In this study, we aim to deal with the widely existing class
imbalance problem in the field of automatic sleep stage clas-
sification through balancing the dataset quantity and network
connection. The attained results suggest that the proposed

methods could make positive contribution to the improvement
of biased performance. In most cases, the accuracies of N1
and whole stages are enhanced simultaneously on three public
PSG datasets. In addition, our frameworks could outperform
the state-of-the-art studies on the same dataset. This study
paves new avenues for enhancing the sleep stage classifica-
tion performance with class imbalance and monitoring the
sleep equality and disorders. However, there are some aspects
worthy of further exploration in future works. Firstly, more
DA methods for balancing the dataset quantity could be
investigated, such as the Variational Auto-Encoding network
(VAE), which has obtained significant achievements in CV
field. In terms of the imbalanced network connection, we will
take into consideration of the activation function simulating the
operation of neural’s synapse for the duration of information
processing procedures.
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Finland, in 2010.

He is currently a Professor with the School of
Biomedical Engineering, Faculty of Electronic Infor-
mation and Electrical Engineering, Dalian University

of Technology, Dalian, China and the visiting Professor with Faculty of
Information Technology, University of Jyväskylä, Jyväskylä, Finland. His
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