
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

ScrumBut as an Indicator of Process Debt

© 2022, IEEE

Accepted version (Final draft)

Ramirez Lahti, Jacinto; Tuovinen, Antti-Pekka; Mikkonen, Tommi; Capilla, Rafael

Ramirez Lahti, J., Tuovinen, A.-P., Mikkonen, T., & Capilla, R. (2022). ScrumBut as an Indicator of
Process Debt. In G. M. Callico, R. Hebig, & A. Wortmann (Eds.), SEAA 2022 : 48th Euromicro
Conference on Software Engineering and Advanced Applications (pp. 318-321). IEEE Computer
Society Press. Euromicro Conference on Software Engineering and Advanced Applications.
https://doi.org/10.1109/seaa56994.2022.00057

2022

ScrumBut as an Indicator of Process Debt
Jacinto Ramirez Lahti

Solita Ltd.
Helsinki, Finland

jacinto.ramirez@solita.fi

Antti-Pekka Tuovinen
University of Helsinki

Helsinki, Finland
antti-pekka.tuovinen@helsinki.fi

Tommi Mikkonen
University of Jyväskylä

Jyväskylä, Finland
tommi.j.mikkonen@jyu.fi

Rafael Capilla
Rey Juan Carlos University

Madrid, Spain
rafael.capilla@urjc.es

Abstract—Technical debt analysis is used to detect problems
in a codebase. Most technical debt indicators rely on measuring
the quality of the code, as developers tend to induce recurring
technical debt that emerges along with evolution cycles. This debt
can emerge when project pressure leads to process deviations,
for instance. In agile methods like Scrum, such deviations are
commonly known as ScrumButs (like Scrum but ...), which
can be considered as a form of process debt. In this paper,
we investigate two recurring signs of process debt (i.e. code
smells and anti-patterns) caused by Scrumbuts. Our contribution
investigates typical ScrumBut practices found in agile projects in
one company and we report the relationships found between
problems in code and ScrumBut issues. Our findings identify
three types of ScrumButs, their root causes, and how these relate
to concrete code smells and anti-patterns.

Index Terms—Technical debt, process debt, ScrumBut, code
smells, anti-patterns.

I. INTRODUCTION

Daily changes made under pressure to software code is one
of the sources of the appearance of code issues. Hence, the
need for adding new features and fixing bugs in the codebase
multiple times per day [1] is a recurrent problem that often
leads to the appearance of technical debt [2] in its various
forms (e.g. architecture or code debt [3] [4]). The appearance
of technical debt in some software development contexts can
exacerbate the frequency of the debt caused by bad design
and programming practices. This is known as process debt
[5] [6], which can be understood as a sub-optimal activity
that might have short-term benefits but that generates negative
consequences in a software project in the medium and long
term. An example of process debt in the agile context is
the appearance of ScrumButs [7], or deviations from baseline
Scrum practices, explained by developers as ’like Scrum, but
[description of the deviation]’.

Other works – in particular [8] – highlight the reasons
for process debt and how to prioritize the improvements of
processes. There the authors define process debt as a kind
of sub-optimal development activity that may lead to the
appearance of technical debt. In [8], the authors present a
taxonomy of process debt, causes and consequences which
could be somehow related to certain anti-patterns in software
development processes. Consequently, it would be interesting
to investigate which of these anti-patterns has more impact on
process debt.

In this paper we study how deviations of the Scrum method
lead to the appearance of anti-patterns and code smells as

technical debt. We investigate this phenomenon in a software
startup company and we report early results of the appearance
of deviations in software development practices as examples
of process debt. We first describe the background stemming
from our previous work [9], where we identified code smells
and anti-patterns related to software design in a product of the
company. Second, we outline the case study we used to find
out evidence of process debt in the case company that is using
Scrum. Finally, we report the main findings and conclusions
of our work by relating identified anti-patterns, code smells,
and ScrumButs.

II. BACKGROUND

The case company is a software startup, whose product is
a customer satisfaction surveying and response analysis tool
providing a dashboard for visualizing the responses and their
analysis. At the time of the study in 2020, the product had
been actively developed for five years and the team had grown
from a single hired consultant to a team of six developers. The
company followed the principles of lean startup [10] and the
team used Scrum as the framework for its agile development
approach.

The product was a typical web application, but internally
it had some conspicuous features. The implementation was a
mixture of Clojure and Java code and, consequently, a mixture
of two different programming paradigms, which made the
Java code interfacing with Clojure unidiomatic. Considering
testing, the Clojure part had a small number of old tests that
were run on every build, but their coverage was low. On the
Java side there were more tests, but many of them were marked
as ignored and the execution of the tests was not automated.
Furthermore, the Clojure parts were not actively developed
any more.

Our general approach to detect and remove the technical
debt in the product was the following: (i) first, detecting
common code smells with static analysis tools, (ii) then, by
manually investigating the occurrences in order to discover
possible underlying anti-patterns as the true cause of smells,
and (iii) third, remedying the problems in code by following
the guidance (refactored solution) given for each anti-pattern
to remove them. The role of the static analysis was to pin-
point potentially problematic areas of the code that warranted
detailed scrutiny by the researchers and the team members in
order to confirm the smells and to analyze and remove their

underlying causes. The details of this process and the steps
taken are explained in [9].

In the end, code smells and anti-patterns proved to be useful
concepts for recognizing and rectifying questionable design.
However, although problems were corrected, the same anti-
patterns (e.g. Reinvent the Wheel, Spaghetti Code) and code
smells (e.g. Long Function, Large Class) kept re-appearing in
the code. This motivated us to look deeper in how the team
did its work focusing on the idiosyncrasies of the process and
their causes. This lead to the work reported in this paper.

III. RESEARCH APPROACH

In this research, we are interested in the relationship be-
tween the code smells and anti-patterns, and the appearance of
ScrumBut practices. Therefore, we conducted an exploratory
case study [11] to investigate the effects in process debt when
anti-patterns appear as consequence of Scrum deviations and
process debt and how they can be detected. We came up with
the following research question:

RQ: How are code smells and anti-patterns related to the
development team’s deviations from Scrum practices, so-called
ScrumBut?

Rationale: We aim at understanding why certain code
smells and anti-patterns kept reappearing after they were fixed,
due to the processes and practices of the development team.

Data collection and analysis: To collect and analyse data,
we performed the following tasks:

(i) We used two static code analysis tools to sniff code
smells, that is CodeMR1 and IntelliJ IDEA’s code in-
spection tool2.

(ii) We manually analyzed the confirmed code smells.
(iii) We identified the possible anti-patterns from the smells

detected.
(iv) We observed the team performing post-mortem analysis

to understand why certain anti-patterns kept reappearing
after their removal.

Based on the post-mortem findings and observations of the
team’s behavior during the project, we then identified the
ScrumButs. The lead author was employed as part of the
development team at the case company. He did the practical
work on the codebase and observed the team and its ways of
working.

IV. PRELIMINARY RESULTS

Upon identifying the code smells and anti-patterns, the team
started to fix the identified problems. This turned out to be
difficult. In numerous cases, when a fix was introduced, some
of the smells and anti-patterns quickly crawled back into the
codebase. In particular, these include the following cases:

• Reintroducing external libraries for purposes that were
covered by other libraries (Reinvent the Wheel anti-
pattern).

1https://www.codemr.co.uk/
2https://www.jetbrains.com/help/idea/code-inspection.html

• Adding unnecessary complexity into areas of code that
were previously cleaned up (Spaghetti Code anti-pattern).

• Continued use of long functions and large classes where
more modularized designs would be more suitable (Long
Function and Large Class code smells).

• Usage of (partly) duplicate code that performs a certain
task in multiple places instead of extracting the function-
ality for common use (Divergent Change code smell).

To combat the recurring technical debt issues, the team
reflected on their working practices in order to understand the
relation between technical debt and the team’s activities. This
was done using a postmortem that produced several findings.
Because the team did not follow the recommended Scrum
practices, they couldn’t reflect their own findings from the
postmortem to their usage of Scrum, so based on the initial
analysis of the team we interpret their findings against the
backdrop of Scrum recommendations.

Since Scrum is a comprehensive framework rather than
a collection of disconnected best practices, deviations from
the Scrum recommendations are often considered potentially
harmful. The term ScrumBut is commonly used to refer to
the phrase ”we use Scrum, but...” [7]. Hence, as a custom
variant of Scrum was the baseline for the team’s behavior, the
deviations can be considered as the possible causes for the
problems noted in the postmortem analysis. To identify possi-
ble ScrumButs, we thoroughly examined the list of ScrumButs
compiled in [7] in the context of the behaviour followed by the
team and we identified three key ScrumButs in their practices,
corroborated by the team’s own findings, as possible causes
of a continued accumulation of new technical debt.

A representation of what the team’s Scrum process flow
looked like in a span of 8 weeks is shown in Figure 1. The team
did not use Scrum Sprints but used all the Scrum events from a
typical Sprint cycle in a rather inconsistent way, with only the
daily remaining clearly consistent. Compared to typical agile
projects, this lack of structure led to other related problems,
such as neglecting testing requirements and the possibility of
external interference from customers.

Upon studying the behavior of the team and customers, it
turned out that there were three bad habits, formalized in the
following as ScrumButs:

• No Sprints but rather development that advances in under-
defined increments (No Sprints);

• The lack of a thorough testing requirement (Testing Is
Not Required);

• The team would react immediately whenever the cus-
tomers would request something (Customer Intervention).

These can be considered as variants of the ScrumButs
Varying Sprint Length, Testing in Next Sprint, and Direct
Customer Involvement in [7]. As a remark, we have retained
the original terminology of the development team to highlight
the relation to the case study.

In Table I, we summarize all the identified ScrumButs. In
addition to describing the ScrumButs, the table also presents
their root causes, and the relation to code smells and anti-
patterns. This relation between ScrumButs and code smells

Fig. 1. An 8 week example of ScrumButs in the process of the case project. The diagram shows the lack of definition in the process being followed with
no Sprints, enabling customers to disrupt the team and not requiring tests.

and anti-patterns is specific to this case and with just this data
available we cannot ensure causality in either direction.

No Sprints ScrumBut: In the beginning, the case project
did not use the concept of Sprints as defined by Scrum. A
backlog grooming and week – instead of true sprint – planning
session was held every Monday morning, and a demo was
completed by Friday evenings. Daily meetings were held every
morning, and a retrospective session was held once a month.

The lack of clear Sprints had an effect on the quality of
the user stories in the backlog. In many cases, the stories
were too big to fit in a week, but they were not divided into
smaller pieces, simply because there was no burning need to
do so. This meant that task allocation had to take this aspect
into account. The situation was slightly improved with the
introduction of a backlog management software that replaced
the old spreadsheet-based backlog. This made it easier to
discuss the tasks at hand and their splitting into smaller tasks.
In hindsight, two-week Sprints should probably be at least
tested to see if this would improve predicting when tasks
would be completed.

Testing is Not Required ScrumBut: This ScrumBut, a
variant of Testing in Next Sprint [7], considers the case when
tests are not really required at all. This also happened in the
case project; testing was never a priority during the early
development phases, which led it to become the permanent
state of affairs.

Little by little, the project grew to such an extent that
going back that creating tests for everything would not be
feasible. Introducing Java in the project added another layer of
complexity, which would have required modifying test scripts
to run Java tests too. As this was never done, most of the
codebase had no tests at all or only manual tests, which
increased the difficulty to test the code with its architecture.

Customer Intervention ScrumBut: As the company is a
small startup growing rapidly, the team was very responsive
for whatever demands users introduced. This service level was
quickly taken as the norm by the customers, who learned that
the company reacted quickly to accommodate the new needs

in the system. Consequently, the development team suffered
a considerable pressure from a few customers. This fact was
not handled in the correct way, as these demands could put
on hold other planned work on very short notice.

Not being able to follow the plan and not introducing new
requirements in a managed way only harmed the development
of new features that were planned for the wider customer base.
Furthermore, they also affected the efforts to take care of the
accrued technical debt that had been planned.

In summary, according to the technical debt quadrant3, the
majority of the debt was introduced deliberately because the
team wanted to avoid the imminent cost (as time and effort)
of fixing things and because of the pressure of demands from
certain customers. Only the No Sprints Scrumbut happened
inadvertently at first.

Limitations: To the best of our knowledge this is one of
the first experiences showing the appearance of process debt
caused by wrong software development practices. Although
we show evidence of the connection between technical debt
indicators and process debt, we reckon some limitations in
our work. First, we only analyze one company so we can’t
generalize our results to other organizations. Second, we only
investigate possible deviations the Scrum framework but there
are other software development approaches that can also be
analyzed. Third, we report our results on a number of code
smells and anti-patterns but a deeper study should investigate
how other sources of technical debt can be considered as the
origin of process debt. Finally, it is needed to investigate more
forms of process debt and how customer intervention or budget
resources impact the occurrence of process debt.

V. FINDINGS AND CONCLUSION

In this work, we have studied the connection between
recurring technical debt in a codebase and its relation to
potential process debt. As concrete artifacts in the study,
we used code smells, anti-patterns, and ScrumButs, all of
which are established concepts in the field of technical debt.

3https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

TABLE I
SCRUMBUTS IN THE CASE PROJECT, THEIR DESCRIPTIONS, ROOT CAUSES, AND THE RELATION TO CODE SMELLS AND ANTI-PATTERNS.

ScrumBut Scrum Recommen-
dation

Description Root Causes Relationship to code
smells (CS) and anti-
patterns (AP)

No
Sprints

Sprints of fixed
length and scope
are used. The length
of a sprint usually
varies between 1-4
weeks.

The development team does not follow the
Sprint model as defined by Scrum, making
it more difficult for the team to focus on the
work to be done in any given moment. This
can also lead to tasks not being split into
smaller pieces as they do not need to fit into
a given sprint, making it more difficult to
share the workload of a given task.

The team had rapidly grown from just
a single developer to a team of six in
the span of half a year. The team never
considered that this huge change would
require the introduction of Sprints. For
convenience, they continued in their old
way.

Feature Envy (CS)
Temporary Field (CS)
Large Class (CS)
Spaghetti Code (AP)

Testing is
Not Re-
quired

Testing should be
done in conjunction
with the implemen-
tation of the code.
Each sprint produces
a product that can
be potentially deliv-
ered.

Testing is a fundamental part of software
development in general and agile software
development in particular. Unfortunately,
sometimes it is ignored and seen as a nui-
sance, because it can introduce delays in
software delivery. Not having tests will make
the code more brittle and prone to future
failure. Writing tests later is more difficult,
which emphasises the importance of writing
tests in parallel with the code they test.

The shift from the original Clojure
back-end to the Clojure/Java hybrid ig-
nored the need of configuring auto-
mated testing of the Java code. Once
there was a considerable amount of
code with no tests, this just became
the norm. Although they realized the
situation, the team still chose not to
invest the time and effort required to
rectify the situation.

Large Class (CS)
Long Function (CS)
Functional Decompo-
sition (AP)
Spaghetti Code (AP)

Customer
Interven-
tion

The team is
responsible for
running the
Sprints, and the
communication with
customers happens
through the backlog.

As customers can interfere with the scrum
team adding not planned requirements, those
in the backlog might not be properly prior-
itized. As these new requirements are then
often implemented in an ad hoc manner, due
to time pressure to go back to the original
plan, these interruptions not only affect the
efficacy of the team but can bring unexpected
technical debt due to insufficient planning in
the context of the larger plan.

Customers that had been onboard from
the beginning were used to being able
to influence the direction of the product
very directly. Although the product and
customer portfolio grew considerably,
some of the customers continued to
have special treatment when consider-
ing their requests. The team chose to
offer their most valued customers this
privilege to keep them satisfied.

Feature Envy (CS)
Temporary Field (CS)
Lava Flow (AP)
Spaghetti Code (AP)

The main finding was that there is a clear relation between
them – the recurrence of code smells and anti-patterns could
be directly associated with ScrumBut. However, during the
mainstream development, this connection was never realized
by the team. Instead, the developers kept fixing the code
without realizing that the process debt, which was a result
of the deviations from Scrum that they had agreed on, was
really the root cause for the need to repeatedly perform the
same fixes.

The customer intervention ScrumBut was the most fre-
quently detected, because the team was dependant on the
customer. Two others were easier to eliminate, as they were
caused by team’s own actions, with no demand from outside.
After the findings, the team made changes to try to get rid
of these ScrumButs and their consequences. The team was
sheltered more carefully from sudden new requirements and
there was more thought put into user store creation.

As our work is still at an early phase, we seek to continue
the research by studying more cases to investigate the gener-
alizability of the results in other contexts. At the same time
we seek to understand if any ScrumBut is prone to lead to
technical debt, or if only some deviations from Scrum lead
to such. This in turn may give an indicator whether or not
process debt is intimately connected to other forms of debt
in software engineering. Furthermore, it would be interesting
to study the relationships and interplay of ScrumButs more
thoroughly. For example, does having No Sprints really make
it more likely to have Customer Intervention, or, are there No

Sprints because of allowing Customer Intervention to happen
are some of the questions that emerge.

REFERENCES

[1] D.G. Feitelson, E.Frachtenberg, K.L. Beck, Development and Deploy-
ment at Facebook. IEEE Internet Comput. 17(4): 8-17, 2013.

[2] W. Cunningham, The WyCash Portfolio Management System, OOP-
SLA’92 Experience Report, 1992.

[3] I. Pigazzini, F. Arcelli Fontana, B. Walter,A study on correlations
between architectural smells and design patterns. J. Syst. Softw. 178:
110984, 2021.

[4] M. Fowler, Refactoring: improving the design of existing code, Addison-
Wesley Professional, 2018.

[5] Z. Li, P. Avgeriou, P.Liang,A systematic mapping study on technical
debt and its management. Journal of Systems and Software, 101: 193,
2015.

[6] A. Martini, V. Stray, N. Brede Moe, Technical-, Social- and Process
Debt in Large-Scale Agile: An Exploratory Case-Study. XP Workshops,
Springer LNBIP 364, 112-119, 2019.

[7] V.-P. Eloranta, K. Koskimies, T. Mikkonen, Exploring ScrumBut –
an empirical study of scrum anti-patterns, Information and Software
Technology 74, 194–203, 2016.

[8] A. Martini, T. Besker, J. Bosch, Process Debt: a First Exploration. 27th
Asia-Pacific Software Engineering Conference (APSEC), IEEE DL, 316-
325, 2020.

[9] J. Ramirez Lahti, A.-P. Tuovinen, T. Mikkonen, Experiences on manag-
ing technical debt with code smells and antipatterns. In Proceedings of
TechDebt’21, IEEE, 2021.

[10] E. Ries, The Lean Startup: How today’s entrepreneurs use continuous
innovation to create radically successful businesses, Currency, 2011.

[11] R. K. Yin, Case Study Research Design and Methods (5th ed.), Sage,
2014.

