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Abstract
In this paper, we show that the density in energy of Lipschitz functions in a Sobolev space
N 1,p(X) holds for all p ∈ [1,∞) whenever the space X is complete and separable and
the measure is Radon and positive and finite on balls. Emphatically, p = 1 is allowed. We
also give a few corollaries and pose questions for future work. The proof is direct and does
not involve the usual flow techniques from prior work. It also yields a new approximation
technique, which has not appeared in prior work. Notable with all of this work is that we do
not use any form of Poincaré inequality or doubling assumption. The techniques are flexible
and suggest a unification of a variety of approaches that have appeared in the literature on
the topic.

Mathematics Subject Classification Primary 46E36 · Secondary 30L99 · 26B30

1 Introduction

In this paper, we study the density of Lipschitz functions in Sobolev spaces when X is
complete and separable, and μ is any Radon measure on X which is positive and finite on
balls. We consider the so-called Newton-Sobolev space N 1,p(X) defined in [35] (see also [3,
21]), which for p > 1 coincides with the one introduced independently in [6]. A function f
is in N 1,p(X) if f ∈ L p(X) and if it has an upper gradient g ∈ L p(X); see definition (2.1).
Associated to each f there is a minimal p-weak upper gradient g f ∈ L p(X), which plays
the role of the norm of a gradient. We will give precise definitions of these and the following
notation in Sect. 2.

Our main result proves density in energy or, rather, produces a sequence of Lipschitz
functions which converges in energy. A sequence of functions ( fi )i∈N, with fi ∈ N 1,p(X)

converges to f ∈ N 1,p(X) in energy, if the functions fi converge to f in L p(X) and if their
minimal p-weak upper gradients g fi converge to g f in L p(X). Our sequences of functions
fi will be Lipschitz functions with bounded support, that is fi ∈ LIPb(X) ⊂ N 1,p(X). Our
argument in fact shows more than the convergence of the minimal p-weak upper gradients.
It shows that the asymptotic Lipschitz constants converge;
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lipa[ f ](x) := lim
r→0

sup
a �=b∈B(x,r)

| f (a) − f (b)|
d(a, b)

,

and lipa[ f ](x) := 0, if x is an isolated point. Since lipa[ f ] is an upper gradient, and since g f

is minimal, it follows that lipa[ f ] ≥ g f for any f ∈ LIPb(X). Roughly, it is more difficult to
ensure that lipa[ fi ] converges, since it is larger. More precisely, from Lemma 2.9, it follows
that convergence of lipa[ fi ] implies convergence in energy, and is thus a stronger statement.

Theorem 1.1 Let X be a complete and separable metric space, let p ∈ [1,∞) and let μ be
a Radon measure which is positive and finite on balls. If f ∈ N 1,p(X), then there exists a
sequence fi ∈ LIPb(X) ⊂ N 1,p so that the following properties hold.

(1) The functions fi converge in L p(X) to f , that is

lim
i→∞

∫
X

| fi − f |pdμ = 0.

(2) The asymptotic Lipschitz constants lipa[ fi ] and the minimal p-weak upper gradients g fi
of fi converge to the minimal p-weak upper gradient g f of f in L p(X), that is

lim
i→∞

∫
X

|g fi − g f |pdμ = lim
i→∞

∫
X

| lipa[ fi ] − g f |pdμ = 0.

The conclusion of the theorem, for exponents p > 1, is contained in [2] (see also [1,
Section 6]). Their methods, however were inexplicit. Further, the present result applies to the
case p = 1, and gives a conceptually new way of obtaining their result. The case of p = 1 is
of particular importance in applications that use the co-area inequality, as can be seen from
the concurrent work [10].

In fact, the proof yields a slightly stronger conclusion. That this result is stronger, follows
from Lemma 2.9.

Theorem 1.2 Let X be a complete and separable metric space, let p ∈ [1,∞) and let μ be
a Radon measure which is positive and finite on balls. Let f ∈ L1

loc(X) and let g ∈ L p
loc(X)

be a p-weak upper gradient of f . For every ε > 0 and every bounded set C ⊂ X there exists
a function gε ∈ L p

loc(X) with ‖gε − g‖L p(C) < ε and a sequence fi ∈ LIPb(X), i ∈ N, so
that the following properties hold.

(1) The functions fi converge in L1
loc(X) to f , that is, for any bounded set A ⊂ X,

lim
i→∞

∫
A

| fi − f |dμ = 0.

(2) We have lipa[ fi ] ≤ gε for every i ∈ N.

Remark 1.3 Convergence in energy is weaker than convergence in norm. A sequence fi
converges in norm, if for any ε > 0 there exists an N ∈ N so that for all i ≥ N it holds that
‖ f − fi‖N1,p ≤ ε. In particular, this requires that the minimal p-weak upper gradients g f − fi
of the differences f − fi converge to 0 in L p(X) with i → ∞. However, if the functions fi
converge in energy to f , then we only know that the differences of minimal p-weak upper
gradients, g f − g fi , converge to 0 in L p(X). Crucially, (a.e.) we have g f − fi ≥ |g f − g fi |.
This means, that convergence in norm is a stronger statement than convergence in energy.
Indeed, by the following example, it is strictly stronger.

Equip X = [0, 1]2 with the metric d((x1, y1), (x2, y2)) = |x1 − y1| + |x2 − y2| and the
Lebesgue measure. Let f (x, y) := x , and fn(x, y) := x + n−1 sin(ny), and consider any
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p ∈ [1,∞). For any smooth function a ∈ N 1,p(X), its minimal p-weak upper gradient ga
is given by the �∞-norm of its gradient vector ‖∇a‖�∞ . (Note that �∞ is the dual norm of
�1.) While this is classical, its argument is rarely spelled out in detail, and we will do so after
explaining the relevance for our example. We get that g fn = max{|∂x fn |, |∂y fn |} = 1 = g f .
In particular, fn → f in L p([0, 1]2) and g fn = g f = 1. However, g fn− f = | cos(ny)|,
which does not converge to 0 in L p(X). Thus, the functions fn converge to f in energy,
but not in norm. If one uses any other uniformly convex norm on R

2 to define the metric,
then this phenomenon does not occur. Further, in many settings, such as this, one can fix the
problem by taking convex combinations of fn which converge in norm – even if the sequence
( fn)n∈N only converges in energy. This final step requires reflexivity of the Sobolev space,
which can be obtained, for example, with the assumption of finite Hausdorff dimension, see
e.g. [11, Theorem 1.9].

We give a brief explanation for the above identification of the minimal upper gradient
which an experienced reader may wish to skip. A proof can be patched together from argu-
ments that are contained in [19, Sections 6-7] and [21, Prop. 6.3.3.]. First, from the triangle
inequality and the definition in (2.1) it follows that ‖∇a‖�∞ is an upper gradient for any
smooth function a ∈ N 1,p(X) (since it bounds all directional derivatives). Conversely, it is
minimal, for the following reason. If g is any p-integrable upper gradient of a, we have that
(2.1) holds for every line segment in any given direction v. By the argument in [21, Prop.
6.3.3.], which consists of Lebesgue differentiation of g and differentiation of a along such
line segments, we get that the inequality g ≥ |∂va| holds a.e., where ∂va = 〈v,∇a〉 is the
directional derivative. By taking a supremum over a dense collection of vectors v, and as a
consequence of the definition of a dual norm, we obtain g ≥ ‖∇a‖�∞ .

Density of energy, albeit weak, suffices for many applications. One application is proving
the equivalence of various types of Poincaré inequalities. We say that a pair (u, g) satisfies
a p-Poincaré inequality (with constants (C,�)) if for each ball B(x, r) ⊂ X

∫
B(x,r)

|u − uB(x,r)| dμ ≤ Cr

(∫
B(x,�r)

gp dμ

)1/p

, (1.4)

where we define the average by f A := ∫
A f dμ := 1

μ(A)

∫
A f dμ, when the final expression

is well defined. For the statement of the following corollary, we define:

lip[ f ](x) := lim
r→0

sup
y∈B(x,r)

| f (x) − f (y)|
d(x, y)

.

Corollary 1.5 Let X be a complete and separable metric space, let p ∈ [1,∞) and let μ be a
Radonmeasurewhich is positive and finite on balls. For any fixed constants (C,�) ∈ (0,∞)2

the following three conditions are equivalent.

(1) For every Lipschitz function f : X → R the pair ( f , lipa[ f ]) satisfies a p-Poincaré
inequality with constants (C,�).

(2) For every Lipschitz function f : X → R the pair ( f , lip[ f ]) satisfies a p-Poincaré
inequality with constants (C,�).

(3) For every f ∈ N 1,p(X) the pair ( f , g f ) satisfies a p-Poincaré inequality with constants
(C,�).

(4) For every f ∈ L1
loc(X) and any upper gradient g ∈ L1

loc(X) of f , the pair ( f , g) satisfies
a p-Poincaré inequality with constants (C,�).

The statement does not depend on any doubling or properness assumption, aswas for example
assumed in [24]. The proof is a simple exercise left to the reader of using Theorems 1.1 and
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1.2, cut-off functions (see the proof of Theorem 1.1) and the fact that for Lipschitz functions
g f ≤ lip[ f ] ≤ lipa[ f ] (almost everywhere). (For the last fact, see Example 2.5 and the
definition of the minimal p-weak upper gradient in Sect. 2.) The equivalence of (4) is easier
for g ∈ L p

loc(X), but the case of g ∈ L1
loc(X) is obtained by employing a cut-off function and

a limiting argument that involves radii r ′ ↗ r . We note that the assumption of completeness
can not be removed, as seen from the examples in [28] (see also [25] for a related self-
improvement result).

Remark 1.6 Why is completeness relevant? If Y ⊂ X is any dense full measure set, then (1)
and (2) in Corollary 1.5 remain unchanged. Indeed, Y may be even disconnected! Koskela’s
example in [28] is of a connected open set Y ⊂ R

2, but where Y is separated by a set,
whose capacity is not bounded from below scale-invariantly. This contradicts (3) and (4) in
Corollary 1.5. However, Y is full measure and dense in the plane, so (1) and (2) still hold. In
our proof, completeness is used via an application of the Arzelà-Ascoli Theorem.

A further application of a technical nature is the following, which was pointed out to us
by Elefterios Soultanis.

Corollary 1.7 Let p ∈ [1,∞). Assume that X is complete and separable and equipped with
a Radon measure which is positive and finite on balls. If f ∈ N 1,p(X), then there is a Borel
function f̃ ∈ N 1,p(X) so that f̃ = f almost everywhere.

Remark 1.8 If X is additionally measure doubling and satisfies a p-Poincaré inequality, then
this result is already known and follows directly from norm-density of Lipschitz functions,
see e.g. [21, Theorem 8.2.1].

Note that the definition of f ∈ N 1,p(X) only requires that f is measurable. Further,
note that the Newton-Sobolev condition involves a pointwise consideration. Thus, a direct
modification using Borel regularity does not yield the result since it may break the property
of being a Newton-Sobolev function. The proof of this corollary follows immediately from
Theorem 1.1 by considering a subsequence of fi converging pointwise almost everywhere
and their limit together with [15, Proof of Corollary 7.10]. We remark that a posteriori also
f = f̃ at capacity almost every point, or quasi-everywhere, see [35, Corollary 3.3].
The question of the density of continuous and Lipschitz functions is also crucial in other

contexts. For example, quasi-continuity properties of Sobolev functions are implied by the
density of continuous functions in norm, see [4] and [33]. While we only get density in
energy, it seems our techniques could have something to say in these contexts as well. In
conclusion, it appears that density of continuous andLipschitz functions in energy inNewton-
type Sobolev spaces defined using upper gradients is far more generic than it appears from
existing literature.

1.1 Approximation scheme

The approximation method that we introduce may seem surprisingly simple and a bit confus-
ing. We thus wish to show how it arises naturally from prior work, explain how it is distinct
from the state of the art and to survey existing approximation schemes. Our survey is brief,
and undoubtedly not complete. In the following discussion, f : X → R will be a Sobolev
function (as understoon in the specific context), and f̃ will denote its approximation.

In Euclidean spaces, and Lie groups, the simplest way to approximate an L p(X)-function
f is via convolutionwith f̃ = f ∗φn , where φn is some approximation of unity. Evenwithout
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a group structure, one can mimic this process on manifolds, and even some CAT(0) spaces,
using various center of mass constructions. See e.g. [13, 23].

In general metric spaces, such a convolution method is missing. One rather old method is
to employ so called discrete convolutions:

f̃ (x) =
∑
n

ψn fBn ,

where Bn are someballswhich cover the space (with bounded overlap), andψn is a partition of
unity subordinate to Bn . Such an approximation goes back toCoifman andWeiss [7]. Discrete
convolutions have also been independently discovered in various guises, see e.g. [28]. When
X is measure doubling (for some D ∈ [1,∞)we haveμ(B(x, 2r)) ≤ Dμ(B(x, r)) for each
x ∈ X , r > 0) and satisfies a Poincaré inequality, one can perform a discrete convolution in
such away that f̃ approximates f in L p(X), and so that the N 1,p(X)-norm of f̃ is controlled.
For such results, see [27]. For applications of discrete convolutions in other contexts and
earlier results, see [34, pp. 290–292] and [31].

Discrete convolutions have been quite successful in analysis on metric spaces. In fact, the
papers using this technique are too numerous to list here. But, some highlights we found
are [26–29]. These papers require strong assumptions: a doubling measure and a Poincaré
inequality. It is unclear, if a discrete convolution approach is possible to extend tomore general
settings. Another issuewith discrete convolutions, is that evenwith the aforementioned strong
assumptions, they fail to directly prove Theorem 1.1. Indeed, the approximating functions
f̃ have minimal p-weak upper gradients g f̃ with a bound on their L p(X)-norms – but
convergence of the minimal p-weak upper gradients may fail.

In order to get convergence of gradients, and to weaken assumptions, we need to look
beyond. The seminal paper of Cheeger [6] employs several useful approximation schemes,
which apply to spaces with a doubling measure and a Poincaré inequality. We summarize
them here.

(1) [6, Theorem 4.24]: a sub-level set approach employing an approximation based on the
McShane extension in the proof of the existence of a differential for Sobolev functions.
As Cheeger notes, this method was standard in Sobolev space theory by the time of
his work. We are not certain, where it appeared in the first instance. Hajłasz used the
argument earlier for metric measure spaces [14, Theorem 5], and attributes the method to
an earlier publication of Liu [30] and Calderón-Zygmund [5, Theorem 13], who proved
related results in a Euclidean setting.

(2) [6, Lemma 5.2]: an extension from a net of points using curves similar to Formula (1.10)
(see below), which was used to prove a version of Theorem 1.1 and conclude g f = lip[ f ]
for length spaces.

(3) [6, Theorem 6.5]: an approximation involving a two-step Lipschitz extension and piece-
wise distance function,whichwasused to prove that g f = lip[ f ]without the length-space
assumption.

These get much closer to the approximation method introduced in the present paper – even
though the proofs written in [6] involved the strong assumptions of a Poincaré inequality and
doubling. These arguments thus do not directly answer our questions. However, with these
stronger assumptions, [6, Theorem 6.5] does prove our Theorem 1.1 for p > 1.

Each of themethods in Cheeger’s paper involved extending f |A out from a subset A ⊂ X –
or interpolating and extrapolating the functionwhile attempting to ensure that supa∈A | f̃ (a)−
f (a)| is as small as possible. This idea, that approximation and extension problems are
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connected, is behind the present paper. We briefly describe the approximation (1) and (2)
above in slightly more detail to illustrate the connection to our method.

In the sub-level set approach, one obtains f̃ by taking a sub-level set A ⊂ X of the
Hardy-Littlewoodmaximal function M(gp

f ), and employing aMcShane Lipschitz extension.
This is possible, because it follows from a point-wise version of the Poincaré inequality
(see e.g. [16, Theorem 3.3]) that f |A is Lipschitz. This approximation has the remarkable
Lusin property: the approximating function f̃ actually agrees with the function f on large
measure subsets. Together with locality of the minimal p-weak upper gradient (see e.g. [21,
Proposition 6.3.22]), one gets that f̃ − f has small N 1,p(X)-norm. If onewishes to remove the
Poincaré inequality assumption, then one needs substantially different tools. Indeed, without
a Poincaré inequality, one must give up the (Lipschitz-)Lusin property because the function
f ∈ N 1,p(X) may not, in general, be Lipschitz on any positive measure subset.

Example 1.9 Let X = [0, 1] be a metric measure space equipped with the Lebesgue measure
and snow-flakemetric d(x, y) = √|x − y|. Since X doesn’t have any non-constant rectifiable
curves, every function f ∈ L p(X) is a Sobolev function. Let f (x) = ∑∞

n=1 a
−n sin(2πbnx)

with 1 < a <
√
b and 1 + 3/2π < ab and a, b ∈ N. Then, a classical computation shows

that f is logb(a)-Hölder in the Euclidean metric, and α-Hölder in the metric d , with α :=
2 logb(a) < 1. On the other hand, the classical argument of Weierstrass gives [37], that to
every x ∈ (0, 1) and everym ∈ N sufficiently large there exists a y ∈ [x−b−m, x+bm]∩[0, 1]
with f (x) − f (y) � am . Using this, one can conclude that any set A ⊂ (0, 1), for which
f |A is Lipschitz with respect to d , must be porous (i.e. there is a constant c > 0 so that
for every a ∈ A and any small enough r > 0, there exists an y ∈ (x − r , x + r) so that
B(y, cr) ∩ A = ∅). Consequently, there is no positive measure set A for which f |A is
Lipschitz.

The second approximation in [6] takes the form of

f̃ (x) := inf
γ :A�x

f (γ (0)) +
∫

γ

g ds, (1.10)

where A ⊂ X is some compact set of points, and the infimum is taken over rectifiable curves
γ : [0, 1] → X connecting A to x and the integral

∫
γ
g ds is the usual curve integral. While

the proof, as written, in [6] does use a Poincaré inequality, the full strength of it is not really
needed. Indeed, most of the lemmas in [6] do not use this assumption, and the proof of [6,
Lemma 5.2] could be rewritten by using the Lusin property and choosing a set A where f |A
is continuous. By such a modification, the proof would apply to any proper length space.
To our knowledge, this has not been observed before. However, we omit the details of this
claim, since our main theorem contains a stronger result.

The idea in Definition (1.10) is to be close to f on the set A while insisting on g being
an upper gradient. Such constructions have arisen in other settings, where one wishes to
prescribe a given upper gradient: see e.g. [4, Lemma 3.1]. The main technical problem with
Definition (1.10), is that it implicitly insists on the existence of rectifiable curves γ . Without
such curves f̃ may even fail to be continuous. Indeed, even the measurability is non-trivial
[22].

The issue of a lack of curves has already been identified, and resolved, in limited instances.
When proving that a Poincaré inequality implies quasiconvexity, a priori one can not assume
the existence of any curves. See for example the beautiful discussion in [16, Proposition 4.4]
where a version of this fact is proved – or the proof in [6, Theorem 17.1] which is originally
due to Semmes. The proof involves “testing” the Poincaré inequality with functions of the
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form:

fε,x (y) := inf
p0,...,pn

n−1∑
k=0

d(pk, pk+1),

with the infimum is taken over all sequences of points, called discrete paths, p0, . . . , pn with
d(pk, pk+1) ≤ ε (for k = 0, . . . , n−1, n ∈ N) and p0 = x, pn = y, and x ∈ X a fixed point.
Indeed, the approximation formula that we use will resemble and generalize this expression.

Our approximation combines the twomain aspects frombefore: discrete paths, and extend-
ing from a subset A ⊂ X . First, we explain the approximation for non-negative functions.
The approximation is defined using given data: A non-negative function f : X → [0, M]
to approximate which is bounded by M > 0, a continuous bounded non-negative function
g : X → [0,∞) which is our desired upper gradient, a set A ⊂ X s.t. f |A is continuous,
and a scale parameter δ > 0.

The formula for the approximating function is:

f̃ (x) := min

{
inf

p0,...,pn
f (p0) +

n−1∑
k=0

g(pk)d(pk, pk+1), M

}
(1.11)

where the infimum is taken over all discrete paths p0, . . . , pn with p0 ∈ A, d(pk, pk+1) ≤ δ

and pn = x . There are some key observations, from Lemma 2.13 below, which we highlight
here and which guide our definition.

(1) If there are no discrete paths with the given properties, then by the standard convention,
the infimum in the definition is ∞, and we get f̃ (x) = M . In any case, the cut-off value
M ensures that f̃ (x) ≤ M for every x ∈ X .

(2) The function f̃ is automatically max{supx∈X g(x), M/δ}-Lipschitz, and we have
lipa( f̃ ) ≤ g. Indeed, if d(x, y) ≤ δ for some x, y ∈ X , by concatenating discrete
paths, we obtain a bound for | f̃ (x) − f̃ (y)| ≤ max{g(x), g(y)}d(x, y). By bounded-
ness, if d(x, y) > δ, then | f̃ (x) − f̃ (y)| ≤ M ≤ 2M

δ
d(x, y). Further details will be

given later.
(3) We have f̃ (x) ≤ f (x) for each x ∈ A. Indeed, in the infimum,we can choose the discrete

path P = (x, x). Thus, we have f̃ (x) ≤ f (x) + g(x)d(x, x) = f (x).

The difficulty lies then in choosing a function g appropriately so that one can show that f̃ |A
converges to f |A pointwise as δ → 0. Here, a refined version of Arzelà-Ascoli is used as
part of a compactness and contradiction argument. If the convergence were to fail, then we
would get a sequence of discrete paths converging to a curve, which would violate the upper
gradient inequality (2.1). This step is classical, and has already appeared in [20, Proposition
2.17] and in [6, Lemma 5.18]. According to Cheeger, this argument has also been used by
Rickman and Ziemer [6, Remark 5.26].

For the technicallyminded,we alreadymention that properness, which is usually assumed,
is avoided by appropriately choosing g to penalize paths that form non-compact families.
Indeed, paths that travel ”far” away from certain compact sets must have small ”modulus”,
as we will later make precise. This is a new argument and seems to be useful in other settings
as well. However, with properness, our proof would be considerably simpler – and this will
be indicated in the proof.

Formula (1.11) applies directly only to functions with a bounded support and non-negative
functions. For signed functions without bounded support, one first does a truncation and
applies a cut-off function. Then, the previous approximation scheme is applied to the positive
and negative part individually.Wenote thatmodifications of the formula yield approximations
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directly for any function f ∈ N 1,p(X). However, the scheme presented here simplifies the
proof slightly.

Finally, for the sake of completeness, we wish to mention another enormously successful
approximation method which arises via estimates for the gradient flow of convex functionals,
cf. [2]. This approximation is implicit, since the method does not directly furnish the approxi-
mation, but shows that it exists. Indeed, it proceeds via defining a functional, via relaxation of
a Dirichlet energy and needs lower-semicontinuity for it in L2(X). By showing that two dif-
ferent expressions define the gradient of the flow of this functional, one obtains the existence
of approximations for Sobolev functions. While very general and powerful, this approach
has two main shortcomings. The first is the inexplicit nature of the approximating function
and lack of any pointwise control. Another problem is in the p = 1 case for N 1,1(X). When
p = 1, the relaxation approach does not give information for N 1,1 but instead for functions
of bounded variation. To give results for this borderline case, we needed to introduce the
methods of the present paper. We remark, that this case is still quite important, since it is
connected via the co-area formula to (modulus) estimates on curves and surfaces in the space.

1.2 Further questions

The methods of this paper are likely to apply to a host of other Sobolev type spaces and
lead to interesting further questions. A number of works on approximations have appeared in
different settings, see e.g.Orlicz-Sobolev spaces [36], Lorenz-Sobolev spaces [8] and variable
exponent Sobolev spaces [17, 18]. One can even study these questions with a general Banach
function space norm, see e.g. [32, 33]. This list is far from exhaustive. Indeed, a variety
of authors have asked for necessary and sufficient conditions for the density of Lipschitz
functions in these settings – and we suggest that completeness and separability suffice, with
perhaps minimal further assumptions when an upper gradient is used. It is important to note,
however, that the situation is quite different for the Sobolev space, often denoted W 1,p(X),
which is defined using a distributional gradient, see e.g. [18] for such issues in a variable
exponent case. The techniques here suggest, that the questions on density in this different
setting are equivalent with N 1,p(X) = W 1,p(X), which is a type of regularity statement.

Another question is when (locally) Lipschitz functions are dense in N 1,p(�) when � is a
domain – i.e open and connected – in a complete and separable space X .We use completeness
in our arguments, and additional care is needed close to the boundary of �. In some cases,
when� is say a slit disk in the plane B(0, 1)\(0, 1)×{0} ⊂ R

2, one would not expect such a
density for globally Lipschitz functions. However, it may be that some minimal assumption
would guarantee density of locally Lipschitz functions.

A final, and seemingly difficult question, is if Lipschitz functions are always actually
dense in N 1,p(X) in norm, and not just in energy (when X is complete). If p > 1 and if the
Sobolev space is reflexive, then the density in energy can be directly upgraded to density in
norm. For a space X which is metrically doubling, this follows from [1, Corollary 41]. In a
concurrent work with Elefterios Soultanis, we have employed techniques from this paper to
get the density result for all p ∈ [1,∞) and with a weaker finite dimensionality assumption
for an associated p-differentiable structure [11]. This finite dimensionality assumption is
satisfied by all spaces X with a finite Hausdorff dimension.

Outline: The proof of Theorem 1.1 will be at the end of Sect. 2. At the beginning of that
section, there are three preliminary subsections, which will describe the terminology, basic
properties of the approximating functions and some useful lemmas for discrete paths.
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2 Proof of Approximation

2.1 Preliminaries

Open balls in a metric space X are defined by B(x, r) := {y : d(x, y) < r}, for r > 0 and
x ∈ X . Throughout this section p ∈ [1,∞) and X is a complete and separable metric space
equippedwith aRadonmeasurewhich is finite and positive on balls, i.e. 0 < μ(B(x, r)) < ∞
for each x ∈ X , r > 0. The spaces L p(X) consist of p-integrable functions and L p

loc(X)

consist of locally p-integrable functions, i.e. those f so that for every bounded set A ⊂ X we
have

∫
A | f |p dμ < ∞. These spaces are equipped with the usual notions of convergence. A

curve is a continuous map γ : I → X from a compact interval I ⊂ R. A curve is rectifiable,
if it has finite length Len(γ ), see [21, Chapter 5].

Recall that, as introduced by Heinonen and Koskela in [20], a non-negative Borel function
g : X → [0,∞] is a (true) upper gradient of (or for) f : X → [−∞,∞], if∫

γ

g ds ≥ | f (γ (1)) − f (γ (0))|, (2.1)

for any rectifiable curve γ : [0, 1] → X . If either f (γ (1)), or f (γ (0)), is infinity, we
interpret the right hand side as ∞.

The property of being an upper gradient is not closed under L p(X)-convergence. Thus,
one introduces the notion of a p-weak upper gradient. One simple definition for this is that if
UG( f ) ⊂ L p(X) is the collection of upper gradients of f that are contained in L p(X), then
g is a p-weak upper gradient if g ∈ UG( f ) (i.e. lies in the closure in L p(X)). Equivalently,
this notion can be defined using a notion of “a.e.” curves coming from the concept of a
modulus of curve families. We say that g is a p-weak upper gradient, if (2.1) holds for p-a.e.
rectifiable curve γ : i.e. if there exists a h ∈ L p(X), so that for every rectifiable curve γ for
which

∫
γ
h ds < ∞ we have inequality (2.1). We refer the reader to [15, 35] for details on

modulus.

Remark 2.2 We prefer not to define modulus of curve families here, since we do not directly
need it. Instead, we only need some properties of minimal p-weak upper gradients (which
often are proved using modulus techniques). The main property we need is that if g is a
p-weak upper gradient for f , then for any ε > 0 there is a lower semi-continuous (true)
upper gradient gε ≥ g with

∫
X |g − gε |p dμ ≤ ε. This can be easily seen from g ∈ UG( f )

together with the fact that any function in L p(X) can be approximated from above by a lower
semi-continuous function (by the Vitali-Carathéodory Theorem). For the details we refer to
[21, Sections 4.2 and Chapters 5–6].

We define N 1,p(X) as the collection of f ∈ L p(X) so that there exists a Borel upper
gradient g ∈ L p(X). The functions in this collections are calledNewton, Sobolev, orNewton-
Sobolev functions. The space is called either the Newton, Sobolev, or Newton-Sobolev space.
We define

‖ f ‖N1,p :=
(

inf
g∈UG( f )

‖ f ‖p
L p + ‖g‖p

L p

)1/p

, (2.3)

where the infimum is taken over all p-weak upper gradients of f (or, equivalently, over all
true upper gradients g of f ). By [15, Theorem 7.16] there always exists a minimal p-weak
upper gradient g f ∈ UG( f ) ⊂ L p(X)which attains the infimum in (2.3), and which satisfies
(2.1) for p-almost every curve. See also [35] for the p > 1 case. Since the set UG( f ) of
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p-weak upper gradients satisfies the lattice property [21, Corollary 6.3.12], we have that the
minimal p-weak upper gradient satisfies the additional property that if g̃ is another p-weak
upper gradient for f , then g̃ ≥ g f a.e. Throughout this paper, if f ∈ N 1,p(X), then g f will
denote its minimal p-weak upper gradient.

We also define the Lipschitz and asymptotic Lipschitz constant for a function f : X → R

LIP[ f ](A) := sup
x,y∈A,x �=y

| f (x) − f (y)|
d(x, y)

, lipa[ f ](x) := lim
r→0

LIP[ f ](B(x, r)). (2.4)

When A is a singleton, we interpret LIP[ f ](A) = 0. A function f : X → R is Lipschitz if
LIP[ f ](X) < ∞. The collection of Lipschitz functions f : X → R is denoted LIP[ f ](X)

and LIPb(X) is the collection of f ∈ LIP[ f ](X), with bounded support (i.e. there exists
some ball B(x0, R) ⊂ X so that f (y) = 0 for each y /∈ B(x0, R)). A function f is called
L-Lipschitz if LIP[ f ](X) < L .

Example 2.5 Lipschitz functions yield examples of Sobolev functions. If f ∈ LIP[ f ], then
lip[ f ] ≤ lipa[ f ] ≤ LIP[ f ](X), and lip[ f ] is an upper gradient of f . Indeed, lip[ f ] controls
the directional derivative along any rectifiable curve and thus (2.1) follows; see [21, Lemma
6.2.6] for a detailed argument. Consequently, LIPb(X) ⊂ N 1,p(X) for each p ∈ [1,∞) and
g f ≤ lipa[ f ] for each f ∈ LIPb(X).

We will need some results from functional analysis. First, we need an argument which
replaces the usual application of reflexivity when p > 1. This involves the following defini-
tion.

Definition 2.6 Let p ∈ [1,∞). A collection of functions F ⊂ L p(X) is strongly p-equi-
integrable if,

a) for every ε > 0, there exists, a set E ⊂ X with μ(E) < ∞ so that
∫
X\E | f |p dμ ≤ ε

for all f ∈ F ;
b) sup f ∈F ‖ f ‖L p(X) < ∞; and
c) for every ε > 0 there exists a δ > 0 so that if μ(E) < δ, then

∫
E | f |p dμ ≤ ε for all

f ∈ F .

In the literature, the condition p-equi-integrability usually only includes condition c). In
order to state more compact theorems and proofs below, we add the conditions a) and b) and
add the modifier “strongly” to the term. If the measure is non-atomic, then by decomposing
the measure to sufficiently small parts, one can show that a) and c) imply b).

The following theorem is classical - although often stated only for finite measure spaces.
See [9, Theorem IV.8.9] or [12, Theorem 2.54].

Theorem 2.7 (Dunford-Pettis theorem) A collection F ⊂ L1(X) is pre-compact if and only
if it is strongly 1-equi-integrable.

We will further need the Vitali-Convergence Theorem. A sequence of functions fn ∈
L p(X) converges in measure to a function f ∈ L p(X) if and only if for every ε > 0 it holds
that limn→∞ μ({x : | fn(x) − f (x)| ≥ ε}) = 0. For a proof, see [12, Theorem 2.24].

Theorem 2.8 (Vitali-Convergence Theorem) A sequence ( fn)n∈N of functions fn ∈ L p(X)

converges to f ∈ L p(X) if and only if it converges in measure to f and is strongly p-equi-
integrable.
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We apply these classical results to show that minimal p-weak upper gradients converge,
if they possess some upper bounds which converge.

Lemma 2.9 Suppose that fi , f ∈ N 1,p(X) are functions with minimal p-weak upper gra-
dients g fi , g f ∈ L p(X) and that fi → f in L p(X). Suppose further that g̃i ∈ L p(X) are
functions which converge g̃i → g f in L p(X). If g fi ≤ g̃i , then g fi → g f in L p(X).

Proof First, wewill show that the sequence g fi converges to g f weakly in L p(X). To this end,
it suffices to show that every subsequence of g fi has a further subsequence that converges to
g f . After relabelling indices, without loss of generality, it suffices to find such a subsequence
for g fi .

First, we show that g fi has a weakly convergent subsequence in L p(X), which converges
to some function g̃. If p > 1, this follows from reflexivity of L p(X). If p = 1, then the
inequality g fi ≤ g̃i and the fact that g̃i converge in L1(X) easily imply that the sequence of
functions g fi is strongly 1-equi-integrable. Therefore, by the Dunford-Pettis Theorem 2.7,
the sequence has a weakly convergent subsequence. We will now denote this subsequence
by g fi , i.e. g fi → g̃ weakly in L p(X).

It follows from [15, Lemma 7.8] that g̃ is a p-weak upper gradient of f and hence g̃ ≥ g f

a.e. On the other hand, the weak lower semicontinuity of L p-norms gives∫
X
g̃ pdμ ≤ lim inf

i→∞

∫
X
gp
fi
dμ ≤ lim inf

i→∞

∫
X
g̃i

pdμ =
∫
X
gp
f dμ, (2.10)

which together with g̃ ≥ g f yields that g̃ = g f a.e. Thus g fi → g f weakly in L p(X).
Since the sequence (g fi )i∈N is strongly p-equi-integrable, by the Vitali-Convergence

Theorem 2.8, it will converge to g f if it converges in measure. Further, it follows from part
c) of Definition 2.6, and the strong p-equi-integrability of the sequence g fi , that it suffices
to prove convergence in measure on all sets of finite measure, i.e.

lim sup
i→∞

μ({x ∈ A : |g fi (x) − g f (x)| > ε}) = 0

for every ε > 0 and every A ⊂ X with μ(A) < ∞. Fix such a set A ⊂ X and ε > 0. We
have,

μ({x ∈ A : |g fi (x) − g f (x)| > ε}) ≤ 1

ε

∫
A

|g f − g fi |dμ

= 1

ε

(
2

∫
A∩{g fi >g f }

g fi − g f dμ +
∫
A
g f − g fi dμ

)
.

Since g fi converge weakly to g f , we get limi→∞
∫
A g f −g fi dμ = 0. In order to estimate

the first term, recall that g fi ≤ g̃i and g̃i → g f in L p(X). Then,

lim sup
i→∞

∫
A∩{g fi >g f }

g fi − g f dμ ≤ lim sup
i→∞

∫
A∩{g fi >g f }

g̃i − g f dμ

≤ lim sup
i→∞

∫
A

|g̃i − g f |dμ = 0.

By combining the two previous limits, we get

lim sup
i→∞

μ({x ∈ A : |g fi (x) − g f (x)| > ε}) = 0.

��
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We need a version of the Arzelà-Ascoli Theorem, which is easy to prove using standard
techniques. We state this lemma to highlight the fact that our theorems apply to general com-
plete and separable metric spaces, whereas most of the existing literature uses an assumption
of properness. Indeed, we avoid properness by adding the assumption that the sets At that
appear in the statement of the lemma are pre-compact. Consequently, we will be able to apply
the lemma with Y = �∞(N) which is not proper.

A curve γ : [0, 1] → X is L-Lipschitz if d(γ (s), γ (t)) ≤ L|s − t | for every s, t ∈ [0, 1].
Lemma 2.11 Let L ∈ [0,∞). Suppose that Y is a complete metric space. Let γk : [0, 1] → Y
be a sequence of L-Lipschitz curves so that for every t ∈ [0, 1] the set At = {γk(t) : k ∈ N}
is pre-compact in Y . There exists a subsequence of γk which converges uniformly to a L-
Lipschitz curve γ .

2.2 Approximating function

We introduce in this subsection the formula of our approximation and prove its main prop-
erties.

A discrete path P (or simply “a path” P) is a sequence of points P = (p0, . . . , pn)
with pk ∈ X for each k = 0, . . . , n, and n ∈ N with n ≥ 1. We define the mesh of P by
Mesh(P) := maxk=0,...,n−1 d(pk, pk+1), the diameter of P by diam(P) := maxk,l d(pk, pl)
and the length of P by Len(P) := ∑n−1

k=0 d(pk, pk+1). By a slight abuse of notation, we will
write p ∈ P if there is a k = 0, . . . , n so that pk = p. Further, we write P ⊂ U for a
subset U ⊂ X , if pk ∈ U for each k = 0, . . . , n. We write P ⊂ Q if the sequence of points
in P forms a subsequence of the points in Q without gaps: that is P = (p0, . . . , pm) and
Q = (q0, . . . , qn), m ≤ n and there exists a non-negative 0 ≤ s ≤ n − m so that qs+k = pk
for each k = 0, . . . ,m. Such a path P is called a sub-path of Q.

For δ > 0 and A ⊂ X a fixed closed set, we say that a discrete path P = (p0, . . . , pn) is
(δ, A, x)-admissible, if Mesh(P) ≤ δ, p0 ∈ A and pn = x . The collection of all (δ, A, x)
admissible discrete paths is denoted P(δ, A, x).

Suppose that f : X → [0, M] is a bounded function for some M > 0, g : X → [0,∞)

is a continuous bounded function, and A ⊂ X is a closed subset. Then, for δ > 0 we define
an approximating function f̃ with data ( f , g, A, M, δ) as

f̃ (x) := min{M, inf
(p0,...,pn)∈P(δ,A,x)

f (p0) +
n−1∑
k=0

g(pk)d(pk, pk+1)}. (2.12)

Lemma 2.13 Let M, δ > 0, f : X → [0, M], A ⊂ X be closed, and let g : X → [0,∞) be
continuous and bounded. The function f̃ in Formula (2.12) satisfies the following properties.

A) f̃ : X → [0, M].
B) For each x ∈ A, 0 ≤ f̃ (x) ≤ f (x).
C) If x ∈ A and f (x) = 0, then f̃ (x) = 0.
D) For each x, y ∈ X with d(x, y) ≤ δ, we have

| f̃ (x) − f̃ (y)| ≤ max{g(x), g(y)}d(x, y). (2.14)

E) lipa[ f̃ ](x) ≤ g(x) for every x ∈ X.
F) f̃ is max{Mδ−1, supx∈X g(x)}-Lipschitz.
Proof A) First, since each term in the infimum in (2.12) is non-negative, f̃ is also non-

negative. Further, f̃ (x) ≤ M for each x ∈ X follows immediately from the definition.
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B) Let x ∈ A. By noting that the discrete path P = (x, x) is (δ, A, x)-admissible, we get
f̃ (x) ≤ f (x) + g(x)d(x, x) = f (x).

C) Let x ∈ A. By B) and A) we get 0 ≤ f̃ (x) ≤ f (x) = 0.
D) Let x, y ∈ X be arbitrary with d(x, y) ≤ δ. Consider an arbitrary discrete (δ, A, x)-

admissible path P = (p0, . . . , pn). We form a (δ, A, y)-admissible path Q =
(q0, . . . , qn+1) by adjoining qn+1 = y and setting qi = pi for i ∈ {0, . . . , n}. With
such choices

f̃ (y) ≤ f (q0) +
n∑

k=0

g(qk)d(qk, qk+1) = f (p0) +
n−1∑
k=0

g(pk)d(pk, pk+1) + g(x)d(x, y)

Taking an infimum over all (n, A, x)-admissible paths and a minimum with M on both
sides of the inequality, we get f̃ (y) ≤ f̃ (x) + g(x)d(x, y). By switching the roles of x
and y, we obtain Inequality (2.14).

E) Take points x, a, b ∈ X . Then, by sending a, b → x and applying (2.14) to the pair of
points a, b together with the continuity of g, we get

lipa[ f̃ ](x) ≤ g(x).

F) Let L := max{Mδ−1, supx∈X g(x)}. If x, y ∈ X , with d(x, y) ≤ δ, then from D) we get
| f̃ (x) − f̃ (y)| ≤ Ld(x, y). On the other hand, if x, y ∈ X with d(x, y) > δ, then by A)
we have | f̃ (x) − f̃ (y)| ≤ M ≤ Mδ−1d(x, y) ≤ Ld(x, y). ��

2.3 A compactness result for discrete curves

The convergence of our approximating functions to f is obtained via a contradiction argu-
ment, where we are given a sequence of discrete paths Pi , and then extract a subsequence
converging to a curve γ : [0, 1] → X . In this subsection, we give the definition of conver-
gence that we use and the main results for it.

First, to define our notion of convergence we fix an isometric Kuratowski embedding
ι : X → �∞(N), and identify X with its image under this embedding. A priori the notions
that followmay depend on the choice of such an embedding. For our ultimate argument, such
a dependence will play no role, and thus we do not analyse it much further. However, we
will later indicate, how to prove that the definitions, in fact, are independent of the choice of
such an embedding.

For a subset A ⊂ X and x ∈ A, the distance from a to A is given by d(x, A) :=
infa∈A d(a, x). If P = (p0, . . . , pn) is a discrete path, we define its linearly interpolating
curve as follows. If Len(P) = 0, we define γP : [0, 1] → �∞(N) by γ (t) = p0 for each
t ∈ [0, 1]. If Len(P) > 0 we define the sequence of interpolating times TP = (t0, . . . , tn)
by t0 = 0 and tk = ∑k−1

i=0 d(pi , pi+1)/Len(P) for k = 1, . . . , n. Then, we define γP :
[0, 1] → �∞(N) piecewise by linear interpolation in �∞(N): we set γP (tk) = pk , and when
t ∈ [tk, tk+1] and tk+1 > tk , we set γ (t) = ((t − tk)pk + (tk+1 − t)pk+1)(tk+1 − tk)−1. The
following lemma is elementary to verify.

Lemma 2.15 If P is a discrete path, and γP is its linearly interpolating curve, then γP

is Len(P)-Lipschitz, parametrized by constant speed, Len(P) = Len(γP ) and for each
t ∈ [0, 1] there exists a point p ∈ P ⊂ X so that d(γP (t), p) ≤ Mesh(P).

We say that a sequence of discrete paths Pi converges to a curve γ : [0, 1] → X , if γPi

converges uniformly to γ and if limi→∞ Mesh(Pi ) = 0. While we do not need this, we
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note that this notion of convergence does not depend on the embedding to �∞(N) and could
be defined intrinsically. Indeed, we could also define paths with jumps γ ′

P : [0, 1] → X
piecewise: if t ∈ [tk, tk+1) we set γP (tk) = pk . Then, we say that Pi converges to γ if
γ ′
Pi converges uniformly to γ. It is straightforward to show that these two definitions are

equivalent. However, by using the linearly interpolating curves we avoid some unfortunate
technical issues later.

We need compactness results for discrete paths. First, we give a simpler compactness
statement in order to illustrate the main idea in the setting where X is compact.

Lemma 2.16 If X is a compact metric space, and if {Pi }i∈N is a sequence of discrete paths
with limi→∞ Mesh(Pi ) = 0 and supi∈N Len(Pi ) < ∞, then there exists a subsequence ik
so that Pik converges to a curve γ : [0, 1] → X.

Proof Let γPi : [0, 1] → �∞(N) be the linearly interpolating curves and L :=
supi∈N Len(Pi ) < ∞. To prove the claim, we first need to show that the sequence of linearly
interpolating curves γPi satisfies the assumptions of Lemma 2.11. First, Lemma 2.15 gives
that each γPi is L-Lipschitz. Second, let t ∈ [0, 1], and consider At := {γPi (t) : i ∈ N}. We
will show that At is precompact in �∞(N) by showing that At is totally bounded.

Fix η > 0, and N ∈ N so that for i ≥ N we have Mesh(Pi ) ≤ η. Let K := X ∪
{γP1(t), . . . , γPN (t)}. We claim that d(a, K ) ≤ η for each a = γPi (t) ∈ At . For each
i ≤ N this claim is trivial. For each i > N , by Lemma 2.15, there exists a pi ∈ Pi so that
d(γPi (t), pi ) ≤ Mesh(Pi ) ≤ η. Since pi ∈ X , we have d(γPi (t), X) ≤ η.

The set K is compact, and thus totally bounded. Thus, we can find points x1, . . . , xM ∈
K so that K ⊂ ⋃M

j=1 B(x j , η). Combining with the previous paragraph, we get At ⊂⋃M
j=1 B(x j , 2η), which proves the totally boundedness since η > 0 is arbitrary.
Now, by Lemma 2.15, we have that a subsequence of γPi converges to some curve

γ : [0, 1] → �∞(N). By Lemma 2.15, for each t ∈ [0, 1], we have d(γ (t), X) ≤
lim supi→∞ d(γPi (t), X) ≤ limi→∞ Mesh(Pi ) = 0, and thus the image of γ is contained
in X . ��

If we were to work only in proper metric spaces, the previous lemma would be quite
sufficient for the proof of Theorem 1.1. However, for non-proper spaces, we need to force
the discrete curves to “not pass far” from a sequence of compact sets.

First, let {Kn}n∈N be an increasing sequence of non-empty compact sets Kn ⊂ X , with
Kn ⊂ Km for n ≤ m. One should imagine these sets coming from the tightness of the
measure μ on the complete and separable metric space X . We call a sequence of continuous
bounded functions hn : �∞(N) → [0,∞] defined by

hn(x) :=
n∑

k=1

min{nd(x, Kk), 1}. (2.17)

a good sequence of functions for {Kk}k∈N.
These functions penalize paths that travel far away from the compact sets Kn . Indeed,

if d(x, Kn) ≥ η, then hn(x) ≥ nmin{nη, 1}. If we assume that a sum involving hn over a
discrete path P is controlled, then we can use this bound effectively to conclude that P is
contained within an η-neighborhood of Kn (for some n ∈ N).

Since the proof of the following Lemma is nearly identical to the previous Lemma, we
will slightly abbreviate the proof, and utilize the same notation.

Lemma 2.18 Let Kn ⊂ X be an increasing sequence of compact sets and let M, L,� > 0
be constants. Let further hn be a good sequence of functions for {Kk}k∈N. If {Pi =
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(pi0, . . . , p
i
n(i))}i∈N is a sequence of discrete paths, with limi→∞ Mesh(Pi ) = 0,

supi∈N Len(Pi ) ≤ L, inf i∈N diam(Pi ) ≥ � and

n(i)−1∑
k=0

hi (p
i
k)d(pik, p

i
k+1) ≤ M

for each i ∈ N, then there exists a subsequence of Pi which converges to a curve γ : [0, 1] →
X.

Proof The proof proceeds in the same way as Lemma 2.16. First, for every i ∈ N the
linearly interpolating curve γPi is L−Lipschitz. Second, if a subsequence of γPi con-
verges to some curve γ : [0, 1] → �∞(N), then by Lemma 2.15, we have d(γ (t), X) ≤
lim supi→∞ d(γPi (t), X) ≤ limi→∞ Mesh(Pi ) = 0 for each t ∈ [0, 1], and thus the image
of γ is contained in X .

Thus, we only need to verify the second assumption of Lemma 2.11, i.e. that the set
At = {γPk (t) : k ∈ N} is precompact in �∞(N) for each t ∈ [0, 1]. Equivalently, we need to
show that it is totally bounded. This in turn is equivalent to the fact that for every η > 0 we
can find a compact set K so that d(a, K ) ≤ η for each a ∈ At .

Fix η > 0 and t ∈ [0, 1]. Fix N ∈ N so that Mesh(Pi ) ≤ η/8 for each i ≥ N . Then, fix
T := 8�η−1� + �2M min{η/8,�}−1�, and set Ñ := max{N , T }. Set K := KÑ ∪ {γPi (t) :
i = 1, . . . , Ñ }.

Take any i ∈ N and consider a = γPi (t) ∈ At . If i ≤ Ñ , we have d(γPi (t), K ) = 0 ≤ η.
Next, assume i ≥ Ñ . By Lemma 2.15, there exists a pi ∈ Pi so that d(pi , γPi (t)) ≤
Mesh(Pi ) ≤ η/8. If d(pi , KÑ ) ≤ η/2 for each i ≥ Ñ , then d(γPi (t), K ) ≤ η, and we are
done. Suppose therefore that we have some index i ≥ Ñ , with d(pi , KÑ ) ≥ η/2. We will
show that this leads to a contradiction and thus completes the proof.

Let Qi = (qi0, . . . , q
i
m(i)) ⊂ Pi be the largest sub-path of Pi which contains pi and

which is contained in B(pi , η/4). Since Mesh(Pi ) ≤ η/8, and diam(Pi ) ≥ �, we have
diam(Qi ) ≥ min{η/8,�}. Then, d(q, KÑ ) ≥ η/4 ≥ Ñ−1 for each q ∈ Qi . Thus,
d(q, K j ) ≥ Ñ−1 for each q ∈ Qi and j ≤ Ñ . In particular hi (q) ≥ hÑ (q) ≥ Ñ ≥
�2M min{η/8,�}−1�, where we used Formula (2.17). Thus,

m(i)−1∑
k=0

hi (q
i
k)d(qik, q

i
k+1) ≥ �2M min{η/8,�}−1�Len(Qi ) ≥ 2M .

Since Q ⊂ P , we have

2M ≤
m(i)−1∑
k=0

hi (q
i
k)d(qik, q

i
k+1) ≤

n(i)−1∑
k=0

hi (p
i
k)d(pik, p

i
k+1) ≤ M,

which is a contradiction. ��
We will also need a slightly technical lower semicontinuity statement reminiscent of [24,

Proposition 4]. The sums that appear in the statement, and in Lemma 2.18, should be thought
of as discrete Riemann sums.

Lemma 2.19 Let g : X → [0,∞] be a lower semicontinuous function, and assume that
{gi : X → [0,∞]}i∈N is an increasing sequence of continuous functions which converges to
g pointwise, with gi (x) ≤ g j (x) for each x ∈ X and each i ≤ j . If {Pi = (pi0, . . . , p

i
n(i))}i∈N

123



60 Page 16 of 23 S. Eriksson-Bique

is a sequence of discrete paths, with supi∈N Len(Pi ) < ∞ and which converges to a curve
γ : [0, 1] → X, then

∫
γ

g ds ≤ lim inf
i→∞

n(i)−1∑
k=0

gi (p
i
k)d(pik, p

i
k+1).

Proof Let γPi be the linearly interpolating curves to Pi and let L := supi∈N Len(Pi ). Use the
Tietze Extension Theorem to extend each gi : X → R to be a continuous function on �∞(N).
By constructing the extensions recursively and taking maxima, we can ensure gi ≤ g j for
i ≤ j . Extend the function g to all of �∞(N) by the formula g(x) := limi→∞ gi (x) where
x ∈ �∞(N). Since (gi )i∈N is an increasing sequence of continuous functions, it follows that
g is lower semicontinuous. Denote the extensions still by the same letter.

Fix for the moment an index i ∈ N and consider the function gi . Since γP j converges
uniformly to γ , when j → ∞, we have that the set K ⊂ �∞(N) formed by the union of
the images of the curves γP j ( j ∈ N) and γ is compact. On K , the function gi is uniformly
continuous.

Fix an ε > 0. Since gi |K is uniformly continuous, there exists a δ > 0 so that if x, y ∈ K
and d(x, y) ≤ δ, then |gi (x) − gi (y)| ≤ ε/L . Choose then N so large that Mesh(P j ) ≤ δ

for each j ≥ N . If TP j = (t j0 , . . . , t jn( j)) is the sequence of interpolating times for P j , then

d(γP j (t), p
j
k ) ≤ Mesh(P j ) ≤ δ for each t ∈ [t jk , t jk+1] (k = 0, . . . , n( j)−1). Consequently,

for each j ≥ N , we get∣∣∣∣∣∣
∫

γP j

gi ds −
n( j)−1∑
k=0

gi (p
j
k )d(p j

k , p
j
k+1)

∣∣∣∣∣∣

=
∣∣∣∣∣∣
n( j)−1∑
k=0

∫
γP j |[t jk ,t

j
k+1]

gi ds −
n( j)−1∑
k=0

gi (p
j
k )d(p j

k , p
j
k+1)

∣∣∣∣∣∣

=
∣∣∣∣∣∣
n( j)−1∑
k=0

∫
γP j |[t jk ,t

j
k+1]

(gi (·) − gi (p
j
k )) ds

∣∣∣∣∣∣
≤ Len(P j )ε/L ≤ ε.

On the last line we used the fact that Len(P j ) = Len(γP j ) by Lemma 2.15. Since ε > 0
was arbitrary, by sending j → ∞ we get

lim
j→∞

∣∣∣∣∣∣
∫

γP j

gi ds −
n( j)−1∑
k=0

gi (p
j
k )d(p j

k , p
j
k+1)

∣∣∣∣∣∣ = 0. (2.20)

By combining this with the lower semi-continuity of curve integrals (see e.g. the argument
in [24, Proposition 4]) and the fact that gi ≤ g j for i ≤ j , we have for each i ∈ N that

∫
γ

gi ds ≤ lim inf
j→∞

∫
γP j

gi ds
(2.20)= lim inf

j→∞

n( j)−1∑
k=0

gi (p
j
k )d(p j

k , p
j
k+1)

≤ lim inf
j→∞

n( j)−1∑
k=0

g j (p
j
k )d(p j

k , p
j
k+1).

123



Density of Lipschitz functions … Page 17 of 23 60

Now, by letting i → ∞ and by using monotone convergence on the left hand side, we
obtain the statement of the lemma. ��

2.4 Proof of Theorem 1.1

With the stage set, we are now able to prove themain theorem of the paper. The same proof, up
to cosmetic changes, also gives Theorem 1.2. The main change, is replacing the convergence
of fn in L p(X) with convergence in L1

loc, and instead of N
1,p(X) one employs the Dirichlet

space defined in [21, Section 7.1] (alternatively, see [3]).
The argument will first use cut-off functions and truncation to reduce the problem to

approximating non-negative and bounded functions with bounded support. This is based on
the following lemma.

Lemma 2.21 If Theorem 1.1 is true for every f ∈ N 1,p(X) with f : X → [0, M] for some
M > 0 and with f |X\B(x0,R) = 0 for some x0 ∈ X , R > 0, then Theorem 1.1 is true for all
f ∈ N 1,p(X).

Proof Let f ∈ N 1,p(X) be arbitrary. We will reduce the claim of Theorem 1.1 to first non-
negative functions, and then to bounded functions, and finally to ones with bounded support.
Reduction to non-negative: We can write f = f+ − f−, where f+ = max{ f , 0} and
f− = max{− f , 0} with f± ∈ N 1,p(X). Then g f = g f+ + g f− by [21, Proposition 6.3.22]1.
If Theorem 1.1 is true for f±, then we can find a sequence of functions f n± ∈ LIPb(X)

with lipa[ f n±] → g f± in L p(X). Let fn = f n+ − f n− and note that g fn ≤ lipa[ fn] ≤
lipa[ f n+] + lipa[ f n−]. Since lipa[ f n+] + lipa[ f n−] → g f+ + g f− = g f in L p(X), Lemma
2.9 gives that lipa[ fn] → g f and g fn → g f in L p(X). In other words, fn ∈ LIPb(X)

approximates f in energy. Thus, without loss of generality it suffices to prove the claim for
all non-negative functions f . Let f : X → [0,∞) be an arbitrary non-negative function
in N 1,p(X). Reduction to a bounded case: Consider functions fM = min{ f , M} for all
M > 0. Then, we have fM → f in L p(X) as M → ∞. By [21, Proposition 6.3.22], the
function gM := g f · 1X\ f −1[0,M] is a minimal p-weak upper gradient for f − fM . One
directly observes that gM → 0 in L p(X). Thus, fM converges to f in norm in N 1,p(X).
In particular, g fM → g f in L p(X). If Theorem 1.1 is true for each fM , then there exist
sequences { f nM }n∈N which converge in energy to fM and with lipa[ f nM ] → g fM in L p(X) as
n → ∞. By a diagonal argument, with M → ∞ together with n → ∞, we get the claim of
Theorem 1.1 for f .

Finally, we can assume that f ∈ N 1,p(X) and that for some M > 0 we have 0 ≤ f ≤ M .
Reduction to bounded support: Let x0 ∈ X be any fixed point, and consider the func-
tions fR(x) = f ψR(x), where ψR(x) = max{0,min{1, R − d(x0, x)}} and R ∈ N,
R > 0. The functions ψR are 1-Lipschitz and 0 ≤ ψR ≤ 1. Further, fR → f point-
wise and in L p(X). Further, the function f − fR has a weak upper gradient gR =
1X\B(x0,R−1)g f + f 1B(x0,R+1)\B(x0,R−1) as follows from the Leibniz rule in [21, Propo-
sition 6.3.28 and Proposition 6.3.22]. Thus gR → 0 and we get that fR → f in the norm of
N 1,p(X). Therefore, functions with bounded support are norm dense, and we can repeat the
argument in the previous step to obtain the lemma. Indeed, by assumption each fR admits a
sequence { f nR}n∈N of functions in LIPb(X) with f nR → fR in L p(X) and with g f nR

→ g fR
as n → ∞. Then, a diagonal argument concludes the proof. ��
1 This proposition states that if u, v ∈ N1,p(X) and u = v on a set A ⊂ X , then for μ-almost every x ∈ A
we have gu(x) = gv(x) for their minimal p-weak upper gradients.
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With this lemma, we are left to consider bounded non-negative functions with bounded
support. For such functions we construct the approximation by making appropriate choices
of g, A, δ in Formula (2.12). In the proof, we first state a goal for the proof that the choices
will guarantee, and show that reaching this goal suffices for the claim. After stating that goal,
we construct a sequence of approximations fn that reaches this goal for all large enough
n ∈ N . (The actual approximating sequence of f would be obtained by a diagonal sequence
involving sending ε > 0, which is introduced in the proof, to zero together with n → ∞.)
The tricky bit of the proof is showing a pointwise convergence result for the approximating
sequence fn , which is done using the lemmas above and a contradiction argument.

Proof of Theorem 1.1 By Lemma 2.21, we may assume that f ∈ N 1,p(X) satisfies f : X →
[0, M] for some M > 0 and f |X\B(x0,R) = 0 for some x0 ∈ X , R > 2. Further, let
g f ∈ L p(X) be the minimal p-weak upper gradient of f .
Goals of proof: Let ε ∈ (0, 1) be fixed. We will show that we can find functions gε ∈ L p(X)

and fε ∈ LIPb(X) so that gε ≥ lipa[ fε],∫
X

|gε − g f |pdμ ≤ ε, (2.22)

and ∫
X

| f − fε |pdμ ≤ ε. (2.23)

The claim of the theorem then follows directly from Lemma 2.9 by using the inequality
lipa[ fε] ≥ g fε and by choosing a sequence of ε with ε ↘ 0.
Choice of gε and gn : First, by Remark 2.2, we can choose a lower semicontinuous upper
gradient g1 of f so that g1 ≥ g f and∫

X
|g1 − g f |pdμ ≤ ε4−2p. (2.24)

Further, since 0 is an upper gradient for f when restricted to the set X \ B(x0, R), we can
set g1(x) = g f (x) = 0 for all x ∈ X \ B(x0, R). Indeed, if g1 is any upper gradient, which
does not satisfy this property, we may modify it to satisfy this equation. This modification
preserves the lower semi-continuity property and the property of being an upper gradient.
The latter of these is seen directly from the definition of being an upper gradient as follows.
Decompose the curve appearing in Definition (2.1) to the open set γ −1(B(x0, R)), which
is an at most countable union of open intervals, and to the compact set γ −1(X\B(x0, R)),
where f = 0. By applying (2.1) to each of the open intervals comprising γ −1(B(x0, R)),
and by summing over them, we obtain (2.1) for the curve γ .

By Lusin’s theorem and inner regularity of μ, we can choose an increasing sequence of
compact sets Kn ⊂ B(x0, 2R) so that μ(B(x0, 2R) \ Kn) ≤ εn−p4−n−2p and so that f |Kn

is continuous. Since Kn is an increasing sequence of sets, we get
∫
X

( ∞∑
n=1

1B(x0,2R)\Kn

)p

dμ ≤
∞∑

m=2

∫
Km\Km−1

( ∞∑
n=1

1B(x0,2R)\Kn

)p

dμ

≤
∞∑

m=2

μ(Km \ Km−1)(m − 1)p ≤ ε4−2p−2. (2.25)

Choose a σ ∈ (0, 1) so that μ(B(x0, 2R))σ p ≤ ε4−2p , and define again ψ2R(x) =
max{0,min{1, 2R − d(x0, x)}}. Since R > 2, we have ψ2R |B(x0,3R/2) = 1 and
ψ2R |X\B(x0,2R) = 0.
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Define

gε(x) := g1(x) + σψ2R(x) +
∞∑
n=1

1B(x0,2R)\Kn (x). (2.26)

Inequality (2.22) follows from (2.25), (2.26) and (2.24). Also, gε is lower-semicontinuous.
By Baire’s theorem for lower semicontinuous functions, cf. [21, Proposition 4.2.2], we

can find an increasing sequence of bounded continuous functions {g̃n}n∈N converging to g1
with 0 ≤ g̃m ≤ g̃n ≤ g1 for m ≤ n. Define

gn(x) = g̃n(x) + σψ2R(x) +
n∑

k=1

min{nd(x, Kk), 1B(x0,2R)(x)}. (2.27)

From this definition, we get that gn ≤ gm for n ≤ m, that 0 ≤ gn ≤ gε and that gn converges
pointwise to gε as n → ∞. Finally, choose L ∈ N so that μ(B(x0, 2R) \ KL) ≤ ε(2M)−p ,
and define the closed set A := KL∪X\B(x0, R). Since f |KL and f |X\B(x0,R) are continuous,
the function f |A is continuous.

We remark, that in definitions (2.26) and (2.27), we could avoid adding the summation
term to gε and gn if the space X was proper. This is one place where properness would yield
a simplification. In this case, later in the proof we would use the simpler Lemma 2.16 (with
a bounded subset B(x0, 2R) replacing X ) instead of Lemma 2.18.
Approximating sequence fn : Define for each n ∈ N the approximating function fn with data
( f , gn, A, M, n−1) by the formula

fn(x) := min

{
M, inf

p0,...,pN
f (p0) +

N−1∑
k=0

gn(pk)d(pk, pk+1)

}
, (2.28)

where the infimum is taken over all (n−1, A, x) admissible discrete paths (p0, . . . , pN ).
Since gn is bounded and continuous for each n ∈ N, Properties A, B, E and F of Lemma

2.13 yields that that fn : X → [0, M] is a Lipschitz functions with
lipa[ fn] ≤ gn ≤ gε and 0 ≤ fn |A ≤ f |A.

Further, Property C of Lemma 2.13 gives that fn(x) = 0 for each x /∈ X \ B(x0, R). Thus
fn ∈ LIPb(X).
The main step remaining is to show that for each x ∈ KL we have limn→∞ fn(x) = f (x),

that is the task is to prove pointwise convergence on KL . Indeed, suppose that we have shown
this. Note that fn(x) = f (x) = 0 on A \ KL , since A \ KL ⊂ X \ B(x0, R). By Lebesgue
dominated convergence, since fn, f : X → [0, M], we get for n large enough that

∫
A

| fn − f |p dμ =
∫
KL

| fn − f |p dμ ≤ ε/2.

We have fn(x) = f (x) = 0 for x ∈ X\B(x0, R) and fn(x), f (x) ∈ [0, M] for x ∈
B(x0, R)\KL . Thus, from the choice of L and the fact X = A∪ (B(x0, R) \ KL), we get for
n ∈ N large enough

∫
X

| f − fn |p dμ =
∫
A

| f − fn |p dμ +
∫
B(x0,R)\KL

| f − fn |p dμ

≤ ε/2 + Mpμ(B(x0, R) \ KL) ≤ ε.
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Thus, the function fε = fn for n large enough and gε realize all the aspects of the goal of
the proof. We are left to show that fn |KL converges to f |KL pointwise.2

Pointwise convergence limn→∞ fn(x) = f (x) for x ∈ KL : For the sake of a contradiction,
assume that there exists some x ∈ KL ⊂ B(x0, R) for which pointwise convergence fails.

For n ≥ m we have gn ≥ gm . Thus fn ≥ fm , since for each x ∈ X any (n−1, A, x)-
admissible path is also (m−1, A, x)-admissible. Thus, the sequence { fn(x)}n∈N is increasing
in n ∈ N. By Lemma 2.13 we have fn(x) ≤ f (x) for each n ∈ N. Thus, the limit
limn→∞ fn(x) exists. Since the limit is not equal to f (x), there exists a constant δ > 0,
so that limn→∞ fn(x) ≤ f (x) − δ.

Because f (x) ≤ M , we get fn(x) ≤ M − δ for each n ∈ N. From the definition of fn(x)
in Formula (2.28), we obtain discrete paths Pn = (pn0 , . . . , p

n
Nn

) which are (n−1, A, x)-
admissible, and with

f (pn0 ) +
Nn−1∑
k=0

gn(p
n
k )d(pnk , p

n
k+1) < f (x) − δ/2 ≤ M . (2.29)

Our contradiction will be obtained by finding a curve in the limit of these discrete paths.
Recall, that (n−1, A, x)-admissibility means that pn0 ∈ A,Mesh(Pn) ≤ n−1 and pnNn

= x .
First, we restrict to a sub-path. Let Qn = (qn0 , . . . , qnMn

) be the largest sub-path of Pn

with qnMn
= x and with Qn ⊂ B(x0, 3R/2). We show that Qn is (n−1, A, x) admissible

and satisfies Estimate (2.30). Since Qn ⊂ Pn , it is clear that Mesh(Qn) ≤ n−1. Further, by
construction qnMn

= x . Thus, we need to check that qn0 ∈ A.

If Qn = Pn , then clearly Qn is (n−1, A, x)-admissible and f (qn0 ) = f (pn0 ) and (2.30)
is immediate. Next, assume that Qn

� Pn . Recall that at the beginning of the proof we
assumed R > 2. Since Mesh(Pn) ≤ 1 < R/2 and since Qn is the largest sub-path with the
given inclusion, we must have qn0 ∈ B(x0, 3R/2)\B(x0, R). Thus, qn0 ∈ A, and Qn is still
(n−1, A, x)-admissible. Also, 0 = f (qn0 ) ≤ f (pn0 ). These give that

f (qn0 ) +
Mn−1∑
k=0

gn(q
n
k )d(qnk , qnk+1) ≤ f (pn0 ) +

Nn−1∑
k=0

gn(p
n
k )d(pnk , p

n
k+1)

< f (x) − δ/2 ≤ M . (2.30)

We will show that {Qn}n∈N satisfies the assumptions of Lemma 2.18. This consists of
verifying the mesh, length, diameter and h-sum conditions for a good sequence of functions.
Recall the definition of a good sequence of functions for {Kn}n∈N:

hn(x) :=
n∑

k=1

min{nd(x, Kk), 1}. (2.31)

Here is another point, where properness would simplify the proof. If X was proper, we
would only need to verify the mesh- and length- conditions and use Lemma 2.16. No h-sum
condition or diameter condition or good sequence of functions would be involved.

(1) Mesh condition limn→∞ Mesh(Qn) = 0: We have

lim
n→∞Mesh(Qn) ≤ lim

n→∞ n−1 = 0,

2 After showing this, Dini’s Theorem with fn ≤ fm for n ≤ m, implies that fn |KL converges uniformly to
f |KL . We do not need this claim here.

123



Density of Lipschitz functions … Page 21 of 23 60

since Qn is (n−1, A, x)-admissible.
(2) Length bound supn∈N Len(Qn) < ∞: Fix n ∈ N. Recall (2.27), Qn ⊂ B(x0, 3R/2)

and R ≥ 2. The definition of ψ2R guarantees that ψ2R |B(x0,3R/2) = 1. Thus, we get
gn(q) ≥ σ for every q ∈ Qn . By (2.30) and by setting L := σ−1M we get

Len(Qn) = σ−1
Mn−1∑
k=0

σd(qnk , qnk+1)

≤ σ−1

(
f (qn0 ) +

Mn−1∑
k=0

gn(q
n
k )d(qnk , qnk+1)

)
≤ L, (2.32)

for all n ∈ N.

(3) Diameter bound infn∈N diam(Qn) > 0: Fix n ∈ N. We stated earlier in the proof that
f |A is continuous. Thus, we can find a constant � > 0 so that y ∈ A and d(x, y) ≤ �

imply that | f (x) − f (y)| ≤ δ/4. We get f (qn0 ) < f (x) − δ/2 from Inequality (2.30).
Since qn0 ∈ A, we get d(qn0 , x) = d(qn0 , qnMn

) ≥ �. In particular, diam(Qn) ≥ �.
(4) h-sum bound:Let hn be the good sequence of functions for {Kn}n∈N. Note that, by defini-

tion (2.31), hn |B(x0,2R) ≤ gn |B(x0,2R). Inequality (2.30) together with Qn ⊂ B(x0, 2R)

thus gives

Mn−1∑
k=0

hn(q
n
k )d(qnk , qnk+1) ≤

Mn−1∑
k=0

gn(q
n
k )d(qnk , qnk+1) ≤ M .

As a consequence, Lemma 2.18 shows that a subsequence of Qn converges to a curve
γ : [0, 1] → X . We now pass to this subsequence.

Since qn0 ∈ A, A is closed and limn→∞ qn0 = γ (0), we get that γ (0) ∈ A. Similarly,
γ (1) = x . Recall that f |A is continuous. Therefore, f (γ (0)) = limn→∞ f (qn0 ). Recall that
the increasing sequence of functions gn converges pointwise to gε . FromLemma 2.19 applied
to Qn, γ, gn and gε , we obtain

f (γ (0)) +
∫

γ

gε ds
2.19≤ lim inf

n→∞ f (qn0 ) +
Mn−1∑
k=0

gn(q
n
k )d(qnk , qnk+1)

(2.30)≤ f (γ (1)) − δ/2.

We obtain

f (γ (1)) − f (γ (0)) >

∫
γ

gε ds,

which contradicts gε being a true upper gradient. ��
Remark 2.33 The proof above shows a more technical statement, which we highlight for
purposes of future work. Suppose that f is non-negative, boundedly supported in B(x0, R)

and bounded by M and has a lower semi-continuous upper gradient g1. Then, let σ > 0 be
arbitrary and take any increasing sequence of compact sets Kn as in the statement and define
the function gε as in (2.26). By the proof, for every L ∈ N, there is a sequence of Lipschitz
functions fm with lipa[ fm] ≤ gε and fm → f pointwise on each compact set KL . Further,
if X is proper we do not need to modify gε with the summation term. Also, if g1 is bounded
below on B(x0, 2R), we do not even need to add σψ2R , which is only added to ensure the
length bound for Qn .

Additionally, the proof shows the following: if f is a continuous function with bounded
support, then we do not need to consider the exhaustion by compact sets Kn and get con-
vergence on all of A = X . (This may be useful, for example, if f is continuous but not
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Lipschitz. On the other hand, even if f is Lipschitz, one could have lipa[ f ] > g f , and wish
to construct approximations.)

A natural follow upworkwould consider these techniques in other Banach function spaces
and associated Newton-Sobolev spaces, such as authors have done in [8, 17, 18, 36]. See
also the versions in general Banach function spaces in [33]. In these other function settings,
one would need to first ensure a lower semi-continuous upper gradient g1 which is close in
norm to the minimal one (by a version of Vitali-Carathéodory as in Remark 2.2 and [32]).
Then, check an appropriate version of Lemma 2.9. Finally, one would need to argue that the
choices of Kn and σ can be made so that gε and g1 are close in norm – which relies on some
absolute continuity and monotone convergence in the applicable Banach function space. If
one wishes, in proper metric spaces this should be slightly easier. For this argument, some
form of Vitali-Carathéodory theorem holding for the Banach function space seems necessary,
see [33]. Further ideas or techniques, such as some form of differential structure, would be
needed to upgrade the density in energy to density in norm. For such ideas, see [11].
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