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A B S T R A C T   

Water shortage and scarcity are issues of global concern. Water pollution caused by organic micropollutants 
further aggravates the problem, by rendering an already scarce resource unfit for human consumption. The 
existing conventional wastewater treatment methods and infrastructure were not designed to eliminate micro-
pollutants. Therefore, their inefficiencies call for modern methods for removing emerging micropollutant resi-
dues such as Active Pharmaceutical Ingredients (APIs), Endocrine Disrupting Compounds (EDCs), personal care 
products and pesticides. The use of nanomaterials, for the abatement of micropollutants in water is gaining 
traction in recent years, due to the abundance of sustainable, cost-effective raw materials, especially plant ex-
tracts. Synthesis of nanoparticles and their application in removal of micropollutants in wastewater streams is 
addressed through this review.   

1. Introduction 

Diverse regions around the globe face water scarcity (Ngumba et al., 
2020; Madivoli et al., 2016). Aquatic pollution is increasingly making 
water unfit for human consumption (Basheer, 2018). Active pharma-
ceutical ingredients (APIs), and endocrine disrupting compounds (EDCs) 
are common emerging pollutants finding their way into water bodies, 
hence compromising water quality (González et al., 2020; Gonsioroski 
et al., 2020; Kairigo et al., 2020; Ngumba et al., 2020; Muriuki et al., 
2020). Pharmaceuticals such as antibiotics, steroids, and antiretroviral 
agents pose a serious threat to the environment and human health 
(Ngumba et al., 2016; Wanakai et al., 2022; Madivoli et al., 2020a). 
These emerging micropollutants, especially antibiotics, propagate the 
evolution of antimicrobial resistance among environmental microor-
ganisms (Kairigo et al., 2020; Wanakai et al., 2022). Research reveals 
that conventional methods used to treat wastewater do not provide 
complete removal of these pharmaceuticals (Kamaz et al., 2019; Nam 
et al., 2017; Rogowska et al., 2020). Hence the need to explore new 
strategies that can effectively and efficiently remove these pollutants 
from surface waters as they pose an existential threat to human civili-
zations around the globe. 

Previous studies have reported growing interest in use of nano-
materials for degradation and removal of aquatic contaminants (Anjum 
et al., 2019; Kokkinos et al., 2020a; Mukhopadhyay et al., 2021; Yunus 
et al., 2013). Popular nanomaterials of interest include metallic nano-
particles, biopolymers such as cellulose, chitin, chitosan among others; 
which extend to one-hundred nanometric dimensions (Kumari et al., 
2019; Madivoli et al., 2022). The nanomaterials possess unique prop-
erties compared to their bulk counterparts. For instance, they exhibit 
improved surface area to volume ratio, enhanced adsorption capacity of 
micropollutants, ease of regeneration and higher selectivity in removal 
of pollutants from various environmental matrices such as water, soil 
and air (Roy et al., 2021; Madivoli et al., 2016). The increasing envi-
ronmental pollution from textile, heavy metals, pharmaceutical and 
chemical industries drive the need for use of nanoparticles to remove 
these pollutants from different matrices (Handojo et al., 2020). 
Continued water pollution makes metallic nanoparticles appropriate 
candidates for pollution remediation, which is not possible with con-
ventional wastewater treatment methodologies widely practiced 
(Kumari et al., 2019). A critical discussion of various synthesis methods 
for metallic nanoparticles and their application in the removal of 
micropollutants in wastewater have been addressed in this review. 
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Special emphasis has been given to green synthesis of metallic nano-
particles using plants extracts due to their capping and stability potential 
which prevents agglomeration (see Table 1). 

2. Synthesis of Metal Nanoparticles 

Metallic nanoparticles can be obtained using various approaches, 
which include either physical, chemical, biological methods or a com-
bination of these (Fig. 1; Ijaz et al., 2020; Iravani et al., 2014; Tulinski & 
Jurczyk, 2017). 

These methods are classified either under top-down or bottom-up 
approach but both are employed to exploit the novel properties of 
matter at the atomic and molecular levels. In principle, the top-down 
approach creates materials at the nanoscale by use of large micro-
scopic devices that are externally controlled while the bottom-up 
approach utilizes molecular components that build complex structures 
by means of chemical reactions among the atoms/ions/molecules (De 
Oliveira et al., 2020). These strategies which employing the use of either 
physical and chemical techniques comprise of solvothermal synthesis, 
sol–gel methods, laser ablation, chemical reduction, ball milling, ion 
sputtering, and biological reduction methods (De Oliveira et al., 2020). 
However, these techniques often involve complex processes, form pre-
cipitates that are mostly amorphous, have high energy requirements 
with difficulties in controlling the growth rate of the metal nanoparticles 
and often pose environmental risks. It’s also worth noting, that these 
approaches often give rise to multi-shaped nanoparticles that require 
purification steps which leads to low yields. Therefore, the development 
of sustainable experimental protocols to produce nanomaterials using 
ingenuine techniques such as biological entities is a worthwhile venture 
as they mitigate against all this cons. Hence the current drive in utili-
zation of biological methods which employ the use of microorganisms 
such as fungi, bacteria such as Geobacter sulfurreducens (Chabert et al., 
2020; Khan et al., 2020; Vasylevskyi et al., 2017), Escherichia coli and 
secondary metabolites from various plant species are increasingly 
attracting attention due to their safety, simplicity and ease of nano-
particles production (Gavamukulya et al., 2020; Madivoli et al., 2020b; 
Nyabola et al., 2020). In the preceding sections, a detailed explanation 
of physical, chemical and biological methods will be discussed in more 

detail outlining the pros and cons of each technique. 

2.1. Chemical methods 

In this approach, chemical reducing agents are used to reduce metal 
ions into their corresponding metallic nanoparticles. Some chemical 
methods of nanoparticle synthesis utilize chemical generated from 
organic matter while others use inorganic precursors (Iravani et al., 
2014; Schütte et al., 2017). For instance, titanium oxide nanoparticles 
were synthesized by the sol–gel method by the dissolution of titanium 
chloride using urea in an ice bath (Madivoli et al., 2020a). In this study, 
the authors obtained crystalline TiO2 NPs with diameters ranging be-
tween 200 - 1000 nm in size. The nanoparticles had TiO2NPs crystalline 
peaks at 101, 004, 200, 105 and 204 planes as observed from XRD dif-
fractograms with TiO2NPs vibrational peaks observed at 3406 cm− 1 and 
3107 cm− 1 in the IR spectra. Similarly, Ahmad et al. (2021) synthesized 
TiONPs with an average size of 18.3 nm using titanium tetra isoprop-
oxide, glacial acetic acid and double distilled water. The obtained 
TiONPs nanoparticles exhibited XRD peaks at 2theta values of 101, 103, 
004,200, 105, 211, 204, 116 and 220 planes. In another study, (Mushtaq 
et al., 2020) obtained TiO2NPs with sizes ranging between using a 
simple sol–gel method. 

Production of silver nanoparticles was achieved using chemical 
reduction of silver ions employing reducing agents such as sodium 
borohydride (Diantoro et al., 2015) where the researchers obtained 
silver nanoparticles of 24.3 diameter size. In that study, the 2theta 
values were 111, 200, 220, 311, and 222 planes which are unique for 
metallic silver nanoparticle. In another study, synthesis of silver nano-
particles from silver nitrate salt using combination of sodium citrate and 
tannic acid of average size of 30 nm were obtained (Ranoszek-Soliwoda 
et al., 2017). Additionally, synthesis of copper nanoparticles was ach-
ieved using wet chemical reduction of copper sulfate solution and hy-
drazine (Sierra-Ávila et al., 2015). In that study, a mixture of allyamine 
and polyallylamine was used as stabilizing agents to obtain copper 
nanoparticles of about 31 nm in size. Khan et al. (2015) reports syn-
thesizing copper nanoparticles by reduction of copper (II) sulfate pen-
tahydrate salt precursor and capping agent as starch to obtain 
nanoparticles with an average size of 28.73 nm. In another study, 

Table 1 
A summary of removal efficiencies of organic pollutants using Nanoparticles.  

Pollutants Specific pollutants Type of nanomaterial Removal Efficiencies References 

Antibiotics tetracycline, Piperacillin, 
Tazobactam, Ethromycin 

magnetite nanoparticles (Fe3O4) Exhibited more 90 % removal (Stan et al., 2017) 

Ampicillin, Amoxicillin, Penicillin Functional bentonite-support 
nanoparticles Fe/Ni (B-Fe/Ni) 

80.6 %, 94.6 %, 53.7 % Respectively (Weng et al., 2018) 

Ceftriaxone, Cefadroxil Zero-valent copper nanoparticle Greater than 85 % for 20 min (Oliveira et al., 2018b) 
Sulfamethoxazole, rifampicin (Fe3O4) 90 % (Stan et al., 2017; 

Wanakai et al., 2022) 
Mitoxantrone Manganese nanoparticles 77.3 % (real samples) and 97.4 % (lab samples). (He et al., 2021b) 
Levofloxacin Combination of ZnO and Graphene oxide 

nanoparticles 
99.2 % removal at 50 umL− 1 and 99.6 % at 
400umL− 1 concentrations 

(El-Maraghy et al., 
2020b) 

Steroids Estrone, 17-alpha ethinylestradiol Biogenic manganese oxide nanoparticles 100 % removal for 5 h (Furgal et al., 2014) 
17β-estradiol and 17α-ethynyl 
estradiol 

graphene nanomaterials  (Jiang et al., 2017b) 

Progesterone and testosterone 
Estradiol and Estrone 

Titanium oxide nanoparticles 44 % and 33 % respectively 80 % (Lotfi et al., 2022b) 

Pesticides Deltamenthrin, Cyhalothrin, 
Bifenthrin 

magnetite nanoparticles (Fe3O4) 80.2 % (Fan et al., 2017) 

Cypermethrin, chlorpyrifos CNTs 70 % (Hou et al., 2014) 
Heavy Metal 

ions 
Pb2+, Cu2+, Cd2+, Ni2+ Mesoporous magnetite NPs 98 %, 90 %, 87 %, 78 % respectively (Fato et al., 2019) 
Pb Magnetite nanocomposite/aluminium 

metal organic framework 
492 mg.g− 1 (Ricco et al., 2015b) 

Zn2+,Cd2+, Co2+

Pb2+, Hg2+, Cd2+
Graphene oxide NPs  246 mg.g− 1, 

106.3 mg.g− 1, 68.2 mg.g− 1, 602 mg.g− 1, 374 
mg.g− 1, 181 mg.g− 1 respectively 

(Yang et al., 2019) 

Cr4+, Pb2+, Cd2+ Magnetic Nickel-Ferrite Nanoparticles 85.21 % after 90 min, 77.41 % after 120 min, 
84.45 % after 90 min respectively 

(Khoso et al., 2021) 

Cu(II) Silica-coated magnetic nanoparticles 143 mg.g− 1 (Plohl et al., 2019)  
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platinum nanoparticles of about 10 nm were obtained by reduction of 
platinum ions using sodium borohydride and polyethyleneimine as 
reducing and protective reagents respectively (Nagao et al., 2017). 
Hussain et al. (2020) reported synthesizing gold nanoparticles using L- 
ascorbic acid and polyvinylpyrrolidone as reducing and stabilizing 
agents respectively in different solvent system to achieve nanoparticles 
in the size ranging from 22 to 219 nm. Both smaller (spherical nano-
particles) and bigger (varying shapes) nanoparticles were produced in 
this study depending on the polarity index of the reaction medium. 

While chemical reduction is appropriate strategy that can be 
employed to obtain metallic nanoparticles, it has a host of drawbacks. It 
results in the generation of toxic byproducts, which were reported to be 
more toxic than the intended target for removal hence a threat to the 
ecosystem (Rahimi and Doostmohammadi, 2019). The transfer of pol-
lutants between the phases has also been evident in the chemical 
methods for synthesizing nanoparticles (Ngumba et al., 2020; Gudi-
kandula & Charya Maringanti, 2016). These drawbacks make the 
method expensive to operate as they lead to generation of other envi-
ronmental pollutants that have unknown or adverse impact to the 
environment. 

2.2. Physical methods 

Several physical methods for the synthesis of metallic nanoparticles 
exist which include laser ablation, ultrasonication, ball milling, pyrol-
ysis, lithography and sputtering (Fig. 2). 

Due to its fast-processing times which provides better control over 
the size and shape of the nanoparticle’s particles, high yields and long- 
term stability of the generated nanoparticles, laser ablation is often 
considered an alternative to chemical synthesis methods. In this case, a 
solid surface is irradiated with a laser beam leading to a low flux plume 
which is evaporated or sublimated to form nanoparticles. For instance, 
copper nanoparticles with an average size of 51 nm with a quasi- 
spherical shape as evident from the SEM images have been obtained 
(Mohammed et al., 2019). In another study, zinc oxide nanoparticles 
were synthesized using spray laser pyrolysis in the range of 10 to 25 nm 
and with a hexagonal wurtzite structure observed from the TEM images 
(Reza et al., 2011). Evaporation-condensation method was employed in 
synthesis of zinc oxide nanoparticles (Vodop’yanov et al., 2017). Copper 
oxide nanoparticles of the size ranging from 3 to 40 nm have also been 
synthesized using induced laser ablation where the TEM images 
revealed the particles were nearly spherical in shape (Khashan et al., 

Fig. 1. Techniques used during synthesis of nanoparticles. Image created in biorender.com.  

Fig. 2. Physical methods for synthesis of metal nanoparticles (image created in biorender.com).  
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2015a). Induced laser ablation method has also been employed in the 
synthesis of copper oxide colloidal nanoparticles and silver nano-
particles (Iravani et al., 2014; Khashan et al., 2015b) Sputtering on the 
other hand involves the deposition of a thin film of nanoparticles 
generated by the collision of ions over a substrate followed by annealing. 
It is commonly referred to as physical vapor deposition and its efficiency 
is dependent on substrate type, duration of annealing, temperature used 
during deposition which all directly affect the size and shape of the 
nanoparticles (Khashan et al., 2015a). It has been used to synthesis 
platinum nanoparticles on a glycerol matrix at varying argon pressure 
(Caillard et al., 2021). In that study, platinum nanoparticles in the size 
range of 1.8 to 3.2 nm were obtained as pressure increased from 1.0 to 
9.0 Pa. In ball milling, the kinetic energy of the balls is transferred to the 
bulk material, which results in the reduction in grain size. In that case, 
parameters such as the type of mill, milling atmosphere, milling media, 
intensity, time and temperature were judicially selected because they 
play a major part in controlling the shape and size of the NPs. This 
technique has been used to obtain silver nanoparticles with an average 
crystal size of 28 nm by use of a high energy planetary ball mill (Khayati 
and Janghorban, 2012). Although the physical route for synthesis of 
metallic and metal oxide nanoparticles with uniformly-sized particles is 
employed, it is expensive because it involves energy intensive processes 
which make the whole process very costly (Almatroudi, 2020; Wu et al., 
2019). 

2.3. Biological methods 

Use of biological agents for synthesis of nanoparticles in cost- 
effective manner while ensuring minimal production of toxic byprod-
ucts was reported (Keat et al., 2015; X. Li et al., 2011). This approach 
utilizes reducing agents present in extracts from plants, intracellular and 
extracellular matrices of microorganisms such as fungi and bacteria 
(Chabert et al., 2020; Gavamukulya et al., 2020; Madivoli et al., 2020b, 
2022; Nyabola et al., 2020; Vasylevskyi et al., 2017) (Figs. 3-4). 

Microorganisms such as bacteria and fungi were used as reducing 
agents for metal ions in the biosynthesis of metal oxide nanoparticles 
(Singh et al., 2016). Silver nanoparticles were reportedly synthesized 
using THG-LS1.4, a Pseudomonas Sp. resulting to nanoparticles of 
irregular shape in the size ranging from 10 to 40 nm from the FE-TEM 
results (Singh et al., 2018a). In another study, silver nanoparticles 
were synthesized using BS-161R strain of Pseudomonas aeruginosa in 

which spherical nanoparticles were obtained with an average size of 13 
nm (Kumar and Mamidyala, 2011). Pseudomonas aeruginosa strain of 
ATCC 90271 were also utilized in the biosynthesis of gold nanoparticles 
which achieved nanoparticles ranging from 15 to 30 nm (Husseiny et al., 
2006). Another study utilized Bacillus niabensis 45 to synthesize spher-
ical gold nanoparticles ranging from 10 to 20 nm (Y. Li et al., 2016). 
Other microorganisms such as Acinetobacter baumannii were employed 
in synthesis of silver nanoparticles which were spherical in shape with 
size ranging from 37 to 168 nm (Shaker and Shaaban, 2017). In another 
study, Geobacter sulfurreducens were utilized in the synthesis of gold 
nanoparticles of an average size of 20 nm (Sultana et al., 2016). Despite 
their contribution in synthesis of metallic nanoparticles, use of micro-
organisms has limitations due to toxic nature of some bacteria and also 
the requirement of highly aseptic conditions in synthesis (Grasso et al., 
2020). Recently, focus has been redirected to a more cost-effective and 
environmentally friendly method for biosynthesizing metal and metal 
oxide nanoparticles using plant extracts as reducing and stabilizing 
agents (Bao et al., 2021) (see Fig. 5). 

The biomolecules contained in plant extracts such as phenols, tan-
nins, proteins, flavonoids and terpenoids were reported to be excellent 
reducing and stabilizing agents in the synthesis of metallic and metal 
oxide nanoparticles (Singh et al., 2018b). Copper oxide nanoparticles 
were synthesized using aqueous leaf extracts of Calotropis gigantea plant 
which were spherical in shape with an average size of about 20 nm 
(Sharma et al., 2015). Elsewhere, green synthesis of copper oxide 
nanoparticles was obtained using leaf extracts of Psidium guajava which 
resulted to mono-dispersed and spherical nanoparticles of average size 
of 6 nm (J. Singh et al., 2019). Green magnetite nanoparticles were 
synthesized using aqueous extracts of Cucumis sativus, Vitis vinifera, and 
Citrus limon for the removal of antibiotics from wastewater (Stan et al., 
2017). In this study, the crystalline size of magnetite nanoparticles using 
the Cucumis sativus, Vitis vinifera, and Citrus limon were 11 nm, 12 nm 
and 8 nm respectively with different shapes. In addition, tea extracts 
achieved the green synthesis of manganese nanoparticles for removal of 
mitoxantrone from wastewaters (He et al., 2021a) with the size of the 
synthesized nanoparticles ranging from 40 to 60 nm. In another study, 
(Ndikau et al., 2017) used Citrullus lanatus (watermelon) fruit extract to 
synthesize silver nanoparticles. In that study, the size of silver nano-
particles was reported to have an average diameter of about 17.96 nm 
which were spherical in shape. Similarly, (Wu et al., 2020) obtained 
copper nanoparticles using Cissus vitiginea extracts as antioxidant and 
antibacterial agents for urinary tract infection pathogens. Synthesis of 
nanoparticles using biological approaches is gaining popularity 
compared to physical and chemical methods (Bhardwaj et al., 2020; 
Pattanayak et al., 2021). The plant extracts contain biomolecules with 
functional groups capable of reducing metal ions into their nanoparticles 
sizes (Sharma et al., 2015). Furthermore it is economically viable, and 
eliminates the use of additional reagents because the extracts both 
reduce and stabilize the nanoparticles through capping (Wanakai et al., 
2022; Singh et al., 2018b). This method offers an eco-friendly way of 
synthesizing the nanoparticles (Jeevanandam et al., 2022). 

2.4. Mechanism of green synthesis of metallic nanoparticles using plant 
extract 

Phytochemicals in plant extracts such as terpenoids, flavonoids, 
phenolic compounds and alkaloids are characteristic reducing agents in 
the reduction of metal ions into metallic nanoparticles and metallic 
oxide nanoparticles (Jayachandran et al., 2021a). The rate of formation 
of metallic nanoparticles using plant extracts depends on extracts con-
centration, pH of the medium, temperature, and reaction or contact time 
between the metal ion solution and the plant extract. Studies have 
proposed the mechanism of synthesis of metallic nanoparticles using 
plants extracts (Qamar and Ahmad, 2021; Singh et al., 2018b). The 
common adopted mechanism involves three step process, an activation 
step where the metal ions are reduced triggering nucleus formation, a Fig. 3. Biological methods used to synthesize metal/metal oxide nanoparticle.  
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growth process where nanoparticle formation becomes stabilized, and a 
termination step which dictates the shape of the resultant nanoparticles 
(Jayachandran et al., 2021b). 

3. Application of nanoparticles in environmental remediation 

Utilization of metallic nanoparticles in the removal of antibiotics, 
steroids, heavy metals and pesticides from wastewater were reported in 
literature. Removal by adsorption is favored because of the sustain-
ability nature and diversity of the adsorbents. 

3.1. Removal of antibiotics 

The use of metallic nanoparticles in the removal of antibiotics in 
aqueous reservoirs was much more promising than the conventional 
methods used for wastewater treatment. The use of nanoparticles in 
antibiotic removal eliminates the drawbacks linked with wastewater 
treatment methodologies due to antimicrobial resistance (Ngumba et al., 
2016; Ngumba et al., 2020; Stan et al., 2017). The occurrence of residual 
antibiotics in the environmental compartments, especially below ther-
apeutic concentrations is a cause for concern due to their ability to fuel 
the development and propagation of antibiotic resistance among the 
environmental microorganisms (Bengtsson-Palme and Larsson, 2016; 
Kairigo et al., 2020; Tran et al., 2018). Antibiotic resistance is a global 
threat to public health (Lomazzi et al., 2019; Minarini et al., 2020) 
World Health Organization, 2021; (Zhang et al., 2022). 

Removal of trace-level antibiotic has been achieved using nano-
material adsorbents (Malakootian et al., 2019). Magnetite nanoparticles 

(Fe3O4) were reported to be effective adsorbents for the removal of 
tetracycline, rifampicin, ampicillin, tazobactam, piperacillin, sulfa-
methoxazole, ethromycin and trimethoprim antibiotics with a removal 
efficiency of more than 90 % (Stan et al., 2017; Wanakai et al., 2022). 
Antibiotics such as mitoxantrone (MTX) were successfully removed from 
wastewater using green synthesized manganese nanoparticles from 
synthetic and real water with a percentage removal efficiency of 97.4 % 
and 77.3 % respectively (He et al., 2021b). The same study reported that 
the method was cost-effective with increased adsorptive capacity. Lev-
ofloxacin was removed using a combination of zinc oxide nanoparticles 
and graphene oxide nanoparticles with a removal efficiency of 99.2 % 
and 99.6 % for 50 and 400 µg/ml concentrations respectively (El-Mar-
aghy et al., 2020a). Another study reported above 85 % removal effi-
ciency of β-lactam antibiotics, Cefadroxil and ceftriaxone using zero- 
valent copper nanoparticles (Oliveira et al., 2018a). Photodegradation 
of trimethoprim was achieved using Ni/TiO2-P25, Cu/TiO2-P25, Ag/ 
TiO2-P25, Au/ TiO2-P25 nanoparticles with 80 % degradation of the 
initial concentration (Oros-Ruiz et al., 2013). 

3.2. Removal of steroids 

Steroid hormones are micropollutants of concern, which affect early 
development and reproduction in aquatic and terrestrial organisms 
(González et al., 2020; Ojoghoro et al., 2021; Thrupp et al., 2018). The 
application of carbon-based nanoparticles has been employed for the 
removal of steroids in wastewaters (Nguyen et al., 2021). In the study 
faster adsorption of estradiol was observed in less than an hour on 
carbon nanoparticles. Under situ conditions, complete removal of 

Fig. 4. An illustration of the synthesis of metal/metal oxide nanoparticles by reduction of metal/metal oxide ions (image created in BioRender.com).  

Fig. 5. Mechanism of nanoparticles synthesis using plant extracts and metal salt, image modified from (Jayachandran et al., 2021b).  
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estrone and 17-alpha-ethinylestradiol were achieved using biogenic 
manganese oxide nanoparticles after 5 h (Furgal et al., 2014). Use of 
graphene nanomaterials demonstrated improved adsorption of 17β- 
estradiol and 17α-ethynyl estradiol (Jiang et al., 2017a). Moreover, the 
removal of oestradiol and oestrone (80 %) were achieved using titanium 
dioxide nanoparticles of sizes between 10 and 30 nm embedded in a 
polyethersulfone membrane (Lotfi et al., 2022a). In the same study, 
removal of progesterone, testosterone (44 % and 33 %) respectively was 
achieved. 

3.3. Removal of pesticides 

Application of nanomaterials in removal of pesticides in wastewater, 
agricultural effluents and drinking water was previously investigated. 
Graphene a carbon-based nanoparticle, was used in pesticide removal in 
water purification with a reported adsorption capacity range of 600 to 
200 mg/g of pesticides (Hesni, 2020; Moradi Dehaghi et al., 2014). 
Elsewhere, graphene modified with silica reported improved adsorption 
of organophosphorus pesticides in water (X. Liu et al., 2013). 

Metal nanocrystalline oxides such as titanium oxides, cerium oxides 
and magnesium oxides were employed for pesticide removal because of 
their high adsorption capacity. Degradation of residual organophos-
phate parathion methyl pesticide to less toxic products under conducive 
temperature ranges was achieved using nanocrystalline cerium (IV) 
oxide (Tolasz et al., 2020). The application of nanocrystalline metal 
oxides for the removal and destruction of organophosphorus pesticides 
is limited because of its cost implications (Saleh et al., 2020). Devel-
opment of other types of nanomaterials for environmental management 
of pesticide pollution in water is therefore necessary. 

3.4. Removal of heavy metals 

Nanomaterials are promising technology for the removal of heavy 
metal ions in water (L. Liu et al., 2019; Yang et al., 2019). Nanomaterials 
used for heavy metal removal in wastewater include metal oxide-based 
nanoparticles, zero-valent metal, nanocomposites and carbon-based 
nanomaterials (Yang et al., 2019). Synthesis and application of mag-
netic nanocomposite on aluminium metal–organic framework (MOF) 
achieved removal efficiency of 492.4 mg.g− 1 of lead (II) ions (Ricco 
et al., 2015a). Among the carbon-based nanomaterials, carbon nano-
tubes (CNTs) and graphene-based materials have been employed in 
heavy metal removal in water. The CNTs achieve heavy metal removal 
by chemical interactions of the metal ions and functional groups such as 
carboxylic and hydroxyl groups on the surface of the CNTs (Gupta et al., 
2016). Although the use of CNTs in the removal of heavy metals proves 
effective, it is limited due to its cost implication in a commercial 
application. In addition, CNTs form byproducts, which can be toxic, and 
their removal accrues additional costs. 

Graphene nanomaterials have also achieved heavy metal ions 
removal from wastewater. Lead (II), Mercury (II), Cadmium (II) have 
been removed using graphene oxide with an efficiency of 602, 374 and 
181 mg.g− 1 respectively (Yang et al., 2019). Studies show that silica- 
based nanomaterials achieve the removal of heavy metals. Functional-
ized silica nanospheres were reported to remove copper (II) ions from an 
aqueous water solution (Kong et al., 2014). 

4. Drawbacks in the use of nano adsorbents for water 
purification 

The environmental and health impact of both natural and engineered 
metal-based nanomaterials have not been extensively reported though 
their negative impact is associated with their small sizes or chemical 
properties especially for the mobile particles and not those incorporated 
into a material (Aragaw et al., 2021). None the less, their utilization in 
wastewater treatment will result in a significant increase in their con-
centrations in the aquatic environment where they will find their way 

into living organism causing health problems (Aragaw et al., 2021; 
Cervantes-Avilés and Keller, 2021). For instance, various nanoparticles 
have been found in influent, post-primary treatment, effluent of the 
activated sludge process and in the reclaimed water of a full-scale 
wastewater treatment plant (WWTP). In this case, the concentration of 
metal-based NPs in influent wastewater were found to range between 
1,600 – 10700 ng/L, while in reclaimed water they ranged between 0.6 
and 721 ng/L. It is worth noting while this study reported on what is 
found in the water cycle before and after passing a waste water treat-
ment plant they did not report on the impact of using various metal 
nanoparticles as the primary treatment method hence their contribution 
to these amounts as a result of leaching wasn’t reported (Cervantes- 
Avilés and Keller, 2021). However, they observed that the activated 
sludge process and reclaimed water system can be able to remove be-
tween 84 and 99 % of metal nanoparticles for most NPs under study 
though the removal of Mg, Ni, and Cd ranged between 70 and 78 %. 
Moreover, they also noted that the concentration of NPs was signifi-
cantly higher in the waste activated sludge samples than in the anaer-
obic sludge or waste water as the secondary treatment resulted in their 
precipitation hence this can be employed as a strategy to remove NPs 
(Cervantes-Avilés and Keller, 2021). 

Other drawbacks associated with use of nano adsorbents for removal 
of contaminants includes inability to recover and reuse them after 
treatment and their agglomeration in aqueous media brought about by 
strong van der Waals forces(Kokkinos et al., 2020b). Due to this, their 
water treatment efficiency is drastically reduced resulting in a flurry of 
strategies to stabilize them through surface coating using materials such 
as polymers, secondary metabolites, carbon, inorganic materials. 
Agglomeration control and recoverability is also enhanced if the nano-
particles are entrapped, anchored, or embedded in a polymetric matrix 
such as cellulose, chitosan, polyvinyl pyrrolidine among other polymers 
to obtain stable nanocomposites which makes their reusability and 
regenerability easier(Moreira et al., 2022). 

5. Recovery and regeneration of nano adsorbents. 

Recovery of nanoardsobents from water after the adsorption of 
micropollutants is paramount because it prevents downstream toxic 
effects in the natural environment. Similarly, regeneration of the 
recovered nano adsorbents makes it possible for them to be reused in 
new processes, thereby enhancing their sustainability. Nano adsorbent 
recovery techniques need designs that are efficient, simple to use, fast 
and sustainable in terms of cost and energy consumption. The most 
common methods for removal nanoparticles include application of a 
magnetic field for removal magnetic nanoparticles. Besides the magnetic 
methods, filtration and centrifugation are paramount in recovery of 
nano adsorbents(Moreira et al., 2022). 

Various technologies or combination of technologies have been used, 
as discussed above, to produce nano adsorbents with high adsorption 
capacity and selectivity for selected micropollutants of emerging 
concern. 

Regeneration methods are determined by the type of adsorbent and 
adsorbate, their stability and level of toxicity. Based on that, thermal, 
chemical and electrochemical methods have been used for regeneration 
of nano adsorbents from media (Khan et al., 2022; Moreira et al., 2022). 

6. Conclusion and recommendations 

This review highlights the increasing attention that nanotechnology 
is getting in regard to the environmental removal of aquatic contami-
nants. The efficiency that nanomaterials bring in their applications is 
crucial in addressing persistent water pollution. Different metallic 
nanoparticles have shown positive response in the removal and degra-
dation of water pollutants including, antibiotics, steroids, heavy metals 
and pesticides. This review also indicates that green synthesized nano-
particles, due to their cost-effectiveness, environmental friendliness and 
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easy-to-make procedures have also been highly considered for envi-
ronmental remediation of water pollution. However, the exploration of 
different plant extracts for the green synthesis of metal nanoparticles for 
pollutant removal from water need to be strengthened by continuous 
research in this area of the application of nanotechnology in environ-
mental remediation. This will advance the application of nanomaterials 
to curb environmental pollution caused by effluents from pharmaceu-
tical, textile and other chemical industries. 
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Orta, C., Pérez Camacho, O., Jiménez-Regalado, E., Hernández-Hernández, E., 
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