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Abstract 

The nuclear shell-model is used to calculate the nuclear matrix elements for the ordi­

nary muon capture and the muon-electron conversion. In the ordinary muon capture, 

various residual interactions are applied, and the results are compared to experimental 

data on capture rates and angular correlations. The renormalized single-particle transi­

tion operators are introduced and applied in 28Si and 20Ne. These renormalized operators

yield results, which are in better agreement with the predictions coming from the par­

tially conserved axial vector hypothesis than the results obtained with bare operators. 

The renormalization effects are found to be interaction-independent. Otherwise, different 

interactions can give very contradictory results. 

The single-particle matrix elements with Woods-Saxon radial wave functions are com­

pared to ones obtained with harmonic oscillator radial wave functions. The changes in 

the capture rates and angular correlation parameters are generally small, and they do not 

solve the discrepancies between the theory and experiment. 

The lepton-flavor violating muon-electron conversion in 27 Al and 48Ti is used to restrict 

the lepton-flavor violating parameters that are included in the extensions of the standard 

model. Various possible reaction mechanisms are investigated, and channel-by-channel 

calculations are carried out. The results show that the ground-state to ground-state tran­

sition dominates in the two nuclei considered. This increases the possibility of the detection 

of the muon-electron conversion. In addition, we have separately calculated the vector and 

axial vector contributions as well as isoscalar and isovector contributions. 
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Erratum 

The experimental error bars plotted in Fig. 2 of the Publication II are wrong. The correct 

values are given in the text. The corresponding limits are -2.3 � Gp/CA � 5.4 for the 

unrenormalized operators and 0.9 � Gp/CA � 7.6 for the renormalized operators. Also 

the matrix elements plotted in Fig. 1 of the same publication must be multiplied by the 

factor given in the erratum to the Publication I, ../2/ J2JJ + 1. 
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Chapter 1 

Introduction 

The four known fundamental interactions in nature are gravitational, weak, strong and 

electromagnetic. Gravitational forces are usually taken into account when macroscopic 

bodies and their interactions are considered. On the nuclear scale its role is neglible. The 

strong interaction is responsible for nuclear binding, which keeps protons and neutrons 

together in the nucleus. The theory of the strong interaction is quantum chromodynamics 

(QCD), but because of the complicated structure of the theory even the bare nucleon­

nucleon interaction has not yet been derived starting from the QCD. Instead, various 

parametrisations of the nucleon-nucleon potential are usually applied. The infinite-range 

electromagnetic interaction is crucial for the nuclear structure. Because of the Coulomb 

repulsion between protons, nuclei with N > Z are favoured. In addition, gamma-ray 

transitions between the nuclear energy levels are an important way of de-exciting the 

nucleus. The interaction considered in this work is the weak interaction. Electromagnetic 

and weak interactions are nowadays believed to be different manifestations of a single, 

more fundamental, electroweak interaction. When the strong interaction is included in 

the electroweak model, the standard model of particle physics is obtained. However, 

this model is not considered as the ultimate theory of particle physics, but as a very 

successful low-energy region approximation. In this work some processes which violate 

the conservation laws of the standard model are considered. 

Leptons are divided into three separate doublets, so-called families, as follows: the first 

doublet consists of electron and its neutrino, the second muon and its neutrino, and the 

third one tau-lepton and its neutrino. Each doublet has also a corresponding antiparticle 

doublet. The electron, muon and tau-lepton possess a finite mass, whereas the masses of 

the neutrinos are believed to be small, but not necessary zero. Each lepton family has an 

associated additive quantum number, the lepton number L;, where i = e, µ or r, defined 

to be +1 for type i lepton, -1 for type i antilepton, and zero for other particles. In the 

standard model lepton number is a conserved quantity. The building blocks of hadrons 

(strongly interacting composite particles) are the half-integral-spin quarks. The hadrons 

are further divided into half-integral-spin baryons (p, n, etc.) and integral-spin mesons 

(rr, p, etc.). All the leptons and hadrons experience the weak interaction. 

A well-known example of the weak process is the nuclear beta decay (A, Z) -+ (A, Z±l) 

1 



2 CHAPTER 1. INTRODUCTION 

+ e'F . In addition, electron antineutrino or neutrino is emitted. Closely related processes
are the orbital electron capture (EC), (A, Z) + e-;; ➔ (A, Z - 1) + Ve , and the orbital
muon capture, where an electron is replaced by a muon and electron neutrino by a muon
neutrino. All these decays can be classified into allowed and forbidden ones according to
the spin and parity change. For allowed transitions spin can change by O or 1 units, and
the parities of the initial and final nuclear states must be the same. Other transitions are
forbidden (they can be further classified as nth forbidden according to the spin and parity
change). The energy release in the ordinary beta decay is roughly 10 MeV at maximum.
This energy is divided between the three (two in EC) particles present in the final state,
thus producing a continuous spectrum (single peak in EC). The released energy is capable
of exciting many final states in the daughter nucleus.

Half-lives t1;2, or so-called comparative half-lives ft1;2, of the allowed beta-transitions 
are given by a simple expression 

I( 
fti;2 = C1B(GT) + ciB(F)'

(1.1) 

where f is a Fermi function, I( is a constant, Cv and CA are vector and axial vector 
coupling constants, and B(GT) and B(F) are reduced Garnow-Teller and Fermi matrix 
elements, respectively. The nuclear physics is hidden in these reduced matrix elements. 
It is a challenge even for the modern nuclear stucture theories to provide reliable values 
for these matrix elements. In the muon capture no such a simple expression as (1.1) for 
half-lives exists. This is due to a large energy release, of the order of 100 MeV, which 
produces many effects unseen in the beta-decay energy scale. These aspects are discussed 
in Sec. 3.1. In addition, such a high energy release is capable of exciting nearly all the 
nuclear energy levels, up to continuum. 

In the extensions of the standard model lepton-number violating processes can exist. 
Experimentally one of the most interesting ones is the negative-muon-electron conversion 
in the field of the nucleus, (A, Z) + µ-;; ➔ (A, Z)* + e-, where we have the same nucleus 
in the initial and final states. If the final state is the ground state, the reaction channel 
is called coherent. Otherwise one speaks about incoherent channels. Lepton number 
conservation is clearly violated since Lieft --1- Uight and £left --1- Uight Also the muon-, e , e µ , µ · 
positron conversion process is possible. It violates also the total lepton number L 

=

Le + Lµ + L7 conservation. Experimentally these processes have not been detected. Only 
the upper limits for the branching ratios have been extracted. 

In this series of publications collected together the nuclear stucture aspects of the 
above mentioned muonic processes are discussed. The involved nuclear matrix elements 
are calculated using the nuclear shell-model, combined with perturbative techniques for 
the single-particle matrix elements. The results for half-lives and other quantities are 
compared with experiment where data has been available. Thus the reliability of the 
shell-model matrix elements can be examined, and various badly-determined parameters 
can be restricted. 



Chapter 2 

Nuclear shell-model 

The basic assumption of the nuclear shell-model is the movement of a single nucleon in 
a mean field produced by the other A - l nucleons. This independent-particle motion 
is governed by the zeroth-order hamiltonian H(0) = I:f=1 [T(i) + U(r;)], where U(r;) is
the single-particle (usually harmonic oscillator) potential, taken to be spherically symmet­
ric. The realistic shell-model hamiltonian includes also the particle-particle correlations, 
usually restricted to two-body interactions. Then we have H = H(0) + H(l), where the 
residual interaction is given by 

A A 

H( 1) = L V(k, l) - L U(r;).
i=k<l i=l 

(2.1) 

The resulting hamiltonian matrix (H) is then diagonalized in the chosen subspace of the 
full Hilbert space. The results are somewhat dependent on the choice of the single-particle 
potential U(r): In practice, fl(l) is replaced by a genuine two-body interaction, i.e. 

H(l) = L V(k, l). (2.2) 

This is done self-consistently, if in the Hartree-Fock basis the condition 

L(khlVllh) = (klU(r;)ll) (2.3) 

is fulfilled. Here h labels the occupied states. Then diagrams containing the single-particle 
potential U(r;) are cancelled by the corresponding diagrams of V. One such example is 
shown in Fig. 2.1. In most shell-model calculations a harmonic oscillator single-particle 
basis is used and hence the self-consistency condition (2.3) is not fulfilled. However, the 
harmonic oscillator basis (or Woods-Saxon basis) is close enough to Hartree-Fock basis, so 
that the corrections are usually rather small. The introduction of the reaction or G-matrix 
complicates things, since then the double self-consistency is needed [1]. 

The residual interaction can be obtained in many ways. Simple schematic interactions, 
like the surface delta interaction (SDI), can give surprisingly good results in many cases. 
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4 CHAPTER 2. NUCLEAR SHELL-MODEL 

k k 

0--- ----x =0 

h 

I I 

Figure 2.1: One example of the cancellation of the diagrams that are included in Eq. (2.3). 

The one-particle potential U(r;) is denoted by a cross. 

These kind of interactions have typically only a few free parameters. On the other hand, 

all the two-body matrix elements and single-particle energies can be fitted to reproduce the 

selected set of experimental data. The resulting effective (that is, model-space dependent) 

interaction usually gives a very good description of the nuclei in the region where it 

was fitted. An example of this kind of approach is the universal sd-shell interaction 

(USD) by Wildenthal [2]. He fitted all 63 two-body matrix elements and 3 single-particle 

energies of the sd-shell to the ground-state and low-lying state properties of the selected 
set of nuclei. In the fit the two-body matrix elements were given an additional mass­

dependence. The method in-between (regarding the number of free parameters) is use of 
the realistic interactions. In this approach, theoretical machinery such as relativistic field 

theory is used to obtain a general form of the force. Then the free parameters of the model 
are fitted to experimental nucleon-nucleon scattering data. The infinite repulsive core of 

the resulting interaction Vrree must then be removed, since otherwise the perturbative or 

Hartree-Fock methods can not be applied. This problem can be solved by introducing the 

short range two-body correlations via reaction (G-) matrix, which takes into account the 

Pauli principle. In this approach, a certain class of diagrams is selected, namely the ladder 

diagrams, which are all summed. A formal equation for the G-matrix reads as (assuming 

that [Q2p, H(0)] = 0)

(2.4) 

where Q2p = 1- P is the Pauli exclusion operator for two-particle channel. It prevents the 

particles from scattering into occupied states. The G-matrix is a function of the so-called 

starting energy w, which is the unperturbed energy of the incoming particles. In Fig. 2.2 

the first few ladder diagrams that contribute to G-matrix are shown. The diagrammatic 

expansion for Vrree is then written in terms of G, so that no divergent two-particle ladder 

diagrams are present. If we write 

Vrree(r) � Vs(r)0(d - r) + VL(r)0(r - d), (2.5) 

then G ex VL(r) to a good approximation. Here Vs is the short-range part of the free­
nucleon potential, and VL is the long-range attractive part. The distance d � 1 fm [3] is 

the so-called separation distance, and 0(r1 - r2) is the step function. 
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= + + + ...

Figure 2.2: F irst few ladder diagrams that are included in the G-matrix (thick line). 

The dashed line is the free nucleon-nucleon interaction Vrree · All the vertical lines are of 

particle-type. 

In this series of works, various residual interactions are used. For pure sd-shell nuclei, 

like f�Si14, W ildenthal's USD interaction is a standard choice. We have, in addition, used 

the charge dependent CD-Bonn parametrisation [4, 5] of the modern meson-exchange 

model together with a G-matrix. In this non-local parametrisation, one-boson-exchange 

terms are the starting point. Correlated 1r1r S-wave contribution is included via a fictious 

one-o--exchange. As such, the CD-Bonn-based interaction is known to fail in reproducing 

the spectroscopic properties of e.g. 28Si and 28 Al, although the properties of deuteron and 

triton are very well reproduced [5]. To overcome this problem, some corrections are made 

to the two-body matrix elements. We have applied the scheme of Zuker [6], where the 

monopole part of the interaction is removed and then replaced by a phenomenological one. 

Also the single-particle energies are modified. The monopole part is propotional to the 

energy centroids 

(2.6) 

and it is responsible for the mass-dependence of the single-particle energies Ej and other 

mean-field properties (it does not include off-diagonal matrix elements of V which are 

responsible for additional correlations). The other interactions, used in Publication I, 

include the p-shell interaction P JT by Julies and Richter [7], the cross-shell p1;2d5;2s1;2 

interaction ZWM [8], the psd-shell interaction WBT [9], and the sd-shell interaction SD­

POTA of ref. [10). The center-of-mass correction is added to the WBT interaction. The 

ZWM results of Publication I should be considered as rough estimates, since the center­

of-mass correction is not included in the wave functions. Our recent tests have shown that 

the spurious part of the wave functions can be tens of percents for 160, 16N, 20Ne and 2°F

with the ZWM interaction. 

The modern shell-model codes work either in them- (uncoupled) or j- (coupled) scheme 

(Monte Carlo approaches are not discussed in this work). In the m-scheme the basis 

states do not have good angular momentum. However, the emerging eigenstates have the 

symmetries of the shell-model hamiltonian, i.e. good angular momentum and parity (and 

isospin, if an isospin-conserving interaction is used). The disadvantage of this approach are 
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the large dimensions of the involved hamiltonian matrices, which include all the possible 
values of angular momenta that can be obtained from the model space. In j-scheme the 
states with given angular momentum and parity are projected from the m-scheme states. 
Therefore the hamiltonian matrix is reduced to a block form, where each block has a. 
definite angular momentum and can be diagonalized separately. This way the dimensions 
are kept tractable. The weak point, however, is the projection, where the numerical errors 
can make the results unstable. In particular, orthogonality of the basis vectors is very 
sensitive to rounding errors. 

The calculation of the matrix elements of a given one-body operator 6 is done con­
veniently in the occupation-number representation. Then the reduced matrix element be­
tween the many-particle shell-model states can be factorized into single- and many-body 
parts followingly: 

(J Ta lll[at a)J IIIJ-T·a·) (J Ta IIIOIIIJ-T-a,) = '\"'( ''1110111 
'
) 

1 1 1 J' 1 r ' ' ' .1 1 1 ' ' ' 
L.; J J /(2J + 1)(2T + 1) 
J,J 

(2.7) 

The indices j and j' label the single-particle states. The many-body part, the one-body 
transition density (OBTD), is the output of the shell-model calculations. For muon­
capture operators the single-particle matrix elements of Eq. (2.7) can be calculated ana­
lytically, or at least greatly simplified, when harmonic oscillator wave functions are used. 

The shell-model code OXBASH [7) was used in our calculations. The code works in the 
mixed scheme. The hamiltonian matrix is diagonalized in the coupled j-scheme, but the 
resulting eigenvectors are transformed back to m-scheme. This makes the calculation of 
the many-body part in Eq. (2.7) much easier. In the nuclei considered in this series of 
works, the dimensions of the matrices were well below the limits of the code. 



Chapter 3 

Ordinary partial muon capture 

3.1 Form of the interaction 

We have adopted the formalism of ordinary (i.e. non-radiative) bound muon capture pro­
cess 

(3.1) 

developed by Morita and Fujii in 1960 [11]. They started with the most general form of 
the hadronic current between the initial proton and final neutron state, 

This current includes, in addition to familiar vector and axial-vector type interactions of 
ordinary beta decay, scalar (S), pseudoscalar (P), weak magnetism (M) and tensor (T) 
couplings. Based on the experiments and expected symmetries of the strong interaction, 
scalar and tensor couplings are usually set to zero. However, our calculated matrix ele­
ments can also be used for the search of the scalar coupling [12]. Furthermore, since the 
weak magnetism coupling is propotional to the vector coupling, CM= Cv(µ

p
- µn)/2M::::; 

3.706 Cv/2M, we have only three free coupling constants Cv, CA and Gp in the model. 
The vector and axial vector couplings are involved in the ordinary beta decay [see 

Eq. (1.1)]. In shell-model calculations the nuclear-matter value of the ratio CA/Cv =

-1.0 is often used instead of the bare nucleon value, CA/Cv ::::; -1.25 (Cv = 1.0). In
our calculations the value -1.0 was used, based on the test for the beta decay process
12C(0t,5.) ➔ 12B(lt) and shell-model calculations performed by other authors [13, 14, 15]. 
The exceptions were the calculations, where the effective transition operators were used. 
Those are discussed below in Sec. 3.3. In the erratum to Publication I the correct values 
of the matrix elements are given. In the case of the capture process 12C + µ- ➔ 12B + 11µ, 

these matrix elements seem to favour the use of the bare coupling CA/Cv = -1.251, 
in contrary to F ig. 3 of Publication I. The rate with Gp/CA = 7, CA/Cv = -1.251 is 
6.088 x 103 1/s, in excellent agreement with experiment. However, based on the large set 
of data coming from the beta decay, the nuclear-matter value of the ratio CA/Cv should 
be a good choice. 

7 



8 CHAPTER 3. ORDINARY PARTIAL MUON CAPTURE 

When the values of the vector and axial vector coupling constants are fixed, the only 
free parameter is the pseudoscalar coupling Cp. The partially conserved axial vector 
current hypothesis (PCAC) gives an estimate Cp/CA :::::! 7. This value is obtained by 
investigating the pion vertex corrections to the a.xial vector matrix element of free-neutron 
beta decay. The axial vector current of this decay is conserved in the limit m1r -+ 0, hence 
it is considered only partly conserved. If the axial current were conserved, the decay of 
free rr- would be impossible. 

Various extractions of the ratio Cp/CA give contradictory results. The value coming 
from the muon capture in hydrogen gives is 6.8 :'.S Cp/CA '.S 10.6 [16], in agreement 
with PCAC. In this case the nuclear matter effects can naturally be neglected. The 
interesting question arises: is the value of the pseudoscalar coupling renormalized in the 
nuclear medium in the same way as the axial vector coupling? Realistic nuclear model 
calculations ([17], Publication I) seem to support this proposition. The authors in ref. [17] 
give the limits Cp/CA = 0.0 ± 3.2 (see also ref. [18]). However, such a strong quenching 
seems unlikely: A rough estimate can be obtained from the nuclear-matter value of CA , 
which is renormalized by 20% compared to the free-nucleon value. This would lead to 
estimate Cp/CA ~ 5.6 with unrenormalized CA. However, if both coupling constants are 
renormalized by the same amount, then Cp/CA should be around 7. Other theoretical 
estimates are shortly discussed in Publication IV. 

3.2 Single-particle operators 

Starting from the general form of the baryonic current introduced m Sec. 3.1, the ex­
pressions for the single-particle operators can be derived [11]. The usual non-relativistic 
reduction of nucleon spinors is valid, even though the released energy is high: the recoil 
energy of the nucleon is few hundred keV's, when the energy release is 100 MeV and 
A= 30. This energy is small when compared to the nucleon mass, roughly 939 MeV. The 
leptonic part is kept relativistic, only the small component of the bound-muon wave func­
tion is discarded (this approximation is valid when aZ « 1, where a is the fine structure 
constant). The small components of the muon wave function change the results by a few 
percent, as pointed out by Gillet and Jenkins [19]. However, other uncertainties in the 
calculations are much larger than that. 

When the lepton wave functions are written in the spherical basis, the sum over mag­
netic quantum numbers is taken, and the integral over the neutrino momentum is per­
formed, we get in the impulse approximation 

W = 4P(aZm' ) 3211 + 1 (1 - Q ) Q2 
µ, 2Ji + 1 m

µ, 
+ AM 

(3.3) 

for the capture rate from the initial state Ji to the final state JJ , The reduced muon mass 
is given by m�. The energy release is given by 

(3.4) 



3.2. SINGLE-PARTICLE OPERATORS 

Matrix element 
[Owu] 

[lwu] 

[Owu±] 

[lwu±] 

[Owup] 

[lwup] 

Table 3.1: Definition of reduced matrix elements for muon capture. 

9 

Here !::::,.M is the mass difference between initial and final states. The quantity P includes 
all the nuclear physics aspects of the reaction. In particular, all the reduced nuclear matrix 
elements of the single-particle transition operators are included in it. These many-body 
matrix elements can be conveniently divided into single- and many-body parts according 
to Eq. (2.7). We have used harmonic-oscillator and Woods-Saxon basis in calculation of 
the single-particle matrix elements. 

The single-particle operators and the corresponding reduced matrix elements are listed 
in Table 3.1. The operators are defined via 

A 

J utMf r>-aZm�r'Wsr:UJ;M;dr1 .. ·drA = [k w u (± or p)](Ji Miu M1 - MilJ1 M1 )-
s=l 

(3.5) 

The functions Yf:'fvu are vector spherical harmonics and VJM are the nuclear many-body 
wave functions. The effective charge used by many authors does not enter our equations, 
since we have used the full muon radial wave function. Effective charges should be used 
only when the radial wave function is taken to be constant inside the nuclear volume, 
approximated by its value in the origin. 

The single-OBTD dominance, discussed in Publication I, stabilizes the results against the 
changes in the interaction. In the opposite case the magnitudes of the matrix elements 
may depend strongly on the type of interaction. This can be readily understood in terms 
of cancellations between various terms. When all the OBTD's have roughly the same 
magnitude, the cancellations between various terms in the sum of Eq. (2.7) can easily 
happen, and the small changes in the transition densities can have a large impact on the 
resulting nuclear matrix elements. 

The angular-intensity distribution of the gamma-rays following the muon capture is 
given by 

!(0) = Io[l + aP2(cos0)], (3.6) 

where 0 is the angle between the emitted gamma and the muon neutrino. The mea­
surable quantity a is closely related to the angular correlation parameter x, as a =
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(v'2x - x2/2)/(1 + x2). Since the emitted neutrino is impossible to detect, sophisti­

cated experimental techniques have been developed (for details, see refs. [17, 18]). The 

definition of x is 

(3.7) 

where the multipole matrix elements are given by 

Above we have defined 

(3.10) 

Thus the importance of x is related to its strong dependence on the pseudoscalar coupling 

Cp . When the experimental data on x is available, Eqs. (3.8) and (3.9) together with 

Eq. (3.7) can be used for the extraction of the ratio Cp/CA , Unfortunately, angular 

correlation measurements are difficult to carry out, and at the moment data exists for 28Si 

only [17, 18]. There is, however, a plan to do a measurement also in 20Ne [20].

The angular correlation data should be a more reliable way to extract the value of the 

ratio Cp/CA than the capture rate data. Comparison of the Eqs. (3.3) and (3.7) shows 

that the expression for the rate depends on the products of the reduced matrix elements, 

whereas x is given by the ratios of them. Therefore x should be less sensitive to the 

systematic errors in the nuclear matrix elements. However, due to the lack of data, the 

capture rates must be used in the majority of cases. 

The single-particle operators include exponentials exp(-iq · r), where lql � 100 MeV 

is the momentum transfer (in the units 1i = c = 1). In the ordinary beta decay the allowed 

transitions are the ones corresponding to the limit exp(-iq · r) = 1, which is the l = 0 

term in the Fourier-Bessel expansion 

eiq -r = 41r L i1jz(qr)Yim (r2r)Yi;';,(r2q) (3.11) 
l,m 

when qr « 1. Now, when we have about ten times larger momentum transfer, this 

approximation is no longer valid. The radial integrals inc:lude the oscillating part, and 

the radial matrix elements may be sensitive to the shape of the radial single-particle wave 

functions at the nuclear surface. To examine this effect, we have made muon capture 

calculations using the Woods-Saxon single-particle basis, and compared the results to the 

oscillator-basis calculations (see Publication VI). These results are summarized in Table 

3.2 with Cp/CA = 7, CA/Cv = -1.0. 
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Parent JJ (Interaction) Wexp 
(103 1/ S) Wth ( 103 1 / s) X 

h.o. ws h.o. ws 
12c 1t(PJT) 6.0 ± 0.4 4.143 3.306 
160 11 (WBT) 1.31 ± 0.11 2.375 1.431 

21(WBT) 8.0 ± 1.2 14.437 12.032 

zoNe 1t(W) 6.32 ± 0.20 1.803 2.258 0.454 0.402 

1t(W) < 1.32 1.449 0.549 0.586 0.743 
11 (WBT) 6.25 ± 0.13 1.179 0.945 
21(WBT) 6.65 ± 0.20 0.289 0.264 
22(WBT) < 4.61 20.408 19.182 

23Na. l/2t(W) 4.9 ± 1.4 2.242 J .070 

1/2t (W) 10.4 ± 2.2 3.643 3.098 
5/2t(W) 0.348 0.323 

5/2t(W) 2.1 ± 0.5 0.800 0.573 
zssi 1t(W) 14.4 ± 1.8 24.585 22.271 0.470 0.479 

1t(W) 29.7 ± 3.6 2.230 2.158 0.539 0.549 
lf(W) 48.4 ± 3.8 25.836 25.222 0.493 0.491 

1t(SDPOTA) 14.4 ± 1.8 6.514 5.500 0.425 0.441 
1t(SDPOTA) 29.7 ± 3.6 8.233 7.696 0.489 0.498 
lf (SDPOTA) 48.4 ± 3.8 40.909 39.565 0.49 0.494 

32s 1t(W) 2.619 2.549 

1t(W) 19.447 17.783 
lf(W) 0.157 0.348 
1t(W) 6.345 6.309 

Table 3.2: T he comparison of the capture rates W and the angular correlation parameter 
x in the harmonic oscillator (h .o.) and Woods-S axon (WS) single-particle bases. T he 
results are calculated with Cp/CA = 7 and CA/Cv = -1.0. 
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3.3 Effective transition operators 

Shell-model calculations are always truncated to a reasonably small valence space. The size 
of this model space is dictated by physical reasons as well as available computer resources. 
This truncation introduces the concept of the effective interactions and operators. In Ch. 
2 the effective interaction is defined to be dependent on the chosen model space. In the 
same spirit, effective operators are defined via projections into chosen (finite) model space. 

The matrix element of a single-particle operator 6 between the exact wavefunctions 
liI'i,1) of the full Hilbert space, is given by 

o Ji= 
(w 1IOlw;) . 

J(w 1 1w 1)(w;lw;) 
(3.12) 

Since the shell-model calculations are always done in a subspace of the full Hilbert space, 
we do not know the exact wave functions, only their projections 14>) = PIW) into the 
model space. Therefore we try to construct an effective transition operator Oeff, which 
obeys the equation 

(3.13) 

This effective operator is calculated by using perturbative techniques (for a detailed review 
see [l]). The diagrams are evaluated up to the second order in a G-matrix obtained from 
the CD-Bonn interaction. Intermediate state particle-hole excitations are included up to 
6-81i.w in oscillator energy in order to obtain converging results. 

The effective operators used with the USD one-body transition densities were also 
obtained with the CD-Bonn interaction: in perturbation expansion the matrix elements 
which connect to the states outside the model space are needed, and obviously they are 
not available for the USD interaction. 



Chapter 4 

Muon-electron conversion 

4.1 Introduction 

The existence of the lepton-flavor violating muon-electron conversion 

(4.1) 

has not been experimentally verified. The experiments have only been able to put upper 
limits for the branching ratio of the µ ---+ e- conversion relative to the ordinary muon 
capture, 

R 
- f(µ- ---+ e-)

µe- - f(µ- ---+ vµ) · (4.2) 

These limits can be used to restrict the parameters that enter in the lepton-flavor violating 
lagrangians. We have considered several possible reaction channels which lead to µ- -+ e­
conversion. Typically, these Lagrangians contain only a few parameters related to lepton 
flavor violation. The branching ratio of Eq. (4.2) for coherent (i.e. ground state to ground 
state) channel can be factorized as R

µc = p1, where I includes all the nuclear physics 
input, i.e. the transition matrix element. The parameter p contains the flavor-violating 
parameters. The related R-parity symmetry, R

p
, discussed in Publications IV and V is 

introduced in supersymmetric theories in order to eliminate the lepton and baryon number 
non-conservation. The R-parity is defined as 

(4.3) 

where B, L, and 5 are the baryon, lepton and spin quantum numbers, respectively. How­
ever, R

p
-symmetry has no well-motivated theoretical background. 

Experimentally the coherenL d1a11nel is the most important one, since it is free from the 
background produced by orbital muon capture and other related processes. The relative 
strength of the coherent channel can be calculated if all the partial conversion strengths 
are known. Then 

fcoh(µ- -+ e-) 
T/ = r tot (µ- ---+ e-) 

13 

( 4.4) 
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is a measure of the relative strength. Clearly, nuclear-structure calculations are needed in 
order to obtain the transition matrix elements. For the coherent o+ -+ o+ channel the ma­
trix element can be written in terms of the nuclear form factors Fz ( q2 ) and FN ( q2 ). These 
form factors depend on the single-particle level occupation probabilities (½) 2

, which can 
be obtained from e.g. RPA calculations [21], or from large-scale shell-model calculations 
(Publication V). The form factors are defined as 

Fz = ½ L]Ullio(qr)lli) (vJ)
2

, FN = � L]Ullio(qr)lli) (vpf • (4.5) 

For incoherent channels and other than even-even nuclei the task is more demanding. 
The two nuclei considered in Publications IV and V, UAl and i�Ti, are well-suited for 
the shell-model treatment. The full sd-shell calculation with the USD interaction [2] was 
performed for aluminium, and for titanium the Millener-Kurath type interaction in the 
fp-shell was applied (see the interaction library of [7] and [22)). Test calculations in the 
fp-shell were carried out with the FPD6 interaction of ref. [23] and the KB3 interaction 
of ref. [24]. In titanium, particle-hole excitations up to 4p-4h were allowed from the 
f7;2 single-particle orbit. The negative-parity states can not be produced in the chosen 
model spaces. Previous studies ( e.g. RPA calculations of ref. [21)) have shown that their 
contribution to the incoherent strength is significant. This reduces the value of 7/ slightly, 
but the value of p does not change. 

4.2 Transition operator 

The Lagrangian for the conversion process is obtained from the Feynmann rules. The 
related topics are reviewed in ref. [25], and the Feynman rules for the minimal extensions of 
the standard model are listed in ref. [26]. The resulting transition operator corresponding 
to the diagrams shown in F ig. 4.1, after the non-relativistic reduction, can be divided in 
two parts. The vector-, or Fermi, type operator reads 

!Jo= §v fv L ( 3 + /3T3j) e-iq,•rj
j=l 

and the axial-, or Garnow-Teller, type operator 

A

n - -g- f �(fv
/3" + /J'r ·) !!i.._e-iq1•rj - A A.L.., f 3J r,;3 

•
J=l A y.:, 

(4.6) 

(4.7) 

Parameters gv, 9A, /3, /3' and /3" select the specific reaction channel. The coupling con­
stants f A = 1.24 and fv = 1.0 are the familiar vector and axial vector couplings. Again, 
Eq. (2.7) was used to separate the single- and many-body matrix elements. 

Like in muon capture, the exponential appearing in Eqs. (4.6) and (4.7) can not be 
approximated by exp(-iqJ · r J) ,:::; 1 because of the large momentum transfer 

(4.8) 
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Figure 4.1: Typical Feynman diagrams that contribute to the muon-electron conversion 
process. Specific mechanisms involving massive intermediate neutrinos are shown. These 
diagrams correspond to (a) photonic (b) w--exchange box diagrams and (c) Z-SUSY 
exchange mechanisms. 

where Eb is the atomic ls-binding energy of the muon. The excitation energy of the final 
nuclear state is given by Ex. The multipole transition operators are obtained via the 
Fourier-Bessel expansion of Eq. (3.11). The resulting matrix elements are given by 

UIIT(l,o-)Jll g.s.) = Lm(l ,a)J(j2J1 ) [c�D(}2j1 ;J,T= 0) +C;D(j2J1;J,T= 1)], (4.9)
J1i2 

where the functions D(jj'; JT) are the one-body transition densities of Eq. (2.7). The 
angular momentum couplings are included in the coefficients m(l,a)J_ The coefficients CJ 
select the reaction channel. The integral over the angle Dq has been taken. The total 
matrix element, in terms of the multipole operators, is now given by 

M2 Sv+3SA (4.10) 

L (.Jj_)
2 

L [l(J1IIT(J,o)JIIJ;(g.s.))l
2 

+3 L l(J1IIT(l,I)JIIJ;(g.s.))l
2]-

f 
mµ, J l=J,J±I

Here Sv is the vector matrix element and SA the axial vector matrix element. 
The monopole ( J = 0) part of the transition operator in Eq. ( 4.10) gives a large contri­

bution within the closed shells. To take this into account, no-core shell-model calculations 
were carried out keeping the shells below the sd-shell (aluminium) or the fp-shell (tita­
nium) closed. The contribution coming from the core is independent of the interaction. 
In Fig. 4.2 the contributions from the different multipoles in Eq. (4.10) are shown for 
the photonic ½+ -+ ½+ channel in aluminium. Like in beta-decay and muon capture,
the strength decreases for higher multipoles, corresponding to higher forbiddennes of the 
transition. 
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2 3 

Multipole 

4 5 

Figure 4.2: Contribution from the different multi poles to the photonic t (g.s.) -+ t 
channel in 27 Al. The vector and the axial vector contributions are shown separately. The 

factor (q1/m
µ

) 2 is not included. 
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Discussion and conclusions 

In the ordinary muon capture process, as well as in muon-electron conversion, the large 

momentum transfer causes complications when compared to the ordinary beta decay. 

Firstly, the hadronic current reveals more complex structures when the momentum transfer 

increases, so that the set of transition operators is enlarged compared to the beta-decay. 

Secondly, these processes provide good tests to the nuclear structure calculations, since 

in addition to the allowed transitions, forbidden transitions have been measured in many 

cases. 

The results for muon capture indicate strong interaction dependence. In addition, 

even in the same nucleus, the interaction can clearly overestimate the rate in one case 

and underestimate in the other. The renormalized transition operators, introduced in 

Publications II and III, partly solve this problem. For the angular correlation parameter 

x of Eq. (3.7), the results clearly get closer to what is expected from the experiments 

and from the PCAC prediction. The renormalization effects on the transition rates are 

also clearly seen. Again, in 20Ne we get improvement, whereas in 28Si the rate for lf 

state deviates more from the experiment. However, all these effects are nearly interaction­

independent. This is also seen from the matrix elements, where renormalization decreases 

the magnitude of the matrix elements independently of the interaction. A similar effect 

can be seen in the beta-decay Garnow-Teller matrix elements, which decrease when the 

model space increases. Usually, in ordinary beta-decay, this effect is partly included in the 

so-called Garnow-Teller quenching factor (which includes also other effects like mesonic 

degrees of freedom). Recent results by Ciechanowicz et al. (27] indicate that at least in 

the case of muon capture in 28Si the mesonic degrees of freedom, perhaps surprisingly, 

play only a minor role. 

The transition operators include the spherical Bessel functions ii( qr), which oscillate 

rapidly aL the nuclear �urface. Therefore, the nuclear matrix elements could be sensitive to 

the form of the radial part of the wave function. To test this, we have used in addition to 

the usual harmonic oscillator radial wave functions the Woods-Saxon radial single-particle 

wave functions. The results are collected in Table 3.2. Unfortunately, the Woods-Saxon 

basis does not help to solve the discrepancies in the transition rates. A possible refinement 

could be the use of the renormalized transition operators together with the Woods-Saxon 

17 
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single-particle basis. 
Also the negative-muon-electron conversion is studied in the context of the nuclear 

shell-model. The transition operators obtained from the extensions of the standard model 
are used together with the transition densities obtained from the shell-model. The emerg­
ing matrix elements are then used to restrict the lepton-flavor violating parameters in­
cluded in our model lagrangians. We have used the expected sensitivity of the Brookhaven 
27 Al experiment and the existing data on 48Ti for extraction of the flavor-violating param­
eter p and the parameter 71 of Eq. (4.4). The operators are written in such a form that the 
vector and axial vector as well as isoscalar and isovector contributions can be examined 
separately. The results show that the coherent transition is the dominant channel in 27 Al 
and 48Ti for all the mechanisms considered in Publications IV and V. This is due to a 
very strong monopole matrix element. In addition, the matrix elements are dominated by 
vector-isoscalar contribution. The strength of the incoherent channels is strongly concen­
trated on the low-lying final states. The ground state consists mostly of the Hartree-Fock 
configuration, whereas the final states with high excitation energies consist mostly of many 
particle-many hole excitations from this configuration. Thus the overlap between the final 
states and the ground state with particle-hole type excitations generated by the operator 
[a},iij]f of Eq. (2.7) is small when the excitation energy increases. The results are stable 
against the changes in the residual interaction. 
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