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Abstract

This thesis deals with both random and regular (woven) fibre networks. An
effective medium theory for the tensile stiffness of two-dimensional random fibre
networks is presented. The theory is extended to three-dimensional networks
with some but not too strong restrictions. This generalisation involves the
computationally determined fraction of bonded crossings in the two-dimensional
projection of the three-dimensional network. The two-dimensional and three-
dimensional versions of the theory are both succesfully tested against numerical
simulations.

The porosity of the three-dimensional random fibre networks is found to
be given by a numerically determined scaling function, which upon rescaling is
shown to be similar to the fraction of bonded crossings described above. This
function thus seems to determine the entire structure and mechanical behaviour
of randomly deposited fibre mats.

A numerical model for the mechanical equilibration of woven fibre networks
is also presented. Structures generated by this model are tested against indus-
trially manufactured fabrics. This comparison shows that the model gives fairly
realistic results, which guarantees its usefulness also in industrial applications.
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1 Introduction

A fundamental problem in condensed matter physics is to understand the macro-
scopic properties and the structure of systems of particles in terms of the in-
terparticle interactions [1]. Most of materials research is done in the molecular
scale, although for many materials there are much larger length scales that are
as well important for their mechanical behaviour. This thesis concentrates on
the study of mechanical and geometrical properties of three-dimensional regu-
lar and disordered fibrous materials. Early studies in the physics of disordered
fibrous materials mainly considered the percolation problem [2, 3, 4] or frac-
ture [5], while their structural and elastic properties were mostly considered in
engineering sciences [6, 7).

The concept of disorder gives a feeling that there is something that falls
short of the ideal of order [8]. Order is a rule that defines the system perfectly
whereas disorder implies randomness. However, a disordered system can still
have order in it, and this partial order usually makes a difference. In industrial
applications the demand for controlling the scales of disorder is growing as the
materials are being optimised for various end-use requirements. This induces
a need to understand the charasteristics of disordered materials. Industrially
manufactured fibrous materials are formed as regular or random networks, from
both of these an example is presented in this thesis. Examples of this kind
of materials range from insulator materials and glass-fibre felts to short-fibre
composites and paper.

To begin with the basics of elasticity theory, and of the computational meth-
ods used, are introduced in the following Section 2. Thereafter the developed
effective-medium (EM) model for the tensile stiffness of materials composed
of randomly connected building blocks is presented. The EM model is tested
against a numerical model that is also described in detail. The basic idea of
the EM model, applied here can also be applied to other systems of randomly
connected building blocks but this extension of the model is not considered here.
The geometry of the random fibre network is then studied in terms of its poros-
ity, which leads to a function we call the process function. This function seems
to determine the entire structure and the mechanical behaviour of random fibre
networks.

The rest of the thesis deals with regular woven (fibrous) structures. A nu-
merical model for relaxing a woven system to its elastic equilibrium is intro-
duced. This model employs a version of the gradient method, and seems to
give realistic results when compared visually with real fabrics. The model has
obvious applications in industry where different fabric structures are constantly
being designed for optimum fluid permeability, durability and stiffness, just to
mention a few examples of their desired functional properties.



2 Elasticity

The mechanics of solid bodies, regarded as continuous media, forms the content
of elasticity theory. The basic equations of the theory date back to the 1820’s,
to the work by Cauchy and Poisson. As this thesis incorporates elasticity theory
in the analytical as well as in the simulation models, the fundamental equations
of the theory are briefly mentioned. The solution methods used in the computer
implementations are also derived.

2.1 Fundamental equations

The strain tensor wu;, is defined through the derivatives of the displacement
vector u; [9] such that

Ui =
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where the third term on the right side can be left out for small deformations.
For homogeneous deformations the stress tensor in terms of the strain tensor
is given by
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where F is the Young’s modulus and o is the Poisson ratio. Conversely,
Uik = [(1 -+ O')O'ik - Galz(sik]. (3)

For isotropic bodies the equilibrium condition can be expressed in the form

Bzu,- azul

(1—20)&4’

The possible external forces appear in the solution only through the boundary
conditions.

2.2 Rigid bodies

For a simple extension or a compression of a body we get, from Egs. (2) and
(3),

Ozz = Eu:czy (5)
where elongation is along the z-axis. If the Poisson contraction is prohibited in
the y-direction, we get from the same equations

Ozz = '(l__LoJ)uzx- (6)

For a shear deformation of a body we get, again from Egs. (2) and (3),
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2.3 Rigid rods

The basic building blocks of the models presented in [I, Ia, II, III] are linear
elastic rods with a square cross-section.
From the Eq. (5) we get for the elongation of a rod along the x-axis

l
r = ﬂFz’ (8)

where [ is the length of the rod, A is the cross-section, z is the displacement of

the other end of the rod with one end clamped, and F; is the related force.
For the bending of a rod it is easier to start from the relative change in a

differential element of the rod than from the equations mentioned above. This

means that Ad
s_n
dS - E) (9)

T

where the element ds + Ads is at the distance of r + y; from the centre of
curvature of the element, and r is the radius of curvature, see Fig. 1.
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Figure 1: The change in the element of length of a bent rod. [E. Pennala,
Lujuusopin perusteet, Otakustantamo 407, Helsinki 1990]
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Remembering that

Ugz = s E = E_Iz-yl’ (10)
we get
1 M
;o E_Iz’ (11)

where I, is the momentum of inertia of the rod and M is the moment inflicted
at the rod. From simple geometry® we get
1 2
— = (12)
To[14 (%)%
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1Since, ds = —rd¢, dr = cos ¢ds and tan¢ = %, we get -;}_L; = j—mg. Realising that

-1 =cos? d)g%, and using cos3 ¢ = (1 + tan?¢)~3/2, Eq. (12) follows.
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which, since dy/dz is small, can be linearised to give

1 d%y
= =
Using Eq. (11) we arrive at the differential equation [9, 10]
EIéz—y + M(z) =0, (14)

dr?

where [ is the momentum of inertia of the rod and M (z) is the moment inflicted
at the point z of the rod. This equation describes the line of bending for the
rod assuming that bending takes place in the zy-plane. From this one can find
the solution for two relevant cases. For bending of one end with the other end
clamped, we get [10]

Ml

where §2 is the angle of rotation of the other end of the rod, and M is the
related moment. For a pure transverse translation of one end with the other
end clamped, we get [10]

F,I3
Y= 1ED (16)

and i
=T 7
Y= 8EL (17)

where y is the displacement of the other end of the rod, F' is the related force
and M is the related moment.

2.4 Multi-element systems

When an elastic body is at equilibrium its every part is at equilibrium. This
means that no matter what part we cut out of the body, that part can be thought
of as being an independent body at equilibrium with the boundary conditions
imposed by the surrounding parts. It is no wonder then that the birth of the
theory of finite elements took place in the field of structural analysis. Since its
early years in the 1950’s in aircraft industry, the theory of finite elements has
evolved into a sophisticated mathematical theory for solving partial differential
equations [11, 12, 13, 14, 15, 16].

The FEM-procedure can be specified as follows [17]. One starts by varia-
tionally formulating the partial differential equation describing the problem?.
The area considered is discretised by setting the element mesh, element types
and the boundary conditions. From the variational formulation we get a linear
system of the type

F = KT, (18)

which can be solved using one of the many solution methods for groups of linear
equations, see Section 2.5 for references and examples. The solution can then
be postprocessed for error estimation and visualisation.

21t should be noted that the variational method works only if the variational form exists,
i.e., the differential operator related to the equation is both linear and self-adjoint. Another,
more general method, is the method of weighted residuals.



In network structures the division into elements is quite natural. The more
or less pointlike connections between fibre segments in the network correspond
to the pointlike connections between elements in the finite element method.
Therefore, while generally the finite element method is approximative, the result
in network applications is usually very accurate.

In (I, Ia] the network is two-dimensional and the fibre-fibre bonds have three
degrees of freedom: two translations and a rotation. For a single segment along
the z-axis, the elastic interaction between its ends can be defined using the
relations Egs. (8), (15), (16) and (17) in the form of a stiffness matrix

(EA 0 0 -E 00
| 0 12EI 6ET 0 _12EI 6EI
| 13 2 3 1z
0 6EI 4E1 0 _6E81 2EI
Ky = 0z il 12 1 19
=22 0 0 EA 0 0 (19)
0 _12EI _6EI 0 _12EI 6EI
B TR B2
0 6ET 2B1 0 _6EI 4EI
\ 12 ] 2 1

The stiffness matrix K7 must be multiplied with the displacement vector (z;,
Y1, Q1, T2, ¥2, 22) to obtain the forces acting on the bonds at the segment
ends, c.f. Eq. (18). If the segment is in some other angle, the stiffness matrix
as well as the force vector and the displacement vector must be rotated using
the rotation matrix 7' (with transpose T'), and we get for the stiffness matrix

K| =TK\T, (20)
while the force vector is given by
F! =TH, (21)
and the displacement vector by
Ul =TU;. (22)

The global displacement and force vectors consist of all the local displace-
ment and force vectors. The global stiffness matrix is then constructed by
summing up the local stiffness matrix elements of the corresponding degrees of
freedom. Generalisation to three dimensions is straightforward, being a simple
procedure of increasing the degrees of freedom.

2.5 Solution methods for the elastic equations

The finite element method incorporates a solution of a sparse set of linear equa-
tions which is the most time consuming part of the method. Solution methods
for sets of linear equations [18] are divided into direct [19, 20] and iterative
methods (21, 22]. Direct methods are based on Gauss elimination. Iterative
methods are often faster than their direct counterparts but are also more dif-
ficult to use. They involve an initial guess from which the system is iterated
until the desired accuracy is achieved. These methods rarely change the matrix
making them well suited for sparse systems. In the following the two iterative
solution methods used in this work are briefly described.



2.5.1 Conjugate gradient method

The solution of Eq. (18) can be found by minimising
f(U) = %ﬁKU ~-FU+ec (23)

As the stiffness matrix K is both symmetric and positive definite, the minimum
is found at the point where

Vf(U)=KU-F =0. (24)
The system is iterated using
Uk = U* + aip¥, (25)

where a;, are chosen such as to minimise f(U**!), and the optimisation direc-
tion is conjugated to the matrix K, i.e. < pt, Kp’ >=0, for i # j.

The method is often used in solving large sets of linear equations. Explicit
algorithms (23, 24, 25] and well tested libraries [26, 27, 28, 29] are readily avail-
able. In (I, Ia, II, IIT] we used the conjugate gradient subprogram found in the
NAG-library.

2.5.2 Pull-detect method

The deformations in (I, Ia, IT, IIT] were considered infinitesimal, which lead us to
the linear equation (18) and linear solvers like the conjugate gradient method
explained in Section 2.5.1 above. In [IV, V] we faced the problem of finding
the elastically relaxed state of a woven structure. The approach chosen was
to start from an initial configuration and then letting the system find its way
to the elastic equilibrium by pulling at the fibres at the periodic boundaries.
This implies moving the contacts formed between the fibres towards the local
elastic equilibria as the strain propagates to the network from the boundaries.
By forcing finite deformations, discontinuities are introduced in the derivatives
of the elastic response functions of the system as new contacts are formed and
old ones are opened up [IV, V] In solving the problem we employed the gradient
method for temporally variable problem sizes. The direction vector p¥ for a
single contact is given by

plcc = Z tnln, (26)

neighbours

where 1, is the unit vector at the contact in the direction of the nt* neighbouring
segment, and ¢, the tension at the n'* neighbouring segment. The size of the
problem, i.e. the size of the vector U containing the contact coordinates and
the size of the direction vector p* holding the iterative directions of all the
contacts, vary during the iterations as new contacts are formed and old ones are
opened up. The structure is assumed to be elastically relaxed when the contact
motions are below some preset limit.



3 Random fibre networks

3.1 Brief review

In nature, organic materials composed of fibres in more or less random positions
and angles often result from a huge optimisation process called evolution. A
good example of this kind of material is bone that is constructed of fibres and
lamellae in optimised angles and positions to serve the purpose of any specific
bone. As random fibrous materials offer a good strength over weight ratio in
addition to a relatively easy manufacturing process, the understanding of these
materials is important also from the industrial point of view. Materials of this
kind include glass-fibre felts and paper. The question is how to change the
properties of the constituents in order to get a desired property in the material
as a whole.

Both academic and industrial interests have induced several studies on the
matter. Studies span from connectivity and wave propagation [30, 31, 32, 33] to
rigidity [34, 35, 36] and fracture dynamics [37, 38], and from deposition models
to lattices with disorder.

Lattices are regular structures composed of e.g. triangles, squares or hex-
agons. These structures can then be perturbed by moving the lattice sites such
that the site changes are governed by a distribution. As an example, the stress
distribution of a perturbed regular network shown in Fig. 2 was studied by
Rigdahl et al. [39] by means of finite element simulations. The fibres were
in this study modelled as linearly elastic straight beam elements. One of the
results of this study was that the strain on a fibre is zero at the ends but
away from the ends rises quickly to a plateau, with a maximum if and where
a neighbouring fibre is "broken”. Also, the bond stiffness was found to be of
small importance unless it is below some critical value, in which case the strain
transfer deteriorates rapidly.

<+ —>

i S —i=

Figure 2: Sketch of the Rigdahl et al.’s network geometry [39).

Deposition models constitute a class of methods that have been used to cre-
ate random fibre structures. The geometry of the structure can then be analysed
for different purposes and under varying conditions. The deposition model used
in this thesis was first proposed in 1991 by Hamlen [6]. In his sequential depo-
sition model the fibres were deposited on top of the previously deposited fibres,
and given a possibility to bend a ’limit angle’ on contacts with the fibres below,
possibly coming in contact this way with yet more fibres. The fibre-to-fibre
contacts were modelled as beam elements, and numerical computations resulted
in a notion that the dominant mode of deformation is elongation of the fibres,
which leads to shear forces on the contacts.

In estimating the elastic properties of inhomogeneous materials one usually
considers a representative volume element and its response to mechanical per-
turbations in the mean-field sense. This usually works if the structure of the



material is simple enough. A mean-field theory for the mechanics of fibre net-
works was introduced by Cox [40] in 1952. Both two- and three-dimensional
networks were studied. In two dimensions Cox’ network consists of long thin
straight fibres extending from one edge of the network to another with a ran-
dom orientation distribution, see Fig. 3. The bending stiffness of the fibres
is thought to be negligible. Also, there is no interaction between the fibres.
Instead, the strain field is assumed to be homogeneous throughout the net-
work. For an isotropic fibre orientation distribution the Cox-model gives for
the Young’s modulus of the network, i.e. for the Young’s modulus per unit
thickness in this case of a 2D network,

o

where Ef is the Young’s modulus of the fibres, Ay is the cross-sectional area of
the fibres and p is the total fibre length per unit area.
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Figure 3: Cox’ homogeneous network.

In the shear-lag model [41] the fibres are of finite length. The attachment
of a fibre to the elastic sheet, that is, to the rest of the network, is via the
nearest segments of the crossing fibres, see Fig. 4. This way the model assumes
a shear-lag mechanism in which the stress of a matrix is gradually transferred
to a fibre so that the stress is largest in the middle and reduces towards the
ends of the fibre. The elastic modulus given by the shear-lag model is

=3B 400~ 2 VTH), (28)
where p. = 5.71/L; is the average density required to obtain a mechanically
connected random fibre network [2] for an infinitely sized system. The second
term on the right side of Eq. (28) is due to the stress vanishing at the ends of
the finite length fibres, and is thus a direct consequence of the assumed stress
transfer mechanism.

Computer simulations [42, 43, 44] reveal that the Young’s modulus (E,) of
the fibre network is asymptotically a linear function of the areal mass density
Pm such that

E, (pm) = A(pm == pm0)7 (29)

where pnmo and A are constants. Summarizing, also the shear-lag model based
on the Cox-model , produces a relation like Eq. (29), with however a pp,o that
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Figure 4: Connection of a fiber to the elastic sheet in the shear-lag model.

is a function of Ly, which is not supported by experiments on paper sheets [45].
Also, the value obtained for po is much smaller than in reality, and the value of
the modulus A is reproduced, at best, qualitatively [42, 45].

We have therefore introduced a new effective medium model, in which we
have however preserved the seemingly correct [43, 44] displacement field. The
stress-transfer mechanism assumed by the Cox and the shear-lag model does
not seem to be correct [42, 46, 47], and we do not apply it. Instead of the
fibre, the basic building block in our model is the fibre segment. The basic
argument is that the network spontaneously tries to minimise its elastic en-
ergy by locally choosing the segment deformation mode of lowest elastic resis-
tance. A two-dimensional model for the tensile stiffness of the random fibre
networks is thus presented along with a generalization of the model to three
dimensions, through a bonding fraction that characterises the planar projection
of the three-dimensional fibre network. The porosity of three-dimensional ran-
dom fibre network can also be studied with this effective medium model. The
analytical model is tested against a numerical deposition model of two- and
three-dimensional random fibre mats.

3.2 Numerical deposition model

In the two-dimensional fibre deposition model the fibres are dropped vertically
on a planar substrate with their positions and in-plane angles randomised. By
treating the fibre crossings as rigid contacts, a nearest-neighbour network is
built. A two-dimensional fibre network generated in this way is shown in Fig.
52



Figure 5: A two-dimensional random fiber mat, ¢/q. = 10. The number of fibres
in the network is on the average gL, L, /L?, where ¢ is the dimensionless fibre
density, L, L, is the area of the network and Ly is the length of a fibre. For a
network of infinite size at its connectivity percolation limit, g, ~ 5.7 [2]. The
two densities used here, g and p, are related as ¢ = pLy.

In the three-dimensional model the fibres are dropped vertically as in the
two-dimensional model. However, as the density of the mat increases, the fibres
start falling on top of each other. Upon contact a contact-node is created on
both fibres two fibre radii apart. The upper fibre is then allowed to bend an angle
¢ on both sides of the lower fibre. As the fibre is bent, it may come in contact
with the fibres below, in which case another contact-node-pair is created, and
the fibre bends in the other direction in between the two contact-node pairs, i.e.
a bending node is formed there. If the fibre touches the substrate, a bending-
type node is created at the point of contact whereafter the fibre lies flat on the
substrate. At the ends of the fibres an end-node is created, and these are left
hanging at angle ¢. The effect of the bending angle is shown in Fig. 6.

Figure 6: Three-dimensional random fiber mats with ¢/q. = 10, L = 1.0, and
fibre width w = 0.2, for ¢ = 0.1rad (left) and ¢ = 0.5rad (right).

By identifying the two nodes of a fibre-fibre-contact, a nearest neighbour
network is built, which uniquely defines the network. The segments between
the nodes of different types are assumed to be linear-elastic rods with a square

10



cross-section w? and length /. Young’s modulus is set to unity, and the Poisson
ratio is zero. The fibre-to-fibre contacts are assumed rigid in both two- and
three-dimensional fibre networks. The stiffness matrix is then constructed as
explained in Section 2.4.

Elastic properties of the random fibre networks are analysed by applying
external forces at the left and right boundaries of the network, while periodic
boundary conditions are imposed in the transverse in-plane direction. A defor-
mation in the networks is created such that the boundary nodes at the right
boundary are forced to move a unit distance in the desired direction, while the
nodes at the left boundary are forced to stay at their original positions. The
equilibrium configuration of the deformed fibre structure is found by using a
conjugate-gradient method. From that the appropriate elastic constants can be
deduced.

The porosity of a three-dimensional random fibre network is analysed by
determining the plane porosity, which we define as the fraction of a cross-section
of the network not covered by fibres, for a suitably dense set of in-plane cross
sections. Since the fibres cross each cross section at the same angle ¢, we only
need to count the number of crossing fibre segments. The area blocked by the
segments is then simply this number times the area, A; = w?/sin ¢.

3.3 Effective-medium model

The elastic energy of a tibre mat is found by summing up the elastic energies
of the fibre segments in the mat. The basic argument of the effective-medium
model introduced here is that the segments will deform in a way that offers the
least local elastic resistance in response to the global strain. In the following the
elastic energies of the single segments in response to the total deformation of
the mat are specified. As defined in Section 2.4, where A = w?, the elongation-
stiffness modulus is Ew?/l, the bending-stiffness modulus is Ew*/I® and the
shear-stiffness modulus is Ew?/[2(1 + v)l]. Assuming now that a segment de-
forms only by bending, if the bending modulus is smaller than both the shear
and the elongation modulus, we get a crossover length I. = w+/2(1 + v).

The elastic energy of a segment is of the form W = K22, where K is
the string constant, i.e. the stiffness, and z is the displacement of one end
of the segment while the other end is kept immobile. For a segment at an
angle 6 to the direction of the strain ¢,, the displacement is z = ¢l cosf. The
axial displacement is therefore el cos?6, and the transverse displacement is
ezl cosf@sinf. For a single segment the elastic energy of a bending deformation
is thus

wbrd(g) = %El_z;)“ (€zl cosfsin 6)? . (30)
Similarly the elastic energy of a stretched segment is
WSt (9) = %ETwz (€4l cos? 0)2 , (31)
and that of a sheared segment
wshr(9) = %GTwz (el cosBsin6)? (32)

where G = E/(2(1 + v)).

11



The number of fibres in the network is gL, L,/ L?, where as before L, L,
is the planar area of the net, Ly is the length of a fibre, and ¢ is the average
number of fibres in the area of size L2; g relates to the fibre density p used in
Section 3.1 as ¢ = pLy. Multiplying this with the average number of segments
on a fibre L¢ /f, we get the average number of segments in the network,

QL L:.Lf
N= _Lz_?‘_y +, (33)

where | = %GL" is the average segment length in the system. If only a randomly
chosen fraction of the fibre crossings is bonded, the average segment length
will increase. This increase is described by the parameter a, i.e. the fraction
of bonded crossings, by which [ should be divided. The segment lengths are
distributed like in a one-dimensional Poisson process which leads to the length
distribution (I

p() =i"texp (—Z‘ll) , (34)

where the parameter a can be introduced, as it only changes the frequency of
the Poisson process, through the average segment length (.

To get the elastic energy of the whole network in two dimensions, we must
sum up the energies of the different deformation modes. The energies of the
respective modes are calculated by multiplying the energy of the single-segment
deformation (Egs. (30),(31),(32)) by the average number of such segments, and
then integrating over the segment length distribution with appropriate limits.
The elastic energy of the whole network is then given by

Pw? , L,L, h 2aq o)
W= e / dB/ = dl
-z

Guw? , L,L h 9)sm 7 2aq 1 (FEE)

+ 5 €z T / d9/ 7l'Lf £dl
=
Ew* , L,L, [ ) sin? 2aq \2,_; (S2a2)
l—l L 1

+ 5 €xd I / d9/ 7rLf e "Fi'dl, (35)

[VE]

where the energies of the deformations by stretching, shearing and bending
are represented by the first, the second and the third term on the right side,
respectively.

3.4 Results

3.4.1 stiffness

The behaviour of the deformed segments is of course more complex than the as-
sumption made above of having only the leading deformation mode. The actual
deformations incorporate all the modes but the assumption becomes somewhat
more realistic if we treat the crossover length [. as a fitting parameter. From
the simulations [I, Ia] we find that

I =(1.6w+0.11)/2(1 + v) (36)
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gives a fairly good agreement between the effective-medium model and the nu-
merical simulations.

By solving the integrals in Eq. (35) and using W = (1/2)E.e2L,L,, we get
the elongation stiffness of a two-dimensional random fibre mat in the form

A CIEG
+ (3 + 2_(1T1/_)) (1-e*(z+ 1))] " (37)

where z is now z = 2aql./(rL;) and E,(2) = [ fg—::dz is the Exponential-

1
Integral function, and cannot thus be expressed in terms of elementary functions.
It can, however, be approximated by a rational approximation, Eq. (6) in Refs.
[I, Ia], to give a universal one-parameter form for the mat stiffness,

Bis)=  a|potaztac
T 20+ ) 2+ bz 4 by 2
1 -z
+<3+m17))[1—e (z+1)]], (38)
where z; = 2qil./(wLy) and q is replaced by g, that is,
Ge , q 0.55 \/ 0.55 ¢ 1 gq
=2 d 1225 Ja+=2_Typ_y-_1y), 39
a=%(E-1-24 Ja+ 22 -Ipoac- D) @)

This equation (39) is the simplest expression that interpolates between the
known limiting values, i.e. ¢ = 0 at ¢ = ¢, and ¢ — (¢ — 0.55¢.) in the
limit when both ¢; and ¢ approach infinity. The purpose of this transformation
is to take into account that the network is not connected below the critical per-
colation density, and the contribution of the undeformed segments at the ends
of the fibres above the critical percolation density. With this replacement E,
vanishes at ¢ = ¢./a, as it should.

Comparing two-dimensional random fibre networks with the three-dimen-
sional ones projected to two dimensions, we find that they are similar with
one exception, the degree of bonding is lower for the projections of the three-
dimensional networks, see Fig. 7. This is rather trivial since the thickness
dimension prevents some of the fibres to come in contact with each other. In
[II] we show that Eqs. (37) and (38) can be used to calculate the stiffness of
a three dimensional random fibre network using the bonding fraction a as a
matching parameter. a is now the fraction of the number of bonded contacts
in the two-dimensional projection of a three-dimensional network divided by
the number of contacts in the two-dimensional network of otherwise the same
parameters. The model works provided that the bending angle ¢ is small, and
the fraction of the bonded segments exceeds 25%, that is, a > 0.25. The second
limitation comes from the fact that in three dimensions a fibre must have at
least two contacts, and that connected fibres must percolate, which generates
high correlations for low bonding fractions. The analytical model assumes the
bonding fraction to be uniform, i.e. uncorrelated, across the system. This
induces an upper limit for the fibre density since for large densities the bonding
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Figure 7: A three-dimensional random fibre network (left up) with ¢/q. = 7.0,
Ly = 1.0, w = 0.2 and ¢ = 0.1rad, and its projection into two dimensions
(left down). The degree of bonding is described on the right where the bonded

crossings of the projection are expressed as circles: 18% of the crossings in the
projection are bonded (a = 0.18).

o 3T

fraction tends to decrease. The fibre density is also limited from below since
close to the percolation limit the network becomes too sparse to be modelled
using a mean-field approch. Comparing the number of bonded crossings in two-
dimensional projections of three-dimensional networks, and the two-dimensional
networks, we find that the fraction of bonded segments takes the form [II]

a=f (-ﬂ.— /g, (40)

where the function of f is not analytically known and wy is a suitable dimension,
which we chose here to be 1m. Changing w and ¢ so that the ratio w/(wq sin ¢)
remains constant, is equivalent to a length scale transformation in the thickness

direction of the mat, and a does not change. Solving for f numerically, see Fig.
9 and [III], gives

f(z) xz73% <03
f(z) = constant,z 2 0.3. (41)
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3.4.2 Porosity

We can define the areal porosity of the cross sections of a three-dimensional
random fibre mat as the fraction of the cross section not covered by fibres [III]
Near the substrate where the fibres lie flat, the areal porosity takes its lowest
value, while near the rough upper surface region, the porosity is increased from
its bulk value. This behaviour can be seen in Fig. 8, where the different lines
represent different fibre densities 9. In the bulk region, the areal porosity is

given by
2
w w
€a =1 —g<wosin¢> LLysing’ (42)

where w?/ sin ¢ is the area covered in the cross-section by a single fibre segment,
and the function g describes the number of segments going through the cross
section. The functions g and f turn out to be related through

w w w
f(wo sinqu) =C1w0 sinqﬁg(czwo sintb)’ ()

where ¢; = 0.2 and ¢, = 0.7 are solved numerically [III] see Fig. 9. This means
that we can relate the porosity of the fibre mats to the number of contacts per
fibre f through the relation

_ 1 _ C2 wow l w
ks c LxLyf(CQ wo sin¢>' (&)

The process function f that appears in Egs. (37), (38), (40) and (41) through the
fraction of bonding a, seems to determine the entire structure and mechanical
behaviour of the fibre mats.

1 . -

Figure 8 The plane porosity p as a function of mat thickness z for g/q. = 12,
g/qc. = 16 and ¢/q. = 20. The peak on the left is the result of the fibres lying
flat on the substrate and should be discarded [III].
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Figure 9: f and gw/ sin ¢ as functions of w/ sin ¢. For small w/ sin ¢ the power-
law (w/ sin ¢)~3/4 is fitted to the data. For large w/ sin ¢ the power-law changes
to a constant value with the cross-over approximately at w/sin ¢ = 0.3 [III].
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4 Woven fibre networks

4.1 Brief review

Machine made woven fabrics are extensively used for many purposes. Search
for their optimal structure with respect to different end uses has induced a large
amount of experimental work. There exists no easy way to estimate for example
the elastic properties, heat conduction or fluid permeability of a multilayer fab-
ric. Traditionally the optimisation process has incorporated manufacturing test
samples followed by analysis of their properties. As the machinery is designed
for fast production and not for frequent changes in the fabric structure, product
development has been tedious and expensive.

4.2 Numerical model

Woven fabrics are constructed by periodically repeating a basic unit in the plane
of the fabric. It is therefore sufficient to find the equilibrium configuration of
the basic unit under periodic boundary conditions.

The fibres are modelled as straight lines between the nodal points where
the fibres may be abruptly bent. The nodal points represent the points of
contact between different fibres. The radii of the fibres enter the model in
the identification of the contact locations where the fibres are prevented from
penetrating each other. The nodes are therefore grouped in pairs, one node per
fibre per contact, the sum of the two fibres’ radii apart.

The initial configuration is such that the cross-directional fibres are straight
across the unit and the longitudal fibres are woven around them in the desired
configuration. Stress is introduced to the system by pulling on the segments at
the (periodic) boundaries. The stress is then carried into the network along the
nearest neighbour segments. The relaxation procedure is realised by the con-
jugate gradient method, and is explained in Section 2.5.2 and in the references
IV, V].

The fibre stiffness is assumed to depend only on the axial stretch mode, ax-
ial tension being proportional to E,r2¢€,, where E,, r, and €, are the Young’s
modulus, the radius and the strain of segment n, respectively. The bending
stiffness of the fibres can be neglected, since fibres with large bending stiffness
would almost certainly result in weave manufacturing problems, making the
process either highly energy consuming or simply inducing frequent fibre break-
age. As friction would lead to an infinite number of metastable equilibrium
configurations, the fibres are also assumed frictionless. This is again applicable
since large friction forces would badly hinder the manufacturing process.

The global energy is assumed to be found when the movement induced in the
network by the pulling method is below some given threshold value. The model
developed in [IV, V] is a tool for generating virtual fabric structures. These
structures can then be tested with various simulation tools for their properties.
An example of a computer generated fabric is shown in Fig. 10.
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Figure 10: A computer generated woven structure.

4.3 Results

The numerical model was tested against the available real fabric structures.
Because of the lack of any instruments to measure the interior of real fabrics,
the virtual structures were visually compared against the cross-sections of the
basic unit of the real sample.

This comparison shows good agreement between the real and simulated
structures, as shown in [IV, V] and in Figs. 11-13. The model can be used
to study e.g. the transport properties of woven structures. We are currently
implementing the Lattice Boltzmann method to extract the permeability of the
geometries generated using the model described.

Figure 11: A side view comparison of a woven structure of 10 fibers with the
the model on top and the real sample below.
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Figure 12: Comparison in two directions of a woven structure of 24 fibers with
the the model on top and the real sample below.
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Figure 13: Comparison in two directions of a woven structure of 40 fibers with
the the model on top and the real sample below.
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5 Discussion

The analytical model developed for the stiffness of the random fibre networks
is a powerful tool for analysing fibrous structures. The in-plane stiffness of
a random fibre structure can be extracted, if we know the properties of the
building blocks of the system. These properties are often well known and the
model can be used to optimise a system by altering the building blocks. This
was done e.g. in Ref. [II] to draw information about how the bending angles of
the fibres affect the tensile stiffness of the network.

The connection between two-dimensional and three-dimensional structures
(IT] opens up a possibility to exploit two-dimensional images in analysing three-
dimensional structures. The only parameter needed in addition to the properties
of the building blocks is the fraction of bonding of the building blocks in contact.
This applies also to the porosity of the system as the properties needed are the
fibre width and the bending angle, albeit the analytical form of the process
function is not yet known.

As the process function [III] seems to determine the entire structure and
mechanical behaviour of the fibre mats, the effective-medium theory developed,
together with the simulation model, offer a solid platform for future develop-
ment in the analysis of geometrical and mechanical properties of materials with
random connections.

In woven fibrous structures the model presented in this thesis for relaxing
a network with multiple boundary conditions, has proved to be an excellent
approach due to its intuitive simplicity and to the computing power needed. The
assumptions made concerning the vanishing bending stiffness and friction, are
in accordance with the manufacturing process of real fabrics. As the numerical
model incorporates a specific case of the gradient method, it falls into a category
of modern numerical methods that are currently being developed and used on a
wide basis. The model can be extended into more elaborate cases by modifying
the contacts such that plasticity and friction are taken into account.
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Abstract. A model for the relazation of large woven networks to the minima of their
elastic energies is introduced. The load in the system is carried by fibre segments be-
tween the contacts that are considered frictionless. During the relazation process contacts
are formed and opened as the system moves towards its energy minimum. The model
introduces a new solution method for the relazation of systems with multiple hard-core
contacts.
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1 INTRODUCTION

Woven fabrics of various kinds are typical everyday materials but also play an important
role in many industrial processes. Modelling has not been applied, however, to the design
of materials of this kind. The related industries have traditionally not had a need to apply
advanced technologies. This situation is now changing: increasingly more sophisticated
properties for materials of also this kind are required. In order to meet their end-use
requirements, more complicated structures are needed, and modelling is becoming an
important tool in their design. The traditional trial and error method of design is rather
costly and time consuming.

Physically realistic modelling of woven fabrics is not however an easy task. Relaxation
of a network of fibres towards its equilibrium configuration involves formation of new
and opening of existing contacts between fibres. This makes the problem nonlinear. The
related dynamics, which is similar to hard-core dynamics, has been difficult to realise in
previous applications. We have now created an algorithm which can produce a woven
structure of desired design with very few real restrictions. We use a limited number of
contraints that arise from the practical application we have in mind, but most them could
be lifted. In the relaxation method a few simplifying assumptions were also made, mainly
for computational efficiency as we want, at the moment, to avoid long computing times.

2 THE MODEL

A woven fabric usually consists of a basic unit which is copied in every direction to
form the textile. It is therefore enough to model the basic unit with periodic boundary
conditions.

The model consists of fibres represented as one-dimensional piecewise linear nearest
neighbour links. The radii of the fibres enter the model in the identification of contacts
when the segments are prevented from penetrating each others. The fabric as a whole
then consists of a nearest neighbour network of nodes connected with one-dimensional
segments.

The nodes on a fibre can be classified as single or double. By a double node we mean a
point where two fibres are in contact, i.e. they ”collide”, so that there are four segments
that meet at a node of this kind. A single node is just a consequence of piecewise linearity
of the fibres: they can bend at nodes of this kind. Thus there are only two segments that
meet at a single node.

In the initial configuration of the network the cross-directional fibres go straight across
the unit, and the longitudal fibres are woven around them in the desired configuration.
Stress is introduced to the network by pulling on the segments at the (periodic) bound-
aries. The stress is then carried along the nearest neighbour segments into the network.

The local energy minimum of the network is sought by moving the nodes along the
resultant force vectors applied on them. The force vectors are generated by summing up
the tension vectors of the segments attached to the nodes. As the nodes are moving, the
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possible collisions of the segments with other segments in the network are monitored. On
collision a new contact, i.e. a new double node, is formed between the colliding segments.
The distance of the two nodes of a contact is given by the sum of the radii of the colliding
fibres and is kept constant throughout the lifetime of the contact. In this sense our
networks are hard-core systems.

For a contact, i.e. a double node, the resultant force vector is found by summing up
the force vectors of the two nodes. The contact is then moved along the the resultant
force vector.

If the force vectors on the two nodes of a contact point in opposite directions, the con-
tact is pulled apart. The resulting two single nodes are then moved along their respective
force vectors. If the force vector on a single node vanishes, the node is removed and the
adjacent nodes are connected with a single segment.

The motion vector of a contact is of the form

p=f3 (1)
where

bours

>

neig
Here fn is a unit vector at the node in the direction of its n** neighbour, and ¢, the tension
at the n'® neighbouring segment.

The parameter f in the equation is a relaxation parameter which is chosen such as to
ensure rapid convergence. Too small an f will increase the relaxation time whereas if f
is too large, unwanted oscillations will be generated.

There is no friction in the system as the contacts slide freely along the fibres. Moreover
no bending stiffness of the fibres is accounted for. If needed the method easily allows a
harder pull at the boundaries on fibres with larger bending stiffnesses as this effectively
makes the fibres straighter in the relaxed state. As bending a fibre also means stretching
it we can deduce from the Hooke’s law that the extra pull at the boundaries would be of
the form [1]

F x Er?, (3)
where F and r are the Young’s modulus and the radius of the fibre, respectively.

In addition to monitoring the segment collisions, it is necessary to prevent the nodes
from penetrating the segments. This is done simply by blocking the node. No new
contacts are formed in node to segment collisions.

The global energy of the network is minimised by going through the nodes iteratively.
When the length of the largest motion of a node in the network is below some value
Drelazed, the global energy minimum is assumed to be found.

3 COMPARISON WITH EXPERIMENTS

Some networks generated by the pull-detect method described above were compared
with real woven-fabric configurations of the same design. The fibres used in the fabrics

3
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were made of plastic with a relatively low friction coefficient so that the assumption of
non-frictional fabric used in the relaxation should be quite well satisfied. At this point
we do not perform a quantitative comparison of the real and model structures, but are
satisfied with a qualitative visual inspection. It isevident from figs. 1 and 2 that modelling
can produce very realistic configurations.

Figure 1: A side-view comparison between the model (upper) and a real woven fabric (lower) in the
relaxed state. The basic unit contains 32 cross-directional fibres in three layers and eight longitudal
fibres.

The computer used in the modelling was a Pentium II - 400 Mhz laptop with 128MB
of on-board memory. For every configuration tested the relaxation time was on the scale
of a few minutes.

4 DISCUSSION

The need for constant development of industrial textiles may lead to a cycle of trials
and errors which is often expensive and time consuming. The test samples have to be
manufactured and analysed, and in the worst case the whole assembly line would be
out of production during this time. Still at the end of testing the results may well be
disappointing.

To date this has been in practice almost the only way of developing textiles. In the
basic unit of a fabric, which is periodically copied in the lateral directions, the number
of fibres may well be ten times thirty in four layers. Finding the global energy minimum
of the system includes a minimisation of a highly nonlinear elastic problem. This means
finding the minimum energy configuration for every fibre in the presence of the several
boundary conditions set by the other fibres. The global energy function of the system is
very complex. Contacts between the fibres are hard-core which usually are very difficult

4
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Figure 2: A comparison between the top views of the same fabric configuration. The upper picture is
again the model and the lower picture the real fabric. We suspect that the difference seen here follows
from the non-frictional modelling of the threads.

to handle, and the fibres may come in contact with nearly every other fibre in the system.
Solving the problem with standard methods would have been very time consuming.

The method we use includes hard-core contact handling with a very fast iterative search
for the global elastic equilibrium. The method does not require much memory in its data
structures, and is very fast with convergence times of the order of a few minutes for all
the relevant cases we have studied. This ensures the use of the method without large
investments on computer power. The output of the method is the geometrical structure
of the fabric in terms of nodal co-ordinates. This information can be further analysed with
other computational methods. These include different stiffness modes using the conjugate
gradient method, flow of water through the fabric using the lattice-Boltzmann method,
and several geometrical properties of the system, just to mention a few.
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