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ABSTRACT Numerous studies have described specific metabolites as biomarkers of
severe liver diseases, but very few have measured gut microbiota (GM)-produced metab-
olites in fatty liver disease. We aimed at finding GM signatures and metabolite markers
in plasma and feces related to high liver fat content. Based on imaging, we divided
study participants into low (,5%, LF, n = 25) and high (.5%, HF, n = 39) liver fat
groups. Fecal (LF n = 14, HF n = 25) and plasma (LF n = 11, HF n = 7) metabolomes of
subsets of participants were studied using liquid chromatography/high resolution mass
spectrometry. The GM were analyzed using 16S rRNA gene sequencing. Additionally,
blood clinical variables and diet were studied. Dyslipidemia, higher liver enzymes and in-
sulin resistance characterized the HF group. No major differences in diet were found
between the groups. In the GM, the HF group had lower abundance of Bacteroides and
Prevotellaceae NK3B31 group than the LF group after adjusting for metformin use or
obesity. In feces, the HF group had higher levels of lysine and histidine degradation
products, while 6-hydroxybetatestosterone (metabolized by CYP3A4) was low. Higher
plasma levels of caffeine and its metabolites in the HF group indicate that the activity of
hepatic CYP1A2 was lower than in the LF group. Our results suggest, that low fecal
Prevotellaceae NK3B31 and Bacteroides abundance, and increased lysine and histidine
degradation may serve as GM biomarkers of high liver fat. Altered plasma caffeine
metabolites and lowered testosterone metabolism may specify decreased CYP activities,
and their potential utility, as biomarkers of fatty liver disease.

IMPORTANCE Because the high prevalence of nonalcoholic fatty liver disease sets diag-
nostic challenges to health care, identification of new biomarkers of the disease that in
the future could have potential utility as diagnostic biomarkers of high liver fat content is
important. Our results show that increased amino acid degradation products in the feces
may be such biomarkers. In the blood, molecules that indicate defective hepatic metabolic
enzyme activities were identified in individuals with high liver fat content.
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Nonalcoholic fatty liver disease (NAFLD), with a worldwide prevalence of up to 40%
in adult population, is an acutely increasing burden on public health (1). NAFLD is

characterized by hepatic steatosis, i.e., excess (.5%) fat accumulation in hepatocytes
(2). Obesity and insulin resistance are associated with NAFLD (3). NAFLD is shown to be
present in 40 to 80% of patients with type 2 diabetes (1, 4, 5), and in 30 to 90% of
patients with obesity (6). Dietary factors, such as high fructose intake contribute to the
development of NAFLD (7). In addition, defective hepatic CYP enzyme activities are
well known molecular players in NAFLD (8).

The gut microbiota (GM) referring to the ;100 trillion microbes inhabiting the gastroin-
testinal tract (9) contribute to the pathophysiology of NAFLD. We have found that in
humans high hepatic fat content is linked to lower abundance of Faecalibacterium prausnitzii
(10), and further, in a mouse model we have been able to ameliorate NAFLD by administer-
ing F. prausnitzii (11). One previous study reported that NAFLD patients have lower abun-
dance of Bacteroidetes (12), and another lower abundance of Bacteroides (13). Contrarily,
others have shown higher abundance of Bacteroides in NAFLD (14, 15).

It is increasingly accepted that the abundance of certain members of the GM affect
human physiology by processing the ingested food to bioactive metabolites. These
molecules act as signaling messengers after absorption in extraintestinal tissues (16),
including the liver, which is the first target organ that metabolizes them (17). Despite
the importance of the gut-liver axis, studies describing the importance of fecal metab-
olites in human NAFLD are surprisingly scarce. One study reported that the levels of
fecal bile acids and propionate are increased in NAFLD patients depending on the se-
verity of hepatic fibrosis (18). Another study has shown elevated fecal propionate in
NAFLD patients, accompanied with higher levels of acetate and butyrate (19).
Contrarily, lower levels of acetate are found in obese pediatric NAFLD patients, while
propionate is unaffected (20). These results suggest the role of GM in NAFLD, but more
studies on the fecal metabolome are needed to assess whether short-chain fatty acids
or other GM metabolites could be useful diagnostic biomarkers of NAFLD.

Metabolic profiling of plasma and serum samples have been used to study the patho-
physiology of NAFLD, and has, for example linked bile acid homeostasis to NAFLD (21, 22).
However, most studies have focused on diagnosing advanced hepatic fibrosis or differenti-
ating between nonalcoholic steatohepatitis (NASH) and non-NASH (23, 24), whereas
NAFLD have been less studied. One model proposes that NASH, fatty, or healthy liver sta-
tus could be distinguished based on lipidomics, glycomics, and hormones (25). A few stud-
ies have identified serum lipid signatures, which might be used as diagnostic markers for
NAFLD (26, 27). In addition, one recent study discovered 11 metabolites and three clinical
parameters, which were associated with NAFLD (28).

Because the high prevalence of NAFLD sets diagnostic challenges to the health care
system, we examined the GM, fecal and plasma metabolites, and diet as well as clinical
parameters of humans with low (LF, ,5%) and high liver (HF, .5%) fat content. The
aim of this study was to identify new biomarkers of NAFLD that could have potential
utility as diagnostic markers of high liver fat content.

RESULTS
Anthropometric and clinical variables differed between the liver fat groups.

The HF participants had higher body weight, BMI, waist circumference, and blood pressure
than the LF participants (P , 0.05 for all, Table 1). The HF group had 24 males and 15
females (61.5% and 38.5%, respectively), and the LF group 11 males and 14 females (44%
and 56%, respectively), with no significant differences in gender between the groups.

The HF participants had;2-times higher alanine aminotransferase (ALT), aspartate amino-
transferase (AST) and gamma-glutamytransferase (GGT) than the LF participants (P , 0.001
for all, Table 2), yet only ALT was over the reference range. Compared to the LF, the HF group
had;19% lower HDL (P = 0.007) and;2-times higher triglycerides (P, 0.001), and the latter
was over the reference range (Table 2). At fasting, oral glucose tolerance test (OGTT) showed
;7% higher levels of glucose (P = 0.017) and insulin (,0.001) in the HF group compared to
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the LF group. Consequently, the HOMA-IR was higher in the HF group (P , 0.001), showing
significant insulin resistance (Table 2).

The HF participants had lower GM diversity and different GM composition than
the LF group. By analyzing the GM alpha-diversity, we found that the HF group had lower
Shannon index (i.e., species diversity) (P = 0.04, Fig. 1A), while no differences were seen in
Chao1 (i.e., species richness, Fig. S1A). In addition, the HF group had lower GM phyloge-
netic diversity than the LF group (P = 0.03, Fig. 1B). Bray Curtis distance showed that the
groups did not differ in beta-diversity (i.e., interindividual species diversity, Fig. S1B).

The average GM composition in the groups is shown in Fig. S2A. In group comparisons,
we found differences in the abundance of several taxa (Fig. S2B). However, when adjusted
for the use of metformin or obesity, only the difference in Bacteroides and Prevotellaceae
NK3B31 between the groups remained significant, i.e., the abundance of these was lower
in the HF group (Fig. 2A and B).

As diet affects the GM composition, the dietary intakes of macronutrients were ana-
lyzed. Notably, we found no significant differences in the energy and nutrient intakes
between the groups, except for vitamin E (P = 0.035) and sucrose (P = 0.038) intakes
that were higher in the HF than the LF group (Table S2).

The fecal metabolome of the HF group was characterized by high levels of ly-
sine and histidine degradation products.We found that the levels of 19 metabolites in
feces differed between the groups (Wilcoxon rank-sum P , 0.05 and $2-fold change,
Fig. 3, Table S3A). Identification of the metabolites is presented in Table S1A, and their cor-
relation networks in Fig. S3. Levels of seven metabolites were higher in the HF group vary-

TABLE 2 Serum clinical variables measured using clinical chemistrya

Variable Reference range
LF group
(n = 25)

HF group
(n = 39) P value

ALT (U/L) male, 50, female, 35 25.36 11 546 41.1 <0.001
AST (U/L) 15–45 23.56 4.3 42.66 35 <0.001
GGT(U/L) ,61 27.16 17.2 53.86 32.5 <0.001
Cholesterol (mmol/L) ,5 5.26 1.4 5.56 1.3 0.395
HDL (mmol/L) male. 1, female. 1.2 1.66 0.5 1.36 0.3 0.007
LDL (mmol/L) ,3 36 0.6 3.36 0.9 0.282
Trigly (mmol/L) ,1.7 1.16 0.5 26 1.4 <0.001
Glucose (mmol/L)b 4–6 5.76 0.5 6.16 0.7 0.017
Insulin (iU/L)b 2–20 9.16 9.0 19.46 13.1 <0.001
HOMA-IRb IS, 1, early IR, 1.9,

significant IR. 2.9
2.36 2.2 5.46 3.8 <0.001

aThe data are presented as mean6 SD. LF, 5% fat, HF. 5% fat in liver. Bolded P values indicate statistically
significant difference between the groups. The reference ranges are based on values obtained with standard
methods in the accredited laboratory HUSLAB, Finland (www.huslab.fi/ohjekirja). ALT, alanine aminotransferase;
AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; HDL, high-density lipoprotein; LDL, low-
density lipoprotein; Trigly, triglycerides; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; IS,
insulin sensitive; IR, insulin resistance; LF, low fiver fat; HF, high liver fat.

bLF n = 23, HF n = 32. The lower number of participants in OGTT is because it was not done for diabetic
participants. HOMA-IR was calculated as fasting insulin (mU/L) x fasting glucose (mmol/L)/22.5.

TABLE 1 Anthropometric measurements, liver fat % and blood pressure of the study
participantsa

Variable
LF group
(n = 25)

HF group
(n = 39) P value

Age (yrs) 486 12 516 10 0.345
ht (cm) 171.46 10.1 175.26 9 0.115
wt (kg) 876 17.2 105.36 20.7 <0.001
BMI (kg/m2) 29.86 6.3 34.26 5.8 0.005
Waist circumference (cm) 101.16 14 117.86 13.9 <0.001
BP systolic (mm Hg) 1276 18 (n = 24) 1386 18 0.042
BP diastolic (mm Hg) 816 11 (n = 24) 876 9 0.024
Liver fat % 1.36 1.3 17.26 10 <0.001
aThe data are presented asmean6 SD. LF, 5% fat, HF. 5% fat in liver. Bolded P values indicate statistically
significant difference between the groups. BMI, bodymass index; BP, blood pressure; LF, low fiver fat; HF, high liver fat.
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ing from 2– to 20-fold compared to LF, and the levels of 12 metabolites in the HF group
were 0.16 to 0.50-fold lower from the levels of LF group (Fig. 3A and B, Table S3A). When
adjusting for body weight and metformin use, seven metabolites remained significantly
different, and the difference in glycyrrhetinic acid became significant (Fig. 3B). The level of
testosterone metabolism product, 6-betahydroxytestosterone was very low in the HF
group compared to the LF group despite that the HF group included more males. The his-
tidine degradation product N-omega-acetylhistamine, and lysine degradation product sac-
charopine were higher in the HF group than in the LF group.

Next, we analyzed the associations between the fecal metabolites and liver fat % (Fig. 4A
and B, Table S3B). Cholic acid and its precursor 7-a,27-dihydroxycholesterol increased along
with liver fat %. In addition, histidine metabolism products urocanic acid, methylhistidine, his-
tamine, anserine, N-acetylhistamine, and methylimidazole acetic acid associated positively
with liver fat %. The associations of the GM with fecal metabolites are visualized in Fig. S4.

The HF group was characterized by higher plasma levels of caffeine metabo-
lites, primary and secondary bile acids suggesting altered hepatic CYP activities.
We found that 14 plasma metabolites differed between the groups (Wilcoxon rank-
sum P , 0.05 and $2-fold change, Table S4A & Fig. 5). The identification of the metab-
olites is presented in Table S1B. The levels of 12 metabolites were 2- to 4.3-fold higher
in the HF group compared to the LF group. The HF group had higher plasma levels of

FIG 1 The diversity of the gut microbiota in the low (n = 25) and high (n = 37) liver fat groups. (A) Shannon
index, a measure of alpha-diversity indicating species diversity. (B) Phylogenetic diversity. The data are shown
as mean 6 95 CI, with the dots indicating diversity in individual samples. Statistical differences between the
groups are shown above the panels (Kruskal-Wallis test).

FIG 2 (A and B) The differential abundances of the gut microbiota between the low (n = 25) and
high (n = 37) liver fat groups after adjusting for metformin use or obesity. The data are shown as
mean 6 95 CI, with the dots indicating abundance % in individual samples. The group differences
were analyzed with ANOVA-like test followed by FDR correction.
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several bile acids and their glycine conjugates, which are outcome of either hepatic
CYP7A1 and metabolized by other hepatic CYPs or higher reabsorption of bile acids.
However, we did not find difference in the downstream product of CYP7A1, 7a-
hydroxy-4-cholestelen-3-one, between the groups (fold change value HF/LF 0.67 in the
plasma and 2.08 in the feces). Caffeine and its metabolites paraxanthine, theophylline,
and theobromine as well as cyclo(leucylprolyl), were also higher in the HF group than
in the LF group. Notably, there was no difference in coffee intake between the groups
(Table S2). To estimate the activity of caffeine-metabolizing CYP1A2, we determined
the ratio of paraxanthine/caffeine (29), which was ;2-fold lower in the HF group than
in the LF group (P = 0.002, Fig. 5D). Further, the ratio associated negatively with liver
fat % (R= 20.532, P = 0.023, Fig. 5D).

We also analyzed the associations between plasma metabolites and liver fat %. Bile
acids, their conjugates, cyclo(leucylprolyl) and amino acids proline, isoleucine and glu-
tamic acid associated positively with liver fat %, while several phospholipids associated
negatively with it (Fig. 6, Table S4B).

To further understand the metabolic derangements, a correlation-based network commu-
nity analysis was carried out using the Girvan-Newman algorithm (30), where the metabolites
are the network nodes and the connections between the nodes are the Pearson correlations.
The network community analysis diagram was generated combining all 38 significant plasma
metabolites. The algorithm detected four distinct communities (Fig. S5). The first community

FIG 3 Visualization of the fecal metabolites that (A) differed between the low (n = 14) and high (n = 25) liver fat groups without including confounding
factors in the analysis, and (B) differed between the groups after adjusting for body weight and metformin use. The x axes indicate log2-fold differences. The
group differences were analyzed using Mann-Whitney U-test. Features with a significant difference P , 0.05 and fold difference of $2 were considered of
interest. (C) Principal-component analysis (PCA) of the differing metabolites without adjustment. Circles denote a 95% CI of the scores in each dimension.
(D) PCA loading plot of the differing metabolites showing covariances of the variables with the principal components.
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included pyrocatechol sulfate and indole-3-methyl acetate. The second community was com-
posed of primary and secondary bile acids as well as two short-chain acylcarnitines. The third
community was composed of diet-related metabolites, especially of caffeine metabolism.
The last community was composed entirely of lipids, including lysophosphocholines and
phosphocholines.

DISCUSSION

Because the high prevalence of NAFLD sets diagnostic challenges to health care,
we examined the GM, fecal and plasma metabolites as well as clinical parameters of

FIG 4 The features with significant Spearman correlations (P , 0.05) between the fecal metabolites and liver fat % visualized with (A) heatmap and (B)
partial least-squares (PLS) plots and loadings. The color in the heatmap corresponds to the correlation coefficient between the metabolites and liver fat %
as shown on the scale right side of the heatmap. LV, latent variable.
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humans with low (LF,,5%) and high liver (HF,.5%) fat content in this study. We iden-
tified new potential microbial and plasma metabolic biomarkers of fatty liver disease.

Metabolically, especially higher levels of triglycerides and significant insulin resist-
ance in the HF group suggest their utility as biomarkers of a fatty liver disease without
biopsy specimen proven NAFLD. This is supported by earlier studies showing that dys-
lipidemia (31, 32), and the pathogenesis of insulin resistance (33–35) associated with
NAFLD. Our previous study also showed insulin resistance in humans with high liver fat
content (.5% based on MRI) (10).

We found that the GM diversity was lower in the HF group, which is consistent, e.g., with
the study by Astbury et al. showing lower GM diversity in NAFLD patients (36). When adjust-
ing for obesity or the use of metformin, both of which are known to affect GM (37), the HF

FIG 5 (A) Visualization of the plasma metabolites that differed between the low (n = 11) and high (n = 7) liver fat groups. The X axis indicates log2 fold
differences. The group differences were analyzed using Mann-Whitney U-test. Features with a significant difference P , 0.05 and fold change of $ 2 were
considered of interest. (B) Principal component analysis (PCA) of the differing metabolites and (C) PCA loading plot of the differing metabolites, showing
covariances of the variables with the principal components. (D) Paraxanthine/caffeine ratio, indicative of CYP1A2 activity and its association with liver fat %.
In the graph, the data are presented as mean 6 SD, and the dots indicate individual data points. The group differences were analyzed with t-test and the
association with Spearman correlation. **, P , 0.01.
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group had lower abundance of Prevotellaceae NK3B31 than the LF group. Consistently, we
have shown that when a rat model of NAFLD was supplemented with prebiotic Xylo-oligo-
saccharides, the abundance of Prevotellacaeae NK3B31 increased along with reduction of
liver fat (38). Thus, this genus might be an indicator of hepatic steatosis. Our finding on the
lower abundance of Bacteroides agrees with a study by Testerman et al. in NAFLD patients
(13), while opposite findings also exist (15). However, contrary to our results, Testerman and
coworkers found that two GM pathways of histidine degradation were decreased in NAFLD
patients (13). In contrast, elevated urinary methylhistidine has been described in NAFLD
patients (39). In agreement with the latter, we report here that the fecal level of histidine

FIG 6 The features with significant Spearman correlations (P , 0.05) between the plasma metabolites and liver fat % visualized with (A) heatmap and (B)
partial least-squares (PLS) plot (R2 = 0.74) and loadings. The color in the heatmap corresponds to the correlation coefficient between the metabolites and
liver fat % as shown on the scale right side of the heatmap. LV, latent variable.
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metabolism product, N-omega-acetylhistamine was markedly increased in the HF group.
Further, other products of histidine degradation, such as anserine, positively associated with
liver fat.

Of the GM metabolites, we also found that saccharopine, a degradation product of lysine
was higher in the HF group compared to the LF. In agreement, Michail et al. found by studying
GM metagenomes, that the lysine degradation pathway (lysine=.saccharopine=.acetoacetyl-
CoA) was exclusively identified in NAFLD patients and not in healthy individuals (20). Together
these findings suggest that increased histidine and lysine degradation by the GM may be HF
biomarkers. Furthermore, in the feces of the HF group, 6-hydroxybetatestosterone was reduced.
Because there were more males in the HF group than in the LF group, our finding further sug-
gests that higher hepatic fat content could associate with lower activity of testosterone-metabo-
lizing CYP3A4 (40).

We found elevated cyclo(leucylprolyl), glycine-conjugated bile acids and caffeine metabo-
lites in the plasma of the HF participants. Interestingly, a previous study has shown that
dipeptides, glycine-conjugated bile acids, and lower coffee intake were associated with the
incidence of hepatocellular carcinoma and fatal liver disease in a prospective setting (41).
Here, we report that paraxanthine, which is the major primary metabolite of caffeine (42), as
well as minor primary metabolites theophylline and theobromine, were elevated in the
plasma of HF participants, despite no difference in coffee intake between the groups. The
results of our metabolite network analysis further supported these metabolic derangements.
While, to our knowledge, elevated caffeine metabolites have not been reported in NAFLD,
Holstege et al. have shown that the half-life of these metabolites increases as cirrhosis pro-
gresses (43). Whether the elevated plasma caffeine metabolites and cyclic dipeptides could
be useful biomarkers in detecting NAFLD warrants further research in larger populations.

Caffeine metabolism is a CYP-dependent process in the liver, and alterations in CYP
expression and activity have been described in NAFLD (44). We found that the activity of
CYP1A2, as estimated from the increased paraxanthine/caffeine ratio (29), was reduced in
the HF participants. Accordingly, CYP1A2 mRNA expression and enzyme activity are shown
to decrease along with NAFLD progression from steatosis to NASH (8). Further, a decline in
CYP1A2 enzymatic activity with exacerbating fibrosis has been observed (45). CYP1A2 is the
most important CYP in metabolism of caffeine (29). Taken together, it seems that the low ac-
tivity of CYP1A2 could be an early biomarker of NAFLD. In agreement with previous studies
(46–49), we observed signs of altered bile acid metabolism in the plasma of the HF group, as
increased bile acids levels were found both in feces and plasma. Our results therefore sug-
gest that the activity of bile acids metabolizing CYP7A1 (50) is increased in the HF group.
However, we did not find differences in the downstream product of CYP7A1, 7a-hydroxy-4-
cholestelen-3-one, between the groups which suggests that CYP7a1 activity is not decreased.
This is in agreement with what has been shown in NAFLD and NASH (51).

Our study is not without limitations. The sample sizes for metabolite analyses can be
considered rather small, and we could not find similar cohorts to reproduce our findings
and to compare our results with others. Because the participants self-collected the fecal
samples at their homes, the samples could not be immediately frozen at 280°C. Thus,
some microbial metabolism may have occurred during the 1 to 2 days when the samples
were frozen at nonstandardized home freezers.

In conclusion, our study suggests that lower Prevotellaceae NK3B31 group and
Bacteroides abundance as well as increased lysine and histidine degradation in feces
could be microbial biomarkers of high liver fat. Further, higher plasma caffeine metab-
olites and signs of altered testosterone metabolism, suggesting lower hepatic CYP1A2
and CYP3A4 activities may be used as biomarkers of high liver fat. However, to estab-
lish the use of these variables as biomarkers in detecting the risk of NAFLD warrants
further research in larger populations.

MATERIALS ANDMETHODS
The human study participants. The study was approved by the Ethics Committee of the Hospital

District of Southwest Finland (ETMK 72/2019) and by the Helsinki University Hospital (270/13/03/01/
2008). The inclusion criteria were an age ,75 years, being overweight (body mass index [BMI] .25), and
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high waist circumference (.102 cm for males,.88 cm for females). The exclusion criteria were antibiotic
treatment 1 month prior to the study, excessive alcohol consumption (.20 g/day for females, 30 g/day
for males), inflammatory bowel disease, celiac disease, major eating disorders, cardiovascular diseases,
and hypothyroidism. Informed consent was collected from all participants prior to the study.

The participants were recruited by the University of Jyväskylä and the University of Helsinki, Finland,
and data were analyzed between 2020 and 2022. The participants were divided into low (LF), and high
(HF) liver fat groups based on magnetic resonance imaging (MRI) or magnetic resonance spectroscopy
(MRS) quantification of the hepatic triglyceride content. Details of the imaging analyses are provided in
Supplementary material (Text S1). Liver fat was measured with MRI for 46 eligible participants and with
MRS for eligible 18 participants. Still, there is no consensus on the exact fat % threshold distinguishing
between healthy and fatty liver. Based on the literature (2), we considered the participants as having
fatty liver disease, when the liver had over 5% fat. Based on the measurements, 39 participants had high
(.5% fat, HF) and 25 had low (,5% fat, LF) liver fat. The participants did not have clinical diagnosis of
NAFLD, and thus, for clarity we refer to fatty liver disease.

Oral glucose tolerance test and blood samples. Oral glucose tolerance test (OGTT) was performed
for nondiabetic participants (n = 59) after overnight fasting. Blood samples were collected prior to commenc-
ing the OGTT and at 30, 60 and 120 min. Homeostatic Model Assessment for Insulin Resistance (HOMA-IR)
was calculated as fasting insulin (mU/L) x fasting glucose (mmol/L)/22.5 (52, 53). Serum AST, ALT, GGT, glu-
cose, insulin and triglycerides were analyzed using standardized clinical methods at HUSLAB laboratories
(Helsinki, Finland) or bioanalytical facility of the Faculty of Sport and Health Sciences, University of Jyväskylä,
Finland.

Body composition measurements. Height was measured using a wall-fixed measuring device, and
weight was measured using an electronic scale. BMI was calculated as weight (kg)/height (m)2. Waist cir-
cumference was measured midway between the lowest rib and the iliac crest twice with a tape measure
and the mean value was used for the analyses.

Fecal sample collection and 16S rRNA gene sequencing. The participants self-collected the fecal
samples, which were home-frozen immediately after collection, brought to laboratory frozen and stored at
280°C. The bacterial DNA was extracted using Stool-kit v2 and semiautomated GenoXtract (Hain Lifescience,
Nehren, Germany) accompanied with preceding bead-beating in 0.5/1.0 mm ceramic bead tubes. The 16S
rRNA gene was amplified using primers targeting the V3-V4 regions. The protocol is described in
Supplementary material (Text S1). 16S rRNA gene sequences were clustered into operational taxonomic units
(OTUs) at 97% similarity using CLC Microbial Genomics Package (Qiagen, Hilden, Germany). The rRNA gene
sequences were classified using SILVA SSU Reference database (v132, 99%).

Analyses of fecal and plasma metabolites from subsets of participants. Plasma sample prepara-
tion for metabolite analyses (LF n = 11, HF n = 7) was done as previously (54). Briefly, samples were thawed
on ice and a 100 mL aliquot of plasma was dispensed into a 96-well filter plate (Captiva ND, 0.2 mm PP,
Agilent Technologies) containing 400 mL of ice-cold acetonitrile. Samples were mixed to thoroughly precipi-
tate plasma proteins, and then centrifuged 700 � g for 5 min at 4°C and the supernatants were collected to
a 96-well storage plate and stored at 10°C.

The fecal samples (LF n = 14, HF n = 25) were suspended in phosphate-buffered saline with a ratio of
1:5 (w:v), vortexed for 10 min at full speed and centrifuged 700 � g for 5 min at 4°C. An aliquot of
100 mL of the fecal extract was combined with 500 mL of ice-cold methanol, vortexed for 30 sec at full
speed and centrifuged 700 � g for 5 min at 4°C. The supernatant was transferred to a clean microcentri-
fuge tube through a 0.2 mm syringe filter.

Nontargeted metabolic profiling was performed at the LC-MS metabolomics center (Biocenter
Kuopio, University of Eastern Finland, Finland). The analysis was carried out using an ultra-high perform-
ance liquid chromatography (Vanquish Flex UHPLC system, Thermo Scientific, Bremen, Germany, and a
1290 LC system, Agilent Technologies, Waldbronn, Germany) coupled online to a high-resolution mass
spectrometry (Q Exactive Focus, Thermo Scientific and 6540 qTOF-MS, Agilent Technologies). All samples
were analyzed using two different chromatographic techniques, i.e., reversed phase (RP) and hydrophilic
interaction chromatography (HILIC). Data were acquired in both electrospray ionization (ESI) polarities,
i.e., ESI positive (ESI1) and ESI negative (ESI2). Data-dependent product ion spectrums (MS2 data) were
acquired from pooled quality control (QC) samples at the beginning and end of the analysis for each
mode. QC samples were injected in the beginning of the analysis and after every 12 samples. The LC-MS
instrument set-ups and data acquisition parameters have been described previously (55). Detailed analy-
ses of the samples and data are described in Supplemental material (Text S1). The identification informa-
tion on the fecal and plasma metabolites are shown in Tables S1A and B, respectively.

Diet analyses. The diet was analyzed from 3-day self-reported food diaries (2 weekdays and 1 week-
end day) using Aivodiet software (Aivodiet, Flow-team Oy, Oulu, Finland). An average daily intake of
energy and nutrients were calculated from the 3 days. Fecal sampling and food diary filling were per-
formed within the same week.

Statistical analyses. Statistical analyses of clinical variables and diet were performed using IBM
SPSS Statistics 26 (Armonk, NY, USA). Normal distribution of the variables was analyzed using Shapiro
Wilk’s test. Differences between the groups were analyzed using independent samples T-test or Mann-
Whitney U-test. Statistical significance was set at P, 0.05.

Statistical analyses of the GM were performed with CLC Microbial Genomics Package (Qiagen).
The group differences in GM alpha-diversity measures and phylogenetic diversity were analyzed with
Kruskal-Wallis test. GM beta-diversity analysis was based on Bray-Curtis distance and PERMANOVA
(PERmutational Multivariate ANalysis Of Variance) between the groups. GM taxonomic differences
between the groups were analyzed with ANOVA-like comparison, followed by Benjamini-Hochberg
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correction for multiple testing. In the taxonomic comparisons, statistical significance was set at FDR
(false discovery rate) P , 0.05. The group differences were adjusted for obesity and metformin use.

Statistical analyses of the metabolites were performed using Python 3 and the packages Scipy and
Scikit Learn. The raw abundances of the molecular features were log2-transformed, the group differen-
ces were analyzed using Mann-Whitney U-test and adjusted for obesity and metformin use. Features
with a significant difference P , 0.05 and fold change of $2 between the groups were considered of
interest.

Data availability. The access to the data is restricted due to personal information protection
(General Data Protection Regulation (GDPR) 2016/679 and Directive 95/46/EC). However, it is possible to
contact author to ask for a copy of the material. The metadata of the study can be found in https://doi
.org/10.17011/jyx/dataset/85068.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, DOCX file, 0.02 MB.
FIG S1, DOCX file, 0.2 MB.
FIG S2, DOCX file, 0.4 MB.
FIG S3, DOCX file, 0.2 MB.
FIG S4, DOCX file, 0.5 MB.
FIG S5, DOCX file, 0.1 MB.
TABLE S1, DOCX file, 0.03 MB.
TABLE S2, DOCX file, 0.02 MB.
TABLE S3, DOCX file, 0.02 MB.
TABLE S4, DOCX file, 0.02 MB.
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