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We show that the first order Sobolev spaces W 1,p(Ωψ), 1 < p ≤ ∞, on cuspidal symmetric domains Ωψ can be

characterized via pointwise inequalities. In particular, they coincide with the Haj lasz-Sobolev spaces M1,p(Ωψ).

1 Introduction

Optimal definitions for Sobolev spaces are crucial in analysis. It was a remarkable discovery of Haj lasz

[4] that distributionally defined Sobolev functions can be characterized using pointwise estimates in

the context of Sobolev extension domains. This, in part, has played a crucial role in defining Sobolev

spaces for general metric measure spaces. Here, we show that for certain cuspidal domains the pointwise

characterization holds without any additional assumptions. These domains do not admit extensions for

Sobolev functions. Given a domain Ω ⊂ Rn, we denote by W 1,p(Ω), 1 ≤ p ≤ ∞, the usual first order

Sobolev space consisting of all functions u ∈ Lp(Ω) whose first order distributional partial derivatives

also belong to Lp(Ω). If Ω = Rn, then any Sobolev function u satisfies the pointwise inequality

|u(x)− u(y)| ≤ C|x− y| (M [|∇u|](x) +M [|∇u|](y)) (1.1)

at Lebesgue points of u, where M [|∇u|] is the Hardy-Littlewood maximal function of |∇u|, see [1, 2, 4, 8].

Motivated by this, P. Haj lasz introduced in [4] the space M1,p(Ω) consisting of all those u ∈ Lp(Ω) for
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which there exists a set E ⊂ Ω of n-measure zero and a function 0 ≤ g ∈ Lp(Ω) so that

|u(x)− u(y)| ≤ |x− y| (g(x) + g(y)) (1.2)

whenever x, y ∈ Ω \ E.

One has M1,p(Rn) = W 1,p(Rn) as sets for 1 < p ≤ ∞, and the norms are comparable once M1,p(Rn)

is equipped with the natural norm. Also, for 1 ≤ p ≤ ∞, one always has M1,p(Ω) ⊂W 1,p(Ω) and the

inclusion is strict for p = 1 for any domain Ω, see [7].

A natural question to ask is:

For which domains Ω ⊂ Rn do we have M1,p(Ω) = W 1,p(Ω)?

Indeed, these two spaces coincide if there is a bounded extension operator from W 1,p(Ω) into

W 1,p(Rn), for a given 1 < p ≤ ∞. When p =∞ and Ω is bounded, this is the case if Ω is quasiconvex

and actually the equality is equivalent to quasiconvexity under these assumptions. This follows from [5,

Theorem 7]. Moreover, for 1 < p <∞, under the assumption that

|B(x, r)| ≤ C|B(x, r) ∩ Ω| (1.3)

for every x ∈ Ω and every 0 < r < 1, where | · | refers to n-measure, M1,p(Ω) = W 1,p(Ω) implies the

existence of such an extension operator. Indeed, in this case the spaces coincide precisely when such

an extension operator exists. For this see [5]. Using this fact, it is easy to exhibit domains Ω for which

M1,p(Ω) = W 1,p(Ω) fails for all p; e.g. take Ω ⊂ R2 to be the unit disk minus the interval [0, 1) on the

real axis.

In this paper, we consider this question for cuspidal domains of the form

Ωψ :=
{

(t, x) ∈ (0, 1)×Rn−1; |x| < ψ(t)
}
∪ {(t, x) ∈ [1, 2)×Rn−1; |x| < ψ(1)}, (1.4)

where ψ : (0, 1]→ (0,∞) is a left continuous increasing function. (Left continuity is required just to

get Ωψ open. The term “increasing” is used in the non-strict sense.) The seemingly strange cylindrical

annexes are included only to exclude other singularities than the cuspidal one. It is crucial to note that

these domains will not, except for limited special cases, be Sobolev extension domains, and thus the

methods from [5] do not apply.

It is easy to check that Ωψ ⊂ Rn is a domain. If limt→0
ψ(t)
t = 0, then the measure density condition

(1.3) fails, and hence, by [5], there can not exist any bounded extension operator from W 1,p(Ωψ)

to W 1,p(Rn). However, according to a somewhat surprising result by A.S. Romanov [9], one still

has W 1,p(Ωψ) = M1,p(Ωψ) if ψ(t) = ts with s > 1 and p > 1+(n−1)s
n . Actually, Romanov proved this
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statement for a domain which is bi-Lipschitz equivalent to Ωψ when ψ(t) = ts, but bi-Lipschitz transforms

preserve both Sobolev and Haj lasz-Sobolev spaces.

We show that the above restriction on p is superfluous and that ψ being of the form ψ(t) = ts can

be relaxed to being any left continuous increasing function.

Theorem 1.1. Let ψ : (0, 1]→ (0,∞) be a left continuous increasing function. Define the corresponding

cuspidal domain Ωψ as in (1.4). Then W 1,p(Ωψ) = M1,p(Ωψ) for all 1 < p ≤ ∞ with equivalence of

norms.

As a consequence of the bi-Lipschitz invariance stated above, the conclusion M1,p(Ω) = W 1,p(Ω)

then holds for all bi-Lipschitz images of Ωψ. Thus, our result covers the result obtained by Romanov.

2 Definitions and Preliminaries

In what follows, Ω ⊂ Rn is always a domain. We write

Rn = R×Rn−1 := {z := (t, x) ∈ R×Rn−1} .

Throughout the paper, we consider a left continuous increasing function ψ : (0, 1]→ (0,∞), extend the

definition of ψ to the interval (0, 2) by setting

ψ(t) = ψ(1), for every t ∈ (1, 2)

and write

Ωψ = {(t, x) ∈ (0, 2)×Rn−1; |x| < ψ(t)} .

Typically, c or C will be constants that depend on various parameters and may differ even on the

same line of inequalities. The Euclidean distance between points x, y in the Euclidean space Rn is denoted

by |x− y|. The open m-dimensional ball of radius r centered at the point x is denoted by Bm(x, r).
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The space of locally integrable functions is denoted by L1
loc(Ω). For every measurable set Q ⊂ Rn

with 0 < |Q| <∞, and every non-negative measurable or integrable function f on Q we define the integral

average of f over Q by ∫
Q

f(w) dw :=
1

|Q|

∫
Q

f(w) dw .

Let us give the definitions of Sobolev space W 1,p(Ω) and Haj lasz-Sobolev space M1,p(Ω).

Definition 2.1. We define the first order Sobolev space W 1,p(Ω), 1 ≤ p ≤ ∞, as the set

{u ∈ Lp(Ω);∇u ∈ Lp(Ω;Rn) } .

Here∇u =
(
∂u
∂x1

, . . . , ∂u
∂xn

)
is the weak (or distributional) gradient of a locally integrable function u.

We equip W 1,p(Ω) with the non-homogeneous norm:

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖|∇u|‖Lp(Ω)

for 1 ≤ p ≤ ∞,where ‖f‖Lp(Ω) denotes the usual Lp-norm for p ∈ [1,∞].

For u ∈ Lp(Ω), we denote by Dp(u) the class of functions 0 ≤ g ∈ Lp(Ω) for which there exists E ⊂ Ω

with |E| = 0, so that

|u(z1)− u(z2)| ≤ |z1 − z2| (g(z1) + g(z2)) , for z1, z2 ∈ Ω \ E .

Definition 2.2. We define the Haj lasz-Sobolev space M1,p(Ω), 1 ≤ p ≤ ∞, as the set

{u ∈ Lp(Ω),Dp(u) 6= ∅} .

We equip M1,p(Ω) with the non-homogeneous norm:

‖u‖M1,p(Ω) = ‖u‖Lp(Ω) + inf
g∈Dp(u)

‖g‖Lp(Ω) ,

for 1 ≤ p ≤ ∞.
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3 Maximal functions

We will define two maximal functions. The first, Mτ [f ], will vary only the first component t, and the

second Mχ[f ] will vary the x-component. For every x ∈ Bn−1(0, ψ(1)) set

Sx := {t ∈ R; (t, x) ∈ Ωψ}.

Let f : Ωψ → R be measurable and let (t, x) ∈ Ωψ. We define the one-dimensional maximal function in

the direction of the first variable by setting

Mτ [f ](t, x) := sup
[a,b]3t

∫
[a,b]∩Sx

|f(s, x)| ds . (3.1)

The supremum is taken over all intervals [a, b] containing t.

On the other hand, the second maximal function will be defined for functions f : (0, 2)×Rn−1 → R.

For every point (t, x) ∈ (0, 2)×Rn−1, we define the (n−1)-dimensional maximal function Mχ[f ] by

setting

Mχ[f ](t, x) := sup
Bn−1(x′,r)3x

∫
Bn−1(x′,r)

|f(t, y)| dy , (3.2)

where we take the supremum over the (n−1)-dimensional balls for which x ∈ Bn−1(x′, r). The next

lemmas tell us that both Mτ and Mχ enjoy the usual Lp-boundedness property.

Lemma 3.1. Let 1 < p <∞. Then for every f ∈ Lp(Ωψ), Mτ [f ] is measurable and we have

∫
Ωψ

|Mτ [f ](z)|p dz ≤ C
∫

Ωψ

|f(z)|p dz , (3.3)

where the constant C is independent of f .

Proof . Since the maximal function comes out the same if we consider only segments with rational

endpoints, it preserves measurability. Fubini’s theorem implies that f(·, x) ∈ Lp(Sx) for almost every

x ∈ Bn−1(0, ψ(1)). By the Lp-boundedness of the classical Hardy-Littlewood maximal function on the

interval Sx, for such x we have

∫
Sx

|Mτ [f ](t, x)|p dt ≤ C
∫
Sx

|f(t, x)|p dt, (3.4)
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where the constant C is independent of f and x. By combining the inequality (3.4) and Fubini’s theorem

together, we obtain

∫
Ωψ

|Mτ [f ](t, x)|p dx dt =

∫
Bn−1(0,ψ(1))

∫
Sx

|Mτ [f ](t, x)|p dt dx

≤ C

∫
Bn−1(0,ψ(1))

∫
Sx

|f(t, x)|p dt dx

= C

∫
Ωψ

|f(t, x)|p dx dt .

Lemma 3.2. Let 1 < p <∞. Then for every f ∈ Lp((0, 2)×Rn−1), Mχ[f ] is measurable and we have

∫
(0,2)×Rn−1

|Mχ[f ](z)|p dz ≤ C
∫

(0,2)×Rn−1

|f(z)|p dz , (3.5)

where the constant C is independent of f .

Proof . Again, the maximal function preserves measurability, as it comes out the same if we consider

only balls with rational centers and radii (a point is rational if all its coordinates are rational). By Fubini’s

theorem, f(t, ·) ∈ Lp(Rn−1) for almost every t ∈ (0, 2). By the Lp-boundedness of the Hardy-Littlewood

maximal operator we have

∫
Rn−1

|Mχ[f ](t, x)|p dx ≤ C
∫
Rn−1

|f(t, x)|p dx ,

where the positive constant C is independent of f and t. Then Fubini’s theorem gives

∫
(0,2)×Rn−1

|Mχ[f ](z)|p dz =

∫ 2

0

∫
Rn−1

|Mχ[f ](t, x)|p dx dt

≤ C

∫ 2

0

∫
Rn−1

|f(t, x)|p dx dt

≤ C

∫
(0,2)×Rn−1

|f(z)|p dz .

4 Proof of the Main theorem

Let us begin by sketching a simple proof for Theorem 1.1 in the Euclidean plane R2, for 1 < p <∞. In

this case the maximal function Mχ[f ], with respect to the x-coordinate, can be replaced by

M̃χ[f ](t, x) := sup
[z,w]3x

∫
{y∈[z,w];(t,y)∈Ωψ}

|f(t, y)| dy , (4.1)
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for every (t, x) ∈ Ωψ. As in Lemma 3.1 we obtain

∫
Ωψ

|M̃χ[f ](z)|p dz ≤ C
∫

Ωψ

|f(z)|p dz . (4.2)

By [4], there is a bounded inclusion ι : M1,p(Ωψ) ↪→W 1,p(Ωψ). To show that ι is an isomorphism, it

suffices to show that its inverse ι−1 is both densely defined and bounded on W 1,p(Ωψ). Let C1(Ωψ)

be the set of continuously differentiable functions. Since C1(Ωψ) ∩W 1,p(Ωψ) is dense in W 1,p(Ωψ), it

suffices to show that C1(Ωψ) ∩W 1,p(Ωψ) ⊂M1,p(Ωψ) and that for each u ∈ C1(Ωψ) ∩W 1,p(Ωψ) we have

||u||M1,p(Ωψ) . ||u||W 1,p(Ωψ).

Fix u ∈ C1(Ωψ) ∩W 1,p(Ωψ). Let z1 := (t1, x1), z2 := (t2, x2) ∈ Ωψ be arbitrary. Without loss of

generality, we assume 0 < t1 ≤ t2 < 2. From the definition of Ωψ, the point z′ := (t2, x1) is also in Ωψ.

Using the triangle inequality, we have

|u(z1)− u(z2)| ≤ |u(z1)− u(z′)|+ |u(z′)− u(z2)| . (4.3)

Since u ∈ C1(Ωψ) ∩W 1,p(Ωψ), the fundamental theorem of calculus implies

|u(z1)− u(z′)| ≤
∫ t2

t1

|∇u(s, x1)|ds ≤ |z1 − z2|Mτ [|∇u|](z1) (4.4)

and

|u(z′)− u(z2)| ≤
∣∣∣∣∫ x2

x1

|∇u(t2, y)|dy
∣∣∣∣ ≤ |z1 − z2|M̃χ[|∇u|](z2) . (4.5)

Combining inequalities (4.3), (4.4) and (4.5) together, we have

|u(z1)− u(z2)| ≤ |z1 − z2|
(
Mτ [|∇u|](z1) + M̃χ[|∇u|](z2)

)
≤ |z1 − z2|(g(z1) + g(z2)) ,

where

g(z) := Mτ [|∇u|](z) + M̃χ[|∇u|](z) .

By inequalities (3.3) and (4.2), we have

∫
Ωψ

|g(z)|pdz ≤ C
∫

Ωψ

|∇u(z)|p dz

which immediately gives that g ∈ Dp(u), and ‖u‖M1,p(Ωψ) ≤ C‖u‖W 1,p(Ωψ).

In higher dimensions, we have to work harder. Let us fix some notation.

Let η : Rn−1 → R be a smooth cut-off function such that η = 1 on Bn−1(0, 1) and η = 0 on

the complement of Bn−1(0, 2). Consider the standard extension operator ER : W 1,p(Bn−1(0, R))→
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W 1,p(Rn−1) given by

ERu(x) =


u(x), |x| < R,

0, |x| = R,

u
(
R2

|x|2 x
)
η
(
x
R

)
, |x| > R.

Then

‖∇ERu‖Lp(Rn−1) ≤ C‖∇u‖Lp(Bn−1(0,R)) (4.6)

with C independent of u and R.

Let u ∈W 1,p(Ωψ) be arbitrary, 1 < p <∞. Extend the function u to (0, 2)×Rn−1 by setting

ũ(t, ·) = Eψ(t)(u(t, ·)), t ∈ (0, 2). (4.7)

Denoting the gradient with respect to the x-variable by ∇χ, from (1.1) we immediately obtain

|ũ(z1)− ũ(z2)| ≤ C|z1 − z2|(Mχ[|∇χũ|](z1) +Mχ[|∇χũ|](z2)) (4.8)

for a.e. t ∈ (0, 2) and a.e. z1, z2 ∈ {t} ×Rn−1. It is easily seen, when u ∈ C1(Ωψ), that the function ũ and

∇χũ are measurable on (0, 2)×Rn−1. In fact, it could be shown that both of these would be measurable

even if u were just in W 1,p(Ωψ).

Next, we prove the main estimate.

Lemma 4.1. Let z1 = (t1, x1), z2 := (t2, x2) ∈ Ωψ be two points with t1 < t2. Suppose that u ∈

W 1,p(Ωψ) ∩ C1(Ωψ) and that ũ is its extension given by (4.7). Then we have

|u(z1)− u(z2)| ≤ C|z1 − z2|
(
Mτ [|∇u|](z1) + Mτ [Mχ[|∇χũ|]](z1) +

Mτ [|∇u|](z2) + Mτ [Mχ[|∇χũ|]](z2)
)
. (4.9)

Proof . Similarly to the two-dimensional argument, we will compare the change in the function via

additional values ũ(s, xi) for some s ∈ (0, 2). Without knowing exactly which s yields an optimal estimate,

we will instead average over a range of possible s with the hope that, on average, the differences are

better controlled. Indeed, let

T2 = min
{

2, t2 +
t2 − t1

2

}
,

T1 = T2 −
t2 − t1

2
.
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Notice that t2 ∈ [T1, T2] and [T1, T2]× {x1, x2} ⊂ Ωψ. When we average over different possible s ∈ [T1, T2]

and use the triangle inequality we obtain that

|u(z2)− u(z1)| ≤

∣∣∣∣∣ 1

T2 − T1

∫ T2

T1

|u(t2, x2)− u(s, x2)| ds

∣∣∣∣∣︸ ︷︷ ︸
I

(4.10)

+

∣∣∣∣∣ 1

T2 − T1

∫ T2

T1

|u(s, x2)− u(s, x1)| ds

∣∣∣∣∣︸ ︷︷ ︸
II

+

∣∣∣∣∣ 1

T2 − T1

∫ T2

T1

|u(s, x1)− u(t1, x1)| ds

∣∣∣∣∣︸ ︷︷ ︸
III

.

First, we estimate the terms I and III. Let i ∈ {1, 2}. If ti < s, by the fundamental theorem of

calculus we have

|u(ti, xi)− u(s, xi)| ≤
∫ s

ti

|∇u(r, xi)| dr ≤ |ti − s|Mτ [|∇u|](zi) ≤ 3(T2 − T1)Mτ [|∇u|](zi). (4.11)

Similarly, (4.11) holds also if ti ≥ s. Integrating with respect to s we obtain

I ≤ 3(T2 − T1)Mτ [|∇u|](z2) ≤ 2|z2 − z1|Mτ [|∇u|](z2). (4.12)

and

III ≤ 3(T2 − T1)Mτ [|∇u|](z1) ≤ 2|z2 − z1|Mτ [|∇u|](z1) (4.13)

Next, we apply (4.8) to the second term:

II ≤ C|x1 − x2|
T2 − T1

∫ T2

T1

(Mχ[|∇χũ|](s, x1) +Mχ[|∇χũ|](s, x2)) ds

≤ C|x1 − x2|

(
1

T2 − t1

∫ T2

t1

(Mχ[|∇χũ|](s, x1) ds+
1

T2 − T1

∫ T2

T1

(Mχ[|∇χũ|](s, x2) ds

)
≤ C|z1 − z2|

(
Mτ [Mχ[|∇χũ|]](z1) +Mτ [Mχ[|∇χũ|]](z2)

)
. (4.14)

Finally, by combining inequalities (4.12), (4.13), (4.14) and (4.10), we obtain the desired inequality

(4.9).

Recall that a domain Ω is quasiconvex if there exists a C ≥ 1 such that, for every pair of points

x, y ∈ Ω, there is a rectifiable curve γ ⊂ Ω joining x to y so that len(γ) ≤ C|x− y|.

Proof of Theorem 1.1. Because Ωψ is quasiconvex for every ψ, the case of p =∞ is a consequence of

[5, Theorem 7]. Thus, fix 1 < p <∞. By [4], we know that there is a bounded inclusion ι : M1,p(Ωψ) ↪→

W 1,p(Ωψ). To show that ι is an isomorphism it suffices to show that the dense subspace C1(Ωψ) ∩

W 1,p(Ωψ) of W 1,p(Ωψ) is contained in M1,p(Ωψ), and that the restricted inverse ι−1|C1(Ωψ)∩W 1,p(Ωψ) is

defined and bounded.
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Let u ∈ C1(Ωψ) ∩W 1,p(Ωψ) be arbitrary, and define ũ as in (4.7). Set

ĝ(z) = Mτ [|∇u|](z) +Mχ[|∇χũ|](z) +Mτ [Mχ[|∇χũ|]](z) . (4.15)

By (4.8) and Lemma 4.1, for every z1, z2 ∈ Ωψ, we get the estimate

|u(z1)− u(z2)| ≤ C|z1 − z2|(ĝ(z1) + ĝ(z2)) .

Hence (1.2) holds for g := Cĝ for a suitable constant C > 1. The triangle inequality gives

∫
Ωψ

|g(z)|p dz ≤ C

(∫
Ωψ

Mτ [|∇u|](z)p dz +

∫
Ωψ

Mχ[|∇χũ|](z)p dz +

∫
Ωψ

Mτ [Mχ[|∇χũ|]](z)p dz

)
.

Lemmata 3.1 and 3.2 and (4.6) lead to the estimates

∫
Ωψ

|Mτ [|∇u|](z)|p dz ≤ C
∫

Ωψ

|∇u(z)|p dz

and

∫
Ωψ

|Mτ [Mχ[|∇χũ|]](z)|p dz ≤ C

∫
Ωψ

Mχ[|∇χũ|](z)p dz ≤ C
∫

(0,2)×Rn−1

|∇χũ(z)|p dz

≤ C

∫ 2

0

∫
Rn−1

|∇χũ(t, x)|p dx dt ≤ C
∫ 2

0

∫
B(0,ψ(t))

|∇χu(t, x)|p dx dt

≤ C

∫
Ωψ

|∇u(z)|p dz ,

which imply that g ∈ Dp(u) and that ‖u‖M1,p(Ωψ) ≤ C‖u‖W 1,p(Ωψ). That is, ι−1|C1(Ωψ)∩W 1,p(Ωψ) is both

well-defined and bounded.
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