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Integral binary Hamiltonian forms and their waterworlds

Jouni Parkkonen Frédéric Paulin

July 28, 2021

Abstract

We give a graphical theory of integral indefinite binary Hamiltonian forms f analo-
gous to the one of Conway for binary quadratic forms and the one of Bestvina-Savin for
binary Hermitian forms. Given a maximal order & in a definite quaternion algebra over
Q, we define the waterworld of f, analogous to Conway’s river and Bestvina-Savin’s
ocean, and use it to give a combinatorial description of the values of f on &'x &. We use
an appropriate normalisation of Busemann distances to the cusps (with an algebraic
description given in an independent appendix), the SLy(&)-equivariant Ford-Voronoi
cellulation of the real hyperbolic 5-space, and the conformal action of SLy (&) on the
Hamilton quaternions. !

1 Introduction

In the beautiful little book [Con| (see also [Wei, |), Conway uses Serre’s tree Xz of the
modular lattice SLa(Z) in SLa(R) (see [Ser2|), considered as an equivariant deformation
retract of the upper halfplane model of the hyperbolic plane H%&, in order to give a graphical
theory of binary quadratic forms f. The components C' of HZ — X7 consist of points closer
to a given cusp p/q € P1(Q) of SLy(Z) than to all the other ones. When f is indefinite,
anisotropic and integral over Z, Conway constructs a line R(f) in Xz, called the river of
f, separating the components C' of H]%{ — Xy such that f(p,q) > 0 from the ones with
f(p,q) < 0. This allows a combinatorial description of the values taken by f on integral
points.

Bestvina and Savin in [BeS| have given an analogous construction when R is replaced
by C, Z by the ring of integers O of a quadratic imaginary extension K of Q, HZ by H3
and Xz by Mendoza’s spine Xy, in H3 for the Bianchi lattice SLao(Ok) in SLy(C) (see
[Men], and also [Ash, §4]). They construct a subcomplex O(f) of Xy, , called the ocean of
f, for any indefinite anisotropic integral binary Hermitian form f over O, separating the
components of Hﬁ)’{ — Xy, on whose point at infinity f is positive from the negative ones,
and prove that it is homeomorphic to a 2-plane.

In this paper, we give analogs of these constructions and results for Hamilton’s quater-
nions and maximal orders in definite quaternion algebras over Q.

Let H be the standard Hamilton quaternion algebra over R, with conjugation = — 7,
reduced norm n and reduced trace tr. Let € be a maximal order in a quaternion algebra
A over Q, which is definite (that is, A ®g R = H), with class number h4 and discriminant

'Keywords: binary Hamiltonian form, rational quaternion algebra, maximal order, Hamilton-Bianchi
group, reduction theory, waterworld, hyperbolic 5-space. =AMS codes: 11E39, 20G20, 11R52, 53A35,
15A21, 11F06, 20H10



D4. An example is given by the Hurwitz order 0 = Z + Zi + Zj + Zlﬂéiﬂk, in which
case hg = 1 and Dy = 2. We refer for more information to [Vig] and Subsection 2.1.
The Hamilton-Bianchi group SLa(€), which is defined using Dieudonné determinant, is a
lattice in SLo(H). It acts discretely on the real hyperbolic 5-space H, with finite volume
quotient, and conformally on its space at infinity OsH2 = HU {oo}. The number of cusps
of the hyperbolic orbifold SLa(&)\HS, is ha® by [KO, Satz 2.1, 2.2], see also [I’I’2, §3].
Analogously to | | in the complex case, we give in Section 3 an appropriate nor-
malisation of the Busemann distance to the cusps, and we construct the Ford-Voronoi cell
decomposition of H, for SLa(€), so that the interior of the Ford-Voronoi cell 7}, consists
of the points in H, closer to a given cusp a € PL(A) of SLy(&) than to all the others. If X
is the codimension 1 skeleton of the Ford-Voronoi cellulation, called the spine of SLy(0),
then the hyperbolic 5-orbifold SLa(&)\HJ retracts by strong deformations onto the finite
4-dimensional orbihedron SL2(0)\Xg. As explained in Appendix B, this orbihedron co-
incides (up to a natural cellular isomorphism) with one of the “well-rounded” retracts of

arithmetic locally symmetric spaces of general linear groups constructed in [Ash] (extended
to retracts of their Borel-Serre compactifications in | |), but our construction is dif-
ferent and much more geometric. Actually, as in [Ash|, we construct in Appendix B a

(k% — 1)-dimensional family of spines of SLy(&)\H3.

Using uniform 3-, 4- and 5-polytopes, we give in Example 4.4 when D4 = 2 and in
Example 4.5 when Dy = 3, a complete description of the quotient SLa(&)\ X4 and of the
link of its vertex. For instance, if & is the Hurwitz order, then SLy(&)\ Xy is obtained by
identifying opposite faces and taking the quotient of any 4-dimensional cell of Xy by its
stabilizer. In this case, a 4-dimensional cell of X, identifies with the 24-cell (the self-dual
convex regular Euclidean 4-polytope with Schlafli symbol {3,4,3}), and its stabilizer is
isomorphic with an index 2 subgroup of the Coxeter group [3,4, 3].

Following H. Weyl [Wey], we will call Hamiltonian form a Hermitian form over H with
anti-involution the conjugation. We refer to Subsection 2.3 and for instance to [°P2] for
background. See [PP2] also for a sharp asymptotic result on the average number of their
integral representations. Let f : H x H — R be a binary Hamiltonian form, with

f(u,v) = an(u)+tr(ubv) + cn(v),

which is integral over O (its coefficients a,b, ¢ satisty a,c € Z and b € €) and indefinite
(its discriminant A(f) = n(b) — ac is positive). We choose this definition of integrality for
simplicity as in [PP2], in order to avoid half-integral coefficients in the matrix of the form.
The group of automorphs of f is the arithmetic lattice

SU(0) ={g €SLa(0) : fog=f}.

If C is a Ford-Voronoi cell for SLa (&), let F(C) = % where ab~! € PL(A) is the
cusp of C. We will say that C is respectively positive, negative or flooded if F(C) > 0,
F(C) < 0or F(C) = 0. Contrarily to the real and complex cases, there are always flooded
Ford-Voronoi cells, since by taking a Z-basis of &, the Hamiltonian form f becomes an
indefinite integral quadratic form over Z with 8 > 5 variables, hence always represents 0 by
Meyer’s theorem. Our countably many flooded Ford-Voronoi cells are thus the analogues
of Conway’s two lakes for an indefinite isotropic integral binary quadratic form over Z. On
the components of H%@ — Xz along the lakes, Conway proved that the values of such a form
consist of an infinite arithmetic progression. An analogous result holds in our case, that
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we only state when the class number is one in this introduction in order to simplify the
statement (see Proposition 5.3 for the general result.)

Proposition 1.1. If hy = 1, given a flooded Ford-Voronoi cell C, there exists a finite set
of nonconstant affine maps {¢; : H — R : i € F} defined over Q such that the set of
values of ' on the Ford-Voronoi cells meeting C is | J;cp ¢i(0).

In order to simplify the next statement, assume from now on in this introduction that
the flooded Ford-Voronoi cells are pairwise disjoint. We define the waterworld # (f) of f
as the subcomplex of the spine X, separating positive Ford-Voronoi cells from negative
ones, that is, #/(f) is the union of the cells of X, contained in (the boundary of) both a
positive and a negative Ford-Voronoi cell. The coned-off waterworld €# (f) is the union
of #(f) and, for all cells o of #(f) contained in a flooded Ford-Voronoi cell 77, of the
cone with base o and vertex at infinity «. The following result (see Section 5) in particular
says that €% (f) is a piecewise hyperbolic polyhedral 4-plane contained in the spine of
SL2(0) except for its ideal cells.

Let €(f) be the hyperbolic hyperplane of Hj whose boundary is the projective set of
zeros {[u:v] € PL(H) : f(u,v) =0} of f.

Theorem 1.2. The closest point mapping from the coned-off waterworld €W (f) to € (f)
is an SU ¢(O)-equivariant homeomorphism.

Section 2 recalls the necessary information on the definite quaternion algebras over
Q, the Hamilton-Bianchi groups, and the binary Hamiltonian forms. Section 3 gives the
construction of the normalized Busemann distance to the cusp, and uses it in order to give
a quantitative reduction theory a la Hermite (see for instance | |) for the arithmetic
group SLa(&). We describe the Ford-Voronoi cellulation for SLy(€) and its spine Xy in
Section 4. We define the waterworlds and prove their main properties in Section 5. The
noncommutativity of H and the isotropic property of f require at various point of this text
a different approach than the one in [BeS).

Recall (see for instance [PP2; §7] and Section 3) that there is a correspondence between
positive definite binary Hamiltonian forms with discriminant —1 and the upper halfspace
model of the real hyperbolic 5-space. In the independent Appendix A, we give an algebraic
formula for the Busemann distance of a point z € H3 to a cusp a € PL(A) in terms of
the covolume of the O-flag associated with «, with respect to the volume of the positive
definite binary Hamiltonian form associated with z, analogous to the one of Mendoza in
the complex case. Furthermore, in the proof of Theorem 3.5, we use the upper bound on
the minima of positive definite binary Hamiltonian forms given in [ChP]: If 45(&) is the
upper bound, on all such forms f with discriminant —1, of the lower bound of f(u,v) on
all nonzero (u,v) € 0 x O, then

12(0) < V/Da . (1)
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[Ash] and for the incentive to write the arguments in Appendix B.



2 Backgrounds

We refer to | | for more informations on the objects considered in this paper, and we
only recall what is strictly needed.

2.1 Background on definite quaternion algebras over

A quaternion algebra over a field F is a four-dimensional central simple algebra over F.
We refer to [Vig] for generalities on quaternion algebras. A real quaternion algebra is
isomorphic either to .#5(R) or to Hamilton’s quaternion algebra H over R, with basis
elements 1,1, j, k as a R-vector space, with unit element 1 and i? = j2 = —1, ij = —ji = k.
We define the conjugate of © = xg + x1i + x2j + 23k in H by T = a9 — 219 — z2j — z3k,
its reduced trace by tr(x) = z + T, and its reduced norm by n(x) = T = Tx. Note that
n(zy) = n(z)n(y), tr(z) = tr(z) and tr(zy) = tr(yz) for all z,y € H. For every matrix
X = (zijh<icp1<j<q € Mpq(H), we denote by X* = (Tji)1<i<q 1<j<p € Mqp(H) its
adjoint matrix. We endow H with the Euclidean norm x — /n(z), making the R-basis
1,1, 7,k orthonormal.

Let A be a quaternion algebra over Q. We say that A is definite (or ramified over R)
if the real quaternion algebra A ®g R is isomorphic to H, and we then fix an identification
between A and a QQ-subalgebra of H. The reduced discriminant D4 of A is the product of
the primes p € N such that the quaternion algebra A ®g Q, over Q, is a division algebra.
Two definite quaternion algebras over Q are isomorphic if and only if they have the same
reduced discriminant, which can be any product of an odd number of primes (see [Vig,
page 74]).

A Z-lattice I in A is a finitely generated Z-module generating A as a Q-vector space. An
order in A is a unitary subring & of A which is a Z-lattice. In particular, A = Q0 = 0Q.
Each order of A is contained in a maximal order. For instance & = Z+Zi+Zj —i—ZW
is a maximal order, called the Hurwitz order, in A = Q + Qi+ Qj + Qk with Dy = 2. Let
0 be an order in A. The reduced norm n and the reduced trace tr take integral values on
0. The invertible elements of ¢ are its elements of reduced norm 1. Since T = tr(z) — =,
any order is invariant under conjugation.

The left order Oy(I) of a Z-lattice I is {x € A : xI C I}. A left fractional ideal of
O is a Z-lattice of A whose left order is &'. A left ideal of & is a left fractional ideal of &
contained in &. A (left) ideal class of €' is an equivalence class of nonzero left fractional
ideals of & for the equivalence relation m ~ m’ if m’ = mc for some ¢ € A*. The class
number h 4 of A is the number of ideal classes of a maximal order & of A. It is finite and
independent of the maximal order ¢, and we have h4 = 1 if and only if D4 = 2,3,5,7,13

(see for instance [Vig]).

The reduced norm n(m) of a nonzero left ideal m of & is the greatest common divisor
of the norms of the nonzero elements of m. In particular, n(¢) = 1. By [Rei, p. 59|, we
have

n(m) = [0 :m|z . (2)

The reduced norm of a nonzero left fractional ideal m of & is nIE'(:S) for any ¢ € N — {0}

such that em C &. By Equation (2), if m,m’ are nonzero left fractional ideals of & with
m’ C m, we have

= [m:m]z . (3)



For K = H or K = A, we consider K x K as a right module over K and we denote
by PL(K) = (K x K —{0})/K* the right projective line of K, identified as usual with the
Alexandrov compactification K U {oco} where [1:0] = oo and [z : y] = zy~! if y # 0.

2.2 Background on Hamilton-Bianchi groups

Refering to [Fue, , Asl], the Dieudonné determinant is the group morphism Det from
the group GLo(H) of invertible 2 x 2 matrices with coefficients in H to R, defined by, for

every g = <CCL Z) € GLy(H),

(Det g)? =n(ad) +n(bc) — tr(acdb) . (4)

An easy computation allows to check that

1 an(d) —¢db ¢n(b) —abd
g7 = (Det g)? <b n(c) —dca dn(a) —bac> (5)
If ¢ # 0, we have (see loc. cit.)
(Det g)? = n(actde — be) . (6)

The Dieudonné determinant is invariant under the adjoint map g — ¢*. Let SLy(H) be
the group of 2 x 2 matrices with coefficients in H and Dieudonné determinant 1. We refer
for instance to [[<el] for more information on SLo(H).

The group SLy(H) acts linearly on the left on the right H-module H x H. The projec-
tive action of SLo(H) on PL(H), induced by its linear action on H x H, is the action by
homographies on H U {oco} defined by

(az +b)(cz+d)~1 if z # oo, —c1d

Z)-z: ac™? if z=00,c#0

/~
o

00 otherwise .

We use the upper halfspace model {(z,7) : z € H,r > 0} with Riemannian metric

ds?(z,r) = M for the real hyperbolic space ]HI5 with dimension 5. Its space at
infinity OoH3, is "hence HU {o0}. The action of SLo(H) by homographies on d,.H3, extends
to a left action on IHI5 by

a az (cz +d) + acr? r
( c 2 ) (&) = ( ( n?_cz)—i(- d)—:—ci“);r;(c) "n(cz +d) + r?n(c) ) ' @

In this way, the group PSLy(H) = SLo(H)/{£id} is identified with the group of orientation
preserving isometries of ]HI%.
For any order & in a definite quaternion algebra A over Q, we define the Hamilton-
Bianchi group by
T'py = SLQ(@) = SLQ(H) N .//Q(ﬁ) .

We have
GL2(0) = SL2(0) (8)



that is, #5(0)* = SLy(H) N .#5(0), which in particular proves that SLa(&) is a subgroup
of SLy(H). Indeed, if z € #2(0)*, then 271 € .#5(0), and by Equation (4), since the
ring & is stable by conjugation, and as n and tr take integral values on &, the numbers
(Det 2)? and (Detx~1)? are positive integers, and inverses one of the other. This proves
the inclusion of the set on the left-hand side into the one on the right-hand side in Equation
(8). Conversely, if © € SLy(H) N .#(0), then by Equation (5), we have 27! € .#5(0),
thus proving the opposite inclusion.

Note that Iy is a nonuniform arithmetic lattice in the connected real Lie group SLo(H)
(see for instance | , page 382| for details). In particular, the quotient real hyperbolic
orbifold T'y\HZ, has finite volume.

Remark. It would be very interesting to know if the image in PSLy(H) of SLa(&) is
commensurable (up to conjugation) to one of the lattices in SOg(1,5) ~ PSLy(H) studied
by Vinberg [Vin], Allcock [All], Everitt [Fve], Ratcliffe-Tschantz [RaS] and others.

Recall that the maximal order & is left- Euclidean if for all a,b € € with b # 0, there
exists ¢,d € 0 with a = ¢b + d and n(d) < n(b), or, equivalently, if for every a € A, there
exists ¢ € ¢ such that n(a — ¢) < 1. By for instance [Vig, p. 156], & is left-Euclidean if
and only if D4 € {2,3,5}. The following elementary lemma gives a nice set of generators
for SLo(&) when is left-Euclidean. For us, it will be useful in Section 4. See also [Spe, §4]
and [JW, §8] for the first claim for the Hurwitz order.

Lemma 2.1. If 0 is left-Euclidean, then the group SLa(O) is generated by J = <(1] (1)>,

1 w U
Ty = <O 1) forw € O and C,, = (0

homography z — Z normalizes the action by homographies of SLa(0) on H.

2) for w,v € O0*. In particular, the anti-

Proof. The last claim follows from the first one, since we have J~! = J, T;! = T,
CJ}, = Cy1 1 and for all z € H, we have

J -

]

=J-z, Ty Z=Tg 2, Cuu-z=0Cj -z

v_l,ﬂ_l

Let G be the subgroup of SLy(&) generated by the matrices J, T, Cy, o for w € O
and u,v € 0* (their Dieudonné determinant is indeed 1). Let us prove that any element
M = <i Z) € SLy(0) belongs to G, by induction on the integer n(c). If ¢ = 0, then
M = C,, q T -1, belongs to G. Otherwise, since ¢ is left-Euclidean, there exists w,d € €
such that a = we + ¢ and n(¢’) < n(c). Hence

=GR G )

belongs to G by induction. O

Corollary 2.2. If O is left-Fuclidean, if {w1,ws, w3, ws} is a Z-basis of O and if S is a
generating set of the group of units O, then the set

{1, Tw,, Tws, Tws, Ty } U{Clup @ u,v € S}

is a generating set for SLy(0). O



The action by homographies of the group I'y = SLa(&) preserves the right projective
space PL(A) = AU {oo}, which is the set of fixed points of the parabolic elements of 'y
acting on H2 U O Hp. In particular, the topological quotient space '\ (H UP}(A)) is
the compactification of the finite volume hyperbolic orbifold I's\H, by its (finite) space
of ends.

2.3 Background on binary Hamiltonian forms

A binary Hamiltonian form f is a map H x H — R with
f(u,v) = an(u) + tr(ubv) + cn(v)

whose coefficients a = a(f), b = b(f) and ¢ = ¢(f) satisfy a,c € R, b € H. Note that
f((u,v)A) =n(A) f(u,v) for all u,v, \ € H.

The matriz M(f) of f is the Hermitian matrix ( IC) ), so that

a
b

The discriminant of f is

A(f) =n(b) — ac.

An easy computation shows that the Dieudonné determinant of M (f) is equal to |A(f)].
A binary Hamiltonian form is indefinite if takes both positive and negative values. It is
easy to check that a form f is indefinite if and only if A(f) is positive, see | , §4].

The linear action on the left on H x H of the group SLy(H) induces an action on the
right on the set of binary Hamiltonian forms f by precomposition. The matrix of f o g is
M(fog)=g*"M(f)g. For every g € SLy(H), we have

A(fog)=Af). (9)

For every indefinite binary Hamiltonian form f, with a = a(f), b = b(f) and A = A(f),
let

Coo(f) = {[u:v] € Pr(H) : f(u,v) =0}.
In PL(H) = HU {oo}, the set € (f) is the 3-sphere of center —3 and radius Y2 if g # 0,

la]
and it is the union of {oo} with the real affine hyperplane {z € H : tr(zb) + ¢ =0} of H

otherwise. The values of f are positive on (the representatives in H x H in) one of the two
components of PL(H) — %5 (f) and negative on the other one. The set

E(f) = {(z,7) € Hx]0,4+00[: f(z,1) +ar® =0}

is the (4-dimensional) hyperbolic hyperplane in Hp, with boundary at infinity %o (f). For
every g € SLy(H), we have

Coo(fog) =9 " Cwlf) and C(fog)=g "E(f). (10)

Given an order & in a definite quaternion algebra over Q, a binary Hamiltonian form
f is integral over O if its coefficients belong to &'. Note that such a form f takes integral
values on & x €, but the converse might not be true. The lattice I'y = SLa(&) of SLa(H)
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preserves the set of indefinite binary Hamiltonian forms f that are integral over &. The
stabilizer in 'y of such a form f is its group of automorphs

SUf(0)={g9€Tly : fog=f}.

If f is integral over &, then SU¢(O)\€(f) is a finite volume hyperbolic 4-orbifold, since
SU(0) is arithmetic and by Borel-Harish-Chandra’s theorem (though it might have been
known before this theorem).

3 On the reduction theory of binary Hamiltonian forms and
Hamilton-Bianchi lattices

In this section, we study the geometric reduction theory of positive definite binary Hamil-
tonian forms, as in Mendoza [\Men| for the Hermitian case. The results will be useful
in Section 5. We start by recalling the correspondence between H, and positive definite
binary Hamiltonian forms with discriminant —1.

Let 2 be the 6-dimensional real vector space of binary Hamiltonian forms, and 27 its
open cone of positive definite ones. The multiplicative group R of positive real numbers
acts on 27 by multiplication. We will denote by R f the orbit of f € 2% and by PL 27"
the quotient space 21 /RX. It identifies with the image of 27 in the projective space
P(2) of 2.

Let (-,-) 2 be the symmetric R-bilinear form (with signature (4,2)) on 2 such that for
every f € 2,

(f, fle = —2A(f) .
That is, for all f, f' € 2, we have

(fi )2 = a(f) c(f') +c(f) a(f) —tx(b(f) b(f)) - (11)
By Equation (9), we have, for all f, f' € 2 and g € SLy(H)
(fog flogro=(ffa. (12)

Let 2{ the submanifold of 2% consisting of the forms with discriminant —1, and let
O:H) — Qf be the homeomorphism such that, for every (z,r) € H3,

M(@(z,r))zl( L= ) .

r \—z n(z) +r?

The fact that this map is well defined and is a homeomorphism follows by checking that its
composition by the canonical projection 2% — P, 27 is the inverse of the homeomorphism
denoted by

b(f) v—=A)
ORI fr (-2 Vo
i ( a(f)”  a(f) )
in [PP2, Prop. 22]. By loc. cit., the map © is hence (anti-)equivariant under the actions

of SLy(H) : For all x € Hj and g € SLo(H), we have
O(gz) =O(z)ogt. (13)

8



Let & be a maximal order in a definite quaternion algebra A over Q. For every o € A,
let
I,.=0a+ 0,

which is a left fractional ideal of &. Let f, be the binary Hamiltonian form with matrix

v = ()

Note that f, is a positive scalar multiple of the norm form associated with «: for all z € H,

) = @o) M(7) (1) = L5 = av).

Besides depending on «, the form f, does depend on the choice of the maximal order 0.
But its homothety class R* f,, depends only on «.

Let foo be the binary Hamiltonian form whose matrix is M (fy) = (8 ?), that is,

foo i (u,v) = n(v). Note that for every a € PL(A) = AU {00}, the form f, is nonzero and
degenerate (its discriminant is equal to 0), and R* f, belongs to the boundary of P, 2%
in P(2). The map ®~! : H} — P(2) given by = — R} O(z) extends continuously to a
SLy(A)-(anti-)equivariant homeomorphism between H UPL(A) and its image in P(2) by
sending a to R* f, for every a € PL(A). Proposition 3.2 below makes precise the scaling
factor for the action of SLa(A) on the forms f, for a € PL(A). Its proof will use the
following beautiful (and probably well-known) formula.

Lemma 3.1. For all g = (‘Z Z) € SLy(H) and z,w € H such that g - z,g - w # oo, we

have
n(z —w)

n(cz +d)n(cw +d)

az+b aw+0b\ z w
cz4+d ew+d) "I\ 1

and by taking the square of the Dieudonné determinant (see Equation (6)), we have

n(g-z—g-w)=

Proof. Since

n(g-z—g-w)=n((az +b)(cz+d)~" — (aw + b)(cw + d) ™)

1 —
= sewr g e HhE T ewrd) — (ow+)
1 —
= NEETCTEY) n((az +b)(cz +d) " (cw + d)(cz + d) — (aw + b)(cz + d))
1
- n(cz + d)n(cw + d) n(z—w). O

a b

Proposition 3.2. For all g = (c d) € SLy(A) and o = [z : y] € PL(A), we have

n(Ox + Oy)
n(0(az + by) + O(cx + dy))
9

fg~aog: fa -



Note that this implies that fg.q 0 g = fo if g € SLa(0).

Proof. The result is left to the reader when a@ = 0o or ¢ - @ = 0o, hence we assume that
«,g-a# o0o. By Lemma 3.1, for all z € H such that g - z # oo, we have

foa©9(2,1) =n(cz +d) fgalg-2,1) = W n(g-z—g-a)
ga
B 1 o n(/ly)
- n(lye)n(ca +d) n(z—a)= n(Iy.q)n(ca +d) falz:1)
The result easily follows. O

For all a« € PL(A) = AU{oo} and x € H3, let us define the distance from x to the point
at infinity o by
da(z) = (fa,0(z)) 2 -
See Appendix A for an alternate description of the map d, : ]HII% — R.
The next result gives a few computations and properties of these maps d, (which
depend on the choice of the maximal order ¢'). We will see afterwards that Ind, is an
appropriately normalised Busemann function for the point at infinity a.

Proposition 3.3. (1) For all (z,r) € HY, and o € A, we have

do(z,7) =

n(z — a) +r?
7"n(Io¢)(< ) +77)

and deo(2,7) = 1.
(2) For all x € HY and o = [u : v] € P}(A), we have

~ O@@)(u,v)
dal®) = S Gu T 60)

(3) For all g = <Z Z) € SLa(A) and a = [z : y] € PL(A), we have

n(Ox + O)
n(0(ax +by) + O(cx +dy))

In particular, if g € SLy(&) and « € PL(A), then dg.q 0 g = dq.

Proof. (1) Since M(fa) = H(L) (_; n_(3)> and M(O(z,r)) = i( Lo )

dg-a °g=

we have, by Equation (11),

1
r n(ly)
The computation of d, is similar and easier.
(2) Let x = (z,7) € H3 and f = O(x). If v # 0, then o = wv™!, and by the definition of
© and Assertion (1),

flwo)  flal) 1 o
wOut o0 " e —aly ®Y M(f)<1>

n(a) —az—za+n(z) +r*> n(z—a)+r?
)

r n(l, -7 n(ly,) = da(z)

n(z—a)+r

da(z,r) = <faa @(zar»:@ = r n(Ia)

((a(2) +72) +n(a) - tr(az)) =

10



Similarly, if v = 0, then % = f(1,0) = L =dq(z).

(3) For every w € H3, using the (anti-)equivariance property (13) of ©, Equation (12) and
Proposition 3.2, we have

dg.a © g(w) = <fg-a7®(gw)>2 = <fg'a79(w) Og_1>=9 = <fg'04 0g,0(w))2

n(Ox + Oy)

= (0(az + by) + Olex + dy)) o OWe

B n(Ox + Oy) w
~ n(0(ax + by) + O(cx + dy)) da(w) - O

Since SLy(€) is a noncocompact lattice with cofinite volume in SLo(H) and set of
parabolic fixed points at infinity PL(A), there exists (see for instance | |) a I'-equivariant
family of horoballs in H3 centered at the points of PL(A), with pairwise disjoint interiors.
Since SLy(&0)\H, may have several cusps as mentioned in the introduction, there are
various choices for such a family, and we now use the normalized distance to the points of
PL(A) in order to define a canonical such family, and we give consequences on the structure
of the orbifold SLo(&)\H3,.

For all a € PL(A) and s > 0, we define the normalized horoball centered at o with
radius s as

Bo(s) = {z € H} : duo(z) < s} .

The terminology is justified by the following result, which proves in particular that By /(s)
is indeed a (closed) horoball. Recall that the Busemann function 3 : 9 Hp, x H3 x H3 — R
is defined, with ¢ — & any geodesic ray with point at infinity £ € oH3, by

(Saxvy) = 6§($,y) = t£+moo d(x7§t) - d(yagt) .

Proposition 3.4. Let o € PL(A) and s > 0.
(1) There exists co € R such that Indy(z) = Ba(x, (0,1)) + cq for every x € HS,.

(2) If a € A, then B, (s) is the Euclidean ball of center (a, %) and radius SH(QI"). If

a = 00, then By(s) is the Fuclidean halfspace consisting of all (z,r) with r > %
(3) For all g € SLa(0), we have g(Ba(s)) = Bg.a(s).

Proof. (1) If a = oo, then for every (z,r) € HY, we have dy(z,7) = & and

BOO((Zvr)v (0’ 1)) = Boo((ovr)a (07 1)) =—Inr,
hence the result holds with ¢, = 0.
a b
d
that a = g - 0c0. Recall that the Busemann function is invariant under the diagonal action
of SLy(H) on 05H5 x H5 x H3 and is an additive cocycle in its two variables in H3. By
Proposition 3.3 (3) since oo = [1 : 0], we hence have, for every x € H3,

dm(g_lx)
n(Ca+ Oc)
= Boo(g'2,(0,1)) —Inn(Oa + Oc) = By.oo(2,9(0,1)) — Inn(Ca + Oc)
= Ba(,(0,1)) + Ba((0,1),9(0,1)) — Inn(Ca + Oc) .

If o € A, since SLa(A) acts transitively on PL(A), let g = ) € SLa(A) be such

Indy () = Indyoo(g(g™'2)) = In

11



Hence the result holds, and taking 2z = (0, 1), we have by Proposition 3.3 (1)

n(a) +1
n(ly)

Cq = In

(2) If a € A, for every (z,r) € H3, by Proposition 3.3 (1), we have du(z,7) < s if and only
if n(z — ) +72 < srn(l,), that is, if and only if n(z — a) + (r — SH(QI‘”))2 < (SH(QIQ))Q. The
second claim of Assertion (2) is immediate.

(3) This follows from Proposition 3.3 (3). O

The following result extends and generalizes a result for D4 = 2 of [Spe, §5].

Theorem 3.5. Let O be a maximal order in a definite quaternion algebra A over Q.

(1) For all distinct o, B € PL(A), the normalized horoballs By (1) and Bg(1) have disjoint
intertor. Furthermore, their intersection is nonempty if and only if « = oo and 8 € O, or
B=o00anda € O, ora,f # oo and Iolg = O(a— f3), in which case they meet in one and
only one point.

(2) We have

He = |J Ba(vDa).

a€PL(A)

Before proving this result, let us make two remarks.

(i) Note that By(1) and Boo(1) intersect (exactly at their common boundary point
(0,1)) whatever the definite quaternion algebra A over Q is. Thus the constant s = 1 in
Assertion (1) is optimal. The family (Ba(1))aep1(4) is a (canonical) family of maximal
(closed) horoballs centered at the parabolic fixed points of SLo(&) with pairwise disjoint
interiors. Since SLa(€) is a lattice (hence is geometrically finite with convex hull of its
limit set equal to the whole HY), the quotient SLa(&)\(H3 — a€PlL(4) B, (1)) is compact
(see for instance [Bow]).

(i) Assertion (2) is a quantitative version of the standard geometric reduction theory
(see for instance |G1R, , Leu]) for the structure of the arithmetic orbifold SLy (&) \H3,. Tt
indeed implies that if Z is a finite subset of SLy(A) such that Z-oc is a set of representatives
of SLo(€)\PL(A), and if Z, is a fundamental domain for the action on H of the stabilizer
of 0o in 471 SLy(0)y for every v € %, then a weak fundamental domain for the action of
SL2(0) on HJ is the finite union U, e 775 where . is the Siegel set

Sy = (2% 10,4+00[) N7 "' Byoo(v/Da) -

Proof. (1) Note that two horoballs centered at distinct points at infinity, which are not
disjoint but have disjoint interior, meet at one and only one common boundary point.
Hence the last claim of Assertion (1) follows from the first two ones.

First assume that a« = oo , so that § € A. By Proposition 3.4 (2), we have By(1) =
{(z,7) € H} : r > 1} and Bg(1) is the horoball centered at 3 with Euclidean diameter
n(Ig) (see Figure 1). They hence meet if and only if n(/g) > 1, and their interiors meet if
and only if n(Ig) > 1. But since & C I, by Equation (3), we have n(Iz) < n(€) = 1 with
equality if and only if Ig = 0, that is, 8 € &. The result follows.

12



Figure 1: Disjointness of normalized horoballs B,/ (1) for o/ € PL(A).

Up to permuting o and 3 and applying the above argument, we may now assume that
a, 8 # oo. The Euclidean balls B,(1) and Bg(1) meet if and only if the distance dng
between their Euclidean center is less than or equal to the sum of their radii r, and rg,
and their interior meet if and only if dog < 74 + 7. By Proposition 3.4 (2) and by the
multiplicativity of the reduced norms (see [Rei, Thm. 24.11 and p. 181]), we have (see the
above picture)

2
dag” = (ra + 75 2 2 2 2

)2:: <n<a —B)+ (n(Ia)__ n(IB))Z) __(n(Ia)_+ n(Iﬁ))2
a(a — B) - n(Iy)n(Is) = n(a — #) — n(lals)

Since a — 8 € Io1g and again by Equation (3), we have n(a — ) > n(l,I3), with equality
if and only if I,1g = O (v — B). The result follows.

(2) For every x € H3, let (u,v) in & x & —{0} realizing the minimum on & x & — {0} of the
positive definite binary Hamiltonian form ©(x), whose discriminant is —1. Let o = [u : v].
Then by Proposition 3.3 (2) and by Equation (1), we have, since the norm of an integral

left ideal is at least 1,
O(z)(u,v)
do(x) = ——""—~<+/Dy4.
(z) n(Ou+ Ov) — A

This proves the result. O

The following observation, which is closely related with the proof of Assertion (1) of
Theorem 3.5, will be useful later on.

Lemma 3.6. For all a # (3 in A, the hyperbolic distance between B, (1) and Bg(1) is

n(a — )

A(Ba(1), By(1) =ln " 7

Proof. This follows from the easy exercise in real hyperbolic geometry saying that the dis-
tance in the upper halfspace model of the real hyperbolic n-space between two horospheres
A, " with Euclidean radius 7,7/, and with Euclidean distance between their points at
infinity equal to A, is d(J#, ") = In X2 if the interiors of 4 and ' are disjoint.

4rr’>
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This exercice uses the facts that the common
perpendicular between two disjoint horoballs is
the geodesic line through their points at infin-
ity and that the (signed) hyperbolic length of
an arc of Euclidean circle centered at a point at
infinity with angles with the horizontal hyper-
plane between 6 and /2 is — In tan g. O

—lntang —lntan%/ Y ad

H

Figure 2

4 The spine of SLy(0)

Let A be a definite quaternion algebra over Q and let & be a maximal order in A. In this
section, we describe a canonical SLg(&)-invariant cell decomposition of the 5-dimensional
real hyperbolic space Hp. We follow | ) | when the field H is replaced by C, the
order € by the ring of integers of a quadratic imaginary extension of Q, and IHI% by H%.

For every a € PL(A), the Ford-Voronoi cell of a for the action of SLa(&) on HY, is the
set %, of points not farther from « than from any other element of PL(A) :

My ={x €Hy : VB EPL(A), da(z) < ds(x)}.
In the complex case, this set is called the minimal set of «, see | , Def. 1.3.1].

Proposition 4.1. Let a € PL(A).

(1) For all g € SLa(0), we have g(Hs) = Hy.q-

(2) We have By (1) C #% C Bo(v/Da).

(3) The Ford-Voronoi cell 7, is a noncompact 5-dimensional convex hyperbolic polytope,
whose proper cells are compact, and the stabilizer of o in SLa(O') acts cocompactly on its
boundary 0.

(4) For every B € PL(A) — {a}, let S0 p = {o € Hy : duo(z) = ds(x)}. Then S 3
15 a hyperbolic hyperplane, that intersects perpendicularly the geodesic line with points at

infinity « and 3. Furthermore, the Ford-Voronoi cells 7, and 73 have disjoint interior
and their (possibly empty) intersection is contained in 7y, 3.

Thus
Hy = |J
acPl(A)
is a SLy(O)-invariant cell decomposition of H3, whose codimension 1 skeleton will be
studied in the remainder of this section. We will see in Examples 4.4 and 4.5 that the

inclusions in Assertion (2) of this proposition, as well as the value s = /D4 such that
H3, = Uaepz(4) Bals) in Theorem 3.5 (2), are sharp when Dy = 2,3.

Proof. (1) This follows from Proposition 3.3 (3).

(2) The inclusion on the left-hand side follows from Theorem 3.5 (1): If z € B, (1) and
x & J#,, then there exists 3 € PL(A) — {a} such that dg(z) < do(z) < 1, thus the interiors
of B,(1) and Bg(1) have nonempty intersection, a contradiction. If ¢ B,(v/Da), then

14



by Theorem 3.5 (2), there exists 8 € PL(A) — {a} such that x € Bg(v/D4). Hence
dg(xz) < /Da < du(x), so that x ¢ JE,.

(3) and (4) Since Ind, is a Busemann function with respect to the point at infinity o by
Proposition 3.4 (1), for every 8 € PL(A) — {a}, the set #5 53 = {x € H} : do(z) < dg(z)}
is a (closed) hyperbolic halfspace. Its boundary is .7, g, which is hence a hyperbolic
hyperplane that intersects perpendicularly the geodesic line with points at infinity o and .
Being the intersection of the family of hyperbolic halfspaces (7, 3) BePL(A)—{a} With locally
finite family of boundaries (-%4,5) gepL(4)—{a}, and containing the horoball B, (1), the Ford-
Voronoi cell 47, is a noncompact 5-dimensional convex hyperbolic polytope. Since « is a
bounded parabolic fixed point of the lattice SLo(&) and by Assertion (2), the stabilizer of
a in SLe(0) acts cocompactly on 0.7, and hence the boundary cells of J#, are compact.
O

The horoballs By(1) and By (1) with disjoint interiors meet at (0,1) € H, and at
most two horoballs with disjoint interior can meet at a given point of H]%. Thus, the Ford-
Voronoi cells at 0 and at co have nonempty intersection, which is a compact 4-dimensional
hyperbolic polytope. This intersection

So = N Ao (14)

is called the fundamental cell of the spine of SLa(€). It is contained in the hyperbolic
hyperplane % oo = {(2,7) € H}, : n(2) +r% = 1}. We will describe it in Example 4.4 when
D4 =2 and in Example 4.5 when Dy =3 .

Lemma 4.2. Let o € PL(A) be such that e = S N 4 N Ho is a 3-dimensional cell in
the boundary of Y. Then

) 1
min{n(I,),n(I,-1)} > Dy

and the horizontal projection of e to H is contained in the Fuclidean hyperplane
{z€eH : tr(@z) =1+n(a) —n(l,)}.

Proof. Note that we have o # 0,00. By Proposition 4.1 (2), the triple intersec-
tion Boo(v/Da) N Bo(v/Da) N Ba(v/Da) contains the 3-cell e, hence both intersections

Boo(vV/D ) N Bo(v/Da) and Byo(v/Da) N Ba(v/Da) are nonempty. Since Boo(y/Da) is the

Euclidean halfspace of points (z, r) with r > \/%7 and B, (1/D4) is a Euclidean ball tangent

to the horizontal plane with diameter /D4 n(I,) by Proposition 3.4 (2), this implies that

01
1 : _
vVDan(l,) > N that Dan(l,) > 1. Since g = <1 0) belongs to SLa(&) and maps

0 to oo and a to a~!, and by Proposition 3.4 (3), the intersection Boo(v/Da) N By-1(vDa)
is nonempty, hence similarly Dan(l,-1) > 1.
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Figure 3

The set of points equidistant to 0 and oo is the open Euclidean upper hemisphere of
radius 1 centered at 0, and the set of points equidistant to « and oo is the open Euclidean
upper hemisphere of radius y/n(1l,) centered at o. The projection to H of the intersection
of these hemispheres is contained in the affine Euclidean hyperplane of H perpendicular
to the real vector line containing « that passes through the projection, that we denote by
Aa with A > 0, to that line of any point at Euclidean distance 1 from 0 and at Euclidean

distance y/n(l,) from «. An easy computation (considering the two cases when n(«a) > 1
1+n(a)—n(la)
2n(a)

Since (u,v) — %tr(ﬂfu) is the standard Euclidean scalar product on H, this gives the
result. O

as in Figure 3 or when n(«) < 1) using right-angled triangles gives that A\ =

The spine Xg of SLa(€) is the codimension 1 skeleton of the cell decomposition into
Ford-Voronoi cells of H%, that is,

Xo= |J sHanmy = |J o4,
a#BEPL(A) a€Pk(4)

It is an SLy(&)-invariant piecewise hyperbolic polyhedral complex of dimension 4. We refer
for instance to [BrH] for the definitions related to polyhedral complexes, CAT(0) spaces
and orbihedra. Note that the stabilizers in SLa(&) of the cells of X may be nontrivial.
The spine is called the minimal incidence set in the complex case in [Men] and [ScV], and
the cut locus of the cusp in [HP, §5] when the class number is one.

For every hyperbolic cell C' of Xg and every a € PL(A) such that C C 0%, the
radial projection along geodesic rays with point at infinity o from C' to the horosphere
0B, (1) is a homeomorphism onto its image, and the pull-back of the flat induced length
metric on this horosphere endows C with a structure of a compact Euclidean polytope.
This Euclidean structure does not depend on the choice of «, since the (possibly empty)
intersection %, N %5 is equidistant to By (1) and Bg(1) for all distinct «, 8 in PL(A). It
is well known (see for instance [Ait]) that these Euclidean structures on the cells of Xz
endow X with the structure of a CAT(0) piecewise Euclidean polyhedral complex.

Furthermore, Xy is an SLy(&)-invariant deformation retract of H3 along the geodesic
rays with points at infinity the points in PL(A). Since the quotient orbifold with boundary
SLa(0)\ (H%_Uaeﬁ’;m) B, (1)) is compact, the quotient space SLa(€)\ X is a finite locally
CAT(0) piecewise Euclidean orbihedral complex.

The following result gives a description of the cell structure of SLy(&)\ Xy when & is
left-Euclidean. See Examples 4.4 and 4.5 for a more detailed study when D4 = 2, 3.
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Proposition 4.3. The Hamilton-Bianchi group SLa(O) acts transitively on the set of 4-
dimensional cells of its spine X g if and only if D4 € {2,3,5}. In these cases, the horizontal
projection of the fundamental cell Xy to H is the Fuclidean Voronoi cell of O for the Z-
lattice O in the Fuclidean space H.

Proof. If SLy(0) acts transitively on the 4-dimensional cells of X4, then Xy = SLa(0) £y,
and the stabilizer of oo in SLa (&) acts transitively on the set of 4-dimensional cells in 0.7,

10
bilizer consists of the upper triangular matrices with coefficients in &', hence with diagonal
coefficients in . The orbit of 0 € H under this stabilizer is exactly &. Since ¥4 is
compact and contained in the open Euclidean upper hemisphere centered at 0 with radius
1, by horizontal projection on H, this proves that H is covered by the open balls of radius
1 centered at the points of . Hence & is left-Euclidean.

Conversely, if € is left-Euclidean, then the class number of A is 1, and SLy(&) acts
transitively on the Ford-Voronoi cells. In order to prove that SLo(&') acts transitively on
the 4-dimensional cells of X, we hence only have to prove that the stabilizer of co in
SL2(0) acts transitively on the 4-dimensional cells of 0.7#%,. For this, let @ € A be such
that s, N J7, is a 4-dimensional cell in 07%,. Let us prove that a € &, which gives
the result. Due to problems caused by the noncommutativity of H, the proof of [BeS,
Prop. 4.3] does not seem to extend exactly. We will use instead Lemma 2.1.

since (O 1) € SLy(0) preserves Y5 = 5 N ) and exchanges %, and 4. This sta-

Figure 4

Assume for a contradiction that o ¢ €. Since € is left-Euclidean, there exists ¢ € &
such that n(a — ¢) < 1. Up to replacing a by « — ¢, since translations by & preserve
H, we may assume that 0 < n(a) < 1. For every B € A and 8 € PL(A) — {3}, let
us denote by Sg g the Euclidean upper hemisphere centered at 3 equidistant from the
points at infinity 5 and £’. In particular, Sy has radius 1. The inversion with respect
to the sphere containing Sp  acts by an orientation-reversing isometry on H?, and acts
on the boundary at infinity P}(H) = HU {oo} by 2z = 1. By Lemma 2.1, it hence
normalizes SLy(¢’) and, in particular, sends Sy o to Sn(aT),o, and fixes Sp oo (see Figure

4). Since n(a) < 1, the hemisphere S, o is therefore below the union of Sp o, and S%,O,
which contradicts the fact that &, N J#,, which is contained in S, o, is a 4-dimensional

cell in 0.7.

In order to prove the last claim of Proposition 4.3, note that n(l,) = 1 if & € 0, and
that the above proof shows that the 4-dimensional cells contained in 0745, and meeting
the fundamental cell along a 3-dimensional cell are contained in spheres centered at points
in &. Therefore, by Lemma 4.2, the horizontal projection of ¥4 is the intersection of
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the halfspaces containing 0 and bounded by the Euclidean hyperplanes with equation
tr(az) =n(a) for all @ € . Since this hyperplane is the set of points z in the Euclidean
space H equidistant to 0 and «, this proves that the horizontal projection of ¥4 is indeed
the Voronoi cell at 0 of the Z-lattice 0. O

Example 4.4. Let A = Q+ Qi + Qj + Qk C H be the definite quaternion algebra over
Q with Dy =2, and let 0 = Z + Zi + Zj + ZW be the (maximal) Hurwitz order
in A. The Hurwitz order & is the lattice of type Fy = D}. The group of unit Hurwitz
quaternions, called the binary tetrahedral group, has 24 elements

:I:l:l:i:l:j:l:k‘}

ks :{il,ii,ij,ik, ;

The Voronoi cell % of 0 for the lattice ¢ in H is (up to homothety) the 24-cell, which
is the (unique up to homothety) self-dual, regular, convex Euclidean 4-polytope, whose
Schléfli symbol is {3,4,3}. The vertices of E% are the 24 quaternions

1+iﬁx:{ilii +1+j5 £1+k +itj itk ijik}
2 2 72 7 2 7 2 7 2 72 '

See for instance [CoS, p. 119] for more details and references.

Let H{® be the subgroup of H* that consists of the quaternions of norm 1. The group
morphism HJ* x H}* — SO(4) that associates to (u,v) € Hi* x Hi* the orthogonal transfor-
mation z — uzv~! of the Euclidean space H endowed with the basis {1,1, j, k} is surjective
with kernel {£(1,1)}, see for instance | , Thm. 8.9.8]. The group of Euclidean symme-
tries of the 24-cell is the exceptional Coxeter group Fy = [3,4,3]. It consists of the 1152
elements z — uzv™!, z +— uZv~! of O(4), where either both u and v are unit Hurwitz
integers or both u/\/§ and v/\/§ are in %ﬁx.

By Equation (14) and Proposition 4.3, the fundamental cell of SLy (&) is

Yo ={(z,t) eH} : z € 2, n(z) + 12 =1}.

With the notation of Lemma 2.1, the stabilizer of ¥ in SLgo(&) consists of the 1152
matrices Cyq = (8 2) and JCqq = (2 (C)l) with a,d € 0*. When X4 is identified
with Z% by the horizontal projection, the diagonal matrices induce by Equation (7) 288
rotational symmetries of % and the antidiagonal ones induce another 288 orientation-
reversing symmetries, together forming a subgroup of index 2 in the Coxeter group [3, 4, 3].

The quotient SLy(&)\ X4 is obtained by identifying the opposite 3-dimensional cells of
Yo (which are 24 regular octahedra) by translations by elements of &, and by forming the
quotient by the stabilizer of 5. In particular, all the vertices of X4 are in the same orbit
under SLy(0).
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Figure 5: Boundary of equidistant hemispheres and halfplanes in C C H.

Speiser [Spe, §5] observed that the estimate of Proposition 4.1 (2) is sharp in this
example: H3, is indeed contained in | J a€PL(A) Ba(v/2), but the SLy(&)-orbit that contains

all the vertices of ¥4 is not contained in the union of the interiors of the horoballs B (v/2).
Furthermore, Speiser proved that the point

(1+i 1)
vy = —_——
0 2 ’\/5

belongs to the boundary of exactly 10 horoballs B,(1/2), the ones with « in

. Cl+itijt+k 1 141
Ef{oo,O,l,z,l—i—z, 5 = }
In particular, vy is a vertex of the spine X, contained in the boundary of exactly 10
Ford-Voronoi cells .57, for « in this set.

The set E contains exactly 5 pairs {a, 8} of distinct elements such that the interiors
of the horoballs B,(v/2) and Bg(v/2) are disjoint, these pairs being {oo, ﬁ}, {0,1+ i},
{1,i}, {Higﬂk, Higjfk} and {Hi;j*k, 1+i;j+k}. If {«, B} is one of these pairs, the Ford-
Voronoi cells 77, and 73 intersect only at vg. For all other pairs in F, the intersection is
a higher-dimensional cell.

As 0,1,4,1 + 1, % are in ¢ and % is not in O, there are 8 Ford-Voronoi cells
incident to vy that intersect %, in a 4-dimensional 24-cell (see Figure 5, which represents
the intersection with the plane in H containing 0,1,7 of the closures of the equidistant
spheres and planes between some pairs of elements in {00, 0,1,4,1 + 4, W}, so that
the horizontal projection of vy is the common intersection points of the straight lines). A
similar property holds for all the other Ford-Voronoi cells incident to vg: For example, J%
intersects in a 4-dimensional cell the Ford-Voronoi cells 72, 74, H, Htivjtr, t%”%, but

2

not .71 by Theorem 3.5 (1), since Ipl;+1 = O # O(1 + i). Thus the pattern of pairwise
intersections into 4-dimensional cells of these 10 Ford-Voronoi cells is given by Figure 6
and the number of 24-cells containing vy is exactly 40 = (10 x 8)/2, one for each edge of
this intersection pattern.
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Figure 6: Pattern of intersections into 4-dimensional cells of Ford-Voronoi cells centered
o foe.0 1141, )

The boundary of each %, is tiled by 24-cells, combinatorially forming the 24-cell hon-
eycomb. The dual of this honeycomb is the 16-cell honeycomb. Therefore, the link of the
vertex vg in the tessellation of 07, for all a € F is the dual of the boundary of the 16-cell,
which is the boundary of the 4-cube, such that the intersection of the link with each of the
eight 24-cells is a 3-cube.

Gluing together the ten boundaries of 4-cubes (that have been subdivided in eight 3-
cubes each) according to the above intersection pattern proves that the link of vy in the
spine X is the 3-skeleton of the 5-cube (which is the 5-dimensional regular polytope with
Schlafli symbol {4, 3,3, 3}).

Example 4.5. The (unique up to conjugation) maximal order of the definite quaternion

algebra (_1@_3) of discriminant‘DA = 3 is Z[1,1, %, %], see [Vig, p. 98]. Using the
unique Q-linear map from (_1@_3) to H sending 1 to 1, 4 to j, j to kv/3 and k to —iv/3,
we identify (71(@73) with the Q-subalgebra A of H generated by 1, iv/3, j and kv/3, and

the maximal order is then identified with & = Z[1, p, , pj|, where

1+iv3
2

The group of units of & is the binary dihedral group of order 12
0% = {+1, +j, +p, +p°, £pj, £p%j} .

The elements of the maximal order & = Z[1, p] + Z[1, p]j of A are the vertices of the
3-3 duoprism honeycomb in the 4-dimensional Euclidean space H, seen as the orthogonal

1
product C & Cj of its Euclidean subspaces C = R+ R¢ and Cj = Rj + Rk. The 9
elements of the set

‘/3,3 = {0717]71+]7p7p]71+pj7]+p7p(1+])}7

contained in &, are the vertices of its fundamental 3-3 duoprism, which is a uniform 4-
polytope with Schléfli symbol {3} x {3} (the Cartesian product of two equilateral triangles,
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whose 1-skeleton is given in Figure 7). We refer to Coxeter’s three papers | , ,
| for notation and references about uniform polytopes and their Coxeter groups, with
the help of the numerous and beautiful articles in Wikipedia and Polytope Wiki.

1+
0 1+ pj
pie | | [ e

po p+pj
Figure 7: The 1-skeleton of the 3-3 duoprism.

The Voronoi cell Z]g; of 0 for the lattice & in H is the 6-6 duoprism whose Schlifli
symbol is {6} x {6}. It is the Cartesian product of two copies of the Voronoi cell of 0
for the hexagonal lattice of the Eisenstein integers in C whose set of vertices is Vg =

{:t%, i% + 2\’/§} Thus, the set of vertices of 2]21) is Vg + Vi j. These 36 vertices, including

i J . —1
+—F—=+5+—F2==U+tp 1+ ;
belong to A and all have reduced norm %

By Proposition 4.3, the fundamental cell ¥4 of SLa(€) is the subset of the Euclidean
unit sphere in H whose horizontal projection is E%. In particular, all the vertices of 4

have Euclidean height % Let u and v be either both in &* or both in p%ﬁx. The 288
mappings z — uzv~! and z — uZ v~ ! are Euclidean symmetries of 3. and they form the
Coxeter group [[6,2, 6]] of the symmetries of the 6-6 duoprism %%.

With the notation of Lemma 2.1, the stabilizer of ¥4 in SLy(&) consists of the 288

matrices Cpg = <8 2) and JCy g = (2 g) with a,d € 6*. When % is identified

with Z% by the horizontal projection, the diagonal matrices induce by Equation (7) 72
rotational symmetries of X% and the antidiagonal ones induce another 72 orientation-
reversing symmetries, together forming a subgroup of index 2 in [[6, 2, 6]]].

A straightforward computation using Mathematica gives that the subgroup of [[6, 2, 6]]
that arises from the diagonal matrices in SLo(&) acts transitively on the vertices of L.
Thus, this subgroup acts transitively on the vertices of the fundamental cell ¥4, which
implies that all vertices of the spine X, are in the same orbit.

We will now turn to a study of the link of a vertex in X . Let

1 k
20 = —
0=75 3

Vo = (Zo,\}g) ;

21



which is the vertex of ¥, whose projection to H is zy. Let

(1 2\ [0 1\  [3z 1-32
9‘(0 1><3 —3z0>_<3 3z ) € G2

inducing the the homography z — % (z — 20)" ! + 20.
Lemma 4.6. The element g belongs to the normalizer of SLa(0') in SLay(H).

Proof. Computations (using Mathematica and SAGE) show that g conjugates all the
generators of SLy (&) given in Corollary 2.2 to elements of SLy(&), as follows. We have

ng_1:<3+p+j+pj 1—2p—2j—2p.7'>
d=j—p=—pj —-3-p—Jj—pji)’
1 _ (2+ptitpi l—p—j—pj>
Tig! = RO
g < 3 —p—Jj—pj
gT,gl_<—p+j+pj 1+p—j+m’>
J = . )

3J 3—p—2j+pj
_ 2p+ 25 —pj 2—2p
T, ' = ; )
Iied ( 3p 2-2p+j—2pj

T,ig~ ' = : o
Ireid 3pJ 24+p—37—pj

Since CywCuyr = Cuyy py and JCypJ = Cyyy for all units u,v,u',v" of @, it suffices to
check the following elements:

1 <—1+p—j+2m’ 1+p+j—pj> _

gC1—197" = <

(2043 3-2p—j
1 (20 +3 p—J
9019 = <2+2p 1 —2p—2pj> ’

—3+2p+ 25+ 2pj 4
2420+2j4+2pj 3—2p—2j—2pj) "

and
- 2p —j +2pj 1+j—2pj>
Cipg ' = ( . : )
ILed 2—p—j+20j p—j—pi
Thus, g belongs to the normalizer of SLa(&) in SLo(H). O

Proposition 4.7. If D4 = 3, then the set V of o € A such that vy belongs to the boundary
of Bo(V/3) is
V =V33Ug(Vs3)U{oc0,20} .

For every o € A, the point vy of Hj, does not belong to the interior of Ba(V/3).

The second claim implies that when 7 < /3, the family (Ba(r))a c4 does not cover
H]%. In particular, the inclusions in Proposition 4.1 (2) are also sharp when Dy = 3.

Proof. First observe that vy as well as all the vertices of ¥, are in the horizontal plane
{(2,t) eH} : t = %}, which is the boundary of Buo(v/3).
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For every a € A, recall from Proposition 3.4 (2) that the horoball B,(v/3) is the

Euclidean ball tangent to H at o with Euclidean radius % Writing o = pg~! with

p, q € O relatively prime, we have n(I,) = n(q)~'. Thus if vy € B, (v/3), then the Euclidean
diameter v/3n(I,) of B,(V/3) is at least the Euclidean height % of v, that is n(q) < 3.
Equality is only possible if « is the vertical projection to H of vy, that is a = zp. Since
20=(j+p)(1+p)~! and j + p, 1 + p are relatively prime (their norms are 2 and 3), we
have zp € A and n(I,,) = % Hence the point vy does belong to the boundary of B, (v/3),
and if a # zp, then n(q) =1 or n(q) = 2.

acVsa 20 Beg(Vzs)

Figure 8: Intersection pattern at vy of the covering family of horoballs (Ba(\/g))a cA

First assume that n(q) = 1, or equivalently that a € ¢. Then n(I,) = 1, hence B, (v/3)

is the Euclidean ball of center (a, @) and radius @, that intersects the horizontal plane
at height % in a horizontal ball centered at («, %) and of radius \/g . The 9 vertices

of the fundamental 3-3 duoprism of & are exactly at this distance from zg, and all other
elements of & are at greater distance from zy. Hence (see Figure 8 on its left), vy belongs
to the boundary of B, (v/3) for every a € V33 and vg ¢ Bo(V3)if a € 0 — Va3.

We begin the treatment of the remaining case n(q) = 2 by geometric observations.
The homography ¢ defined before Lemma 4.6 maps oo to zg, zp to oo, and the sphere
in H of center zy and radius r to the sphere in H of center zy and r?dius %, for every

r > 0. In particular, g maps the sphere in H of center zy and radius 7 to itself and the

Poincaré extension of g to HY (again denoted by g) fixes vo. Thus, ¢(Be(v/3)) = B, (V/3)
and Lemma 4.6 implies that g preserves the SLo(&)-equivariant family (Ba(v/3))aca of
horoballs.

Now let 3 = pg~* € A be such that vy € Bs(v/3) and n(q) = 2. Note that the Euclidean
perpendicular projection from H?R to H does not increase the Euclidean distances, and that
the projection of the Euclidean center of Blg(\/g) is # and the projection of vy is zp (see

Figure 8). Since the radius of Bg(v/3) is ?, we hence have d(zp, 8) < @ < % Since g
fixes v and gBg(V3) = Bg(ﬁ)(\/g) by Lemma 4.6, the element o = g~ 1(/3), which satisfies

vo € Ba(v/3) and is outside the ball of center zy and radius %, hence cannot have a
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denominator of norm 2. Therefore o has denominator (of norm) 1 and by the previous
case, it belongs to V3 3 and vy lies in the boundary of B,(v/3). So that 8 = g(a) belongs
to g(Va,3) and vy lies in the boundary of Bg(v/3). O

An easy computation gives

v )_{1+j_ 1 1+pj 1 p+j 1 p(L+j5) 1

R R e A R T A N N A R (T

L+ji+pi _ 1 +j p+j+p) 1+p+j 1+p+pj 1+p+j+M}
2 1—j(p—1) 77 2 2 2 2 ‘

As any element 3 in ¢g(V33) is the sum of an element of & with the inverse of an element of
0 with reduced norm 2, we have n(Ig) = 3 and the horoball Bs(1/3) has Euclidean radius

@. This horoball intersects the horizontal plane {(z,t) € Hp : t = %} in a horizontal

ball of Euclidean radius %. In particular, the points in g(V33) are at Euclidean distance

% of zy and the horoballs tangent to vy are positioned as in Figure 8.

By Proposition 4.7, the link of vy in the cellulation of H} by the Ford-Voronoi cells of
O has 20 4-dimensional cells, which are the intersections of a small sphere centered at vg
with the Ford-Voronoi cells 7, for ain V = V33U g(V33) U {00, 29}. Furthermore, for all
a # B in V, the horoballs B, (v/3) and Bg(v/3) are tangent at vg if and only if {«, B} is
one of the 10 pairs

L+p+tijt+pj ptites L+j+pi 1+p+pj
{00720}7 {07f}7 {17f}7 {pa#}7 {ja#}a

p+pj Cp+j 14p+j . 1+ pj 14
{1+mp2m},{1+mfgl},{mr—{%4@,{1+m 2”},{p+Mr3i}-

By computing (using Mathematica) the intersections of the horoballs B, (1) contained
in the Ford-Voronoi cells incident to vy, we find that each Ford-Voronoi cell containing v
intersects 9 others in 4-dimensional cells, that are images under SLy (&) of the fundamental
cell ¥4, combinatorially equal to the 6-6 duoprism {6} x {6}. The graph in Figure 9 shows
the intersection pattern of the 2, for a € V.
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Figure 9: Intersection pattern into 4-dimensional cells of Ford-Voronoi cells .77, for o € V.

Thus the number of (6-6 duoprismatic) 4-dimensional cells of X containing vy is exactly
90 = (20 x 9)/2, one for each edge of this diagram.

The dual tiling of the 6-6-duoprismatic tiling of H is the 3-3-duoprismatic tiling. There-
fore, the link of vg in 0.7, (hence in all .57, containing vg) is the 3-skeleton of the dual
of the 3-3 duoprism, namely the 3-3 duopyramid (also known as the triangular duotegum),
whose Schlifli symbol is {3} + {3} and whose symmetry group has order 8 x 3% = 72. The
link of v in HER is constructed of 20 copies of the 3-3 duopyramid, that are glued together
according to the intersection pattern described in Figure 9. Let us describe the symmetries
of this link.

Let Gyy,00 be the stabilizer of vy and oo in SLa(&). The stabilizer of oo in SLy(0)
8 2) € SLy(0) fixes zp if and
only if azg + b = zod. It is easy to check (using Mathematica) that this equation has
36 solutions. The elements of the intersection of the stabilizers of co and zg preserve the
geodesic line between zp and co and the horospheres centered at oo, hence fix vg. Thus

consists of the upper triangular matrices. An element (

Gvo,oo = { <8 Z) S SLQ(@)) tazog+b= Zod} .

Using the facts that zg = W and pj = jp~!, it is easy to check that the three matrices
-1

_ (P P _(p Jp _(pri O
Joo,1 = <0 p_l)’ Jc0,2 = (O p) and ho = ( 0 j) are elements of Gy 0. AS Goo,1

and g2 are elements of order 6 that commute and the intersection of the cyclic groups
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generated by their squares is trivial, the group generated by ggql and 920,2 is isomorphic
to Z/3Z x Z/37Z. The element ho has order 4 and conjugates goo 1 to its inverse, as well
as for goo2. Hence ho, conjugates each element of the abelian group generated by 92071
and ggo’Q to its inverse. Thus these three elements actually generate a group isomorphic to
the semi-direct product (Z/37Z x 7Z/37Z) x Z/AZ, where the generator of Z /47 acts by the
opposite on the abelian group (Z/37)?. This group has 36 elements that therefore is all of
Gpoo- For i = 1,2, note that g3 ; = h3, = —id, hence goo; = h2, (g2, ;)" does belong to
the above semi-direct product. The group G, « is a subgroup of index 4 in the stabilizer
in SLa(&) of the 3-3 duopyramid corresponding to oo in the link of vy.

The subgroup Gy« acts transitively on V33 : The graph in Figure 10 shows how the
points of V3 3 are mapped by goo,1 (in continuous green) and goo 2 (in dotted red).

I

|

o !
SECHRERREES SN
j

Figure 10: Transitive action of Gy, on V3 3.

Since the inversion g conjugates goo,1 and goo,2 t0 —goo,1 and —goo 2 respectively, the group
Ghy,00 also acts transitively on g(V33).

The element g, = (_(i 1), inducing the homography z — (1 —2)~
the stabilizer of v in SLg(0); it fixes p € V3 3 and % € g(V3,3), maps co to 0 € V3 3 and
pj € Va3 to # € g(V3,3), and does not fix zg. Since Gy, o acts transitively on V3 3 and on
g(V3.3), it follows that the stabilizer of vy acts transitively on V' = V33U g(V33) U {00, 20}.
One can check (using Mathematica) that the group generated by G, and g, has 720
elements. This induces a group G, of 360 isometries in the stabilizer of vy in the group
of isometries of H.

The intersection pattern of Figure 9 and the type of the 4-dimensional cells coincide
with those of the boundary of the bidodecateron, dual to the dodecateron (also called the
birectified 5-simplex), see | |. The full group of symmetries of the bidodecateron, whose
Coxeter notation is [[3%]], has 1440 = 4 x 360 elements. Assuming that the link of vg is
the bidodecateron (we have not checked this), the group Gy, would be a subgroup of index
4 in [[3%]], and the stabilizer of vy in SLa(&) would coincide with the group generated by
900,15 Joo,2, hoo and g,. This concludes the study of Example 4.5.

I is an element of

Remark. When Dy € {2,3,5}, let Py be the hyperbolic 5-polytope that consists of the
points in the halfspace 5,9 whose horizontal projection to H is Eﬂg. The quotient orbifold
SLo(0)\H3, is obtained from Py by gluing the vertical sides of Py by the translations
in the stabilizer of oo in SLa(&), and then folding by the action of the stabilizer of ¥4.
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The quotient space SLa(€)\Xg obtained by making the above identifications in ¥4 is a
4-dimensional cellular retract of SLo(&)\H, that could be used to study the homology of
SL2(&0) and PSLa (&) analogously to the study of the Bianchi groups in [Men| and [ScV].

5 Waterworlds

Let A be a definite quaternion algebra over Q and let & be a maximal order in A. Let f
be an indefinite integral binary Hamiltonian form over &.
The form f defines a function F = Fy : PL(A) — Q by

N L)

F(lz:y]) = n(0z + Oy)

This definition does not depend on the representative (x,y) € Ax A of [z : y] € PL(A), and
f is uniquely determined by its associated function F. In particular, we may take x,y € &
in order to compute F([z : y]), so that the numerator of the fraction defining F([z : y])
belongs to Z. Note that SLg(&) acts with finitely many orbits on PL(A), since the number
of cusps is finite, and that the denominator defining F'([z : y]) is invariant under SLa(0).
Therefore there exists N € N — {0} such that F' has values in %Z, hence the set of values
of F' is discrete.

Note that for every g € SL(€), the function Fj., associated with the form fo g is
F o g (where we again denote by g the projective transformation of P!(A) induced by g).
In particular, F o g = F if g € SUf(0).

As in [Con] for integral indefinite binary quadratic forms, we will think of F' as a map
which associates a rational number to (the interior of) any Ford-Voronoi cell. For instance,
if D4q = 2 and O is the Hurwitz order, then the values of F' on the two Ford-Voronoi cells
Ho, ) containing the fundamental cell ¥4 are f(1,0), f(0,1) and the values of F' on the
24 Ford-Voronoi cells meeting ¥4 in a 3-dimensional cell are f(u, 1) for u € &> (see Figure
11).

Figure 11: Values of F' on Ford-Voronoi cells meeting ¥ 4.

Let m be a left fractional ideal of &. For every s > 0, let
YF m(s) = Card SUf(ﬁ)\{(u’ v)emxm : |F(u,v)|<s, Ou+ Ov=m},

which is the number of nonequivalent m-primitive representations by F' of rational numbers
in +7Z with absolute value at most s. We showed in [’’2, Theo. 1] and [’I’3, Cor. 5.6|
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that there exists k > 0 such that, as s tends to +oo,

B 45 Dy Covol(SUf(0))
=272 (3) AU Ty, 07— 1)

Lemma 5.1. The function F takes all signs 0,4+, —.

Vr m(s) Y14 0(s7)).

Proof. It takes positive and negative values since f is indefinite. The values of F' are
actually positive at the points in PL(A) in one of the two components of PL(H) — € (f)
and negative at the ones in the other component. But contrarily to the cases of binary
quadratic and Hermitian forms, all indefinite integral binary Hamiltonian forms f over
O represent 0, since by taking a Z-basis of &, the form f becomes an indefinite integral
quadratic form over Z with 8 variables and all indefinite integral quadratic forms over Z
with at least 5 variables represent 0 by Meyer’s theorem, see for instance | , p. 77| or
[Cas, p. 75]. O

A Ford-Voronoi cell will be called flooded for f if the value of F on its point at infinity is
0. Lemma 5.1 says that there are always flooded Ford-Voronoi cells. See also [Vul, Cor. 4.8].
The flooded Ford-Voronoi cells for f correspond to Conway’s lakes for an isotropic integral
indefinite binary quadratic form over Z, see [Con, page 23]. There were only two lakes,
whereas there are now countably infinitely many flooded Ford-Voronoi cells for f, one for
each parabolic fixed point of the group of automorphs of f.

Example 5.2. Consider the definite quaternion algebra A with Dy = 2, ¢ the Hurwitz
order and a Hamiltonian form f with a(f) = 0, b = b(f),c = c(f) € Z — {0} such
that b does not divide ¢ nor 2c. Then %, is flooded. Let o = xy~! with x € ¢ and
y € 0 — {0} relatively prime. If n(y) < 2, then the Ford-Voronoi cell 77, is not flooded,
since otherwise the equation btr(Zy) + cn(y) = 0 would imply that b divides ¢ or 2c.

If n(y) > 2, then n(l,) = % = ﬁ < 1. Hence by Proposition 3.4 (2), we have

Ba(V2) N Bso(V/2) = (). Therefore 5, N, = () by Proposition 4.1 (2). This proves that
H does not meet any other flooded Ford-Voronoi cell. Thus if the hyperbolic 4-orbifold
SUf(O)\€(f) has only one cusp, then the flooded Ford-Voronoi cells are pairwise disjoint.
We actually do not know when SU;(&)\%(f) has only one cusp.

We have the following analog of the statement of Conway (loc. cit.) that the values of
the binary quadratic form along a lake are in an infinite arithmetic progression.

Proposition 5.3. Let ag € PL(A) be such that the Ford-Voronoi cell #,, is flooded for f.
If oy belongs to the SLa(0)-orbit of 0o, let Ao, = O. Otherwise, let

Aoy = O NagtOoNOayt Nagtoay’ .

Then there exists a finite set of nonconstant affine maps {p; : H - R : j € J'}
defined over Q such that the set of values of F' on the Ford-Voronoi cells meeting €, is

UjeJ’ ©j(Aa)-

Proof. For every a € PL(A), let E, = {8 € PL(A) — {a} : £, N 45 # 0}. Note that
Egyo =g - E, for every g € SLy(0), by Proposition 4.1 (1).

First assume that ag belongs to the SLy(&)-orbit of co. Then up to replacing f by
f og for some g € SLy(0) such that g - co = oy, we may assume that oy = 0.
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Let a = a(f), b = b(f) and ¢ = ¢(f). Note that % is flooded for f if and only
if f(0,1) = 0, that is, if and only if @ = 0. We then have b # 0 since f is indefinite.
Hence F(Ey) = {trlg?;;);rc ©u € Eoo}. Since the stabilizer of oo in SLy(&) acts with
finitely many orbits on the cells of 0.7, its finite index subgroup & acts by translations
with finitely many orbits on E,,. Hence there exists a finite subset J' of A such that

Eo = J ﬁﬁ. Since Iny, = I, for all @« € A and o € @, the result follows with
@j:uH%foraujeJ'.

i,

Assume now that ag does not belong to the SLy(&)-orbit of oo, so that in particular
ap € A—{0}. Let Iy, be the stabilizer of ag in SLa(&), which acts with finitely many orbits
on Fy,. Let g = < 010
maps ag to co. Then (see for instance [PP2, §5]), Aq, is a Z-lattice in H, such that the
group of unipotent upper triangular matrices with coefficient 1-2 in A, is a finite index
subgroup of g~ !T',,g. A similar argument concludes. O

_01 >, which belongs to SLy(A) and whose inverse projectively

By a projective real hyperplane in ,,Hp, = PL(H) = HU{oco}, we mean in what follows
the boundary at infinity of a hyperbolic hyperplane in H%. The ones containing oo = [1 : 0]
are the union of {oo} with the affine real hyperplanes in H. The ones not containing oo
are the Euclidean spheres in the affine Euclidean space H.

Lemma 5.4. The form f is uniquely determined by the values of its associated function
F at siz points in PL(A) that do not lie in a projective real hyperplane.

Proof. Let a = a(f), b="0(f) and ¢ = ¢(f). Let us first prove that we may assume that
the six points in AU {oo} are co =[1:0], 0, ap = 1 and oy, a2, a3 € A — {0}.

Note that for all z,y € A and g € GLa(A), if g1, 92 are the components of the linear
selfmap g of A x A, then

n(0gi(z,y) + Og2(z,y))
n(0x + Oy)

Frog([x:y]) = Fyog([z:y]) (15)

Given six points in PL(A) not in a projective real hyperplane of PL(H), the first three of
them constitute a projective frame of the projective line PL(A). Hence by the existence
part of the fundamental theorem of projective geometry (see | , Prop. 4.5.10]), there
exists an element g € GLy(A) mapping them to c0,0,1. Note that this existence part
does hold in the noncommutative setting, though the uniqueness part does not. The initial
claim follows by Equation (15).

Now, the values of F' at the points oo, 0, ag, a1, a9, a3 give a system of six equations
on the unknown a, b, ¢, of the form a = Ay, ¢ = Ag, a+trb+c = As, tr(a;b) = A;43 for
i € {1,2,3}. Thus a and c are uniquely determined, and b belongs to the intersection of
four affine real hyperplanes in H orthogonal to ag, a1, a2, a3 with equations tr(agb) = A}
for i € {0,1,2,3}. The result follows since if ag, a1, g, a3 are linearly independent over
R, then for all Af), A}, A5, A5 € R, such an intersection contains one and only one point of
H. O

Proposition 5.5. Let v be a vertex of the spine Xg. The form f is uniquely determined
by the values of its associated function F' on the Ford-Voronoi cells containing v, that is,
on the points o € PL(A) such that v € .
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Proof. A dimension count shows that there are at least six Ford-Voronoi cells meeting at
each vertex v of the spine. Their points at infinity cannot all be on the same projective
real hyperplane P. Otherwise, the intersection of the equidistant hyperbolic hyperplanes
between the pair of them yielding a 4-dimensional cell containing v would have dimension
at least 1: It would contain a germ of the orthogonal through v to the convex hull of P in
H3. The result follows by Lemma 5.4. 0

The waterworld of f is

V(f) = U Mo N H .
a#BEPL(A), F(a)F(8)<0

As Fog = F if g € SUf(0), the waterworld #(f) is invariant under the group of
automorphs SU (&) of f.

Since f is always isotropic over A, the arguments of Conway and Bestvina-Savin for
the anisotropic case no longer apply, and the waterworld of f could be empty. We do not
know precisely when the waterworlds are nonempty, and we now study some examples.

Example 5.6. The binary Hamiltonian form f(u,v) = tr(zv) is indefinite with discrim-
inant 1. The coefficients of f are rational integers so it is integral over any maximal order
O of any definite quaternion algebra A over Q. Let us prove that the waterworld #'(f) is
not empty.

It is easy to check that €oo(f) = {z € H: trz = 0} U {oc0}. Let a € & be such that
tr(a) = 1 (which does exist since ¢ is maximal, hence tr : & — Z is onto, see for instance
the proof of Proposition 16 in | |). In particular a # 0, a # —a, and a, —a are in two
different components of 9o H — %o (f), so that F(a)F(—a) < 0. Let us prove that ., and
H_g intersect in a 4-dimensional cell of X4, which thus belongs to #'(f). By Proposition
4.1 (2), it is sufficient to prove that B, (1) and B_z(1) meet. By Theorem 3.5 (1), this is
equivalent to proving that I,I; = €(tra). But this holds since tra =1 and I, = & when
be 0.

Figure 12 illustrates the analogous case of the ocean in H% of the isotropic binary
Hermitian form f(u,v) = tr(uwv) considered as an integral form over the Eisenstein integers
Z[l%‘/g] The blue hexagons are the components of the ocean of f in the hyperplane
€ (f) = {(2,t) € H} : Im 2z = 0} which is a copy of the (upper halfplane model of the) real
hyperbolic plane.

1+z'\/§]
S

Figure 12: Ocean of the Hermitian form f(u,v) = tr(uv) over Z|

We do not have an example of an empty waterworld and, in fact, it may be that
no such example exists. However, the ocean of the isotropic binary Hamiltonian form
f(u,v) = tr(uv) considered over the Gaussian integers Z[i] is empty (see Figure 13). In
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order to prove this, let a € Q(i) with tra # 0. Note that in the commutative case,
n(l,) = n(/_g), so that the Euclidean balls B, (1) and B_z(1) have the same radius. By
symmetry, €(f) is the equidistant hyperbolic hyperplane of B, (1) and B_5z(1). Since Z][i]
is Euclidean, the spine of SLg(Z[i]) has only one orbit of 2-cells (see [BeS]). Hence all
the intersections of the Ford-Voronoi cells are in the orbit of the fundamental cell, and
therefore, 77, and J# 5 intersect if and only if B, (1) and B_5(1) are tangent, that is, if
and only if B, (1) intersects €(f).

Since the hyperbolic 3-orbifold SLa(Z[i])\H2 has only one cusp, there exists an element

g = <i Z) € SLy(Z[i]) such that o = g - 0o = ac™!. Since g - (—c~'d) = oo, the point
g-(—ctd,1) = (o, ﬁ) is the highest point in B, (1) = ¢Bs(1). Thus the Euclidean radius

of Bo(1) is #(C) As the Euclidean distance of « from % (f) = {z € C: Re z = 0} U {00}

is |%52|, this implies that B,(1) intersects €(f) if and only if |#£2| < #(c), that is, if and

only if trac¢ = 1. This is impossible since the trace of any Gaussian integer is even.

Figure 13: Empty ocean of the Hermitian form f(u,v) = tr(uwv) over Z[i].

Proposition 5.7. If the union of the flooded Ford-Voronoi cells does not separate H]%, and
in particular if the flooded Ford-Voronoi cells are pairwise disjoint, then the waterworld of
f is nonempty.

Proof. The assumption says that the topological space

X =H} - U H,
a€PL(A), F(a)=0

is connected. If #/(f) = (), then

U mpel U )

a)<0 a€Pl(A), F(a)>0

X

a€ePL(

would be a partition into two nonempty (since f is indefinite) locally finite, hence closed,
unions of closed polyhedra, contradicting the connectedness of X. O

Proposition 5.8. The quotient SUf(O)\W (f) is compact, and the set of flooded Ford-
Voronoi cells consists of finitely many SU(0)-orbits.

Proof. The points at infinity of the flooded Ford-Voronoi cells are the parabolic fixed
points of SLa(&) contained in % (f), hence are the parabolic fixed points of the group of
automorphs SUf(&). Since SU(0) is a lattice in the real hyperbolic 4-space €(f), the
quotient SU¢(0)\€ (f) has only finitely many cusps. This proves the second claim.
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Let a, 8 € P}(A) be such that F(a)F(3) < 0 and the intersection ., N.%#% is nonempty.
Then the intersection B, (v/Da) N Bg(y/D4) is nonempty by Proposition 4.1 (2), hence the
hyperbolic distance between the horoballs B, (1) and Bg(1) is at most In D4. By Lemma
3.6, we hence have EI 5 % < Dy.

Let a =a(f), b= b(f), c=c(f) and A = A(f). Write o = [z : y] and 8 = [u : v] with
z,y,u,v € O and y,v € Z. Note that

GO GO0 -0 )

for some z € 0. Since y,v € R, an easy computation of Dieudonné determinants thus
gives

n(z) -
Hence 0 < —f(x,y) f(u,v) <n(2) — f(,y)f(u,v) = n(zv —uy) A and

f(z, y)f(u,v)‘ =n(zv —uy) A.

—f(z,9)f(u,v) n(a — )
0= -FlFB) = e Gy)n(6u+ Gv) = alla)ally) > = P48
Since the set of values of F' is discrete in R, this implies that F' takes only finitely many
values on the Ford-Voronoi cells that intersect #(f).

Given any vertex v € #(f), for every g € SLy(0), if F(a) = F(g- ) for all @« € A
such that the Ford-Voronoi cell 7 contains v, then f = f o g by Proposition 5.5. Since
there are only finitely many orbits of SLa(&) on the vertices of the spine X, and since F'
takes only finitely many values on the Ford-Voronoi cells meeting the waterworld #/(f),
this implies that SU;(&) has only finitely many orbits of vertices in #'(f). The result
follows. 0

Remark. We claim there exist a positive constant and finitely many pairs {a, 8} in A
such that, for all indefinite integral binary Hamiltonian forms f over & up to the action
of SLy(0), the distance between ., and 3 is at most this constant and F(a)F(8) < 0.
This follows, even if the waterworld #'(f) could be empty, from the fact that the flooded
Ford-Voronoi cells only have their points at infinity on the 3-sphere € (f) in PL(H), and
by the cocompactness of the action of SLy(&) on its spine X5, The above arguments
hence allow to give another proof of Corollary 25 in [PP2], saying that the number of
SLo(0)-orbits in the set of indefinite integral binary Hamiltonian forms over &' with given
discriminant is finite.

We introduce two variants of #(f). The sourced waterworld #.4(f) of f is the union
of its waterworld and of its flooded Ford-Voronoi cells
W) =W (f) U U Hoy

a€PL(A), F(a)=0

The coned-off waterworld €% (f) of f is obtained from # (f) by adding geodesic rays from
its boundary points to the points at infinity of the corresponding flooded Ford-Voronoi cells

CH(N) =W (f) U U [z,af.
a€PL(A), ze¥ (f)NH, : F(a)=0

Both the sourced waterworld # (f) and the coned-off waterworld € # (f) of f are invariant
under the group of automorphs SU¢(&) of f.
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Before stating the main result of this paper, we give two lemmas and refer to Section
6 of [BeS] for the proofs

Lemma 5.9. Let P, P' be hyperbolic hyperplanes in H that do not intersect perpendic-
ularly. Then the closest point mapping from P to P’ is a homeomorphism onto a convex
open subset of P’, which maps any hyperbolic polyhedron of P to a hyperbolic polyhedron
of P'. O

Lemma 5.10. Let f be an indefinite integral binary Hamiltonian form over O. If £ is a
geodesic line in H% that is perpendicular to the hyperbolic hyperplane € (f), oriented such
that {(+o0) € {[x : y] € PL(H) : £f(z,y) > 0}, if £ meets transversally at a point z the
interior of a 4-dimensional cell A% N Ao, of X with F(a_) <0 and F(ay) > 0 and
(F(a-),F(ay)) # (0,0), then a germ of £ at z pointing towards £(+o0) is contained in
‘%i .

Proof. The proof of Claim 2 page 12 of [BeS| applies. O

The following result implies Theorem 1.2 in the Introduction.

Theorem 5.11. Let A be a definite quaternion algebra over Q and let O be a maximal
order in A. For every indefinite integral binary Hamiltonian form f over O, the closest
point mapping © : Wi (f) = € (f) is a proper SUs(0)-equivariant homotopy equivalence.
If the flooded Ford-Voronoi cells for f are pairwise disjoint, then the closest point mapping
7 EW(f) = €(f) is a SUs(O)-equivariant homeomorphism and its restriction to the
waterworld W (f) is a SU¢(O)-equivariant homeomorphism onto a contractible 4-manifold
with a polyhedral boundary component homeomorphic to R® contained in every flooded
Ford-Voronoi cell.

Proof. The SU;(&0)-equivariance properties are immediate. We will subdivide this proof
into several steps. Unless otherwise stated, polyhedra are compact and convex.
Claim 1. The closest point mapping 7 : #,(f) — % (f) has the following properties.

(1) The restriction of 7 to any cell of #(f) is a homeomorphism onto its image, which
is a hyperbolic polyhedron in the hyperbolic hyperplane €'( f).

(2) The restriction of 7 to any flooded Ford-Voronoi cell 7, of f is a proper map onto
a noncompact convex hyperbolic polyhedron in €(f) containing B, (1) N € (f) and
contained in B (v/Da) NE(f).

(3) If the flooded Ford-Voronoi cells for f are pairwise disjoint, then the restriction of 7
to any cell in the boundary of a flooded Ford-Voronoi cells for f is a homeomorphism
onto its image, which is a hyperbolic polyhedron in the hyperbolic hyperplane €'(f).

Proof. (1) Any 4-dimensional cell, hence any cell, of #(f) is a hyperbolic polyhedron in
the equidistant hyperbolic hyperplane

S, g=1{r € H% D do(z) = dg(x)}

for some o # B in P;(A) with F(a)F(8) < 0. Note that .%, 3 is not perpendicular to
€ (f), otherwise a and [, which are the points at infinity of a geodesic line perpendicular
to 4, g, would belong to the closure of the same component of OOOH% — G (f), which
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contradicts the fact that F(«)F(8) < 0. Hence Assertion (1) of Claim 1 follows from
Lemma 5.9.

(2) The closest point mapping from a horoball H to a hyperbolic hyperplane P passing
through the point at infinity of H is a proper map (since the intersection of H with any
geodesic line not passing through its point at infinity is compact), whose image is H N P,
and which maps the geodesic segment between two points to the geodesic segment between
their images. Assertion (2) of Claim 1 hence follows from Proposition 4.1 (2).

(3) If the flooded Ford-Voronoi cells for f are pairwise disjoint, any 4-dimensional cell, hence
any cell, in the boundary of a flooded Ford-Voronoi cell for f is a hyperbolic polyhedron
in the hyperbolic hyperplane .7, 5 for some o # 3 in PL(A) with F(a) = 0 and F(3) # 0.
Note that .7, g is again not perpendicular to €(f), otherwise a and  would both belong
to € (f), and the Ford-Voronoi cells .77, and 3 would both be flooded for f and not

disjoint. The last assertion of Claim 1 follows. O

Claim 2. We have the following parity properties.

(1) Any 3-dimensional cell o of #'(f) not contained in a flooded Ford-Voronoi cell for f
belongs to an even number of 4-dimensional cells of #(f).

(2) If the flooded Ford-Voronoi cells for f are pairwise disjoint, then any 3-dimensional
cell o/ of #(f) contained in a flooded Ford-Voronoi cell for f belongs to an odd
number of 4-dimensional cells of #/(f).

Proof. (1) Since ¢ has codimension 2, the link of ¢ in the Ford-Voronoi cellulation of
the manifold H% is a circle. Considering its intersection with the 4-dimensional cells, this
circle subdivides into closed intervals with disjoint interiors, each one of them contained in
some Ford-Voronoi cell. By the assumption on o, these Ford-Voronoi cells are nonflooded.
Hence the sign of F' on each one of them is either + or —. In such a cyclic arrangement of
signs, the number of sign changes is even. Assertion (1) follows.

(2) Similarly, the link of ¢’ is subdivided into at least 3 closed intervals with disjoint
interiors carrying a sign +,0, —. By the assumptions, exactly one of them, denoted by I,
belongs to a flooded Ford-Voronoi cell %, for some ag € PL(A), that is, carries the sign
0. Assume for a contradiction that the two intervals adjacent to Iy carry the same sign.
Let B1, 82 € PL(A) be such that %, N 5, and #, N 5, are the 4-dimensional cells
corresponding to the endpoints of Iy. Note that the points at +oo of the geodesic lines
starting from a given point ag of € (f), passing through a geodesic line both of whose
endpoints 1, B2 are contained in the same component C' of d5H3 — s (f) also belong to
C. Hence all intervals except Iy in the link of ¢’ carry the same sign, which contradicts
the fact that o’ belongs to #(f). As for o, this proves that the number of sign changes
between + and — in the link of ¢’ is odd. O

Claim 3. If o and 7 are distinct 4-dimensional cells of #'(f) or flooded Ford-Voronoi cells
for f, then m(o) and m(7) have disjoint interiors.

Proof. Note that no 4-dimensional cell of #(f) is contained in a flooded Ford-Voronoi
cell for f.

For a contradiction, assume that a point p € €(f) is contained in the interior of both
7(0) and 7(7) and, up to moving it a little bit, is not in the (measure 0) image by 7 of
the codimension 1 skeleton of X4. Let ¢ be the geodesic line through p perpendicular
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to €(f), meeting o and 7 at interior points x and y respectively. Since the cell complex
X is locally finite, we may assume that the geodesic segment [x,y] does not meet any
4-dimensional cell of #'(f) or flooded Ford-Voronoi cell for f other than ¢ and 7.

Assume for a contradiction that [z,y] is contained in o U 7. Then o and 7 are flooded
Ford-Voronoi cells, meeting in a 4-dimensional cell C', which is crossed transversally by [z, y]
since £ does not meet the 3-skeleton of X . Since o, 7 are flooded, their points at infinity
a, 3 € PL(A) belong to € (f). Hence the hyperbolic hyperplane .7, 5 equidistant to «
and £, which contains C, is perpendicular to €(f). In particular, ¢, which is perpendicular
to ¢(f), is contained in the closure of one of the two connected component of Hj, — .7, .
This contradicts the fact that £ meets transversally C.

Hence [z,y] is not contained in o U 7. Let |2/,y'[ = [z,y] — (0 UT) N [z,y] with
x,2’,y,y in this order on [z,y], so that [2/,y'] is contained in a Ford-Voronoi cell 7, for
some a € PL(A). Let ¢’ and 7' be the 4-dimensional cells of X4 containing z’ and 3’
respectively (note that for instance x = 2’ and o = ¢’ if ¢ is a 4-dimensional cell of #/(f),
but x # 2’ if o is a flooded Ford-Voronoi cell).

Now Lemma 5.10 implies that, since the two germs of the segment [z, 1/] at its end-
points have opposite direction, the sign of F'(«) should be both positive and negative, a
contradiction. O

Claim 4. The 3-dimensional cells of the waterworld satisfy the following properties.

(1) No 3-dimensional cell of #(f) is contained in two distinct flooded Ford-Voronoi cells.

(2) Any 3-dimensional cell o of #/(f) not contained in a flooded Ford-Voronoi cell for
f belongs to exactly two 4-dimensional cells 7 and 7 of #/(f), and m embeds their
union.

(3) Any 3-dimensional cell o of #/(f) contained in a flooded Ford-Voronoi cell 7, for
f belongs to exactly one 4-dimensional cell 7 of #/(f), and m embeds the union of T
and 7' = . [z,

xrxEo

Proof. (1) Assume for a contradiction that o is a 3-dimensional cell of #/(f) contained in
the flooded Ford-Voronoi cells 5%, and 5 with @ # 3 in PL(A). Let 7 be a 4-dimensional
cell of #'(f) containing o. Then the interiors of the images by 7 of 7 and either 7, or
A3 are not disjoint, which contradicts Claim 3.

Let us prove Assertions (2) and (3). Three n-dimensional polytopes in Hf having a
common codimension 1 face cannot have pairwise disjoint interiors, so that the claims on
the number of 4-dimensional cells of #(f) containing o follows from Claim 3. Since the
polyhedra 7(7) and 7 (7') are convex, the result follows. O

Claim 5. The 2-dimensional cells of the waterworld satisfy the following properties.

(1) For every 2-dimensional cell o of #(f) not contained in a flooded Ford-Voronoi cell
for f, the link of o in #/(f) is a circle and the union of the 4-dimensional cells of
# (f) containing o embeds in €(f) by .

(2) If the flooded Ford-Voronoi cells for f are pairwise disjoint, for every 2-dimensional
cell o/ of #'(f) contained in a flooded Ford-Voronoi cell 7%, the link of ¢/ in #/(f) is
an interval and the union of the 4-dimensional cells of #/(f) containing ¢’ and of the
geodesic rays [z, o[ for z in the two 3-dimensional cells of #/(f) N 0., containing o’
embeds in € (f) by .
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Proof. (1) By Claim 4, the link Lk(o) of o in #/(f) is a disjoint union of circles. Each
component of Lk(o) corresponds to a finite set of 4-dimensional cells cyclically arranged
around o. By Claim 4 again, their images by 7 are not folded, hence are cyclically arranged
around (o). If Lk(o) was not connected, the image of two 4-dimensional cells of #/(f)
by 7 would have intersecting interiors, contradicting Claim 3.

(2) An analogous proof gives that the link of o/ in €#/(f) is a circle. O

Claim 6. The 1-dimensional cells of the waterworld satisfy the following properties.

(1) For every 1-dimensional cell o of #'(f) not contained in a flooded Ford-Voronoi cell
for f, the link of o in #/(f) is a 2-sphere and the union of the 4-dimensional cells of
# (f) containing o embeds in €(f) by .

(2) If the flooded Ford-Voronoi cells for f are pairwise disjoint, for every 1-dimensional
cell o/ of #(f) contained in a flooded Ford-Voronoi cell .77, the link of o’ in #/(f)
is a 2-disc and the union of the 4-dimensional cells of #(f) containing ¢’ and of the
geodesic rays [z, ] for = in any 3-cell of #/(f) N 0., containing ¢’ embeds in €(f)
by .

Proof. (1) By Claim 5, the links of the vertices of the link Lk(o) of o in #'(f) are circles,
hence Lk(o) is a compact surface, mapping locally homeomorphically to Lk(w (o)) by m,
which is a 2-sphere. Hence Lk(m(0)) is a union of 2-spheres, again with only one of them
by Claim 3.

(2) The proof that the link of ¢’ in €#(f) is a 2-sphere is similar. O

Claim 7. The vertices of the waterworld satisfy the following properties.

(1) For every vertex v of #(f) not contained in a flooded Ford-Voronoi cell for f, the
link of v in #(f) is a 3-sphere and the union of the 4-dimensional cells of #/(f)
containing v embeds in €(f) by .

(2) If the flooded Ford-Voronoi cells for f are pairwise disjoint, for every vertex v’ of
# (f) contained in a flooded Ford-Voronoi cell 77, the link of v in #/(f) is a 3-disc
and the union of the 4-dimensional cells of #(f) containing v’ and of the geodesic
rays [z, «[ for x in any 3-cell of #/(f) N 7, containing v' embeds in €(f) by .

Proof. The proof is similar to the previous one. O

Now, the properness of m : #,(f) — €(f) follows from the fact that 7 is SU¢(0)-
equivariant, that SU;(&) acts cocompactly on #'(f) and with finitely many orbits on
the set of flooded Ford-Voronoi cells by Proposition 5.8, and from its properness when
restricted to each flooded Ford-Voronoi cell (see Claim 1).

Claim 7 proves that when the flooded Ford-Voronoi cells for f are pairwise disjoint,
the map m : €# (f) — €(f) is a proper local homeomorphism betwen locally compact
spaces, hence is a covering map. Since €'(f) is simply connected, 7 is hence a homeomor-
phism on each of the connected components of €# (f). But since 7 is injective outside
the codimension 1 skeleton by Claim 3, it follows that €% (f) is connected and 7 is a
homeomorphism. This concludes the proof of Theorem 5.11. O
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A An algebraic description of the distance to the cusps

Let A be a definite quaternion algebra over Q and let & be a maximal order in A. In this
independent appendix, following Mendoza | | in the Hermitian case, we give an algebraic
description of the distance functions d, to the rational points at infinity o € PL(A), defined
just before Proposition 3.3.

An O-flag is a right €-submodule L of the right -module &' x &', with rank one (that
is, LA is a line in the A-vector space A x A), such that the quotient (& x &')/L has no
torsion. We denote by .Z4 the set of 0-flags.

For all right &-submodules M of A x A and v € A x A — {0}, let us define

M,={zx€A :vzxeM}.
Note that for every A € A — {0}, we immediately have
AMyy = M, . (16)

Example A.1l. Recall that the inverse I=1 of a left fractional ideal I of & is the right
fractional ideal of &
I'Y={zcA: IzICI}.

It is well known and easy to check that for every a,b € O, if ab # 0, then
(Ca+0b) ' =a"toNnb 0. (17)
We claim that if v = (a, b), then
(0 x 0), = (Oa+ Ob)~". (18)
Indeed, if ab # 0, then by Equation (17)
(OxO)y={xcA: (ar,br) €O x Oy =a'0Nb 0= (Oa+ Ob)".

The result is immediate if a = 0 or b = 0.

Proposition A.2. (1) For every right 0-submodule M of A x A and v € A x A — {0},
the subset M, of A is a right fractional ideal of O'.

(2) For every v € A x A— {0}, the subset v(0 x O), of O x O is an O-flag.
(8) For all O-flags L and all v € L — {0}, we have

L=v(0x0),.
(4) The map SLa(A) X Fp — F¢ defined by

(9,L) = (gv) (0 x O)gy

for any v € L — {0} is an action on the set F4 of O-flags of the group SLa(A).
(5) The map ©' : PL(A) — F ¢ defined by [a : b] — (a,b)(OXO) 4 is a SLa(A)-equivariant

bijection.
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Proof. (1) This follows immediately from the fact that M is stable by addition and by
multiplications on the right by the elements of &.

(2) Let L =v(0 x 0), C vA. Then L is contained in & x & by the definition of (& x 0),
and is a right @-submodule of & x ¢ by Assertion (1). Since v # 0, note that (& x 0),
is a nonzero right fractional ideal, so that L # 0 and L has rank one.

Assume that w € @ x 0 has its image in (€ x €)/L which is torsion. Then there exists
y € 0 — {0} and = € A such that wy = vz. Hence w = vay~!. Since w € € x O, this
implies that zy~! € (0 x 0),, so that w € L, and the image of w in (& x 0)/L is zero.

(3) As L has rank one and v € L — {0}, we have L CvAN (0 x O) =v(0 x 0),.

Conversely, for every x € (0 x 0), so that vz € 0 x 0, let us prove that vx € L. Since
x belongs to A which is the field of fractions of &, there exists y € & such that xy € 0.
Hence (vz)y = v(zy) belongs to L, since v € L and L is a right &-module. In particular,
the image of vz in (€ x €)/L is torsion. Since L is an O-flag, this implies that this image
is zero, as wanted. This proves that v(& x ©), is contained in L, hence is equal to L by
the previous inclusion.

(4) Let us prove that this map is well defined. If v,w € L — {0}, since L has rank one,
there exists x € A — {0} such that w = vz. Thus, for every g € SLy(A), by the linearity
on the right of g and by Equation (16), we have

(qu)(0 % O)gu = (g0)2(0 X O)(gu)e = (90)(T X O)gu -

The fact that this map is an action is then immediate: for all g,¢" € SLa(A) and L € Fy,
let v € L — {0} and A € A be such that guA € (gv)(0 x O)4, — {0}; then using twice
Equation (16) and the linearity, we have

9'(gL) = ¢’ (gu(0 x O)gu) = ¢'(gA(E % O)gur) = g'(gvA) (O X O)g(gun)
= (g/g)v)‘(ﬁ X ﬁ)(g’g)v)\ = (g/g)v(ﬁ X ﬁ)(g/g)v = (glg)L .

(5) For every o = [a : b] € P(A), the subset (a,b)(0 x )y, which is an O-flag by
Assertion (2), does not depend on the choice of homogeneous coordinates of o by Equation
(16). Hence the map ©' is well defined, and equivariant by the definition in Assertion (4)
of the action of SLy(A) on Zy.

The fact that © is onto follows from Assertion (3). Clearly, it is one-to-one since if
(a,0)(0 % O)qp) = (¢,d)(0 X O)(c.q), then there is A € A — {0} such that (a,b) = (¢, d)\.
U

Let f:H x H — R be a positive definite binary Hamiltonian form and let L be a rank
one right &-submodule of & x &. Then L is a rank 4 free Z-submodule of H x H, and we
denote by (L)g the 4-dimensional real vector subspace of H x H generated by L, endowed
with the restriction of the scalar product (:,-); on H x H defined by f, hence with the
induced volume form. Recall that for all z, 2’ € H x H, we have

(52 = 5 (2 +#) = f(2) = f(2) (19)
We define the covolume of L for f as

Covol¢ L = Vol({(L)r/L) .
38



Recall that if G = ({e;, ;) f)1<i j<a is the Gram matrix of a Z-basis (eq, ez, €3, e4) of L for
the scalar product (-,-) ¢, then

Covol; L = (det G)2 . (20)
See for instance | , Vol 2, prop. 8.11.6].
Theorem A.3. For all x € Hj and a € P}(A), we have
2
VDa

Proof. Fix a,b € O such that a = [a : b]. Let f = O(x), L = ©'(a) = (a,b)(0 x O)(4p)
and L' = (a,b)0. Since a,b € O, we have & C (0 x O)(,p), hence L' is a finite index
Z-submodule in L. Furthermore, by Equation (18) and the relation (see Equation (2))
between the norm and reduced norm of a left integral ideal of &, we have

do(x) = ( Covolg(y) @’(a))% .

[L:L']=[(O % O)ap : O] =[(Oa+ ob) L0 =0 Oa+ O]
=n(0a+ Ob)*. (21)
Let (z1,x2,23,24) be a Z-basis of 0, so that ((a,b)z;)1<i<4 is a Z-basis of L. Using

Equation (19) and the fact that f((u,v)A) = n(A)f(u,v) for all u,v, A € H, we have for
1<4,5 <4,

(f((a,b)(zi + ;) — f((a,b) z:) — f((a,b) z5))

_ fla,0) (n(zi + z;) — n(z;) —n(z;)) = f(C;’b)

((a,b)s, (a,b)aj)r =

~ N

tr(zxj) .

[\)

Note that (u,v) — 3tr(uv) is the standard Euclidean scalar product on H (making
the standard basis (1,1, j, k) orthonormal), hence (% tr(acﬁ-:cj))Kij<4 is the Gram matrix
of the Z-lattice ¢ in the Euclidean space H. Therefore, by Equation (20) and by [0,

Lem. 5.5], we have

Da _
2 _

[NIES

(det (tr(75 ;) = (242 Vol(H/6) = 4 Dy . (22)

1§i,j§4)

Thus using Equations (20), (21) and (22), we have

N

Covol¢(L) = [LlL’] Covoly(L') = i :lL,] (det ({(a,b)zi, (a, b)'rj>f)1§i,j§4)

1 f(a,b)\2 - 1 Da f(a,b)?
- L : L’]( 92 ) (det (tr($i$j))1gi,jg4)2 = 4 n(Ca + Ob)? )
By Proposition 3.3 (2), this proves Theorem A.3. O

B Relation with Ash’s classifying spaces for the arithmetic
group SLy(0)

Let A be a definite quaternion algebra over Q and let & be a maximal order in A. In this
appendix, as suggested by the referee, we relate the spine Xy constructed in Section 4
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with one of the retracts defined in the paper [Ash| for the arithmetic subgroups of general
linear groups.

We apply the construction in loc. cit. in the special case when its notation n, D,
A, S, G and T is respectively our notation 2, A, &, H, GLo(H) and GL2(&) = SLy(0),
using Equation (8). We will follow [Ash, §4|, which relates one of the retracts of the
paper |[Ash] with Mendoza’s minimal incidence set Ix in the paper | |, which is a
PGLy(0)-equivariant retract of HZ,. We identify H3 with 2; by the SLa(H)-equivariant
homeomorphism © of Section 3. We denote by K a maximal compact subgroup of SLq(H),
say the stabilizer of the point (0,1) € H, for the action by homographies of SLy(H) on
H3, so that the orbital map g — g - (0,1) induces an SLy(H)-equivariant homeomorphism
SLy(H)/K — H3. Note that K is also a maximal compact subgroup of GLa(H). We use
the standard homeomorphism SLy(H)/K — K\ SLo(H) induced by the inverse map, and
VA 0
0 ﬁ)'

Let ¢ : PL(A) — R% be any SLy(&)-invariant map, called a set of weights in [Ash,
Def. 2.9]. Then the GL2(&)-equivariant retract W in K\ GLy(H) constructed in [Ash,
page 466] is, through the above isomorphisms, the graph in o@f x R* of a continuous map

W — R* where W is the set of f € 2 such that the map from & x & — {(0,0)} to R*
defined by

the homeomorphism K\ SLo(H) x R — K\ GL2(H) defined by Kg — Kg (

(a,0) = ¢([a : b]) f(a,b)
attains its minimum at least in two elements that generate A x A as a right A-vector space.
Note that W depends on the choice of ¢, and actually only on ¢ modulo a positive
multiplicative constant. This gives, since Card(SL2(0)\Pr(A)) = h%, a real (b4 — 1)-
dimensional family of GLga(&')-equivariant retracts W of K\ GLo(H). We start by intro-
ducing an analogous real (h?4 — 1)-dimensional family of deformations of our spine Xg.

The smallest discriminant for which our construction gives different cellulations of H3
for the same arithmetic group is D4 = 11. Up to isomorphism, A is then the Q-algebra

generated by elements i and j satisfying 2 = —1, j2 = —11 and ij = —ji (see [Vig,
p. 98]). Note that A has class number h4 = 2 and contains exactly two conjugation classes
of maximal orders (see the table [Vig, p. 154]|). For instance, if ¢ = 1%, then the order

O =7[t] +iZ]t] in A has discriminant 11, hence is maximal.
We fix an SLy(&)-invariant map x : PL(A) — R%, and denote it o +— x,. For every
a € PL(A), we can define a new distance to the cusp a function

d/a = Xa da
a new family of horoballs for s > 0

Bl(s) = {z € H} : d\(x) < s} = Ba(—),

a new family of Ford-Voronoi cells
A = {z €3 ¥ B e PL(A), diy(z) < d(x)}
and a new spine
x,= U Hnw = | oxl.
a#BEPL(A) a€PL(A)
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Using the crucial argument that x is SLg(&)-invariant, an elementary consequence of
Proposition 3.3, Proposition 3.4, Theorem 3.5 and Proposition 4.1 gives the following
properties, for all z € H, a = [a : b] € PL(A), g € SLy(&), and s > 0.

(i) We have
_ XaO(z)(a,b)

@) =" Gat on)

(23)

(ii) We have dy., o g =di,, g(Bg(s)) = By.,(s), and g(7) = A7,

(iii) The map Ind.,, which differs from Ind, only by an additive constant, is also a
Busemann function for the point at infinity « : there exists ¢/, € R such that
Ind,,(y) = Baly, (0,1)) + ¢, for every y € H3.

iv) If o € A, then B/ (s) is the Euclidean ball of center (o, salla)y and radius 22Je) 1f
« 2Xo¢ 2X04

o = 00, then BY,(s) is the Euclidean halfspace consisting of all (z,7) with r > Xe=.

v) For all distinct o, 5 € , the horoballs miny) an min x) have disjoint
For all disti B € PL(A), the horoballs B/, (mi d Bjy(min ) have disjoi
interior.

(vi) We have

HE, = U Bg((maxx)ﬁ).

a€ePL(A)
(vii) We have B/, (miny) C s, C B!, ((max x)+/Da).

(viii) The Ford-Voronoi cell 7/ is a noncompact 5-dimensional convex hyperbolic poly-
tope, whose proper cells are compact. For every 8 € P1(A) — {a}, the Ford-Voronoi
cells 7, and J¢; have disjoint interior. The spine Xj; is an SLy(&)-invariant piece-
wise hyperbolic polyhedral complex of dimension 4, which is a SLag(&)-equivariant
retract of ]HI]‘?{.

Now, the relation between our spine X, and the retracts W of [Ash] is given by the
following result.

Proposition B.1. For every SLy(0)-invariant map ¢ : PL(A) — R, let x : PL(A) — RY
be defined by, for every a € PL(A),

Xa = ¢(a) min{n(da + Ob) : a,b€ O and a =[a:b]}.
Then, with the above notation, we have
W= 0(X}) .
In particular, the virtual cohomological dimension of SLo(O) is equal to 4.

Proof. For every a € PL(A), let n, = min{n(&a’ + OV) : d’,b/ € O and o= [d :V]},
so that the map a ~ n, is invariant under the action of SLy(&) on PL(A) and

pla) =22 . (24)

Do
Let us denote by p: €@ x ¢ —{(0,0)} — PL(A) the surjective map (a,b) > [a : b].
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Lemma B.2. For every f € 2%, if (a,b) € 0 x 0 — {(0,0)} minimizes the product map
(pop)f on O x 0 —{(0,0)}, then n(Oa + Ob) = npy.

Proof. Let a = [a : b]. Assume for a contradiction that n(&a+&b) > n,. Then there exist
a',bl € 0 such that a = [d' : V'] and n(0a + Ob) > n(Od’ + OV'). Since [a : b] = [a’ : V'],
there exists A € A* such that a = /X and b = V' \. Hence n(0a+ Ob) = n(0d' + OV )n(N),
so that n(\) > 1 and

((pop)f)a,b) =pop(a\V'A) f(a'N\V'A) =¢@opa,b)f(a,b")n(X) > ((gop)f)(d,b),
a contradiction. O

Let € HY and f = ©(z), which belongs to 27 . If (a,b) € € x ¢ —{(0,0)} minimizes
the map (pop)f on € x € — {(0,0)}, let us prove that x € ), where o = [a : b].
Otherwise, there exists § € P(A) such that dj(z) < dj,(z). Let us write 8 = [c : d]
with (¢,d) € 0 x ¢ — {(0,0)} such that n(€c+ 0d) = ng. Then by Lemma B.2 for the

penultimate equality, and using twice Equations (23) and (24), we have

(o Dlend) = o(3) fled) = Low)(e.d) = LIDED

<o) = 220D~ Xegat) = (pon(enb) .

a contradiction to the minimizing property of (a,b).

Conversely, let © € ) and f = O(z), let (a,b) € € x € — {(0,0)} be such that
n(0a+ Ob) = n, where o = [a : b, and let us prove that (a,b) minimizes the map (pop)f
on 0 x 0 —{(0,0)}. Otherwise, let (¢,d) € ¢ x & — {(0,0)} be such that ((¢op)f)(c,d)
minimizes (¢ o p)f and ((¢p o p)f)(c,d) < ((pop)f)(a,b). Let B = [c: d]. Then using
Lemma B.2 for the second equality, we have

dy(ay = X2 0OCD_ Xo000 0y (pop)f)erd)

~ n(0c+od)  ng
< (pop)f)(ab) = X2o(z)(a,b) = Xel@)@b)

o
n, ~ n(Oa+ Ob) = (),

a contradiction to the fact that z belongs to 7.

Since two elements in & x ¢ — {(0,0)} generate A x A as a right A-vector space if and
only if their images in P(A) are distinct, this implies that an element 2 € H3 belongs to
A, and A with a # (8 if and only if the map ((¢ o p)0(x) is minimized by two elements
in & x ¢ —{(0,0)} that generate A x A as a right A-vector space. This proves the first
claim of Proposition B.1.

The second claim follows from [Ash, Theo. (ii), p. 462]. O
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