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THE VOLUME OF THE BOUNDARY OF A SOBOLEV (p, q)-EXTENSION
DOMAIN

PEKKA KOSKELA, ALEXANDER UKHLOV AND ZHENG ZHU

Abstract. Let n ≥ 2 and 1 ≤ q < p < ∞. We prove that if Ω ⊂ Rn is a Sobolev
(p, q)-extension domain, with additional capacitary restrictions on the boundary in the case
q ≤ n− 1, n > 2, then |∂Ω| = 0. In the case 1 ≤ q < n− 1, we give an example of a Sobolev
(p, q)-extension domain with |∂Ω| > 0.

1. Introduction

Let 1 ≤ q ≤ p ≤ ∞. Then a bounded domain Ω ⊂ Rn, n ≥ 2, is said to be a Sobolev
(p, q)-extension domain if there exists a bounded extension operator

E : W 1,p(Ω)→ W 1,q(Rn).

Partial motivation for the study of Sobolev extensions comes from PDEs (see, for example,
[27]). In [2, 36] it was proved that if Ω ⊂ Rn is a Lipschitz domain, then there exists
a bounded linear extension operator E : W k,p(Ω) → W k,p(Rn), for each k ≥ 1 and all
1 ≤ p ≤ ∞. Here W k,p(Ω) is the Banach space of Lp-integrable functions whose weak
derivatives up to order k belong to Lp(Ω). More generally, the notion of (ε, δ)-domains was
introduced in [16] and it was proved that, for every (ε, δ)-domain there exists a bounded
linear extension operator E : W k,p(Ω)→ W k,p(Rn), for all k ≥ 1 and 1 ≤ p ≤ ∞.

A geometric characterization of simply connected planar Sobolev (2, 2)-extension domains
was obtained in [43]. By later results in [18, 20, 21, 33], one now understands the geometry
of simply connected planar Sobolev (p, p)-extension domains, for all 1 ≤ p ≤ ∞. Geometric
characterizations are also known in the case of homogeneous Sobolev spaces Lk,p(Ω), 2 <
p <∞, defined on simply connected planar domains. Here Lk,p(Ω) is the seminormed space
of locally integrable functions whose kth-order distributional partial derivatives belong to
Lp(Ω). However, no characterizations are available in the general setting.

The boundary ∂Ω of a Sobolev (p, p)-extension domain is necessarily of volume zero when
1 ≤ p <∞ by results in [9]. Actually, Ω has to be Ahlfors regular in the sense that

(1.1) |B(x, r) ∩ Ω| ≥ C|B(x, r)|
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for every x ∈ ∂Ω and all 0 < r < min{1, 1
4

diam Ω} with a constant C independent of x, r.
Even more is known if Ω is additionally a planar Jordan domain. In this case Ω has to be
a so-called John domain when 1 ≤ p ≤ 2 and the complementary domain needs to be a
John domain when 2 ≤ p <∞. Consequently, the Hausdorff dimension of ∂Ω is necessarily
strictly less than two by results in [22]. For a sharp estimate see the very recent paper [26].
However, in general, the Hausdorff dimension of the boundary of a Sobolev (p, p)-extension
domain Ω ⊂ Rn can well be n.

Much less is known when q < p. Even though the case of Hölder-type cuspidal boundaries
has been studied in detail [8, 28, 29, 30, 31], no geometric criteria are available even when Ω
is planar and Jordan. The only existing result related to (1.1) is the generalized Ahlfors-type
estimate [39] (also see [40])

(1.2) Φ(B(x, r))p−q|B(x, r) ∩ Ω|q ≥ C|B(x, r)|p

in the case n < q < p <∞. Here Φ is a bounded and quasiadditive set function, see Section
3, defined on open sets U ⊂ Rn. It is generated by the Sobolev (p, q)-extension property. By
differentiating Φ with respect to the Lebesgue measure, one concludes that |∂Ω| = 0 if Ω is
a Sobolev (p, q)-extension domain for n < q < p <∞.

In this paper, we establish the optimal (capacitary) version of the generalized Ahlfors-
type condition (1.2) for all 1 ≤ q < p < ∞, under additional capacitary restrictions on the
boundary in the case 1 ≤ q ≤ n − 1, n ≥ 3. With the help of the Lebesgue differentiation
theorem it gives the following conclusion. The definition of q-fatness can be found in Section
2.

Theorem 1.1. Let 1 ≤ q < p < ∞ and let Ω ⊂ Rn be a Sobolev (p, q)-extension domain
which is q-fat at almost every x ∈ ∂Ω. Then |∂Ω| = 0. In particular, if Ω ⊂ R2 is a Sobolev
(p, q)-extension domain with 1 ≤ q < p <∞, then |∂Ω| = 0. Moreover, if n ≥ 3 and Ω ⊂ Rn

is a Sobolev (p, q)-extension domain with n− 1 < q < p <∞, then |∂Ω| = 0.

Our second result shows that one indeed needs to pose some additional assumption besides
the extension property in order to guarantee that |∂Ω| = 0 when 1 ≤ q < n− 1.

Theorem 1.2. Let n ≥ 3 and 1 ≤ q < n− 1. Then there exists p > q and a Sobolev (p, q)-
extension domain Ω ⊂ Rn with a bounded linear extension operator such that |∂Ω| > 0.

This paper is organized as follows. Section 2 contains definitions and preliminary results.
Section 3 is devoted to set functions associated with extension operators. In Section 4, we
establish the generalized Ahlfors density condition. In Section 5, we deduce Theorem 1.1
from our generalized Ahlfors density condition. Section 6 contains a discussion on Sobolev
extension operators for outward cuspidal domains that give the sharpness of the generalized
Ahlfors density condition. Section 7 is devoted to the construction behind Theorem 1.2. In
the final section, Section 8, we pose open problems that arise from the results in this paper
and discuss the locality of our estimates.
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2. Preliminaries

2.1. Definitions and notations. Let Ω be a domain in the n-dimensional Euclidean space
Rn with n ≥ 2. By the symbol Lip(Ω) we denote the class of all Lipschitz continuous
functions defined on Ω. The Sobolev space W 1,p(Ω), 1 ≤ p ≤ ∞, (see, for example, [27]) is
defined as a Banach space of locally integrable and weakly differentiable functions u : Ω→ R
equipped with the norm:

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω),

where ∇u =
(
∂u
∂x1
, ..., ∂u

∂xn

)
is a weak gradient of u.

Let us give the definition of Sobolev extension domains.

Definition 2.1. Let 1 ≤ q ≤ p < ∞. A bounded domain Ω ⊂ Rn is said to be a Sobolev
(p, q)-extension domain, if there exists a bounded operator

E : W 1,p(Ω)→ W 1,q(Rn)

such that for every function u ∈ W 1,p(Ω), the function E(u) ∈ W 1,q(Rn) satisfies E(u)
∣∣
Ω
≡ u

and

‖E‖ := sup
u∈W 1,p(Ω)\{0}

‖E(u)‖W 1,q(Rn)

‖u‖W 1,p(Ω)

<∞.

Linear Sobolev extension operators form a subclass of homogeneous Sobolev extension
operators. We prove that, for every Sobolev (p, q)-extension domain, there always exists a
positively homogeneous Sobolev extension operator. When q = p one in fact can find a linear
extension operator [9] but it is not known if this could be the case when q < p.

Lemma 2.1. Let Ω ⊂ Rn be a Sobolev (p, q)-extension domain. Then every bounded Sobolev
extension operator E : W 1,p(Ω)→ W 1,q(Rn) promotes to a bounded, positively homogeneous
Sobolev extension operator Eh : W 1,p(Ω) → W 1,q(Rn) with the operator norm inequality
‖Eh‖ ≤ ‖E‖.

Proof. Let u ∈ W 1,p(Ω). When ‖u‖W 1,p(Ω) 6= 0, we define

Eh(u) := ‖u‖W 1,p(Ω)E

(
u

‖u‖W 1,p(Ω)

)
.

Then for λ ≥ 0 we have

Eh(λu) = ‖λu‖W 1,p(Ω)E

(
λu

‖λu‖W 1,p(Ω)

)
= λ‖u‖W 1,p(Ω)E

(
λu

λ‖u‖W 1,p(Ω)

)
= λ‖u‖W 1,p(Ω)E

(
u

‖u‖W 1,p(Ω)

)
= λEh(u).
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If ‖u‖W 1,p(Ω) = 0, then necessarily E(u) = 0 and we set Eh(u) = 0. Finally,

‖Eh‖ = sup
u∈W 1,p(Ω)\{0}

1

‖u‖W 1,p(Ω)

∥∥∥∥‖u‖W 1,p(Ω)E

(
u

‖u‖W 1,p(Ω)

)∥∥∥∥
W 1,q(Rn)

= sup
‖u‖W1,p(Ω)=1

‖E(u)‖W 1,q(Rn) ≤ sup
u∈W 1,p(Ω)\{0}

‖E(u)‖W 1,q(Rn)

‖u‖W 1,p(Ω)

= ‖E‖.

�

By Lemma 2.1, from now on, we may always assume that E : W 1,p(Ω) → W 1,q(Rn) is a
positively homogeneous, bounded Sobolev extension operator.

We continue with the definition of a strong bounded Sobolev extension operator.

Definition 2.2. Let Ω ⊂ Rn be a Sobolev (p, q)-extension domain with 1 ≤ q ≤ p < ∞. A
bounded Sobolev extension operator Es : W 1,p(Ω)→ W 1,q(Rn) is said to be a strong bounded
Sobolev extension operator if, for every function u ∈ W 1,p(Ω) with u

∣∣
B(x,r)∩Ω

≡ c for some

ball B(x, r) with B(x, r) ∩ Ω 6= ∅ and some constant c ∈ R, we have Es(u)(y) = c for
Hn-almost every y ∈ B(x, r) ∩ ∂Ω.

2.2. Fine Topology. In this section, we recall some basic facts about the fine topology
on Rn. It is the coarsest topology on Rn in which all superharmonic functions on Rn are
continuous, see [12, Chapter 12]. Let us recall the definition of the capacity [12]. Let Ω be
an open set in Rn and F ⊂ Ω be a compact set. Fix 1 ≤ p < ∞. The class of admissible
functions for the pair (F ; Ω) is defined by setting

Wp(F ; Ω) :=
{
u ∈ C0(Ω) ∩W 1,p(Ω) : u ≥ 1 on F

}
.

The p-capacity of F with respect to Ω is defined by

capp(F ; Ω) = inf
u∈Wp(F ;Ω)

∫
Ω

|∇u(x)|pdx.

If U ⊂ Ω is an open set, we define

capp(U ; Ω) = sup{capp(F ; Ω) : F ⊂ U, F is compact}.
In the case of an arbitrary set E ⊂ Ω we define

(2.1) capp(E; Ω) = inf{capp(U ; Ω) : E ⊂ U ⊂ Ω, U is open}.
The p-capacity is an outer measure on Ω [12].

Let us recall the notion of variational p-capacity [7, 12, 27].

Definition 2.3. A condenser in a domain Ω ⊂ Rn is a pair (E,F ) of bounded compact
subsets of Ω with dist (E,F ) > 0. Fix 1 ≤ p < ∞. The set of admissible functions for the
triple (E,F ; Ω) is

Wp(E,F ; Ω) = {u ∈ W 1,p(Ω) ∩ C(Ω ∪ E ∪ F ) : u ≥ 1 on E and u ≤ 0 on F}.
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We define the p-capacity of the pair (E,F ) with respect to Ω by setting.

Capp(E,F ; Ω) = inf
u∈Wp(E,F ;Ω)

∫
Ω

|∇u(x)|pdx.

For a pair (U, V ) of arbitrary bounded open subsets of Ω with dist (U, V ) > 0, we define the
p-capacity by setting

Capp(U, V ; Ω) := sup
E⊂U,F⊂V

Capp(E,F ; Ω),

where supremum is taken over all compact subsets of Ω with E ⊂ U and F ⊂ V .

To simplify notation, set Wp(E,F ) := Wp(E,F ;Rn) and Capp(E,F ) := Capp(E,F ;Rn)
The following lemma gives the basic Loewner-type capacity estimate. The interested readers
can find a proof in [13].

Lemma 2.2. Let B ⊂ Rn be a ball with radius r and n − 1 < p < ∞. Suppose that
E,F ⊂ B are compact connected subsets with dist (E,F ) > 0 and so that diamE ≥ δr and
diamF ≥ δr for some 0 < δ < 2. Then we have

(2.2) Capp(E,F ;B) ≥ Crn−p,

where the constant C only depends on δ, n and p. The inequality also holds for p = 1 when
n = 2.

We have the following capacity estimate for concentric balls. See, for example, [12, page
35].

(2.3) capp(B(x, r);B(x,R)) =

ωn−1

(
|n−p|
p−1

)p−1 ∣∣∣R p−n
p−1 − r

p−n
p−1

∣∣∣1−p p /∈ {1, n}
ωn−1 log1−n R

r
p = n

where 0 < r < R < ∞ and ωn−1 is the (n − 1)-dimensional mesure of the unit sphere
Sn−1(0, 1).

Now, we are ready to define quasi-continuous functions, see [12].

Definition 2.4. Let 1 ≤ p < ∞. A function u ∈ L1
loc(Ω) is said to be p-quasi-continuous

if, for every ε > 0, there exists an open set Eε ⊂ Ω with capp(Eε; Ω) < ε such that u
∣∣
Ω\Eε

is

continuous.

We record the fact that every Sobolev function can be redefined in a set of measure zero
so as to become quasi-continuous. See [12, Chapter 4]. Actually, the capacity considered
in [12] is different from the capacity we consider here. There capacity is defined to be the
infimum of the Sobolev norms of all smooth admissible functions. Hence, that capacity is
larger than or equal to the capacity we consider here.

Lemma 2.3. Let 1 ≤ p < ∞ and let u ∈ W 1,p(Ω). Then there exists a p-quasi-continuous
function ũ ∈ W 1,p(Ω) with ũ(z) = u(z) for almost every z ∈ Ω. Furthermore, at every point
of continuity of u, we have ũ(z) = u(z).
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We continue with the definition of p-capacitary density.

Definition 2.5. Let 1 ≤ p <∞. A set E ⊂ Rn is said to be p-capacitary dense at the point
z ∈ Rn, if

lim sup
r→0+

capp
(
E ∩B

(
z, r

4

)
;B
(
z, r

2

))
capp

(
B
(
z, r

4

)
;B
(
z, r

2

)) > 0.

The following definition of p-thin sets can be found in [12, Chapter 12] for 1 < p <∞ and
in [25] for p = 1.

Definition 2.6. Let 1 < p <∞. A set E is p-thin at z if∫ 1

0

(
capp(E ∩B(z, t);B(z, 2t))

capp(B(z, t);B(z, 2t))

) 1
p−1 dt

t
<∞.

A set E is 1-thin at z if

lim
t→0

t
cap1(E ∩B(z, t);B(z, 2t))

Hn(B(z, t))
= 0.

Furthermore, we say that E is p-fat at z if E is not p-thin at z.

The following proposition shows that capacitary density implies fatness. We will show in
Section 5 that actually capacitary density can be strictly stronger than fatness.

Proposition 2.1. Let n ≥ 3. If a domain Ω ⊂ Rn is q-capacitary dense at a point z ∈ Rn

for some 1 ≤ p <∞, then Ω is also p-fat at z.

Proof. Assuming that Ω is p-capacitary dense at the point z for 1 ≤ p < ∞, there exists a
positive constant δz > 0 and a decreasing positive sequence {ri}∞i=1, which converges to 0,
such that

(2.4)
capp

(
Ω ∩B

(
z, ri

4

)
;B
(
z, ri

2

))
capp

(
B
(
z, ri

4

)
;B
(
z, ri

2

)) > δz

for every ri.
Let us first consider the case p = 1. We write A ∼c B if 1

c
A ≤ B ≤ cA for a constant

c > 1. By [7, Proposition 6.4] we have that

cap1

(
B
(
z,
ri
4

)
;B
(
z,
ri
2

))
∼c rn−1

i

with an implicit constant independent of ri. Hence we have

ricap1

(
Ω ∩B

(
z, ri

4

)
;B
(
z, ri

2

))
Hn(B(z, ri))

> δ̃z > 0.

This implies that Ω is 1-fat at z.
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Let now 1 < p < ∞. Without loss of generality, we may choose a sequence {ri}∞i=1 with
16ri+1 < ri for every i ∈ N such that (2.4) holds. By (2.3), we have

(2.5) capp (B (z, ρ) ;B (z, 2ρ)) ∼c capp
(
B
(
z,
ri
4

)
;B
(
z,
ri
2

))
for every ρ ∈ ( ri

4
, ri

2
) with a constant c independent of ρ and ri. Since ρ ∈ ( ri

4
, ri

2
),

Wp (Ω ∩B (z, ρ) ;B (z, 2ρ)) ⊂ Wp

(
Ω ∩B

(
z,
ri
4

)
;B (z, 2ρ)

)
.

Hence, we have

(2.6) capp

(
Ω ∩B

(
z,
ri
4

)
;B (z, 2ρ)

)
≤ capp (Ω ∩B(z, ρ);B (z, 2ρ)) .

Let u ∈ Wp

(
Ω ∩B

(
z, ri

4

)
;B (z, 2ρ)

)
be arbitrary. Then we define a function

ũ ∈ Wp

(
Ω ∩B

(
z,
ri
4

)
;B
(
z,
ri
2

))
by setting

ũ(x) :=

{
u(x) if x ∈ B(z, ri

4
)

u
(

(x− z)8ρ−ri
ri

+
(
ri
2
− 2ρ

)
x−z
|x−z| + z

)
if x ∈ B

(
z, ri

2

)
\B

(
z, ri

4

) .
By the fact that ri

4
≤ ρ ≤ ri

2
, we have∫

B(z, ri2 )
|∇ũ(x)|pdx ≤ C

∫
B(z,2ρ)

|∇u(x)|pdx

with a constant C independent of z, Ω and ρ ∈ ( ri
4
, ri

2
). Since the test function u was

arbitrary, we have

(2.7) capp

(
Ω ∩B

(
z,
ri
4

)
;B
(
z,
ri
2

))
≤ Ccapp

(
Ω ∩B

(
z,
ri
4

)
;B (z, 2ρ)

)
with an absolute positive constant C independent of ρ ∈ ( ri

4
, ri

2
). By combining inequalities

(2.6) and (2.7), we obtain

(2.8) capp

(
Ω ∩B

(
z,
ri
4

)
;B
(
z,
ri
2

))
≤ Ccapp (Ω ∩B (z, ρ) ;B (z, 2ρ))

with a positive constant C independent of ρ ∈ ( ri
4
, ri

2
). Finally, by combining inequalities

(2.4), (2.5) and (2.8), we obtain

capp (Ω ∩B(z, ρ);B (z, 2ρ))

capp (B(z, ρ);B (z, 2ρ))
> δ̃z
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where δ̃z > 0 is a positive constant independent of ρ ∈ ( ri
4
, ri

2
). Since 16ri+1 < ri for every

i ∈ N, we have∫ 1

0

(
capp (Ω ∩B(z, ρ);B (z, 2ρ))

capp (B(z, ρ);B (z, 2ρ))

) 1
p−1 dρ

ρ

≥
∞∑
i=1

∫ ri
2

ri
4

(
capp (Ω ∩B(z, ρ);B (z, 2ρ))

capp (B(z, ρ);B (z, 2ρ))

) 1
p−1 dρ

ρ

≥
∞∑
i=1

(δ̃z)
1
p−1

2
=∞.

Hence Ω is p-fat at the point z. �

Let us consider the role of p in the validity of fatness and capacitary density. Given x ∈ Rn

and 0 < s < t, we set A(x; s, t) := B(x, t) \B(x, s).

Theorem 2.1. Let Ω ⊂ Rn be a domain and let n − 1 < p < ∞. Then Ω is p-capacitary
dense at every point of the boundary. A planar domain Ω ⊂ R2 is also 1-capacitary dense at
every point of the boundary.

Proof. We may assume that Ω is not entire Rn. Fix x ∈ ∂Ω. Given 0 < t < diam (Ω)/3, we
may pick points z ∈ B(x, t/2)∩Ω and y ∈ Ω\B(x, 3t). Since Ω is open and connected, we find
a curve γ that joins z to y in Ω. This curve gives us compact connected sets Et ⊂ Ω∩B(x, t)
and Ft ⊂ Ω ∩ A(x; 2t, 3t) with

t

2
≤ diamEt

and

diam (Ft) ≥ t.

For every admissible function u ∈ Wp(Ω ∩ B(x, t);B(x, 2t)), simply extend test functions
to be zero outside the ball B(x, 2t). We obtain an admissible function belongs to the class
Wp(Et, Ft;B(x, 4t)). By Lemma 2.2, for every n− 1 < p <∞, we have

capp(Ω ∩B(x, t);B(x, 2t)) ≥ Capp(Et, Ft;B(x, 4t)) ≥ Ctn−p

for some positive constant C independent of x and t. By (2.3) we conclude that

lim sup
t→0+

capp (Ω ∩B(x, t);B(x, 2t))

capp (B(x, t);B(x, 2t))
= δx > 0.

Consequently, the domain Ω is p-capacitary dense at the point x ∈ ∂Ω.
Finally, let us assume that n = 2 and p = 1. Similarly as above, by Lemma 2.2, we have

cap1 (Ω ∩B(x, t);B(x, 2t)) ≥ Cap1 (Et, Ft;B(x, 4t)) ≥ Ct.
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Since

cap1 (B(x, t);B(x, 2t)) ∼c t

for some positive constant c independent of x and t, we have

lim sup
t→0

cap1(Ω ∩B(x, t);B(x, 2t))

cap1(B(x, t);B(x, 2t))
= δx > 0.

Consequently, the domain Ω ⊂ R2 is 1-capacitary dense at the point x ∈ ∂Ω. �

Remark 2.9. We actually proved that

(2.10) capp(Ω ∩B(x, t);B(x, 2t)) ≥ Capp(Et, Ft;B(x, 4t)) ≥ Cpt
n−p

whenever x ∈ ∂Ω, 0 < t < 1
4

diam (Ω) and p > n− 1 (also for p = 1 in the plane).

Definition 2.7. Let 1 ≤ p <∞. A set U ⊂ Rn is p-finely open if Rn \ U is p-thin at every
x ∈ U , and

τp := {U ⊂ Rn;U is p− finely open}

is the p-fine topology on Rn.

The following lemma comes from [12, Corollary 12.18].

Lemma 2.4. Suppose that a set E ⊂ Rn is p-fat at the point x ∈ Rn. Then every p-finely
open neighborhood of x intersects E. Consequently, x is a p-fine limit point of E.

By a result due to Fuglede [4], we have the following lemma.

Lemma 2.5. Let 1 ≤ p < ∞. If a function u is p-quasi-continuous, then u is p-finely
continuous except on a subset of p-capacity zero.

By using the lemmata above, we can prove the following lemma. It is also a corollary of
the result in [17].

Lemma 2.6. Let Ω ⊂ Rn be a domain such that Ω is p-fat at almost every point of the
boundary ∂Ω. If u ∈ W 1,p(Rn) is a Sobolev function such that u

∣∣
B(x,r)∩Ω

≡ c, where x ∈ ∂Ω,

0 < r < 1 and c ∈ R, then u(z) = c for almost every z ∈ ∂Ω ∩B(x, r).

Proof. By Lemma 2.3, u has a p-quasi-continuous representative ũ with ũ(z) = c for every
z ∈ Ω ∩ B(x, r). By Lemma 2.5 and [3, Theorem 4.17], there exists a subset E1 ⊂ Rn

with |E1| = 0 such that ũ is p-finely continuous on Rn \ E1. Since Ω is p-fat at almost
every z ∈ ∂Ω, by Lemma 2.4, there exists a subset E2 ⊂ ∂Ω with |E2| = 0 such that, for
every z ∈ (∂Ω ∩ B(x, r)) \ (E1 ∪ E2), we have ũ(z) = c. Hence u(z) = c for almost every
z ∈ ∂Ω ∩B(x, r). �
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2.3. Gromov hyperbolicity. For each 1 ≤ q < n − 1, we will construct a Sobolev (p, q)-
extension domain whose boundary is of positive volume. In order to establish the extension
property of the domain, we will employ an approximation argument. Our domain Ω turns
out to be δ-Gromov hyperbolic with respect to the quasihyperbolic metric, which implies
that W 1,∞(Ω) is dense in W 1,p(Ω).

Definition 2.8. Let Ω $ Rn be a domain. Then the associated quasihyperbolic distance
between a pair of points x, y ∈ Ω is defined as

dist qh(x, y) = inf
γ

∫
γ

dz

dist (z, ∂Ω)
,

where the infimum is taken over all the rectifiable curves γ ⊂ Ω connecting x and y. A curve
attaining this infimum is called a quasihyperbolic geodesic between x and y. The distance
between two sets is also defined in a similar manner.

The existence of quasihyperbolic geodesics comes from a result by Gehring and Osgood [5].
We continue with the definition of Gromov hyperbolicity with respect to the quasihyperbolic
metric.

Definition 2.9. Let δ > 0. A domain is called δ-Gromov hyperbolic with respect to the
quasihyperbolic metric, if for all x, y, z ∈ Ω and every corresponding quasihyperbolic geodesic
γx,y, γy,z and γx,z, we have

dist qh(w, γy,z ∪ γx,z) ≤ δ,

for arbitrary w ∈ γx,y.

Let us give the definition of quasiconformal mappings.

Definition 2.10. Let Ω,Ω′ be domains in Rn and let 1 ≤ K < ∞. A homeomorphism
f : Ω→ Ω′ of the class W 1,n

loc (Ω,Rn) is said to be a K-quasiconformal mapping, if

|Df(x)|n ≤ KJf (x), for almost every x ∈ Ω.

Here |Df(x)| means the operator norm of the matrix Df(x) and Jf (x) is its determinant.

The following result was proved in [1].

Lemma 2.7. Let Ω ⊂ Rn be a domain which is quasiconformally equivalent to the unit
ball. Then Ω is δ-Gromov hyperbolic with respect to the quasihyperbolic metric, where δ > 0
depends only on the quasiconformality constant K and n.

The following density result comes from [19].

Lemma 2.8. If Ω ⊂ Rn is a bounded domain that is δ-Gromov hyperbolic with respect to
the quasihyperbolic metric, then, for every 1 ≤ p <∞, W 1,∞(Ω) is dense in W 1,p(Ω).
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3. A quasiadditive set function

In this section, we will introduce a quasiadditive set function that is a minor modification
to the one introduced by Ukhlov in [39, 40]. Also see [44, 45] for related set functions.

Let us recall that a function Φ defined on the class of open subsets of Rn and taking
nonnegative values is called a quasiadditive set function (see, for example, [44]) if, for all
open sets U1 ⊂ U2 ⊂ Rn, we have

Φ(U1) ≤ Φ(U2),

and there exists a positive constant C such that for every collection of pairwise disjoint open
sets {Ui ⊂ Rn}i∈N we have

(3.1)
∞∑
i=1

Φ(Ui) ≤ CΦ

(
∞⋃
i=1

Ui

)
.

The upper and lower derivatives of a quasiadditive set function are

DΦ(x) = lim sup
r→0+

Φ(Br)

|Br|
and DΦ(x) = lim inf

r→0+

Φ(Br)

|Br|
.

Let us formulate a result from [38, 44] in a convenient form.

Lemma 3.1. Let Φ be a quasiadditive set function defined on open subsets of Rn. Then

(1) for every open set U ⊂ Rn we have∫
U

DΦ(x) dx ≤ CΦ(U);

(2) for almost all points x ∈ Rn, the upper derivative is finite and

DΦ(x) ≤ CDΦ(x) <∞.

The constants C above are the same as the one in (3.1).

We continue with a detailed construction of a set function associated with an extension
operator, refining the constructions of [39, 40]. Let Ω ⊂ Rn be a bounded Sobolev (p, q)-
extension domain and E : W 1,p(Ω) → W 1,q(Rn) be the corresponding bounded extension
operator. Suppose that U ⊂ Rn is an open set such that U ∩ Ω 6= ∅. We define

W p
0 (U,Ω) :=

{
u ∈ C(Ω) ∩W 1,p(Ω) : u ≡ 0 on Ω \ U

}
.

For every open set U ⊂ Rn with U∩Ω 6= ∅ and every u ∈ W p
0 (U,Ω), we define the q-Dirichlet

energy ΓqU(u) on U and with respect to the boundary value u by setting

(3.2) ΓqU(u) := inf

{(∫
U

|∇v(z)|qdz
) 1

q

: v ∈ W 1,q (U) , v
∣∣
U∩Ω
≡ u

}
.
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Then the set function Φ is defined on U by setting

(3.3) Φ (U) := sup

{(
ΓqU(u)

‖u‖W 1,p(U∩Ω)

)k
: u ∈ W p

0 (U,Ω)

}
with 1

k
= 1

q
− 1

p
, and by setting Φ(U) = 0 for those open sets that do not intersect Ω.

The Dirichlet energy defined in (3.2) has the following homogeneity.

Lemma 3.2. Let U ⊂ Rn be an open set with U ∩ ∂Ω 6= ∅. Then for every u ∈ W p
0 (U,Ω)

and every λ ≥ 0, we have ΓqU(λu) = λΓqU(u).

Proof. Let {vi}∞i=1 ⊂ W 1,q(U) be a sequence of functions with vi
∣∣
U∩Ω
≡ u and

ΓqU(u) = lim
i→∞

(∫
U

|Dvi(z)|qdz
) 1

q

.

Then we claim that

ΓqU(λu) = lim
i→∞

(∫
U

|Dλvi(z)|qdz
) 1

q

= λΓqU(u).

If this fails, then there exists another sequence {ṽi}∞i=1 ⊂ W 1,q(U) with ṽi
∣∣
U∩Ω
≡ λu and

ΓqU(λu) =

(∫
U

|Dṽi(z)|qdz
) 1

q

< λΓqU(u).

Then we have { 1
λ
ṽi}∞i=1 ⊂ W 1,q(U) with 1

λ
ṽi
∣∣
U∩Ω
≡ u and

1

λ
ΓqU(λu) =

(∫
U

∣∣∣∣D 1

λ
ṽi(z)

∣∣∣∣q dz) 1
q

< ΓqU(u).

This is a contradiction. �

The following theorem gives the important properties of Φ.

Theorem 3.1. Let 1 ≤ q < p < ∞. Let Ω ⊂ Rn be a bounded Sobolev (p, q)-extension
domain. Then the set function Φ defined in (3.3) is a bounded quasiadditive set function
defined on open subsets U ⊂ Rn.

Proof. The nonnegativity is immediate from the definition.
Let E : W 1,p(Ω)→ W 1,q(Rn) be a bounded extension operator. For every open set U ⊂ Rn

with U ∩ Ω 6= ∅ and every u ∈ W p
0 (U,Ω), we have

ΓqU(u) ≤ ‖∇E(u)‖Lq(U) ≤ C‖u‖W 1,p(U∩Ω).

This implies the boundedness of Φ.



THE VOLUME OF THE BOUNDARY OF A SOBOLEV (p, q)-EXTENSION DOMAIN 13

Let U1 ⊂ U2 ⊂ Rn be two open sets. If U1∩Ω = ∅, we obviously have 0 = Φ(U1) ≤ Φ(U2).
Thus assume U1 ∩ Ω 6= ∅. Let u ∈ W p

0 (U1,Ω) ⊂ W p
0 (U2,Ω) be arbitrary. Then for each

v ∈ W 1,q(U2) with v
∣∣
U2∩Ω

≡ u, we have(∫
U2

|∇v(z)|qdz
) 1

q

≥
(∫

U1

|∇v(z)|qdz
) 1

q

.

This implies ΓqU2
(u) ≥ ΓqU1

(u). Since u ∈ W p
0 (U1,Ω) ⊂ W p

0 (U2,Ω) is arbitrary, we obtain the
monotonicity that is Φ(U1) ≤ Φ(U2).

Let {Ui}∞i=1 be a pairwise disjoint collection of open sets. Fix N ∈ N and set Uo :=
⋃N
i=1 Ui.

Let 0 < ε < 1. By (3.3), for every i, there exists a test function ui ∈ W p
0 (Ui,Ω) such that

(3.4) ΓqUi(ui) ≥
(

Φ(Ui)
(

1− ε

2i

)) 1
k ‖ui‖W 1,p(Ui∩Ω).

Notice that also λui satisfies (3.4) by Lemma 3.2, when λ > 0. Hence, by replacing ui with(
Φ(Ui)

(
1− ε

2i

)) 1
p ui
‖ui‖W1,p(Ω)

, we may also assume that

(3.5) ‖ui‖pW 1,p(Ui∩Ω) = Φ(Ui)
(

1− ε

2i

)
.

Set

u :=
N∑
i=1

ui.

Then u ∈ W p
0

(⋃N
i=1 Ui,Ω

)
. By definition (3.2), there exists a function v ∈ W 1,q

(⋃N
i=1 Ui

)
with v

∣∣
Ω
≡ u and

(3.6) 2kΦ

(
N⋃
i=1

Ui

)
≥

( ‖Dv‖Lq(⋃Ni=1 Ui)

‖u‖W 1,p(
⋃N
i=1 Ui∩Ω)

)k

with 1
k

= 1
q
− 1

p
. Define vi := v

∣∣
Ui

for i = 1, · · · , N . Then, we have vi ∈ W 1,q(Ui) with

vi
∣∣
Ui
≡ ui and

‖Dvi‖Lq(Ui) ≥ ΓqUi(ui).

Then, by making use of (3.4), we obtain

(3.7) ‖Dv‖Lq(⋃Ni=1 Ui)
=

(
N∑
i=1

‖Dvi‖qLq(Ui)

) 1
q

≥

(
N∑
i=1

(
Φ(Ui)

(
1− ε

2i

)) q
k ‖ui‖qW 1,p(Ui∩Ω)

) 1
q



14 PEKKA KOSKELA, ALEXANDER UKHLOV AND ZHENG ZHU

with 1
k

= 1
q
− 1

p
. The identity (3.5), together with the pairwise disjointness of Ui, gives

(3.8)(
N∑
i=1

(
Φ(Ui)

(
1− ε

2i

)) q
k ‖ui‖qW 1,p(Ui∩Ω)

) 1
q

=

(
N∑
i=1

Φ(Ui)
(

1− ε

2i

)) 1
k

‖u‖W 1,p(
⋃N
i=1 Ui∩Ω).

First, suppose

(3.9)
N∑
i=1

Φ(Ui) > Φ(Uo).

Since 0 < ε < 1, we also have

N∑
i=1

Φ(Ui)− εΦ(Uo) > 0.

By combining inequalities (3.7) and (3.8), we obtain

‖Dv‖Lq(⋃Ni=1 Ui)
≥

(
N∑
i=1

Φ(Ui)
(

1− ε

2i

)) 1
k

‖u‖W 1,p(
⋃N
i=1 Ui∩Ω)(3.10)

≥

(
N∑
i=1

Φ(Ui)− εΦ(Uo)

) 1
k

‖u‖W 1,p(
⋃N
i=1 Ui∩Ω).

Since u ∈ W p
0 (
⋃N
i=1 Ui,Ω), we conclude from (3.6) and (3.10) that

CΦ(U0)
1
k ≥

‖Dv‖Lq(⋃Ni=1 Ui)

‖u‖W 1,p(
⋃N
i=1 Ui∩Ω)

≥

(
N∑
i=1

Φ(Ui)− εΦ(Uo)

) 1
k

.

By letting ε tend to zero, we arrive at

N∑
i=1

Φ(Ui) ≤ CΦ

(
N⋃
j=1

Ui

)
.

If (3.9) fails, then
N∑
i=1

Φ(Ui) ≤ Φ(Uo).

Hence, we always have
N∑
i=1

Φ(Ui) ≤ (C + 1)Φ

(
N⋃
j=1

Ui

)
.
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Since N ∈ N is arbitrary and Φ is both nonnegative and monotone, we conclude that

∞∑
i=1

Φ(Ui) ≤ (C + 1)Φ

(
∞⋃
j=1

Ui

)
.

�

The following lemma is immediate from the definition (3.3) of the set function Φ.

Lemma 3.3. Let 1 ≤ q < p <∞. Let Ω ⊂ Rn be a bounded Sobolev (p, q)-extension domain
and Φ be the set function from (3.3). Then, for a ball B := B(x, r) with x ∈ ∂Ω and each
function u ∈ W p

0 (B,Ω), there exists a function v ∈ W 1,q(B) with v
∣∣
B∩Ω
≡ u and

(3.11) ‖Dv‖Lq(B) ≤ 2Φ
1
k (B)‖u‖W 1,p(B∩Ω), where 1/k = 1/q − 1/p.

4. The generalized Ahlfors condition

We begin with a general version of (1.2) for (p, q)-extension domains.

Theorem 4.1. Let Ω ⊂ Rn be a Sobolev (p, q)-extension domain with 1 ≤ q < p <∞. Then
there exists a bounded quasiadditive set function Φ, defined on open sets, such that, for every
x ∈ ∂Ω and each 0 < r < min{1, 1

4
diam (Ω)}, we have

(4.1) Φ(B(x, r))p−q|B(x, r) ∩ Ω|q ≥ rpqCapq

(
Ω ∩B

(
x,
r

4

)
,Ω ∩ A

(
x;
r

2
,
3r

4

)
;B(x, r)

)p
.

Proof. Let Ω ⊂ Rn be a Sobolev (p, q)-extension domain with 1 ≤ q < p < ∞. Define the
associated set function Φ by (3.3). Let x ∈ ∂Ω and 0 < r < min{1, 1

4
diam (Ω)} be fixed.

Then we define a function u ∈ W 1,p(Ω) ∩ C(Ω) by setting

(4.2) u(y) =


1 in B(x, r

4
) ∩ Ω,

−4
r
|y − x|+ 2 in

(
B(x, r

2
) \B(x, r

4
)
)
∩ Ω,

0 in Ω \B(x, r
2
) .

We have

(4.3)

(∫
B(x,r)∩Ω

|u(y)|pdy +

∫
B(x,r)∩Ω

|∇u(y)|pdy
) 1

p

≤ C

r
|B(x, r) ∩ Ω|

1
p .

Because u ∈ C(Ω∩B(x, r)) with u ≡ 0 on Ω∩∂B(x, r), we conclude that u ∈ W p
0 (B(x, r),Ω).

By Corollary 3.3, there exists a function v ∈ W 1,q(Rn) with v
∣∣
B(x,r)∩Ω

≡ u and

(4.4)

(∫
B(x,r)

|∇v(y)|qdy
) 1

q

≤ 2(Φ(B(x, r)))
1
k

(∫
B(x,r)∩Ω

|u(y)|p + |∇u(y)|pdy
) 1

p
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with 1
k

= 1
q
− 1

p
. For every small ε > 0, define vε to be the mollification of v as in [3, Section

4.2]. Then vε ∈ C(Rn) ∩W 1,q(Rn),

lim
ε→0
‖∇vε‖Lq(B(x,r)) = ‖∇v‖Lq(B(x,r))

and vε converges to v at every point of continuity of v. For every pair of compact sets (E,F )
with E ⊂ B(x, r

4
)∩Ω and F ⊂ (B(x, r

2
)\B(x, r

4
))∩Ω, there exists a sufficiently small εo > 0

such that for every 0 < ε < εo, we have vε ∈ Wp(E,F ;B(x, r)). Hence, we have∫
B(x,r)

|∇v(x)|qdx = lim
ε→0

∫
B(x,r)

|∇vε(x)|qdx ≥ Capq (E,F ;B(x, r)) .

By taking the supremum over all pairs of compact sets (E,F ) with E ⊂ B(x, r
4
) ∩ Ω and

F ⊂ (B(x, r
2
) \B(x, r

4
)) ∩ Ω, we obtain

(4.5)

∫
B(x,r)

|∇v(x)|qdx ≥ Capq

(
B
(
x,
r

4

)
∩ Ω,Ω ∩ A

(
x;
r

2
,
3r

4

)
;B(x, r)

)
.

By combining inequalities (4.3), (4.4) and (4.5), we obtain the inequality

CΦ(B(x, r))p−q|B(x, r) ∩ Ω|q ≥ rpqCapq

(
Ω ∩B

(
x,
r

4

)
,Ω ∩ A

(
x;
r

2
,
3r

4

)
;B(x, r)

)p
.

Our claim follows for the set function Φ̂ := cΦ, where c = C1/(p−q). �

The following theorem gives the generalized Ahlfors condition in q-fat Sobolev (p, q)-
extension domains for all 1 ≤ q < p <∞.

Theorem 4.2. Let Ω ⊂ Rn be a Sobolev (p, q)-extension domain, for 1 ≤ q < p <∞, which
is q-fat at almost every x ∈ ∂Ω. Then there exists a bounded quasiadditive set function Φ,
defined on open sets, with the following property. For almost every x ∈ ∂Ω, there exists
rx > 0 such that, for every 0 < r < rx, we have

(4.6) Φ(B(x, r))p−q|B(x, r) ∩ Ω|q ≥ |B(x, r)|p.

Proof. Suppose that Ω is q-fat at almost every x ∈ ∂Ω. By the Lebesgue density theorem
and Lemma 3.1, there exists a subset V ⊂ Ω with |V | = |Ω| such that every x ∈ V is a
Lebesgue point of Ω and Ω is q-fat at every x ∈ V . Fix x ∈ V . Let ε > 0 be sufficiently
small such that 1− ε ≥ 1

2n−1 . Since x ∈ V is a Lebesgue point of Ω, there exists 0 < rx < 1
such that for every 0 < r < rx, we have

(4.7) |B(x, r) ∩ Ω| ≥ (1− ε)|B(x, r)| ≥ 1

2n−1
|B(x, r)|.

Let r ∈ (0, rx) be fixed. Since |∂B(x, s)| = 0 for every 0 < s < r, we have

(4.8)
∣∣∣B (x, r

4

)
∩ Ω

∣∣∣ ≥ 1

2n−1

∣∣∣B (x, r
4

)∣∣∣ ≥ 1

23n−1
|B(x, r)|
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and

(4.9)
∣∣∣(B(x, r) \B

(
x,
r

2

))
∩ Ω

∣∣∣ ≥ ∣∣B(x, r) ∩ Ω
∣∣− ∣∣∣B (x, r

2

)∣∣∣ ≥ 1

2n
|B(x, r)|.

Let u be defined by (4.2). Let Φ be the set function from (3.3). Then u ∈ W p
0 (B(x, r),Ω).

By (4.4) and (4.3), we have v ∈ W 1,q(B(x, r)) with

(4.10)

(∫
B(x,r)

|∇v(y)|qdy
) 1

q

≤ C (Φ(B(x, r)))
1
k
C

r
|B(x, r) ∩ Ω|

1
p

with 1
k

= 1
q
− 1

p
. Since Ω is q-fat at every y ∈ V , Lemma 2.6 implies that v(y) = 0 for

almost every y ∈ (B(x, r) \ B(x, r
2
)) ∩ V and v(y) = 1 for almost every y ∈ B(x, r

4
) ∩ V .

Since |V | = |Ω|, v(y) = 1 for almost every y ∈ B(x, r
4
)∩Ω and E(u)(y) = 0 for almost every

y ∈ (B(x, r) \B(x, r
2
)) ∩ Ω.

By the Poincaré inequality on balls, we have

(4.11) Crq
∫
B(x,r)

|∇v(y)|qdy ≥
∫
B(x,r)

|v(y)− vB(x,r)|qdy.

If vB(x,r) ≥ 1
2
, since v(y) = 0 for almost every y ∈ (B(x, r) \ B(x, r

2
)) ∩ Ω, we conclude from

(4.9) that∫
B(x,r)

|v(y)− vB(x,r)|qdy ≥
(

1

2

)q ∣∣∣ (B(x, r) \B
(
x,
r

2

))
∩ Ω

∣∣∣ ≥ C|B(x, r)|.

In the case vB(x,r) <
1
2
, since v(y) = 1 for almost every y ∈ B(x, r

4
) ∩ Ω, we conclude from

(4.8) that ∫
B(x,r)

|v(y)− vB(x,r)|qdy ≥
(

1

2

)q ∣∣∣B (x, r
4

)
∩ Ω

∣∣∣ ≥ C|B(x, r)|.

In conclusion, we always have

(4.12)

∫
B(x,r)

|v(y)− vB(x,r)|qdy ≥ C|B(x, r)|.

By combining inequalities (4.10), (4.11) and (4.12), we obtain the inequality

Φ(B(x, r))p−q|B(x, r) ∩ Ω|q ≥ C|B(x, r)|p.

The desired inequality follows from this by replacing Φ with cΦ for a suitable c. �

5. The volume of the boundary

We prove, relying on the generalized Ahlfors condition, that the boundary of a q-fat
Sobolev (p, q)-extension domain is of volume zero.
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Proof of Theorem 1.1. Let us assume that |∂Ω| > 0. Then, by the Lebesgue density theorem
(see, for example [36]) and Theorem 4.2, there exists a subset V ⊂ ∂Ω with |V | = |∂Ω| > 0
such that every point x ∈ V is a Lebesgue point of ∂Ω, DΦ(x) <∞ and

(5.1) Φ(B(x, r))p−q|B(x, r) ∩ Ω|q ≥ C|B(x, r)|p

holds for every x ∈ V and each 0 < r < rx. Fix x ∈ V . Then by inequality (5.1), we have

|B(x, r) ∩ ∂Ω| ≤ |B(x, r)| − |B(x, r) ∩ Ω| ≤ |B(x, r)| − C |B(x, r)|
p
q

Φ(B(x, r))
p−q
q

,

for every 0 < r < rx. Hence, by Lemma 3.1, we obtain

lim sup
r→0+

|B(x, r) ∩ ∂Ω|
|B(x, r)|

≤ lim sup
r→0+

|B(x, r)| − |B(x, r) ∩ Ω|
|B(x, r)|

≤ lim sup
r→0+

|B(x, r)|
|B(x, r)|

− C lim inf
r→0+

|B(x, r)|
p−q
q

Φ(B(x, r))
p−q
q

= 1− CDΦ(x)
q−p
p < 1.

This contradicts the assumption that x ∈ V is a Lebesgue point of ∂Ω. We conclude that
|∂Ω| = 0. Thus we have verified the first claim of the theorem.

The final claims follow from Theorem 2.1 in combination with the first claim. �

We have not required our Sobolev extension operators to have any local properties. Let
us consider such a requirement. Recall the definition of a strong extension operator from
Definition 2.2. The following theorem shows that an extension operator can be promoted to
a strong one precisely when the boundary of our extension domain is of volume zero.

Theorem 5.1. Let Ω ⊂ Rn be a bounded Sobolev (p, q)-extension domain for 1 ≤ q ≤ p <∞.
Then there exists a strong bounded extension operator E : W 1,p(Ω) → W 1,q(Rn) if and only
if |∂Ω| = 0.

Proof. Let Ω ⊂ Rn be a Sobolev (p, q)-extension domain with 1 ≤ q ≤ p < ∞. First, if
|∂Ω| = 0, by Definition 2.2, every bounded extension operator E : W 1,p(Ω)→ W 1,q(Rn) is a
strong bounded extension operator.

Conversely, let us assume that there exists a strong bounded extension operator E :
W 1,p(Ω)→ W 1,q(Rn). Similarly to the set function Φ in (3.3), we define a new set function

Φ̃ here. First, for every open set U ⊂ Rn with U ∩Ω 6= ∅ and every u ∈ W p
0 (U,Ω), we define

Γ̃qU(u) := inf

(∫
U

|∇v(z)|qdz
) 1

q

,

where we take the infimum over all functions v ∈ W 1,q(U) with v
∣∣
U∩Ω

≡ u and which
additionally satisfy the requirement that v(y) = c for Hn-almost every y ∈ B(x, r)∩U ∩ ∂Ω
if u
∣∣
B(x,r)∩Ω

≡ c for a ball B(x, r) with B(x, r)∩U 6= ∅. The existence of the strong extension
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operator E guarantees this class of desired functions is not empty. Then we define the set

function Φ̃ by setting

Φ̃(U) := sup


(

Γ̃qU(u)

‖u‖W 1,p(U∩Ω)

)k

: u ∈ W p
0 (U,Ω)


with 1

k
= 1

q
− 1

p
, and by setting Φ̃(U) = 0 for those open sets do not intersect Ω. Within

a similar argument to the proof for Theorem 3.1, we obtain Φ̃ is a nonnegative, bounded

and quasiadditive set function. Hence DΦ̃(x) <∞ for almost every x ∈ ∂Ω. Fix a function

u ∈ W 1,p(Ω) as in (4.2). By the definition of Φ̃, there exists a function v ∈ W 1,q(B(x, r))
with v(y) = 1 for almost every y ∈ B(x, r

4
) ∩Ω and v(y) = 0 for almost every y ∈ (B(x, r) \

B(x, r
2
)) ∩ Ω such that

‖∇v‖Lq(B(x,r)) ≤ 2Φ̃
1
k (B(x, r))‖u‖W 1,p(B∩Ω).

Hence, similarly to the proof of Theorem 4.2, we obtain a similar point-wise density inequality

with (4.6) for Φ replaced by Φ̃ for almost every x ∈ ∂Ω. Finally, by making use of Lebesgue
density theorem and repeating the proof of Theorem 1.1, we conclude that |∂Ω| = 0. �

6. Cuspidal domains

6.1. Outward cuspidal domains. Since the lower bound in (4.1) comes with a term related
to the capacitary size of a portion of Ω, let us analyze it carefully in the model case of an
exterior spire of doubling order. More precisely, let w : [0,∞) → [0,∞) be continuous,
increasing and differentiable with w(0) = 0, w(1) = 1 and so that w(2t) ≤ Cw(t) for all
t > 0. We also require w′ to be increasing on (0, 1) with limt→0+ w′(t) = 0. We define

(6.1) Ωn
w := {z = (t, x) ∈ R× Rn−1 : 0 < t ≤ 1, |x| < w(t)} ∪Bn((2, 0),

√
2).

See Figure 1. We call Ωn
w an outward cuspidal domain with a doubling cuspidal function w.

The boundary of Ωn
w contains an exterior spire of order w at the origin.

The following theorem gives the sharp capacitary estimate at the origin for the outward
cuspidal domain Ωn

w.
In this section, we formulate and prove Theorem 6.1 that gives the sharp capacity estimate

for outward cuspidal domains. After this, we use doubling order outward cuspidal domains
to construct examples towards the sharpness of inequality (4.1) and show that capacitary
fatness is a weaker condition than capacitary density.

The (p, q)-extendability properties for the domains Ωn
w are known by [24, 28, 29, 30, 31].

We show that these domains give examples of settings where the exponents in (4.1) are
optimal and where boundedness of Φ cannot be replaced, say, by an estimate of the type
Φ(B(x, r)) ≤ Crα. Besides of boundedness, the other crucial property of our set function Φ
is quasiadditivity. It allows one to obtain better volume estimates when the center of B(x, r)
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Figure 1. An outward cuspidal domain.

does not belong to a suitable exceptional set. These estimates will be shown to be sharp for
wedges generated by Ωn

w.

Theorem 6.1. Let n ≥ 3, and let Ωn
w ⊂ Rn be an outward cuspidal domain with a doubling

cuspidal function w. Then, for every 0 < r < 1, we have

(6.2) Capp

(
Ωn
w ∩B

(
0,
r

4

)
,Ωn

w ∩ A
(

0;
r

2
,
3r

4

)
;B(0, r)

)
∼c

capp

(
Ωn
w ∩B

(
0,
r

4

)
;B
(

0,
r

2

))
∼c

rn−p if n− 1 < p <∞
r

logn−2 r
w(r)

if p = n− 1

r(w(r))n−1−p if 1 ≤ p < n− 1

where the constant c is independent of r.

Proof. Fix arbitrary 1 ≤ p <∞ and a pair of compact sets (E,F ) with E ⊂ Ωn
w∩B

(
0, r

4

)
and

F ⊂ Ωn
w∩A

(
x; r

2

)
. For every admissible function u ∈ Wp

(
Ωn
w ∩B

(
0, r

4

)
;B
(
0, r

2

))
, by simply

extending it to be zero on A
(
0; r

2
, r
)
, we obtain an admissible function inWp (E,F ;B(0, r)) .

Hence, by taking the supremum over all pairs of compact sets (E,F ) with E ⊂ Ωn
w∩B

(
0, r

4

)
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and F ⊂ Ωn
w ∩ A

(
x; r

2
, 3r

4

)
, we obtain

capp

(
Ωn
w ∩B

(
0,
r

4

)
;B
(

0,
r

2

))
≥ Capp

(
Ωn
w ∩B

(
0,
r

4

)
,Ωn

w ∩ A
(

0;
r

2
,
3r

4

)
;B(0, r)

)
.

We divide the argument for the remaining inequalities into three cases.
The case n− 1 < p <∞: By Lemma 2.2, we have

Capp

(
Ωn
w ∩B

(
0,
r

4

)
,Ωn

w ∩ A
(

0;
r

2
,
3r

4

)
;B(0, r)

)
≥ Crn−p.

We define a test function v on B(0, r) by setting

(6.3) v(z) :=


1 if |z| < r

4
−4
r
|z|+ 2 if r

4
≤ |z| ≤ r

2

0 if r
2
< |z| < r

.

Since v ∈ Wp

(
Ωn
w ∩B

(
0, r

4

)
;B
(
0, r

2

))
, we have

capp

(
Ωn
w ∩B

(
0,
r

4

)
;B
(

0,
r

2

))
≤
∫
B(0,r)

|∇v(z)|pdz ≤ Crn−p.

The case 1 ≤ p < n−1: Given r
5
< ρ < r

4
, we define an (n−1)-dimensional sphere Sρ by

Sρ :=

{
z ∈ Rn : d

(
z,

(
3r

8
, 0, · · · , 0

))
= ρ

}
.

We set

S+
ρ := {z = (t, x1, x2, · · · , xn−1) ∈ Sρ : xn−1 > 0}

and let A+
1 (ρ) := S+

ρ ∩
(
B
(
0, r

4

)
∩ Ωn

w

)
and A+

0 (ρ) := S+
ρ ∩

(
Ωn
w \B

(
0, r

2

))
. Since w is

doubling and

lim
r→0+

w′(r) = 0,

we have

Hn−1(A+
0 (ρ)) ∼c (w(r))n−1 and Hn−1(A+

1 (ρ)) ∼c (w(r))n−1

for every ρ ∈ ( r
5
, r

4
). The implicit constants are independent of r and ρ. There exists

a bi-Lipschitz homeomorphism from S+
ρ to the (n − 1)-dimensional disk Bn−1(0, ρ) with

a bi-Lipschitz constant independent of ρ, for example, see [14, Lemma 2.19]. Hence, for
each v ∈ Wp

(
B
(
0, r

4

)
∩ Ωn

w,Ω
n
w ∩ A

(
0; r

2
, 3r

4

)
;B(0, r)

)
, by the Sobolev-Poincaré inequality

on balls [3, Theorem 4.9], for almost every ρ ∈ ( r
5
, r

4
), we have

(6.4)

(
–

∫
S+
ρ

|v(z)− vS+
ρ
|p?dz

) 1
p?

≤ Cr

(
–

∫
S+
ρ

|∇v(z)|pdz

) 1
p
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with p? = (n−1)p
n−1−p . Assuming vS+

ρ
≤ 1

2
, we have

(w(r))n−1−p ≤ C

(∫
A+

1 (ρ)

|v(z)− vS+
ρ
|p?dz

) p
p?

≤ C

(∫
S+
ρ

|v(z)− vS+
ρ
|p?dz

) p
p?

≤ C

∫
S+
ρ

|∇v(z)|pdz.

If vS+
ρ
> 1

2
, we simply replace A+

1 (ρ) by A+
0 (ρ) in the inequality above. Hence, for almost

every ρ ∈ ( r
5
, r

4
), we have

(w(r))n−1−p ≤ C

∫
S+
ρ

|∇v(z)|pdz.

By integrating over ρ ∈ ( r
5
, r

4
), we obtain

(w(r))n−1−pr ≤ C

∫ r
4

r
5

∫
S+
ρ

|∇v(z)|pdzdρ ≤ C

∫
Rn
|∇v(z)|pdz.

Since v ∈ Wp(E,F ;B(0, r)) for every pair of compact sets (E,F ) with E ⊂ B
(
0, r

4

)
∩ Ωn

w

and F ⊂ Ωn
w ∩ A

(
0; r

2
, 3r

4

)
), we conclude that

Capp

(
B
(

0,
r

4

)
∩ Ωn

w,Ω
n
w ∩ A

(
0;
r

2
,
3r

4

)
;B(0, r)

)
≥ c2(w(r))n−1−pr.

Towards the other direction of the inequality, we construct a suitable test function. We
define a cut-off function F1 by setting

F1(z) = F1(t, x) :=


1 if |x| < w( r

4
)

−|x|
w( r

2
)−w( r

4
)

+
w( r

2
)

w( r
2

)−w( r
4

)
if w( r

4
) ≤ |x| ≤ w( r

2
)

0 if |x| > w( r
2
)

.

Then we define our test function v1 ∈ Wp

(
B
(
0, r

4

)
∩ Ωn

w;B
(
0, r

2

))
by v1(z) := v(z)F1(z),

where v is defined in (6.3). Since w′ is increasing on (0,∞) and w is doubling, we have

w
(r

4

)
≤ w

(r
2

)
− w

(r
4

)
≤ w

(r
2

)
≤ w(r) ≤ Cw

(r
4

)
.

Hence, a simple computation shows that

|∇v1(z)| ≤

{
C
w(r)

if |t| < r
2

and |x| < w(r)

0 otherwise
.

This implies

capp

(
B
(

0,
r

4

)
∩ Ωn

w;B
(

0,
r

2

))
≤
∫
B(0,r)

|∇v1(z)|pdz ≤ Cr(w(r))n−1−p.
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The case p = n−1: Let z1 := (−ρ, 0, · · · , 0) and z2 := (ρ, 0, · · · , 0) be a pair of antipodal
points on the (n − 2)-dimensional sphere ∂Bn−1(0, ρ). Denote Ã+

1 (ρ) := Bn−1(z1, w(ρ)) ∩
Bn−1(0, ρ) and Ã+

0 (ρ) := Bn−1(z2, w(ρ)) ∩ Bn−1(0, ρ). For every ρ ∈ (0, 1
4
), there exists a

bi-Lipschitz homeomorphism Hρ : S+
ρ → Bn−1(0, ρ) with Ã+

1 (ρ) = Hρ(A
+
1 (ρ)), Ã+

0 (ρ) =

Hρ(A
+
0 (ρ)), with a bi-Lipschitz constant independent of ρ. Let

{0} × Rn−2 := {x = (0, x2, x3, · · · , xn−1) : xi ∈ R for i = 2, 3, · · · , n− 1}.
For z ∈ {0}×Rn−2∩Bn−1(0, ρ), we define Lzz1 to be the line segment with endpoints z1, z and
Lzz2 to be the line segment with endpoints z2, z. We also define Szz1 := Lzz1 \ B

n−1(z1, w(ρ))

and Szz2 := Lzz2\B
n−1(z2, w(ρ)). For every pair of compact sets (E,F ) with E ⊂ B

(
0, r

4

)
∩Ωn

w

and F ⊂ Ωn
w ∩ A

(
0; r

2
, 3r

4

)
, fix a test function

v̂ ∈ Wn−1 (E,F ;B(0, r)) .

The function ṽρ defined by ṽρ := v̂ ◦H−1
ρ , is continuous on Bn−1(0, ρ) with ṽρ

∣∣
Ã+

1 (ρ)
≥ 1 and

ṽρ
∣∣
Ã+

0 (ρ)
≤ 0. By the Fubini theorem, for almost every ρ ∈ ( r

5
, r

4
), ṽρ ∈ W 1,n−1(Bn−1(0, ρ)) ∩

C(Bn−1(0, ρ)). Let us fix such a ρ ∈ ( r
5
, r

4
). Then for Hn−2-a.e. z ∈ {0}×Rn−2 ∩Bn−1(0, ρ),

by the fundamental theorem of calculus, we have either

1

2
≤
∫
Szz1

|∇ṽρ(x)|dx or
1

2
≤
∫
Szz2

|∇ṽρ(x)|dx.

Then the Hölder inequality implies either(∫
Szz1

|x− z1|−1dx

)2−n

≤ C

∫
Szz1

|∇ṽρ(x)|n−1|x− z1|n−2dx

or (∫
Szz2

|x− z2|−1dx

)2−n

≤ C

∫
Szz2

|∇ṽρ(x)|n−1|x− z2|n−2dx.

Hence, we have either

1

logn−2 r
w(r)

≤ C

∫
Bn−1(z1,

√
2ρ)∩Bn−1(0,ρ)

|∇ṽρ(x)|n−1dx

or
1

logn−2 r
w(r)

≤ C

∫
Bn−1(z2,

√
2ρ)∩Bn−1(0,ρ)

|∇ṽρ(x)|n−1dx.

In conclusion, for every ρ ∈
(
r
5
, r

4

)
with ṽρ ∈ W 1,n−1(Bn−1(0, ρ)), we have

1

logn−2 r
w(r)

≤ C

∫
Bn−1(0,ρ)

|∇ṽρ(x)|n−1dx.
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Since, for every ρ ∈
(
r
5
, r

4

)
, Hρ : S+

ρ → Bn−1(0, ρ) is bi-Lipschitz with a bi-Lipschitz constant
independent of ρ, we have

1

logn−2 r
w(r)

≤ C

∫
S+
ρ

|∇v̂(z)|n−1dz.

By integrating over ρ ∈ ( r
5
, r

4
), we obtain

r

logn−2 r
w(r)

≤ C

∫
B(0,r)

|∇v̂(z)|n−1dz.

Since the pair of compact sets (E,F ) with E ⊂ B
(
0, r

4

)
∩ Ωn

w and F ⊂ Ωn
w ∩ A

(
0; r

2
, 3r

4

)
is

arbitrary and v̂ ∈ Wn−1 (E,F ;B(0, r)) is arbitrary, we conclude that

Capn−1

(
Ωn
w ∩B

(
0,
r

4

)
,Ωn

w ∩ A
(

0;
r

2
,
3r

4

)
;B(0, r)

)
≥ C

r

logn−2 r
w(r)

.

Towards the opposite direction of this inequality, we construct a suitable test function.
We define a cut-off function F2 by setting

F2(z) = F2(t, x) :=


1 if |x| < w( r

4
)

log
4|x|
r

log
4w( r4 )

r

if w( r
4
) ≤ |x| ≤ r

4

0 if |x| > r
4

.

Then we define our test function v2 ∈ Wn−1

(
B
(
0, r

4

)
∩ Ωn

u;B
(
0, r

2

))
by

v2(z) :=


F2(z) if |z| < r

4

F2(z)
log

2|z|
r

log 1
2

if r
4
≤ |z| ≤ r

2

0 if |z| > r
2

.

Since w is doubling, a simple computation shows that

|∇v2(z)| ≤

{
C

|x| log r
w(r)

if |t| < r
2

and w( r
4
) < |x| < r

4

0 elsewhere
.

Hence,

capn−1

(
B
(

0,
r

4

)
∩ Ωn

w;B
(

0,
r

2

))
≤
∫
Rn
|∇v2(z)|n−1dz ≤ Cr

logn−2 r
w(r)

.

By combining the three cases above, we obtain the sought-for inequalities. �

We proceed to show the sharpness of the inequality (4.1). We need the following lemma.
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Lemma 6.1. Let 0 ≤ λ ≤ n and Φ be a non-negative, bounded, monotone and quasiadditive
set function defined on open sets. Define

E =

{
x ∈ Ω : lim sup

r→0

Φ(B(x, r))

rλ
=∞

}
.

Then
Hλ(E) = 0.

Proof. For each x ∈ E and every δ > 0, there exists 0 < rx < δ such that

δΦ(B(x, rx)) > rλx .

Define
F := {B(x, rx) : x ∈ E} .

By the classical Vitali covering theorem, there exists an at most countable subclass of pairwise
disjoint balls {Bi}∞i=1 in F such that

E ⊂
∞⋃
i=1

5Bi.

Hence, writing ri for the radius of Bi, we have

Hλ
10δ(E) ≤ C

∞∑
i=1

(5ri)
λ ≤ Cδ

∞∑
i=1

Φ(Bi)

≤ CδΦ

(
∞⋃
i=1

Bi

)
≤ CδΦ(Rn).

The claim follows by letting δ tend to zero. �

6.2. Sharpness of the generalized capacitary Ahlfors type condition.

Sharpness of (4.1). We use outward cuspidal domains to construct Sobolev extension do-
mains that show the sharpness of (4.1). Given s ∈ (1,∞) and α > s−1

s
, let ω(t) = ts logα( e

t
),

and consider the outward cuspidal domain Ωn
ts logα( e

t
) := Ωn

ω ⊂ Rn. By results due to Maz’ya

and Poborchi in [28, 29, 30, 31], we have the following results. For n ≥ 3, Ωn
ts logα( e

t
) is a

Sobolev (p, q)-extension domain for

(6.5)

{
1 ≤ q ≤ (1+(n−1)s)p

1+(n−1)s+(s−1)p
if 1+(n−1)s

2+(n−2)s
≤ p ≤ (n−1)+(n−1)2s

n
,

1 ≤ q ≤ np
1+(n−1)s

if (n−1)+(n−1)2s
n

≤ p <∞ .

For n = 2, Ωn
ts logα( e

t
) is a Sobolev (p, q)-extension domain for 1+s

2
≤ p <∞ and 1 ≤ q ≤ 2p

1+s
.

Clearly, there exists a constant C > 1 such that for every 0 < r < 1, we have

(6.6)
1

C
r1+(n−1)s logα(n−1)

(e
r

)
≤ |B(0, r) ∩ Ωn

ts logα( e
t
)| ≤ Cr1+(n−1)s logα(n−1)

(e
r

)
.
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Furthermore, (6.2) gives us a lower bound for the capacitary term in (4.1) in terms of r, q, s, n
and logα

(
e
r

)
.

By comparing the capacity estimate, (6.6) and (6.2) for the values of q, p given by (6.5)
we see that (4.1) cannot hold for a bounded set function Φ for better exponents than the
given ones.

Let us also analyze the additivity of Φ. Fix n ≥ 3. Let k ∈ {1, 2, · · · , n − 2}, s ∈ (1,∞)
and α > s−1

k+1
be fixed. We define a domain Gk

n(s, α) ⊂ Rn by setting

Gk
n(s, α) := Ωk+1

ts logα( e
t
) × Rn−k−1.

Since Gk
n(s, α) is the product of Ωk+1

ts logα( e
t
) and Rn−k−1, by the extension results in [28, 29, 30,

31] and product results in [23, 46], we obtain the following conclusions. For k ≥ 2, Gk
n(s, α)

is a Sobolev (p, q)-extension domain for

(6.7)

{
1 ≤ q ≤ (1+ks)p

1+ks+(s−1)p
if 1+ks

2+(k−1)s
≤ p ≤ k+k2s

k+1
,

1 ≤ q ≤ (k+1)p
1+ks

if k+k2s
k+1

≤ p <∞ ,

and G1
n(s, α) is a Sobolev (p, q)-extension domain for 1+s

2
≤ p <∞ and 1 ≤ q ≤ 2p

1+s
.

Clearly, there exists a constant C > 1 such that, for every x ∈ {0} × Rn−k−1 and each
0 < r < 1, we have

(6.8)
1

C
(r)n+ks−k logαk

(e
r

)
≤ |B(x, r) ∩Gk

n(s, α)| ≤ Crn+ks−k logαk
(e
r

)
.

Moreover, Fubini theorem, Theorem 6.1 and Lemma 2.2 give with some work the estimates

(6.9) Capq

(
Gk
n(s, α) ∩B

(
x,
r

4

)
, A

(
x;
r

2
,
3r

4

)
;B(x, r)

)

≥


c1(r)n−q if k < q <∞
c2rn−k

logk e
r

if q = k

c3r
(k−q)s+n−k logα(k−q) ( e

r

)
if 1 ≤ q < k

and, for k = 1,

(6.10) Capq

(
G1
n(s, α) ∩B

(
x,
r

4

)
, A

(
x;
r

2
,
3r

4

)
;B(x, r)

)
≥ crn−q.

By Lemma 6.1, for Hn−k−1-almost every x ∈ {0} × Rn−k−1, there exists Mx <∞ with

(6.11) Φ(B(x, r)) ≤Mxr
n−k−1.

If k ≥ 2, by inserting (6.7), (6.9) and (6.11) into the inequality (4.1), we obtain the optimal
bound in (6.8), modulo logarithmic terms. The case k = 1 is analogous.

In conclusion, there is no hope in improving on the boundedness of the set function Φ
from (4.1) so as to obtain estimates that would hold at every boundary point. Moreover,
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the quasiadditivity of Φ gives rather optimal measure density properties for points outside
exceptional sets. �

6.3. Fatness versus density. Recall from Section 2 that p-capacitary density implies p-
fatness and that every domain satisfies the density condition at each boundary point when
p > n− 1.

Given 1 < p ≤ n − 1, we construct outward cuspidal domains Ωn
w ⊂ Rn with suitable

functions w, such that Ωn
w are p-fat but not p-capacitary dense at the tip 0.

Fix 1 < p < n − 1. We consider the function w(t) = t

log
p−1

n−1−p e
t

and the corresponding

outward cuspidal domain Ωn
w. By Theorem 6.1, we have

capp

(
Ωn
w ∩B

(
0,
r

4

)
;B
(

0,
r

2

))
∼c

Capp

(
Ωn
w ∩B

(
0,
r

4

)
,Ωn

w ∩ A
(

0;
r

2
,
3r

4

)
;B(0, r)

)
∼c

rn−p

logp−1 e
r

.

Hence, by (2.3), we have

lim
r→0+

capp
(
Ωn
w ∩B

(
0, r

4

)
;B
(
0, r

2

))
capp

(
B
(
0, r

4

)
;B
(
0, r

2

)) ∼c lim
r→0+

1

logp−1 e
r

= 0

and ∫ 1

0

(
capp

(
Ωn
w ∩B

(
0, r

4

)
;B
(
0, r

2

))
capp

(
B
(
0, r

4

)
;B
(
0, r

2

)) ) 1
p−1

∼c
∫ 1

0

1

r log e
r

dr =∞.

Hence, the outward cuspidal domain Ωn
w is not p-capacitary dense but nevertheless p-fat at

the tip 0. For p = n − 1, we choose the function w(t) = t2. By Theorem 6.1, for every
0 < r < 1

2
, we have

capn−1

(
Ωn
w ∩B

(
0,
r

4

)
;B
(

0,
r

2

))
∼c

Capn−1

(
Ωn
w ∩B

(
0,
r

4

)
,Ωn

w ∩ A
(

0;
r

2
,
3r

4

)
;B(0, r)

)
∼c

r

logn−2 e
r

.

Hence, we have

lim
r→0+

capn−1

(
Ωn
w ∩B

(
0, r

4

)
;B
(
0, r

2

))
capn−1

(
B
(
0, r

4

)
;B
(
0, r

2

)) ∼c lim
r→0+

1

logn−2 e
r

= 0

and ∫ 1
2

0

(
capn−1

(
Ωn
w ∩B

(
0, r

4

)
;B
(
0, r

2

))
capn−1

(
B
(
0, r

4

)
;B
(
0, r

2

)) ) 1
n−2

dr

r
∼c
∫ 1

2

0

1

r log e
r

dr =∞.
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Consequently, the outward cuspidal domain Ωn
w is not (n− 1)-capacitary dense but never-

theless (n− 1)-fat at the tip 0.

7. Sobolev (p, q)-extension domains with a positive boundary volume

In this section, for every n ≥ 3 and 1 ≤ q < n− 1, we construct a Sobolev (p, q)-extension
domain Ω ⊂ Rn with |∂Ω| > 0. We also use this construction to prove Theorem 7.2 that
gives an even more striking example.

7.1. The initial construction. Let Qo := (0, 1)n be the n-dimensional unit cube in Rn,
and C0 := (0, 1)n−1 × (0, 2) be an n-dimensional rectangle in Rn. Let So := (0, 1)n−1 be the
(n − 1)-dimensional unit cube in the (n − 1)-dimensional Euclidean hyperplane Rn−1. Let
E ⊂ [0, 1] be a Cantor set with 0 < H1(E) < 1. The Smith-Volterra-Cantor set guarantees
the existence of such an E, see [35]. Define

En−1 := E × E × · · · × E︸ ︷︷ ︸
n−1

.

Then En−1 ⊂ [0, 1]n−1 is nowhere dense in (0, 1)n−1 with 0 < Hn−1(En−1) < 1. We let

W :=
{
Q ⊂ (0, 1)n−1 \ En−1 : Q is Whitney

}
be the class of all Whitney cubes of the open set (0, 1)n−1 \En−1, see [37]. For every k ∈ N,
we define Wk to be the subclass of W with

Wk :=
{
Q ⊂ W : 2−k−1 ≤ l(Q) < 2−k

}
where l(Q) is the edge-length of the cube Q. We number the elements in Wk by

Wk = {Qj
k : 1 ≤ j ≤ Nk}.

Notice that Nk ≤ 2(n−1)(k+1). For a Whitney cube Qj
k, we refer to its center by xjk. Let

h : [0, 1]→ [0, 1] be an increasing and continuous function with h(0) = 0 and h(t) > 0 when
t > 0. We define

(7.1) rk :=
(
2−(n−1)(k+1)−kh(8−k)

) 1
n−1−q ,

Dj
k := Bn−1(xjk, rk) and D̃j

k := Bn−1(xjk,
rk
2

). Then D̃j
k ⊂ Dj

k ⊂ Qj
k. Since En−1 is nowhere

dense in [0, 1]n−1, for an arbitrary x ∈ En−1 and each ε > 0, there exists a large enough k and

some j ∈ {1, 2, · · · , Nk} with Qj
k ⊂ (0, 1)n−1 ∩Bn−1(x, ε). Then D̃j

k ⊂ (0, 1)n−1 ∩Bn−1(x, ε).
Hence, we have

En−1 ⊂
∞⋃
k=1

⋃
j

D̃j
k.

We define

Dh :=
∞⋃
k=1

⋃
j

Dj
k and D̃h :=

∞⋃
k=1

⋃
j

D̃j
k.
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Then En−1 ⊂ ∂D̃h and Hn−1(∂D̃h) ≥ Hn−1(En−1) > 0.

Figure 2. The set Dh

We define Cjk := Dj
k × [1, 2), C̃jk := D̃j

k × [1, 2) and Ajk := Cj
k \ C̃

j
k. We use the cylinders Cjk

and C̃jk to define two domains:

Ωh := Qo ∪
∞⋃
k=1

⋃
j

Cjk and Ω̃h := Qo ∪
∞⋃
k=1

⋃
j

C̃jk.

Given m ∈ N, we set

Ωm
h := Qo ∪

m⋃
k=1

⋃
j

Cjk and Ω̃m
h := Qo ∪

m⋃
k=1

⋃
j

C̃jk.

Figure 3 illustrates the construction of these domains.
The following lemma goes back to a result of Väisälä [41]. See [42, Pages 93-94] for a full

proof. Also see [11].

Lemma 7.1. The domain Ω̃h is quasiconformally equivalent to the unit ball: there is a

quasiconformal mapping from the unit ball Bn(0, 1) onto Ω̃h.

Hence, by Lemma 2.7 and Lemma 2.8, for arbitrary 1 ≤ p < ∞, W 1,∞(Ω̃h) is dense in

W 1,p(Ω̃h). Consequently, also W 1,∞(Ω̃h) ∩ C(Ω̃h) is dense.
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7.2. Cut-off functions. Let C := Bn−1(0, r)× (0, 1) and C̃ := Bn−1(0, r
2
)× (0, 1). Then C

is a cylinder and C̃ is a sub-cylinder of C. We define AC := C \ C̃. We employ the cylindrical
coordinate system

{x = (x1, x2, · · · , xn) = (s, θ1, θ2, · · · , θn−2, xn) ∈ Rn}

where {(0, 0, · · · , 0, xn) : xn ∈ R} is the rotation axis and s =
√∑n−1

i=1 x
2
i . For simplicity of

notation, we write
−→
θ = (θ1, θ2, · · · , θn−2). Under this cylindrical coordinate system, we can

write

C =
{
x = (s,

−→
θ , xn) ∈ Rn;xn ∈ (0, 1), s ∈ [0, r),

−→
θ ∈ [0, 2π)n−2

}
,

C̃ =
{
x = (s,

−→
θ , xn) ∈ Rn;xn ∈ (0, 1), s ∈

[
0,
r

2

)
,
−→
θ ∈ [0, 2π)n−2

}
,

and

AC =
{
x = (s,

−→
θ , xn, ) ∈ Rn;xn ∈ (0, 1), s ∈

(r
2
, r
)
,
−→
θ ∈ [0, 2π)n−2

}
.

We define a subset DC of the cylinder C by setting

DC :=
{
x = (s,

−→
θ , xn) ∈ Rn;xn ∈

(
0,
r

2

)
, s ∈

(r
2
, r − xn

)
,
−→
θ ∈ [0, 2π)n−2

}
.

Figure 3. The domain Ωλ
3
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The next lemma gives two cut-off functions towards the construction of the desired exten-
sion operator.

Lemma 7.2. (1) : There exists a function LiC : AC → [0, 1] which is continuous on AC \
∂Bn−1(0, r

2
) × {0}, which equals zero both on

(
B
n−1

(0, r) \Bn−1(0, r
2
)
)
× {0} and on the

set ∂Bn−1(0, r) × (0, 1), which equals 1 on ∂Bn−1(0, r
2
) × (0, 1) and which has the following

additional properties. The function LiC is Lipschitz on AC \DC with

|∇LiC(x)| ≤ C

r
for x ∈ AC \DC,

and LiC is locally Lipschitz on DC with

|∇LiC(x)| ≤ C√
(s− r

2
)2 + x2

n

for x ∈ DC.

(2) : There exists a function LoC : AC → [0, 1], which is continuous on AC \∂Bn−1(0, r
2
)×{0},

which equals zero on ∂Bn−1(0, r
2
)× [0, 1), and which equals 1 both on ∂Bn−1(0, r)× (0, 1) and

on
(
Bn−1(0, r) \Bn−1

(0, r
2
)
)
× {0}, and which has the additional following properties. The

function LoC is Lipschitz on AC \DC with

|∇LoC(x)| ≤ C

r
for x ∈ AC \DC,

and LoC is locally Lipschitz on DC with

|∇LoC(x)| ≤ C√
(s− r

2
)2 + x2

n

for x ∈ DC.

Proof. (1) : We define the cut-off function LiC on AC with respect to the cylindrical coordinate

system {x = (s,
−→
θ , xn) ∈ Rn} by setting

(7.2) LiC(x) =


−2
r
s+ 2, x ∈ AC \DC,
xn

xn+(s− r
2

)
, x ∈ DC \ ∂Bn−1(0, r

2
)× {0},

0, x ∈ ∂Bn−1(0, r
2
)× {0} .

Then, if x ∈ AC \DC, we have

∂LiC(x)

∂θ1

= ... =
∂LiC(x)

∂θn−2

=
∂LiC(x)

∂xn
= 0 and

∣∣∣∣∂LiC(x)

∂s

∣∣∣∣ =
2

r
.

If x ∈ DC, we have
∂LiC(x)

∂θ1

= ... =
∂LiC(x)

∂θn−2

= 0,
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∂s

∣∣∣∣ =

∣∣∣∣∣ xn(
xn + (s− r

2
)
)2

∣∣∣∣∣ ≤
∣∣∣∣∣ xn + (s− r

2
)(

xn + (s− r
2
)
)2

∣∣∣∣∣ ≤ 1√
(s− r

2
)2 + x2

n

and ∣∣∣∣∂LiC(x)

∂xn

∣∣∣∣ =

∣∣∣∣∣ (s− r
2
)(

xn + (s− r
2
)
)2

∣∣∣∣∣ ≤
∣∣∣∣∣ xn + (s− r

2
)(

xn + (s− r
2
)
)2

∣∣∣∣∣ ≤ 1√
(s− r

2
)2 + x2

n

.

Hence, we obtain

(7.3) |∇LiC(x)| ≤

{
C
r
, x ∈ AC \DC,

C√
(s− r

2
)2+x2

n

, x ∈ DC.

(2) : We define the cut-off function LoC on AC with respect to the cylindrical coordinate

system {x = (s,
−→
θ , xn) ∈ Rn} by setting

(7.4) LoC(x) =


2
r
s− 1, x ∈ AC \DC,
s− r

2

xn+(s− r
2

)
, x ∈ DC \ ∂Bn−1(0, r

2
)× {0},

0, x ∈ ∂Bn−1(0, r
2
)× {0} .

By similar computations, we have

(7.5) |∇LoC(x)| ≤

{
C
r
, x ∈ AC \DC,

C√
x2
n+(s− r

2
)2
, x ∈ DC.

�

7.3. The extension operator. Towards the construction of our extension operator, we
define piston-shaped domains P j

k by setting

P j
k := Dj

k × (0, 1) ∪ D̃j
k × [1, 2).

The collection {P j
k} is pairwise disjoint. We set U1 := So × (1, 2) \ Ωh.

Given a cylinder Cjk, in order to simplify our notation, we write Lik,j = Li
Cjk

, Lok,j = Lo
Cjk

,

Ajk = ACjk
and Dj

k = DCjk
. Then we define cut-off functions Li and Lo by setting

(7.6) Li(x) :=
∑
k,j

Lik,j(x) for x ∈
⋃
k,j

Ajk,

and

(7.7) Lo(x) :=
∑
k,j

Lok,j(x) for x ∈
⋃
k,j

Ajk.

We define a reflection on So × (1, 2) by setting

(7.8) R1(x) := (x1, x2, · · · , xn−1, 2− xn) for every x = (x1, x2, · · · , xn) ∈ So × (1, 2).
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On the set
⋃
k,j A

j
k, we define a mapping R2 which is a reflection on every Ajk. With respect

to the local cylindrical coordinate system on every Ajk, we write

(7.9) R2(x) := R2(s,
−→
θ , xn) =

(
−s

2
+

3

4
rk,
−→
θ , xn

)
for x = (s,

−→
θ , xn) ∈ Ajk. Simple computations give the estimates

(7.10)
1

C
≤ |JR1(x)| ≤ C and |DR1(x)| ≤ C,

for every x ∈ So × (1, 2), and

(7.11)
1

C
≤ |JR2(x)| ≤ C and |DR2(x)| ≤ C,

for every x ∈
⋃
k,j A

j
k.

We begin by defining our linear extension operator on the dense subspace W 1,∞(Ω̃h) ∩
C(Ω̃h) of W 1,p(Ω̃h). Given u ∈ W 1,∞(Ω̃h) ∩ C(Ω̃h), we define the extension E(u) on the
rectangle C0 by setting

(7.12) E(u)(x) :=


u(x), x ∈ Ω̃h,

Li(x)(u ◦ R2)(x) + Lo(x)(u ◦ R1)(x), x ∈
⋃
k,j A

j
k,

(u ◦ R1)(x), x ∈ U1 .

We continue with the local properties of our extension operator.

Lemma 7.3. Let E be the extension operator defined in (7.12). Then, for every u ∈
W 1,∞(Ω̃h) ∩ C(Ω̃h), we have:

(1): E(u) is Lipschitz on U1 with

(7.13) |∇E(u)(x)| ≤ |∇(u ◦ R1)(x)|

for almost every x ∈ U1.
(2): E(u) is locally Lipschitz on Ankk with

(7.14) |∇E(u)(x)| ≤ |∇Lik,nk(x)(u ◦ R2)(x)|+ |Lik,nk(x)∇(u ◦ R2)(x)|
+ |∇Lok,nk(x)(u ◦ R1)(x)|+ |Lok,nk(x)∇(u ◦ R1)(x)|

for almost every x ∈ Ajk.

Moreover, with respect to the local cylindrical system x = (s,
−→
θ , xn) on Cjk, for every

1 ≤ q <∞, we have

(7.15)

∫
Cjk

|E(u)(x)|qdx ≤ C

∫
P jk

|u(x)|qdx
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and

(7.16)

∫
Cjk

|∇E(u)(x)|qdx ≤ C

∫
P jk

|∇u(x)|qdx

+ C

∫
Djk

(√
1

x2
n +

(
s− rk

2

)2

)q

(|u ◦ R1(x)|q + |u ◦ R2(x)|q)dx

+ C

∫
Ajk\D

j
k

(
1

rk

)q
(|u ◦ R1(x)|q + |u ◦ R2(x)|q)dx,

with some uniform positive constant C.

Proof. Since u ∈ W 1,∞(Ω̃h) ∩ C(Ω̃h), definitions of cut-off functions Li, Lo and reflections
R1,R2 easily yield that E(u) is Lipschitz on U1 and that E(u) is locally Lipschitz on Ajk for
every k and j. Inequalities (7.13) and (7.14) follow by the chain rule.

By the definition of E(u) in (7.12), we have

(7.17)

∫
Cjk

|E(u)(x)|qdx ≤
∫
P jk

|u(x)|qdx

+

∫
Ajk

|Lik,j(x)(u ◦ R2)(x) + Lok,j(x)(u ◦ R1)(x)|qdx.

Since 0 ≤ Lik,j(x) ≤ 1 and 0 ≤ Lok,j(x) ≤ 1 for every x ∈ Ajk, by (7.10), (7.11) and the change
of variables formula, we have

(7.18)

∫
Ajk

|Lik,j(x)(u ◦ R2)(x) + Lok,j(x)(u ◦ R1)(x)|qdx

≤ C

∫
Ajk

|u ◦ R1(x)|qdx+ C

∫
Ajk

|u ◦ R2(x)|qdx

≤ C

∫
P jk

|u(x)|qdx.

By combining inequalities (7.17) and (7.18), we obtain inequality (7.15).
By inequality (7.14), we have

(7.19)

∫
Cjk

|∇E(u)(x)|qdx ≤
∫
P jk

|∇u(x)|qdx+ Ik,j1 + Ik,j2 ,

where

Ik,j1 :=

∫
Ajk

|Lik,j(x)∇(u ◦ R2)(x)|qdx+

∫
Ajk

|Lok,j(x)∇(u ◦ R1)(x)|qdx
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and

Ik,j2 :=

∫
Ajk

|∇Lik,j(x)(u ◦ R2)(x)|qdx+

∫
Ajk

|∇Lok,j(x)(u ◦ R1)(x)|qdx.

Arguing as for (7.18), we have

(7.20) Ik,j1 ≤ C

∫
P jk

|∇u(x)|qdx.

By inequality (7.3), we have

(7.21)

∫
Ajk

|∇Lik,j(x)(u ◦ R2)(x)|qdx

≤ C

∫
Ajk\D

j
k

(
1

rk

)q
|(u ◦ R2)(x)|qdx

+ C

∫
Djk

(√
1

x2
n +

(
s− rk

2

)2

)q

|(u ◦ R2)(x)|qdx.

By (7.5), we have

(7.22)

∫
Ajk

|∇Lok,j(x)(u ◦ R1)(x)|qdx

≤ C

∫
Ajk\D

j
k

(
1

rk

)q
|(u ◦ R1)(x)|qdx

+ C

∫
Djk

(√
1

x2
n +

(
s− rk

2

)2

)q

|(u ◦ R1)(x)|qdx.

In conclusion, (7.21) and (7.22) give

(7.23) Ik,j2 ≤ C

∫
Djk

(√
1

x2
n +

(
s− rk

2

)2

)q

((|u ◦ R1)(x)|q + |(u ◦ R2)(x)|q)dx

+ C

∫
Ajk\D

j
k

(
1

rk

)q
(|(u ◦ R1)(x)|q + |(u ◦ R2)(x)|q)dx.

Finally, by combining inequalities (7.19), (7.20) and (7.23), we obtain inequality (7.16). �

7.4. An extension theorem. The following theorem provides us with examples of irregular
extension domains.



36 PEKKA KOSKELA, ALEXANDER UKHLOV AND ZHENG ZHU

Theorem 7.1. Let 1 ≤ q < n− 1 and (n− 1)q/(n− 1− q) < p <∞ be fixed. Given λ > 0,
define

(7.24) hλ(t) :=

(
1

t

)((1−λ(n−1−q))(n−1)(k+1)+k)/3k

.

There exists λo := λo(p, q) > 0 such that Ω̃h ⊂ Rn is a Sobolev (p, q)-extension domain with

a bounded linear extension operator and with |∂Ω̃h| > 0 whenever h(t) ≤ hλ(t) for some
λ > λo and all 0 < t ≤ 1.

Proof. By the definition of hλ and (7.1), we have

(7.25) rk ≤ 2−λ(n−1)(k+1).

Set

(7.26) λo(p, q) := max

{
n− 1− p
(n− 1)2

,
p− q

(n− 1)(p− q)− pq

}
.

Then, for every λ > λo, we have 1 ≤ q < ((n−1)λ−1)p
λp+(n−1)λ−1

< n− 1. Fix such a λ. To simplify our

notation, we refer to hλ by h in what follows. Since En−1 ⊂ ∂D̃h and Hn−1(En−1) > 0, we

have En−1 × [1, 2] ⊂ ∂Ω̃h and Hn(∂Ω̃h) ≥ Hn(En−1 × [1, 2]) > 0.
In order to prove that E defined in (7.12) is a bounded extension operator, we need an

approximation argument; linearity is immediately from (7.12). Given u ∈ W 1,∞(Ω̃h)∩C(Ω̃h)

and m ∈ N, we define um := u
∣∣
Ω̃mh
. Since Ω̃m

h is clearly quasiconvex, it follows that um is

Lipschitz and bounded. We define the extension Em(um) of um by setting

Em(um)(x) :=


um(x), x ∈ Ω̃m

h ,

Li(x)(um ◦ R2)(x) + Lo(x)(um ◦ R1)(x), x ∈
⋃m
k=1

⋃
j A

j
k,

(um ◦ R1)(x), x ∈ Um
1 ,

where Um
1 = S0× (0, 1)\Ωm

h . Since um is Lipschitz, Em(um) is ACL on C0. By the definition
of um and the Hölder inequality, we have

(7.27)

∫
Ω̃mh

|um(x)|qdx ≤
∫

Ω̃h

|u(x)|qdx ≤ C

(∫
Ω̃h

|u(x)|pdx
) q

p

and

(7.28)

∫
Ω̃mh

|∇um(x)|qdx ≤
∫

Ω̃h

|∇u(x)|qdx ≤ C

(∫
Ω̃h

|∇u(x)|pdx
) q

p

.
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Since the collection {P j
k} is pairwise disjoint, by summing over j and k, (7.15) and the

Hölder inequality imply

(7.29)

∫
⋃m
k=1

⋃
j C

j
k

|Em(um)(x)|qdx ≤ C

∫
⋃m
k=1

⋃
j P

j
k

|um(x)|qdx ≤ C

(∫
Ω̃h

|u(x)|pdx
) q

p

.

By (7.10), the change of variables formula and the Hölder inequality, we have

(7.30)

∫
Um1

|um ◦ R1(x)|qdx ≤
∫
R1(Um1 )

|um(x)|qdx ≤ C

(∫
Ω̃h

|u(x)|pdx
) q

p

.

Consequently, by combining (7.27), (7.29) and (7.30), we obtain

(7.31)

(∫
C0
|Em(um)(x)|qdx

) 1
q

≤ C

(∫
Ω̃h

|u(x)|pdx
) 1

p

,

where the constant C is independent of m and u.
By (7.13), we have

(7.32)

∫
Um1

|∇Em(um)(x)|qdx ≤
∫
Um1

|∇(um ◦ R1)(x)|qdx.

By (7.10), the change of variables formula and the Hölder inequality, we obtain

(7.33)

∫
Um1

|∇(um ◦ R1)(x)|qdx ≤
∫
Um1

|∇(um ◦ R1)(x)|qdx

≤ C

∫
R1(Um1 )

|∇um(x)|qdx ≤ C

(∫
Ω̃h

|∇u(x)|pdx
) q

p

.

By combining (7.32) and (7.33), we obtain∫
Um1

|∇Em(um)(x)|qdx ≤ C

(∫
Ω̃h

|∇u(x)|pdx
) q

p

,(7.34)

where the constant C is independent of m and u.
By (7.16) and the fact that the collection {P j

k} is pairwise disjoint, we have

(7.35)

∫
⋃m
k=1

⋃
j C

j
k

|∇Em(um)(x)|qdx ≤ C

∫
⋃m
k=1

⋃
j P

j
k

|∇um(x)|qdx

+ C

∫
⋃m
k=1

⋃
j D

j
k

(√
1

x2
n +

(
s− rk

2

)2

)q

(|(um ◦ R1)(x)|q + |(um ◦ R2)(x)|q)dx

+ C

∫
⋃m
k=1

⋃
j A

j
k\D

j
k

(
1

rk

)q
(|(um ◦ R1)(x)|q + |(um ◦ R2)(x)|q)dx.
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The Hölder inequality gives

(7.36)

∫
⋃m
k=1

⋃
j P

j
k

|∇um(x)|qdx ≤ C

(∫
Ω̃h

|∇u(x)|pdx
) q

p

,

(7.37)

∫
⋃m
k=1

⋃
j D

j
k

(√
1

x2
n +

(
s− rk

2

)2

)q

(|(um ◦ R1)(x)|q + |(um ◦ R2)(x)|q)dx

≤ C

(∫
⋃m
k=1

⋃
j D

j
k

|(um ◦ R1)(x)|p + |(um ◦ R2)(x)|pdx

) q
p

×

∫⋃m
k=1

⋃
j D

j
k

(√
1

x2
n +

(
s− rk

2

)2

) pq
p−q

dx


p−q
p

and

(7.38)

∫
⋃m
k=1

⋃
j A

j
k\D

j
k

(
1

rk

)q
(|(um ◦ R1)(x)|q + |(um ◦ R2)(x)|q)dx

≤

(∫
⋃m
k=1

⋃
j A

j
k\D

j
k

|(um ◦ R1)(x)|p + |(um ◦ R2)(x)|pdx

) q
p

×

(∫
⋃m
k=1

⋃
j A

j
k\D

j
k

(
1

rk

) pq
p−q

dx

) p−q
p

.

By (7.10) and (7.11), the change of variables formula yields that

(7.39)

∫
⋃m
k=1

⋃
j A

j
k\D

j
k

|(um ◦ R1)(x)|p + |(um ◦ R2)(x)|pdx ≤ C

∫
Ω̃h

|u(x)|pdx

and

(7.40)

∫
⋃m
k=1

⋃
j D

j
k

|(um ◦ R1)(x)|p + |(um ◦ R2)(x)|pdx ≤ C

∫
Ω̃h

|u(x)|pdx.
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With lk =
√
x2
n +

(
s− rk

2

)2
, by (7.25) and (7.26), we have

(7.41)

∫
⋃m
k=1

⋃
j D

j
k

 1√
x2
n +

(
s− rk

2

)2


pq
p−q

dx ≤ C
m∑
k=1

∑
j

rk

∫ rk

0

l
n−2− pq

p−q
k dlk

≤ C
m∑
k=1

∑
j

r
n− pq

p−q
k ≤ C

∞∑
k=1

2(n−1)(k+1)(1−λ(n− pq
p−q )) <∞.

Furthermore,

(7.42)

∫
⋃m
k=1

⋃
j A

j
k\D

j
k

(
1

rk

) pq
p−q

dx ≤ C
m∑
k=1

Nk∑
j=1

r
n−1− pq

p−q
k

≤ C
∞∑
k=1

2(n−1)(k+1)(1−λ(n−1− pq
p−q )) <∞.

By combining inequalities (7.35)-(7.42), we deduce that

(7.43)

∫
⋃m
k=1

⋃
j C

j
k

|∇Em(um)(x)|qdx ≤ C

(∫
Ω̃h

|u(x)|p + |∇u(x)|pdx
) q

p

.

Next, by combining (7.28), (7.34) and (7.43), we conclude that

(7.44)

∫
C0
|∇Em(um)(x)|qdx ≤ C

(∫
Ω̃h

|u(x)|p + |∇u(x)|pdx
) q

p

.

Hence, by combining (7.31) and (7.44), we infer that

(7.45) ‖Em(um)‖W 1,q(C0) ≤ C‖u‖W 1,p(Ω̃h),

uniformly in m.
By the definitions of um and Em(um), for arbitrary m,m′ ∈ N with m < m′, we have

(7.46) ‖Em(um)− Em′(um′)‖qW 1,q(C0) ≤
∫
⋃m′
k=m+1

⋃
j C

j
k

(|Em(um)(x)|q + |∇Em(um)(x)|q) dx

+

∫
⋃m′
k=m+1

⋃
j C

j
k

(
|Em′(um′)(x)|q + |∇Em′(um′)(x)|q

)
dx.
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By the definition of Em(um) and Em′(um′), the Hölder inequality implies

(7.47)

∫
⋃m′
k=m+1

⋃
j C

j
k

(|Em(um)(x)|q + |∇Em(um)(x)|q) dx

≤ C

∫
R1(

⋃m′
k=m+1

⋃
j C

j
k)

(|um(x)|q + |∇um(x)|q) dx

≤ C(p, q)

(∫
R1(

⋃m′
k=m+1

⋃
j C

j
k)

(|u(x)|p + |∇u(x)|p) dx

) q
p

,

and

(7.48)

∫
⋃m′
k=m+1

⋃
j C

j
k

(
|Em′(um′)(x)|q + |∇Em′(um′)(x)|q

)
dx ≤

C

(∫
⋃m′
k=m+1

⋃
j C̃

j
k

(|um′ |p + |∇um′ |p) dx+

∫
R1(

⋃m′
k=m+1

⋃
j A

j
k)

(|um′|p + |∇um′|p) dx

) q
p

≤ C

(∫
⋃m′
k=m+1

⋃
j C̃

j
k

(|u|p + |∇u|p) dx+

∫
R1(

⋃m′
k=m+1

⋃
j A

j
k)

(|u|p + |∇u|p) dx

) q
p

.

Since the volumes of R1

(⋃m′

k=m+1

⋃
j A

j
k

)
and of

⋃m′

k=m+1

⋃
j C̃

j
k tend to zero as m,m′ ap-

proach infinity, both terms in (7.47) and (7.48) converge to zero. Consequently, {Em(um)}
is a Cauchy sequence in the Sobolev space W 1,q(C0) and hence converges to some func-
tion v ∈ W 1,q(C0) with respect to the W 1,q-norm. Furthermore, there exists a subsequence
of {Em(um)} which converges to v almost everywhere in C0. On the other hand, by the
definitions of Em(um) and E(u), we have

lim
m→∞

Em(um)(x) = E(u)(x)

for almost every x ∈ C0. Hence v(x) = E(u)(x) almost everywhere. This implies that
E(u) ∈ W 1,q(C0) with

(7.49) ‖E(u)‖W 1,q(C0) = ‖v‖W 1,q(C0) = lim
m→∞

‖Em(um)‖W 1,q(C0) ≤ C‖u‖W 1,p(Ω̃h).

We conclude that E defined in (7.12) is a linear extension operator from W 1,∞(Ω̃h)∩C(Ω̃h)
to W 1,q(C0) with the norm inequality

‖E(u)‖W 1,q(C0) ≤ C‖u‖W 1,p(Ω̃h),

where C is independent of u. Since W 1,∞(Ω̃h) ∩ C(Ω̃h) is dense in W 1,p(Ω̃h), we can extend

E to entire W 1,p(Ω̃h). It follows that Ω̃h is a Sobolev (p, q)-extension domain, since C0 is a
(q, q)-extension domain. �
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7.5. Positive boundary volume.

Proof of Theorem 1.2. The claim is an immediate consequence of Theorem 7.1. �

Theorem 1.1 relies on q-fatness which is a condition on relative capacity. This condition
is automatically satisfied when q > n− 1, but it may fail miserably even for Sobolev (p, q)-
extension domains when 1 ≤ q < n− 1. This is the context of our next result.

Theorem 7.2. Let n ≥ 3 and 1 ≤ q < n − 1 be arbitrary, and let h : [0, 1] → [0, 1] be a
strictly increasing and continuous function with h(0) = 0 and h(1) = 1. Then there exists
q < p <∞ and a Sobolev (p, q)-extension domain Ωh ⊂ Rn with a linear extension operator
and with a subset A ⊂ ∂Ωh of positive volume so that

lim
r→0+

Capq
(
Ωh ∩B

(
x, r

4

)
,Ωh ∩ A

(
x; r

2
, 3r

4

)
;B(x, r)

)
h(r)

= 0

for every x ∈ A.

Proof. Let n ≥ 3 and 1 ≤ q < n − 1. Fix (n − 1)q/(n − 1 − q) < p < ∞ and a strictly
increasing and continuous function h : [0, 1]→ [0, 1]. Fix λ > λo, where λo is from Theorem
7.1. Define

h̃(t) := min

{
h(t),

(
1

t

)((1−λ(n−1−q))(n−1)(k+1)+k)/3k
}
.

Then Ω̃h̃ is a Sobolev (p, q)-extension domain with a linear extension operator by Theorem

7.1. Let A := En−1 ×
(

3
2
, 2
)
. Then A ⊂ ∂Ω̃h̃ and |A| > 0. Let 0 < r < 1

4
and x ∈ A be

arbitrary.
We define a cut-off function on the ball B(x, r) by setting

(7.50) Fh(y) =


1 in B(x, r

4
),

−4
r
|y − x|+ 2 in B(x, r

2
) \B(x, r

4
),

0 in B(x, r) \B(x, r
2
) .

Set u(y) = χΩ̃h̃
(y). Since Ω̃h̃ is a Sobolev (p, q)-extension domain, E(u) ∈ W 1,q(C0). The

function v defined by v(y) := Fh(y)E(u)(y) for y ∈ B(x, r) satisfies

v ∈ Wq

(
Ω̃h̃ ∩B

(
x,
r

4

)
, Ω̃h̃ ∩ A

(
x;
r

2
,
3r

4

)
;B(x, r)

)
.

Pick kr ∈ N so that 2−kr−2 < r ≤ 2−kr−1. If Cjk ∩ B(x, r) 6= ∅, then, by the definition of Cjk,
we have that k > kr. Moreover, by the definition of E(u) in (7.12), we have that

|∇v(y)| ≤

{
C
rk
, for every y ∈ Cjk ∩B(x, r),

0, elsewhere .
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Hence, by the definition of v, we have∫
B(x,r)

|∇v(y)|qdy ≤
∞∑

k=kr

∑
j

∫
Cjk∩B(x,r)

|∇v(y)|qdy

≤ C

∞∑
k=kr

r2(n−1)(k+1)rn−1−q
k ≤ C

∞∑
k=kr

r2−kh̃(8−k) ≤ Crh(r).

Thus

Capq

(
Ω̃h̃ ∩B

(
x,
r

4

)
, Ω̃h̃ ∩ A

(
x;
r

2
,
3r

4

)
;B(x, r)

)
≤ Crh(r).

This implies that

lim sup
r→0+

Capq

(
Ω̃h̃ ∩B

(
x, r

4

)
, Ω̃h̃ ∩ A

(
x; r

2
, 3r

4

)
;B(x, r)

)
h(r)

≤ lim
r→0+

Cr = 0,

as desired. �

Remark 7.1. One can easily modify the construction of the domain from the previous proof
so as to obtain a domain that fails to be (n − 1)-fat at points of positive volume of the
boundary. Let us sketch the necessary changes since we cannot use an extension operator as
in the previous argument.

First, define rk = 2−k−2 exp(− exp(2k)) and Rk = 2−k−2. Instead of E(u) in the above
computation, we use a function u defined as follows. On each Qj

k × [1, 2), our function u as

a function of (y′, t) satisfies u(y′, t) = 1 if y ∈ Dj
k, u(y′, t) = 0 if y′ /∈ Bn−1(xjk, Rk) and

u(y′, t) =
log
(

Rk
|y′−xjk|

)
log
(
Rk
rk

) otherwise.

Define v(y) = Fh(y)u(y). Then a simple computation gives what we want.

8. Final comments

In this section, we discuss in more detail some of the issues mentioned in the introduction
and pose open problems that are motivated by the results in this paper.

First, let us comment on the locality of the estimate (4.6) from Theorem 4.2 that holds
for almost every x for 0 < r < rx. When q > n− 1, we actually have this estimate for all x
and all 0 < r < min{1, diam (Ω)/4}. This also holds when q = 1 and n = 2.

Corollary 8.1. Suppose that 1 ≤ q < p when n = 2 or that n− 1 < q < p when n ≥ 3. If Ω
is a Sobolev (p, q)-extension domain, then there is a nonnegative, bounded and quasiadditive
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set function Φ defined on open sets, with the following property. For each x ∈ ∂Ω and every
0 < r < min{1, 1

4
diam (Ω)}, we have

(8.1) Φ(B(x, r))p−q|B(x, r) ∩ Ω|q ≥ |B(x, r)|q.

This conclusion follows by combining Theorem 4.1 with Remark 2.9, see inequality (2.10).
Moreover, Theorem 4.1 shows that (8.1) holds also uniformly in x and r for 1 ≤ q ≤ n − 1
if we assume that (2.10) holds for these values.

One can view the uniform validity of (8.1) as the optimal analog of the Ahlfors-regularity
condition (1.1). In [9, 10], it was shown, relying on (1.1), that a Sobolev (p, p)-extension
domain can be equipped with a linear extension operator. We proved in Lemma 2.1 that
a Sobolev (p, q)-extension domain can be equipped with a homogeneous extension operator
but we do not know if one could promote this to linearity. This motivates the following
problem.

Question 8.1. Suppose that Ω is a bounded domain that satisfies the conclusion of Corollary
8.1. Find the additional assumptions that ensure the existence of a linear extension operator
from W 1,p(Ω) to W 1,q(Rn).

Given 1 ≤ q < n − 1, we constructed a Sobolev (p, q)-extension domain whose boundary
has positive volume. We do not know if such domains exist also when q = n− 1 > 1.

Question 8.2. Let n ≥ 3. Does there exist a Sobolev (p, n − 1)-extension domain Ω ⊂ Rn,
for some p > n− 1, so that |∂Ω| > 0?

Furthermore, our constructions of examples of (p, q)-extension domains with positive
boundary volume have restrictions on p in terms of q. Even though these restrictions are
natural for our constructions, we do not know if some other constructions would allow p to
be arbitrarily close to q.

Question 8.3. Given n ≥ 3, 1 ≤ q < n − 1 and p > q, does there exist a Sobolev (p, q)-
extension domain Ω ⊂ Rn whose boundary has positive volume?

Finally, the reader familiar with [9] may wonder why we do not employ the argument that
was used there to prove (1.1) towards establishing (8.1) in the case q < n. We have indeed
tried this but without success.

Acknowledgement. We wish to thank the referee for pointing out an inexactness in our
original proof for Theorem 3.1 and for several useful comments on the original manuscript.
The third author thanks Tero Kilpeläinen for introducing him to fine topology.
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[41] J. Väisälä, Quasiconformal maps and positive boundary measure. Analysis 9 (1989), no. 1-2, 205–216.
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