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Chapter 1

Least Median of Squares
Sara Taskinen and Klaus Nordhausen
Department of Mathematics and Statistics, University of Jyväskylä
sara.l.taskinen@jyu.fi, klaus.k.nordhausen@jyu.fi

Definition

The leastmedian of squares (LMS) is a regressionmethod introduced in Rousseeuw
(1984) and further developed in Rousseeuw & Leroy (1987). The LMS estimator
minimizes themedian of the squared residuals. Themethod is shown to be highly
robust having a breakdown point of 50% which is the highest possible. Because
of this, the LMS regression method is fitted to the main bulk of the data while
ignoring the rest of the data. Hence, atypical observations are easily identified.
The method suffers from very low efficiency and is therefore recommended to
be used primarily as an exploratory tool to identify regression outliers.

1 Introduction

Consider a data set consisting of 𝑛 independent and identically distributed (iid)
observations (𝑥′𝑖 , 𝑦𝑖), 𝑖 = 1, … , 𝑛, where 𝑥 𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)′ and 𝑦𝑖 are the observed
values of predictor variables and response variables, respectively. The data are
assumed to follow a linear regression model

𝑦𝑖 = 𝑥′𝑖 𝛽 + 𝜖𝑖,

where the 𝑝-vector 𝛽 = (𝛽1, … , 𝛽𝑝)′ contains the unknown regression coeffi-
cients to be estimated based on the data and the errors 𝜖𝑖 are iid and independent
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of 𝑥 𝑖.
The widely used least squares (LS) estimator for 𝛽 was proposed in early 1800 by
Gauss and Legendre (Stigler 1981). The LS estimate of 𝛽 is the �̂� that minimizes

𝑛
∑
𝑖=1

𝑟2𝑖 , (1.1)

that is, the sum of squared residuals 𝑟𝑖 = 𝑦𝑖 − 𝑥′𝑖 �̂� . The popularity of the estimate
arises mainly from its nice computational and theoretical properties. The LS esti-
mator has a closed form solution and can be computed explicitly from data using
simple matrix algebra. The estimator has also a desired property of being regres-
sion, scale and affine equivariant meaning that it is known how the estimate
changes under different transformations of the data (Rousseeuw & Leroy 1987).
If the error distribution is Gaussian, then the LS estimate is optimal. It is however
well known that the LS estimator is extremely sensitive to outlying observations
and even a single outlier can have a huge effect on the estimate. Notice that with
outlier we mean here regression outlier, that is, an observation, (𝑥′𝑖 , 𝑦𝑖), where
the relationship between 𝑥 𝑖 and 𝑦𝑖 differs from that of the majority of the data.
For the identification of different types of regression outliers, see Rousseeuw &
Leroy (1987), for example.
To improve on the LS estimator, several robust regression estimators have been
proposed in the literature. Many of the proposed estimators are obtained by re-
placing the squared residuals by another function of the residuals. The least abso-
lute deviation (LAD) estimator or 𝐿1 regression estimator is obtained byminimiz-
ing the sum of the absolute values of the residuals ∑𝑛

𝑖=1 |𝑟𝑖|, and a more general
family of estimators, that is, the 𝑀-estimators minimize ∑𝑛

𝑖=1 𝜌(𝑟𝑖), where 𝜌 is a
symmetric function (𝜌(−𝑥) = 𝜌(𝑥)) with a unique minimum at zero (Huber 1973).
Such regression estimates are robust against outliers in response variables (𝑦𝑖’s),
however, they cannot tolerate outliers in the predictors (𝑥𝑖’s). Notice also that
such outliers, which are also called as “leverage points”, cannot always be iden-
tified using residuals based on the methods described above as the regression
estimates may be strongly affected by the outliers yielding small residual values.

2 Least median of squares estimator

As mentioned in the previous section, a single outlier can strongly affect the
estimates that are obtained by minimizing the sum of the squared residuals (or
other function of the residuals). A regression estimator that is very robust against
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outliers in responses as well as outliers in predictors is obtained by replacing the
sum in (1.1) with themedian (Rousseeuw 1984). The least median of squares (LMS)
estimator thus minimizes the median of the squared residuals

Median𝑖 𝑟2𝑖 . (1.2)

In the case of a single predictor the solution can be interpreted as the midline
between the two closest parallel lines which contain half of the data between
them. In the case of an intercept only model, i.e., when just the location of the
𝑦𝑖’s is to be computed, the estimate is known as the Shorth estimate, the mid-
point of the shortest interval to contain 50% of the data. If the amount of the
points outside the parallel lines is to be reduced the method is known as least
𝛼-quantile estimator (Rousseeuw & Leroy 1987). It is shown in Rousseeuw (1984)
that there always exists a solution for (1.2). However, the objective function may
have many local minima (Steele & Steiger 1986). For large 𝑝 the computation re-
quires some subsampling and may be time-consuming (Souvaine & Steele 1987;
Joss & Marazzi 1990). See also a cautionary note on the instability of the LMS
solution in Hettmansperger & Sheather (1992).
The LMS estimate for the regression coefficient is one of the few robust estimates
which does not need an initial scale estimate. The same property holds for the LS
estimate. Based on the LMS estimate the scale of the residuals 𝜖𝑖 can be estimated
as follows. First an initial scale 𝑠0 is obtained as

𝑠0 = 1.4826 (1 + 5
𝑛 − 𝑝)√

Median𝑖 𝑟2𝑖 ,

where the first constant term is for achieving consistency in case the errors follow
a Gaussian distribution, and the second constant term is a finite sample correc-
tion. The initial scale is then used to define the standardized residuals 𝑟𝑖,𝑠𝑡 = 𝑟𝑖/𝑠0,
𝑖 = 1, … , 𝑛. A general rule is that observations which have absolute standard-
ized residuals smaller than 2.5 are considered as good data points. The actual
scale based on LMS, 𝜎𝐿𝑀𝑆 , is then the standard deviation of the (unstandardized)
residuals of the good data points.
Often in robustness studies it is of interest to evaluate what is the amount of out-
liers the estimator can handle. To formalize this, we need a notion of breakdown
point. In the next we shortly recall the definition of finite-sample breakdown
point as introduced by Donoho & Huber (1983). Let a sample of 𝑛 data points be
𝑍 = (𝑧1, … , 𝑧𝑛), where 𝑧𝑖 = (𝑥′𝑖 , 𝑦𝑖)′, and write �̂�(𝑍) for an regression estimate
based on the data. Now consider all possible contaminated samples 𝑍 ′ that are
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obtained by replacing any 𝑚 of the original data points by arbitrary values. Then
denote the maximum bias caused by such contamination as

bias(𝑚; �̂�, 𝑍) = sup
𝑍 ′

||�̂�(𝑍 ′) − �̂�(𝑍)||.

Infinite bias means that 𝑚 outliers can have an arbitrarily large effect on �̂� and
we say that the estimator “breaks down”. Further, the finite-sample breakdown
point is the minimum fraction of contamination that will make the estimator to
break down. Mathematically, this can be expressed as

𝜖∗(�̂�, 𝑍 ) = min1≤𝑚≤𝑛 {
𝑚
𝑛 ∶ bias(𝑚; �̂�, 𝑍) = ∞} .

Rousseeuw (1984) showed that if 𝑝 > 1 and the observations are in general posi-
tion, meaning that any 𝑝 observations give a unique determination of 𝛽 , then the
finite sample breakdown point of the LMS estimator is ([𝑛/2] − 𝑝 + 2)/𝑛, where
[𝑛/2] denotes the largest integer less than or equal to 𝑛/2. When considering the
limit 𝑛 → ∞ (with 𝑝 fixed), the asymptotic breakdown point of the LMS estimator
is 50%, that is, the best one can expect. The LMS thus extends the 50% breakdown
property of the median to the regression setting. Another tool to study the ro-
bustness properties of an estimator is the influence function which measures the
change of the estimator when an outlying observation is introduced. As the LMS
estimator converges at the rate of 𝑛−1/3 and does not have a normal limiting
distribution, its influence function is not well-defined and the estimator suffers
from low efficiency. Hence, Rousseeuw (1984) recommends that LMS should not
be used for inferential purposes, but as an exploratory tool for diagnosing regres-
sion outliers. LMS is for example implemented in the R package MASS (Venables
& Ripley (2002)) as the function lmsrob.

3 Example

Smith et al. (1984) measured the chemical contents of 53 samples of rocks in
Western Australia. The data are available as the mineral data set in R (R Core
Team 2020) package RobStatTM accompanying the book by Maronna et al. (2018).
In Figure 1 we plot the chemical contents (in parts per million) of zinc vs. the
chemical contents of copper. We notice that the observation 15 stands out as a
clear outlier and the LS estimator is highly influence by this observation. If we
reject observation 15, then the LS fit seems to model correctly the main bulk
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of the data. In Figure 2 the scaled residuals based on the LS fit are plotted. As
the observations with absolute value of standardised residual exceeding 2.5 are
identified as outliers (Rousseeuw & Leroy 1987), the horizontal lines at 2.5 and
-2.5 are also added in the figure. The plot indicates that all scaled residuals are
very small and although the LS method reveals two outliers, none of them is
classified extremely atypical.
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Figure 1: Zinc and copper contents of 53 samples of rocks and the re-
gression lines based on least median of squares regression (LMS) and
least squares regression (LS) applied to the original data and data with
observation 15 as rejected. The grey area around the LMS regression
line contains the “inner” 50% percent of the data points.

The LMS estimator is not affected by observation 15 and the resulting fit is nearly
equivalent to the LS fit obtained when the observation 15 is rejected. The LMS
estimates for intercept and slope are 11.79 and 0.06, respectively (as compared to
the LS-estimates 7.96 and 0.13). The scaled residuals in Figure 2 indicate that the
method identifies altogether eight outliers and observation 15 clearly stands out
in the residual plot.
To have an idea about the model fit, Rousseeuw & Leroy (1987) define the coeffi-
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Figure 2: Scaled residuals based on LS regression (left) and LMS regres-
sion (right) applied to mineral data. An observation with an absolute
value of standardised residual larger than 2.5 is identified as an outlier
and marked using filled black dots.

cient of determination in the case of LMS as

𝑅2𝐿𝑀𝑆 = 1 − (Median𝑖 |𝑟𝑖|
Mad𝑖 𝑦𝑖

)
2
,

whereMad𝑖 𝑦𝑖 denotes themedian absolute deviation. For our example data𝑅2𝐿𝑀𝑆 =
0.59 which is much better than the regular coefficient of determination of the LS
fit of 𝑅2𝐿𝑆 = 0.46.
Finally notice that in this simple example it was easy to identify an outlier just
by plotting the data. However, outlier identification becomes more difficult when
the number of predictors increase and cannot be performed just by plotting the
data. In such a case one should proceed as guided in Rousseeuw & Leroy (1987),
for example.

Summary and Conclusion

The paper introducing the LMS Rousseeuw & Leroy (1987) is considered as a
seminal paper in the development of robust statistics and is, for example, ap-
preciated in the Breakthroughs in Statistics series (Kotz & Johnson (1997)). LMS
demonstrates that high breakdown regression can be performed with outliers
present in response and predictors. However, due to it is low efficiency and the
development of better robust regression methods such as MM-regression (Yohai
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1987), LMS is nowadays mainly used for exploratory data analysis and as a initial
estimate for more sophisticated methods.

Cross References

Ordinary Least Squares, Iterative Weighted Least Squares, Regression
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