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Iterative Weighted Least Squares

Definition

Iterative (re-)weighted least squares (IWLS) is a widely used algorithm for estimating

regression coefficients. In the algorithm weighted least squares estimates are computed

at each iteration step so that weights are updated at each iteration. The algorithm can

be applied to various regression problems like generalized linear regression or robust

regression. In this article we will focus however on its use in robust regression.

Introduction

Consider a data set consisting of n independent and identically distributed (iid) ob-

servations (x>i , yi), i = 1, . . . , n, where xi = (xi1, . . . , xip)
> and yi are the observed

values of the predictor variables and the response variable, respectively. The data are

assumed to follow the linear regression model

yi = x>i β + εi,

where the p-vector β = (β1, . . . , βp)
> contains the unknown regression coefficients

which are to be estimated based on the data. The errors εi are iid with mean zero and

variance σ2 and independent of xi.



2

The well-known least squares (LS) estimator for β is the β̂ that minimizes the

sum of squared residuals
∑

i ri(β)2, where ri(β) = yi − x>i β, or equivalently, solves∑
i ri(β)xi = 0. To put this into a matrix form, let us collect the responses and

predictors into a n×1 vector y = (y1, . . . , yn)> and a n×p matrix X = (x1, . . . ,xn)>,

respectively, then the LS problem is given by

argmin
β
||y −Xβ||22, (1)

and the estimate can be simply computed as

β̂LS = (X>X)−1X>y,

assuming that (X>X)−1 exists.

If the assumption of constant variance of the errors εi is violated, we can use the

weighted least squares method to estimate the regression coefficients β. The weighted

least squares (WLS) estimate solves
∑

iwi ri(β)xi = 0, where w1, . . . , wn are some non-

negative, fixed weights. If we let W be a n×n diagonal matrix with weights w1, . . . , wn

on its diagonal, then the WLS estimate can be computed by applying ordinary least

squares method to W 1/2y and W 1/2X. Thus

β̂WLS = (X>WX)−1X>Wy, (2)

If we assume that the errors εi are independent with mean zero and variance σ2
i , then the

WLS estimate with weights wi = 1/σ2
i is optimal. If we further assume that the error

distribution is Gaussian, then the WLS estimate is the maximum likelihood estimate.

Notice that in practice the weights are often not known and need to be estimated. Some

examples of weight selection are given, for example, in Montgomery et al (2012). Notice

also that linear regression with non-constant error variance is only one application area

of WLS.
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Iterative weighted least squares

When the weight matrix W in (2) is not fixed, but may for example depend on the

regression coefficients via residuals, we can apply the iterated weighted least squares

(IWLS) algorithm for estimating the parameters. In such a case, the regression coeffi-

cients and weights are updated alternately as follows

1. Compute an initial regression estimate β̂0.

2. For k = 0, 1, . . . , compute the residuals ri,k(β̂k) = yi − xiβ̂k and weight matrix

W k = diag(w1,k, . . . , wn,k), where wi,k = w(ri,k(β̂k)) with some weight function w.

Then update β̂k+1 using WLS as in (2) with weight matrix W k, that is,

β̂k+1 = (X>W kX)−1X>W ky.

3. stop when maxi |ri,k − ri,k+1| < ε, where ε may be fixed or related to the residual

scale.

It is shown in Maronna et al (2018) that the algorithm converges if the weight function

w(x) is non-increasing for x > 0, otherwise starting values should be selected with care.

IWLS and robust regression

Let us next illustrate how IWLS is used in the context of robust regression, which is

widely used in geosciences as atypical observations should not have an impact on the

parameter estimation and often should be detected. For a recent comparison of non-

robust regression with robust regression applied to geochemical data see for example

van den Boogaart et al (2021). For a given estimate σ̂ of the scale parameter σ, a robust

M estimate of regression coefficient β can be obtained by minimizing

∑
i

ρ

(
ri(β)

σ̂

)
, (3)
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where ρ is a robust, symmetric (ρ(−r) = ρ(r)) loss function with a minimum at zero

(Huber, 1981), or equivalently, by solving

∑
i

ψ

(
ri(β)

σ̂

)
xi = 0, (4)

where ψ = ρ′. Here the scale estimate σ̂ is needed in order to guarantee the scale

equivariance of β̂. If the estimate is not known, it can be estimated simultaneously

with β̂. For possible robust scale estimators see for example Maronna et al (2018).

The IWLS algorithm can be used for estimating robust M estimates as follows.

Write w(x) = ψ(x)/x and further wi = w(ri(β)/σ̂). Then the M estimation equation

in (4) reduces to ∑
i

wi ri(β)xi = 0,

and the robust M estimate of regression can be computed using the IWLS algorithm.

For the comparison of robust M estimates computed using different algorithms, see

Holland and Welsch (1977). For monotone ψ(x) the IWLS algorithm converges to a

unique solution given any starting value. Starting values however affect the number

of iterations and should therefore be chosen carefully. Maronna et al (2018) advice

to use the least absolute value (LAV) estimate as β0. If the robust scale is estimated

simultaneously with the regression coefficients, it is updated at each iteration step. The

median absolute deviation (MAD) estimate can then be used as a starting value for

the scale. For a discussion on convergence in the case of simultaneous estimation of

scale and regression coefficients, see Holland and Welsch (1977).

Some widely used robust loss functions include the Huber loss function

ρH =


1
2
x2, |x| ≤ c

c (|x| − c
2
), |x| > c,

yielding ψH(x) =


x, |x| ≤ c

sign(x) c, |x| > c,

and the Tukey biweight function
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ρT =


1−

[
1−

(
x
c

)2]3
, |x| ≤ c

1, |x| > c,

yielding ψT (x) = x

[
1−

(x
c

)2]2
I(|x| ≤ c).

The tuning constants c provide a trade-off between robustness and efficiency at the

normal model. Popular choices are cH = 1.345 and cT = 4.685 which yield an efficiency

of 95% for the corresponding estimates. The two loss functions and their derivatives

are shown in Figure 1.
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Fig. 1. Huber’s and Tukey’s biweight ρ and ψ functions with c chosen such that the efficiency at the

normal model is 95%.

Notice that as the Tukey biweight function is not monotone, the IWLS algorithm

may converge to multiple solutions. Good starting values are thus needed in order to

ensure convergence to a good solution. The asymptotic normality of robust M regression

estimates is discussed for example in Huber (1981).

Other usages of IWLS

Generalized linear models (GLM, McCullagh and Nelder, 1989), a generalization of the

linear model described above, allows the response variable to come from the family of



6

exponential distributions to which also the normal distribution belongs to. The regres-

sion coefficients in GLM are usually estimated via the maximum likelihood method

which coincides with the LS method for normal responses. However, for other mem-

bers from the exponential family there are no closed form expressions for the regression

estimates. The standard way of obtaining the regression estimates is the Fisher scoring

algorithm which can be expressed as an IWLS problem (McCullagh and Nelder, 1989).

The Fisher scoring algorithm creates working responses at each iteration step. There-

fore, when using IWLS for estimating coefficients of GLMs, not only are the weights

in W updated at each iteration but also the (working) responses y. How W k and yk

are updated depends on the distribution of the response. For details, see for example

McCullagh and Nelder (1989). The use of GLMs in soil science is for example discus-

sued in Lane (2002).

The idea in robust M estimation described above is to down-weight large resid-

uals whereas in the LS method, where the L2 norm is used in the minimization prob-

lem (1), these get a large weight. Another way of approaching the estimation is to

consider another norm, such as a general Lp norm, which then leads to

argmin
β
||y −Xβ||pp,

which for example for p = 1 corresponds to the least absolute value (LAV) regression.

It turns out that to solve the Lp norm minimization problem, also IWLS can be used

with weights W k = diag(r1(βk)2−p, . . . , rn(βk)2−p). Uniqueness of the solution and

behaviour of the algorithm depend on the choice of p. Also residuals which are too

close to zero often need to be replaced by a threshold value. For more details, see

for example Gentle (2007) and Burrus (2012). The motivation for using Lp norm in

regression is that it may produce sparse solutions for β and thus can be used in image
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compression such as in hyperspectral imagery (see for example Zhao et al, 2020, for

details).

Summary and Conclusion

The iterative weighted least squares algorithm is a simple and powerful algorithm which

iteratively solves a least squares estimation problem. The algorithm is extensively em-

ployed in many areas of statistics such as robust regression, heteroscedastic regression,

generalized linear models and Lp norm approximations.

Cross References

Ordinary Least Squares, Least Absolute Value, Least Mean Squares, Least Squares,

Regression, Locally Weighted Scatterplot Smoother
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