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BI-LIPSCHITZ INVARIANCE OF

PLANAR BV - AND W 1,1-EXTENSION DOMAINS

MIGUEL GARCÍA-BRAVO, TAPIO RAJALA, AND ZHENG ZHU

Abstract. We prove that a bi-Lipschitz image of a planar BV -extension domain is also a
BV -extension domain, and that a bi-Lipschitz image of a planar W 1,1-extension domain is
again a W 1,1-extension domain.

1. Introduction

Let Ω ⊂ Rn be a domain. For 1 ≤ p ≤ ∞, we define the Sobolev space W 1,p(Ω) by setting

W 1,p := {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω;Rn)},

where ∇u means the weak (distributional) derivative of u. The Sobolev space W 1,p(Ω) is
equipped with the norm

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) + ‖|∇u|‖Lp(Ω).

We say that Ω is a W 1,p-extension domain if there exists a bounded extension operator
T : W 1,p(Ω)→W 1,p(Rn), meaning that for every u ∈W 1,p(Ω) we have T (u)

∣∣
Ω
≡ u and

‖T (u)‖W 1,p(Rn) ≤ C‖u‖W 1,p(Ω),

where the constant C is independent of u. The minimal possible constant C above is denoted
by ‖T‖. Based on results in [7, 8], for 1 < p ≤ ∞, whenever Ω is a W 1,p-extension domain,
we can construct a bounded linear extension operator T : W 1,p(Ω) → W 1,p(Rn). By [12],
for planar bounded simply connected W 1,1-extension domains Ω, we can also construct a
bounded linear extension operator T : W 1,1(Ω) → W 1,1(R2). The classical results due to
Calderón and Stein [3, 16] tell us that Lipschitz domains are W 1,p-extension domains, for
every 1 ≤ p ≤ ∞. Later, Jones [9] defined a class of so-called (ε, δ)-domains which are a
generalization of Lipschitz domains. He also proved that these domains are W 1,p-extension
domains for every 1 ≤ p ≤ ∞. Moreover, in the works [11, 12, 15], a geometric characterization
of planar bounded simply connected W 1,p-extension domains was established.

For arbitrary u ∈W 1,p(Rn) with 1 ≤ p ≤ ∞, the inequality

|u(x)− u(y)| ≤ |x− y| (CM [|∇u|](x) + CM [|∇u|](y))

holds on every Lebesgue point of u, where the constant C is independent of u and M [|∇u|]
denotes the Hardy-Littlewood maximal function of |∇u|. Motivated by this estimate, in [6],
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Haj lasz defined the so-called Haj lasz-Sobolev space M1,p(Ω) which consists of all functions
u ∈ Lp(Ω) such that there exists a function 0 ≤ g ∈ Lp(Ω) satisfying the inequality

|u(x)− u(y)| ≤ |x− y|(g(x) + g(y)) (1.1)

for every x, y ∈ Ω \ F where the exceptional set F satisfies |F | = 0. We use Dp(u) to denote
the class of all nonnegative functions g ∈ Lp(Ω) which satisfy the inequality (1.1). The
Haj lasz-Sobolev space M1,p(Ω) is then equipped with the norm

‖u‖M1,p(Ω) := ‖u‖Lp(Ω) + inf
g∈Dp(u)

‖g‖Lp(Ω).

For 1 ≤ p ≤ ∞, one always has M1,p(Ω) ⊂ W 1,p(Ω) and the inclusion is strict for p = 1,
see [13]. By [6], for 1 < p ≤ ∞, the equality M1,p(Ω) = W 1,p(Ω) holds for a bounded W 1,p-
extension domain Ω. Similarly to W 1,p-extension domains, a domain Ω ⊂ Rn is said to be an
M1,p-extension domain, if there exists a bounded extension operator T : M1,p(Ω)→M1,p(Rn)
(the existence of such an operator implies the existence of a linear one for the cases 1 ≤ p <∞
by [8]). Observe that since M1,∞(Ω) consists of Lipschitz functions, by Kirszbraun theorem,
every domain is aM1,∞-extension domain. Furthermore, in [8], it is proved that for 1 ≤ p <∞
we have that Ω is an M1,p-extension domain if and only if Ω is Ahlfors n-regular. We say
that a domain Ω ⊂ Rn is Ahlfors n-regular, if for every x ∈ Ω and 0 < r < 1, we have

|B(x, r) ∩ Ω| ≥ c|B(x, r)|
with a constant 0 < c < 1 independent of x and r. Combining these two results, one can
prove that for 1 < p < ∞, a domain Ω ⊂ Rn is a W 1,p-extension domain if and only if
W 1,p(Ω) = M1,p(Ω) and Ω is Ahlfors n-regular (see [7, Theorem 5]).

In the case that Ω and Ω′ are bi-Lipschitz equivalent, one can easily check that M1,p(Ω) =
M1,p(Ω′) isomorphically, and also the fact that Ω is Ahlfors n-regular if and only if Ω′ is
Ahlfors n-regular. Moreover, a domain is a W 1,∞-extension domain if and only if it is locally
quasiconvex and local quasiconvexity is bi-Lipschitz invariant. We say that a set E ⊂ Rn

is quasiconvex, if there exists a constant c ≥ 1 such that for every x, y ∈ E, there exists a
rectifiable curve γ ⊂ E connecting x and y with the length controlled from above by c|x− y|.
In such case E is called c-quasiconvex. These last observations lead to the following theorem,
presented by Haj lasz, Koskela and Tuominen in [7].

Theorem 1.1. If Ω and Ω′ are bi-Lipschitz equivalent, for 1 < p ≤ ∞, Ω is a W 1,p-extension
domain if and only if Ω′ is a W 1,p-extension domain.

Since M1,1(Ω) is strictly included in W 1,1(Ω) for arbitrary domains Ω, the above method
does not work for the case p = 1. In the same paper, Haj lasz, Koskela and Tuominen raised
the question.

Question 1.2. Is Theorem 1.1 true for p = 1?

A partial affirmative answer to this question was provided in [10, Corollary 1.3]. There, it
was shown that Theorem 1.1 holds for bounded simply connected planar domains also in the
case p = 1, and also for BV -functions. In [10] it was also conjectured that the hypothesis of
simple connectivity was superfluous. In this paper we will show that they were right. We will
extend these previous results and answer Question 1.2 positively for general bounded planar
domains. We will do this by first resolving the question for BV -functions via decomposition
of sets of finite perimeter into Jordan domains, and then employing a recent result from [4] to
pass to W 1,1-functions. Both, the proof in [10] and our proof, rely on the results of Väisälä
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[17] and on the quasiconvexity of the connected open components of the complement of planar
BV -extension domains. The difference is that in [10] the bi-Lipschitz function was extended
to the complement by using the fact that the bi-Lipschitz map can be extended to a small
neighbourhood. Here we use a decomposition of sets of finite perimeter and the bi-Lipschitz
invariance of the quasiconvexity of the holes, see Section 2 for the definitions and results
needed for this approach.

Recall that the space of functions of bounded variation BV (Ω) is defined by setting

BV (Ω) := {u ∈ L1(Ω) : ‖Du‖(Ω) <∞}
where

‖Du‖(Ω) = sup

{∫
Ω
udiv(v)dx : v ∈ C∞0 (Ω;Rn), |v| ≤ 1

}
means the total variation of u on Ω. The function space BV (Ω) is equipped with the norm

‖u‖BV (Ω) := ‖u‖L1(Ω) + ‖Du‖(Ω).

Note that ‖Du‖ is a Radon measure on Ω that is defined for every set F ⊂ Ω as

‖Du‖(F ) := inf{‖Du‖(U) : F ⊂ U,U is open}.
A domain Ω ⊂ Rn is said to be a BV -extension domain, if there exists a bounded extension

operator T : BV (Ω)→ BV (Rn) with T (u)
∣∣
Ω
≡ u and an absolute constant C > 0 so that

‖T (u)‖BV (Rn) ≤ C‖u‖BV (Ω)

for every u ∈ BV (Ω). By a result in [10], a W 1,1-extension domain is also a BV -extension
domain. A typical example showing that the converse is not true is the slit disk in the plane.

In Section 2 we will prove the following result.

Theorem 1.3. Let Ω ⊂ R2 be a bounded BV -extension domain and f : Ω→ Ω′ a bi-Lipschitz
map. Then Ω′ is also a BV -extension domain.

At the end of Section 2 we will also show how Theorem 1.3 implies the same result for
W 1,1-extension domains.

Corollary 1.4. Let Ω ⊂ R2 be a bounded W 1,1-extension domain and f : Ω → Ω′ a bi-
Lipschitz map. Then Ω′ is a W 1,1-extension domain.

Our proof of Corollary 1.4 uses the recent characterization of W 1,1-extension domains
among boundedBV -extension domains that was proven by the first and second named authors
in [4].

Theorem 1.5. Let Ω ⊂ R2 be a bounded BV -extension domain. Then Ω is a W 1,1-extension
domain if and only if the set

∂Ω \
⋃
i∈I

Ωi

is purely 1-unrectifiable, where {Ωi}i∈I are the connected components of R2 \ Ω.

We call a set H ⊂ R2 purely 1-unrectifiable if for every Lipschitz map f : R→ R2 we have
H1(H ∩ f(R)) = 0.

Let us remark that one could also prove Corollary 1.4 with a similar proof as we provide
for Theorem 1.3 in Section 2; via the invariance of quasiconvexity of the components of the
complement, a characterization of W 1,1-extension domains as the domains with the strong
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extension property for sets of finite perimeter and by slightly pushing the boundary of the
extension of a Jordan domain away from the boundary of ∂Ω, see [4] for more details on these
tools. This alternative approach indicates that if we were able to prove the bi-Lipschitz invari-
ance of BV -extension domains in higher dimensions, and were able to push the boundaries of
sets of finite perimeter away from ∂Ω in a controlled manner, the bi-Lipschitz invariance of
W 1,1-extension domains would follow. However, at the moment we are not able to complete
such proof. An alternative approach for trying to solve the higher dimensional case could be
to use the characterization of W 1,1-functions from [5], similar to M1,1.

2. Proof of Theorem 1.3

We will prove Theorem 1.3 by using the bi-Lipschitz invariance of the quasiconvexity of
the connected components of R2 \ Ω, which are referred to as the holes of Ω. We recall the
following result of Väisälä [17, Corollary 4.11].

Theorem 2.1. Let G ⊂ R2 be a bounded continuum such that each hole of G is c-quasiconvex
and let f : G → R2 be L-bilipschitz. Then each hole of G′ = f(G) is c′-quasiconvex with
c′(c, L).

In order to use the Theorem 2.1 we need to observe that the holes of a bounded planar
BV -extension domain are quasiconvex. This was established for simply connected domains
in [10, Theorem 1.1], and the proof works with minor modifications in the more general case
considered here, see [4, Lemma 5.2].

Lemma 2.2. Suppose that Ω ⊂ R2 is a bounded BV -extension domain. Then there exists a
constant c > 0 so that each hole of Ω is c-quasiconvex.

The invariance of quasiconvexity of the holes is easier to use for the boundaries of sets of
finite perimeter, rather than for BV -functions. The passage from BV -functions to sets of
finite perimeter is provided by Lemma 2.3, which is a combination of the works [2] (see also
[14, Section 9.3]) and [10, Lemma 2.1]. Before stating it we need to recall some definitions.

A Lebesgue measurable subset E ⊂ Rn has finite perimeter in Ω if χE ∈ BV (Ω), where χE

denotes the characteristic function. We set P (E,Ω) = ‖DχF ‖(Ω) and call it the perimeter
of E in Ω. We will say that Ω has the extension property for sets of finite perimeter if there

exists C > 0 so that for every set E ⊂ Ω of finite perimeter in Ω one may find Ẽ ⊂ Rn of finite

perimeter in Rn such that Ẽ∩Ω = E, modulo a measure zero set, and P (Ẽ,Rn) ≤ CP (E,Ω).

Lemma 2.3. Let Ω ⊂ Rn be a bounded domain. Then the following are equivalent:

(1) Ω is a BV -extension domain.
(2) Ω has the extension property for sets of finite perimeter.

One more tool that we use is the decomposition of planar sets of finite perimeter into
Jordan domains.

We say that Γ ⊂ R2 is a Jordan curve if Γ = γ([a, b]) for some a, b ∈ R, a < b, and some
continuous map γ, injective on [a, b) and such that γ(a) = γ(b). The Jordan curve theorem
ensures that Γ splits R2 \ Γ into exactly two connected components, a bounded one and an
unbounded one that we denote by int(Γ) and ext(Γ) respectively. A set U whose boundary
∂U is a Jordan curve is called a Jordan domain.

For technical reasons we also add to the class of Jordan curves the formal “Jordan” curves
J0 and J∞, whose interiors are R2 and the empty set respectively and for which we set
H1(J0) = H1(J∞) = 0.
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For a measurable set E ⊂ Rn, we denote by ∂ME its essential boundary, which consists of
points such that both E and Rn \ E have positive upper density on them, that is

∂ME =

{
x ∈ Rn : lim sup

r↘0

|E ∩B(x, r)|
|B(x, r)|

> 0 and lim sup
r↘0

|(Rn \ E) ∩B(x, r)|
|B(x, r)|

> 0

}
.

A set E ⊂ Rn of finite perimeter is called decomposable, if there exist sets A,B ⊂ Rn of
positive Lebesgue measure such that E = A ∪ B, A ∩ B = ∅, and P (E,Rn) = P (A,Rn) +
P (B,Rn). A set is called indecomposable, if it is not decomposable.

The following was proven in [1, Corollary 1].

Theorem 2.4. Let E ⊂ R2 have finite perimeter. Then, there exists a unique decomposition
of ∂ME into rectifiable Jordan curves {C+

i , C
−
k : i, k ∈ N}, modulo H1-measure zero sets,

such that

(1) Given int(C+
i ), int(C+

k ), i 6= k, they are either disjoint or one is contained in the

other; given int(C−i ), int(C−k ), i 6= k, they are either disjoint or one is contained in

the other. Each int(C−i ) is contained in one of the int(C+
k ).

(2) P (E,R2) =
∑

iH
1(C+

i ) +
∑

k H
1(C−k ).

(3) If int(C+
i ) ⊂ int(C+

j ), i 6= j, then there is some rectifiable Jordan curve C−k such that

int(C+
i ) ⊂ int(C−k ) ⊂ int(C+

j ). Similarly, if int(C−i ) ⊂ int(C−j ), i 6= j, then there is

some rectifiable Jordan curve C+
k such that int(C−i ) ⊂ int(C+

k ) ⊂ int(C−j ).

(4) Setting Lj = {i : int(C−i ) ⊂ int(C+
j )} the sets Yj = int(C+

j ) \
⋃

i∈Lj
int(C−i ) are

pairwise disjoint , indecomposable and E =
⋃

j Yj.

Since sets of finite perimeter are defined via the total variation seminorm of BV -functions,
they are understood modulo 2-dimensional measure zero sets. In particular, the last equality
in (4) of Theorem 2.4 is modulo measure zero sets. To make precise the change of represen-
tatives, we use below the notation A∆B := (A \ B) ∪ (B \ A) for the symmetric difference
between subsets A,B ⊂ R2.

With the auxiliary tools now recalled, we are ready to prove the main result of this paper.

Proof of Theorem 1.3. Suppose f : Ω → Ω′ is L-bi-Lipschitz. First notice that f extends to
Ω → Ω′ as a bi-Lipschitz map. Let Ω′i be a connected component of R2 \ Ω′. By [17, 4.9],

there exists a connected component Ωi of R2 \ Ω for which f(∂Ωi) = ∂Ω′i. Suppose that Ω is
a bounded BV -extension domain. Then by Lemma 2.2 there exists a constant c > 0 so that
each hole Ωi is c-quasiconvex. Therefore, by Theorem 2.1 also each Ω′i is c′-quasiconvex, where

the quasiconvexity constant c′ does not depend on i. Obviously, each Ω′i is also c′-quasiconvex.
By Lemma 2.3, we only need to prove that having the extension property for sets of finite

perimeter is invariant under the bi-Lipschitz map f . Let E′ ⊂ Ω′ be a set of finite perimeter.
Then E = f−1(E′) is also a set of finite perimeter with

P (E,Ω) ≤ LP (E′,Ω′). (2.1)

Let Ẽ be the perimeter extension of E to the whole R2 with

P (Ẽ,R2) ≤ CP (E,Ω). (2.2)

By Theorem 2.4, there exists a class of Jordan curves {C̃+
i , C̃

−
k }i,k∈N with

H2(F ) = 0
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for the symmetric difference

F := Ẽ∆

(⋃
i

int(C̃+
i ) \

⋃
k

int(C̃−k )

)
,

and

P (Ẽ,R2) =
∑
i

H1(C̃+
i ) +

∑
k

H1(C̃−k ) (2.3)

Take J ∈ {int(C̃+
i )}i∪{int(C̃−k )}k. We will extend each J ′ = f(J∩Ω) ⊂ Ω′ to the whole R2

in order to define the final extension set Ẽ′ of E′. Consider a homeomorphism γ : S1 → ∂J ,
given by the fact that J is a Jordan domain. The set γ\Ω consists of (at most) countably many
open arcs γi with endpoints xi, yi ∈ ∂Ωj(i) for some j(i). Observe that since |xi−yi| ≤ H1(γi),
we always have

H1(γ ∩ Ω) +
∑
i

|xi − yi| ≤ H1(γ ∩ Ω) + H1(γ \ Ω) ≤ H1(γ). (2.4)

Let us write Ii = γ−1(γi) for each i and use the c′-quasiconvexity of Ω′j(i) to find a curve

γ′i ⊂ Ω′j(i) joining f(xi) to f(yi) with

`(γ′i) ≤ c′|f(xi)− f(yi)|. (2.5)

For convenience, we use the parametrization γ′i : Ii → R2 so that γ′−1
i (xi) = γ−1(xi) and

γ′−1
i (yi) = γ−1(yi). The combination of f(γ ∩ Ω) with the curves γ′i results in a continuous

curve γ′ : S1 → R2 defined as

γ′(t) =

{
f(γ(t)), if γ(t) ∈ Ω,

γ′i(t), if t ∈ Ii.

Now, we define the extension domain J̃ ′ of J ′ = f(Ω ∩ J) as the union of all the connected
components of R2 \ γ′ that intersect J ′. Then, combining (2.5) with (2.4) and the fact that
f is L-bi-Lipschitz, gives

P (J̃ ′,R2) ≤ H1(γ′)

= H1(f(γ ∩ Ω)) +
∑
i

H1(γ′i)

≤ H1(f(γ ∩ Ω)) +
∑
i

c′|f(xi)− f(yi)|

≤ LH1(γ ∩ Ω) + c′L
∑
i

|xi − yi|

≤ c′LH1(γ)

= c′LP (J,R2).

(2.6)

We finally set our extension of E′ to be

Ẽ′ =
⋃

J∈{int(C̃+
i )}i

J̃ ′ \
⋃

J∈{int(C̃−
k )}k

J̃ ′.
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Since the decomposition of Ẽ was left unchanged inside Ω, we have that

(Ẽ′ ∩ Ω′)∆E′ = f(F ∩ Ω)

has zero 2-dimensional measure, since F is measure-zero and f is bi-Lipschitz. Hence, Ẽ′ is
indeed an extension of E′

Now, summing the estimate (2.6) over all the Jordan curves and using (2.3), (2.2), and
(2.1), we get

P (Ẽ′,R2) ≤
∑

J∈{int(C̃+
i ),int(C̃−

k )}i,k

P (J̃ ′,R2)

≤ c′L
∑

J∈{int(C̃+
i ),int(C̃−

k )}i,k

P (J,R2)

= c′LP (Ẽ,R2)

≤ Cc′LP (E,Ω)

≤ Cc′L2P (E′,Ω′).

This shows that Ẽ′ is a perimeter extension of E as required. Thus, by Lemma 2.3 we conclude
that the domain Ω′ is a BV -extension domain. �

Proof of Corollary 1.4. Suppose that Ω ⊂ R2 is a bounded W 1,1-extension domain. By The-
orem 1.5 the set

H = ∂Ω \
⋃
i∈I

Ωi

is purely 1-unrectifiable and so is the image f(H) under the bi-Lipschitz map f : Ω→ Ω′ that

is extended to a bi-Lipschitz map f : Ω→ Ω
′
.

Let {Ω′j}j∈J be the connected components of R2 \ Ω′. Since Ω is a bounded continuum

and not a Jordan curve, there is a unique bijection F : {Ωi}i∈I → {Ω′j}j∈J so that f(∂Ωi) =

∂F (Ωi), see [17, 4.9]. Consequently,

f

(⋃
i∈I

∂Ωi

)
=
⋃
j∈J

∂Ω′j

and so
f(H) = ∂Ω′ \

⋃
j∈J

Ω′j .

Recalling that as a W 1,1-extension domain Ω is also a BV -extension domain, Theorem 1.3
implies that Ω′ = f(Ω) is also a BV -extension domain. Therefore, since f(H) is is purely
1-unrectifiable, by Theorem 1.5 we conclude that Ω′ is a W 1,1-extension domain. �
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