
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Intelligent Solutions for Attack Mitigation in Zero-Trust Environments

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

Accepted version (Final draft)

Zolotukhin, Mikhail; Hämäläinen, Timo; Kotilainen, Pyry

Zolotukhin, M., Hämäläinen, T., & Kotilainen, P. (2022). Intelligent Solutions for Attack
Mitigation in Zero-Trust Environments.  In M. Lehto, & P. Neittaanmäki (Eds.), Cyber Security :
Critical Infrastructure Protection (pp. 403-417). Springer. Computational Methods in Applied
Sciences, 56. https://doi.org/10.1007/978-3-030-91293-2_17

2022



Noname manuscript No.
(will be inserted by the editor)

Intelligent Solutions for Attack Mitigation in
Zero-Trust Environments

Mikhail Zolotukhin · Timo Hämäläinen ·
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Abstract With the recent progress in the development of low-budget sen-
sors and machine-to-machine communication, the Internet-of-Things has at-
tracted considerable attention. Unfortunately, many of today’s smart devices
are rushed to market with little consideration for basic security and privacy
protection, making them easy targets for various attacks. Once a device has
been compromised, it can become the starting point for accessing other el-
ements of the network at the next stage of the attack, since traditional IT
security castle-and-moat concept implies that nodes inside the private net-
work trust each other. For these reasons, IoT will benefit from adapting a
zero-trust networking model which requires strict identity verification for ev-
ery person and device trying to access resources on a private network, regard-
less of whether they are located within or outside of the network perimeter.
Implementing such model can however become challenging, as the access poli-
cies have to be updated dynamically in the context of constantly changing
network environment. Thus, there is a need for an intelligent enhancement
of the zero-trust network that would not only detect an intrusion on time,
but also would make the most optimal real-time crisis-action decision on how
the security policy should be modified in order to minimize the attack sur-
face and the risk of subsequent attacks in the future. In this research project,
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we are aiming to implement a prototype of such defense framework relying
on advanced technologies that have recently emerged in the area of software-
defined networking and network function virtualization. The intelligent core
of the system proposed is planned to employ several reinforcement machine
learning agents which process current network state and mitigate both exter-
nal attacker intrusions and stealthy advanced persistent threats acting from
inside of the network environment.

Keywords Network security · Deep learning · Reinforcement learning ·
Software-defined networking

1 Introduction

Increasing computing and connectivity capabilities of smart devices in con-
junction with users and organizations prioritizing access convenience over se-
curity makes such devices valuable asset for cyber criminals. The intrusion
detection in IoT is limited due to lack of efficient malware signatures caused
by diversity of processor architectures employed by different vendors [1]. In
addition to that, owners use mostly manual workflows to address malware-
related incidents and therefore they are able to prevent neither attack damage
nor potential attacks in the future. Furthermore, since not all devices support
over-the-air security updates, or updates without downtime, they might need
to be physically accessed or temporarily pulled from production. Thus, many
connected smart devices may remain vulnerable and potentially infected for
long time resulting in a material loss of revenue and significant costs incurred
by not only device owners, but also users and organizations targeted by the at-
tackers as well as network operators and service providers. A potential solution
to these and other emerging challenges in IoT is employing zero-trust network-
ing model, that implies that all data traffic generated must be untrusted, no
matter if it has been generated from the internal or external network [2].

In this research, we aim to design and implement an intelligent zero-trust
networking solution capable of detecting attacks initiated by both external
attackers and smart devices from the inside, adapt detection models under
constantly changing network context caused by adding new applications and
services or discovering new vulnerabilities and attack vectors, make an opti-
mal set of real-time crisis-action decisions on how the network security policy
should be modified in order to reduce the ongoing attack surface and mini-
mize the risk of subsequent attacks in the future. These decisions that may
include permitting, denying, logging, redirecting, or instantiating certain traf-
fic between end-points under consideration, are based on behavioral patterns
observed in the network and log data obtained from multiple intrusion and
anomaly detectors and deployed on the fly with the help of cutting-edge cloud
computing technologies such as software-defined networking and network func-
tion virtualization. Our implementation of the decision making mechanism in
the system proposed is planned to rely on recent advances in reinforcement
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learning (RL), machine learning paradigm in which software agents automat-
ically determine the ideal behavior within a specific context by continually
making value judgments to select good actions over bad. RL algorithms can
be used to solve very complex problems that cannot be solved by conventional
techniques as they aim to achieve long-term results correcting the errors oc-
curred during the training process.

Recent advent of cutting-edge technologies such as cloud computing, mobile
edge computing, network virtualization, software-defined networking (SDN)
and network function virtualization (NFV) have changed the way in which
network functions and devices are implemented, and also changed the way in
which the network architectures are constructed. More specifically, the network
equipment or device is now changing from closed, vendor specific to open and
generic with SDN technology, which enables the separation of control and
data planes, and allows networks to be programmed by using open interfaces.
With NFV, network functions previously placed in costly hardware platforms
are now implemented as software appliances located on low-cost commodity
hardware or running in the cloud computing environment. In this context,
the network security service provision has shifted toward replacing traditional
proprietary middle-boxes by virtualized and cloud-based network functions in
order to enable automatic security service provision.

Software-defined perimeter (SDP) is an architecture for zero trust that
borrows concepts from SDN and NFV. An SDP controller functions as a bro-
ker of trust between a client and a gateway, which can flexibly establish a
transport layer security tunnel terminating on the gateway inside the network
perimeter, allowing access to applications. Each device establishes a unique
VPN tunnel with the service that is requested, and the origin is cloaked from
public view. Each device establishes a unique VPN tunnel with the service
that is requested, while the origin is cloaked from public view. SDP relies
on the concepts of network access control in an attempt to minimize the im-
pact of existing and emerging network threats by adding authentication of
the hosts. Similar to micro-segmentation, SDP enforces the principle of only
providing access to the services that are required. Besides this authentication
function the SDP controller can enforce authorization policies that may in-
clude host type, malware checks, time of day access, and other parameters.
The data plane will typically rely on an overlay network to connect hosts via
VPN tunnels. However, SDP approach has several drawbacks. For example,
an SDP implementation usually requires usage of specific hardware and soft-
ware gateways and controller appliances. Gateways may be needed at each
site where applications are located making the deployment, management, and
maintenance of this infrastructure challenging, especially in large globally dis-
tributed, high availability environments. In addition, security appliances are
supposed to be configured to accept connections and allow traffic from the SDP
gateways. Intrusion detection system and firewall rules introduce complexity,
holes in the perimeter, and added IT maintenance. In this research project, we
focus on solving these drawbacks with the help of state-of-art machine learning
techniques.
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The purpose of this study is to highlight the implementation process of
the defense framework proposed. The rest of the document is organized as
follows. In Section 2, we evaluate various deep learning algorithms needed for
implementation. Reinforcement learning algorithms are discussed in Section 3.
Traffic generation problem is addressed in Section 4. Section 5 outlines imple-
mentation of SDN flows and security VNFs. The resulting system prototype
is discussed in Section 6. Section 7 concludes the report and outlines future
work.

2 Intrusion detection with deep learning

Artificial intelligence and deep learning are revolutionizing almost every indus-
try with a seemingly endless list of applications ranging from object recogni-
tion for systems in autonomous vehicles to helping doctors detect and diagnose
cancer. This list includes multiple branches of the field of cyber-security that
include intrusion detection, malware classification, network traffic analysis and
many others. A deep neural network consists of multiple layers of nonlinear
processing units. The main idea behind deep learning is using the first lay-
ers to find compact low-dimensional representations of high-dimensional data
whereas later layers are responsible for achievement of the task given, e.g. re-
gression or categorical classification. All the neurons of the layers are activated
through weighted connections. In order the network being capable to approx-
imate a nonlinear transformation, a non-linear activation function is applied
to the neuron output. The learning is conducted by calculating error in the
output layer and backpropagating gradients towards the input layer. In regu-
lar deep neural network layer, each neuron in a hidden or output layer is fully
connected to all neurons of the previous layer with the output being calculated
by applying the activation function to the weighted sum of the previous layer
outputs. Such layers have few trainable parameters and therefore learn fast
compared to more complicated architectures.

To evaluate deep learning model capabilities to detect intrusions we use
network packet captures from CICIDS2018 [3] dataset. It contains 560 Gb of
traffic generated during 10 days by 470 machines. The dataset in addition to
benign samples includes following attacks: infiltration of the network from in-
side, HTTP denial of service, web, SSH and FTP brute force attacks, attacks
based on known vulnerabilities. We concentrate on the intrusion detection
based on the analysis of network traffic flows. A flow is a group of IP packets
with some common properties passing a monitoring point in a specified time
interval: IP address and port of the source and IP address and port of the
destination. Resulting flow measurements provide us an aggregated view of
traffic information and drastically reduce the amount of data to be analyzed.
After that, two flows such as the source socket of one of these flows is equal to
the destination socket of another flow and vice versa are found and combined
together. This combination is considered as one conversation between a client
and the server. A conversation can be characterized by following four param-
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eters: source IP address, source port, destination IP address and destination
port.

For each such conversation, at each time window, or when a new packet
arrives, we extract the most essential features including flow duration, total
number of packets in forward and backward direction, total size of the packets
in forward direction, minimum, mean, maximum, and standard deviation of
packet size in forward and backward direction and overall in the flow, number
of packets and bytes per second, minimum, mean, maximum and standard
deviation of packet inter-arrival time in forward and backward direction and
overall in the flow, total number of bytes in packet headers in forward and
backward direction, number of packets per second in forward and backward
direction, number of packets with different TCP flags, backward-to-forward
number of bytes ratio, average number of packets and bytes transferred in
bulk in the forward and backward direction, the average number of packets
in a sub flow in the forward and backward direction, number of bytes sent
in initial window in the forward and backward direction, minimum, mean,
maximum and standard deviation of time the flow is active, minimum, mean,
maximum and standard deviation of time the flow is idle [3]. All the features
can have different scale and therefore they are supposed to be standardized.

In our numerical experiments, we process raw packet capture files. First, we
extract necessary packet features, then combine separate packets into conver-
sations and, after that, we extract conversation features. It is worth noticing,
that every time a new packet is transferred during the conversation or a certain
time period (one second in our case) passes, we recalculate the conversation
features and add a new data sample for the updated conversation. The idea
behind that is that we attempt to evaluate how well the deep learning meth-
ods can detect intrusions in real time not when the conversation is over. Some
results are presented on Figure 1.

As one can notice from the figures, basic neural networks allow us to detect
malicious connections without many false alarms. Results for the classification
models slightly vary in terms of true and false positive rates depending on the
architecture. It is also worth noticing that increasing the number of trainable
parameters does not improve accuracy of the models significantly. In the sense
of efficiency, simple MLPs look the most promising solution. It is worth notic-
ing that we also experimented with more complicated neural network layers,
e.g. residual [4] and self-attention [5], but for our classification task those do
not provide any increase in the detection accuracy. We also tested unsuper-
vised models such as autoencoders, however we did not manage to obtain good
results using those.

3 Deep reinforcement learning

Reinforcement learning is a machine learning paradigm in which software
agents and machines automatically determine the ideal behavior within a spe-
cific context by continually making value judgments to select good actions over



6 Mikhail Zolotukhin et al.

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1
mlp-2-256
mlp-3-768
mlp-3-1024
mlp-2-1024
mlp-3-256
mlp-3-512
mlp-2-512
mlp-2-768

FPR

TP
R

(a) FTP brute-force attack.
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(b) SSH brute-force attack.
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(c) Web brute-force attacks.
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(d) Botnet attack.

Fig. 1: Dependence of TPR on FPR for different intrusion detection with deep
learning models applied to flow features.

bad. A reinforcement learning problem can be modeled as Markov Decision
Process (MDP) that includes three following components: a set of agent states
and a set of its actions, a transition probability function which evaluates the
probability of making a transition from an initial state to the next state tak-
ing a certain action, and an immediate reward function which represents the
reward obtained by the agent for a particular state transition. If the transition
probability function is known, the agent can compute the solution before exe-
cuting any action in the environment. However, in real-world environment, the
agent often knows neither how the environment will change in response to its
action nor what immediate reward it will receive for executing the action. It
is not enough to only account the immediate reward of the current state, the
far-reaching rewards should also be taken into consideration. Most of the time
RL algorithms focus on the optimization of infinite-horizon discounted model,
implying that the rewards that come sooner are more probable to happen,
since they are more predictable than the long term future reward.

There are three main approaches for the reinforcement learning: value-
based, policy-based and model-based. In value-based RL, the goal is to maxi-
mize the value function which is essentially a function that evaluates the total
amount of the reward an agent can expect to accumulate over the future,
starting at a particular state. The agent then uses this function by picking
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an action at each step that is believed to maximize the value function. On
the other hand, policy-based RL agent attempts to optimize the policy func-
tion directly without using the value function. The policy function in this case
is the function that defines the action the agent selects at the given state.
Finally, model-based approach focuses on sampling and learning the proba-
bilistic model of the environment which is then used to determine the best
actions the agent can take. Assuming the model of the environment has been
properly learned, model-based algorithms are much more efficient than model-
free ones, however, since the agent only learns the specific environment model,
it becomes useless in a new environment and requires time to learn another
model.

As a rule, a neural network is used to estimate an RL agent’s policy with
loss function being estimated based on the probability of the action taken
multiplied by the cumulative reward obtained from the environment. Updating
the policy network parameters by taking random samples may introduce high
variability in probabilities and cumulative reward values, because trajectories
during training can deviate from each other at great degrees. This results
in unstable learning and the policy distribution skewing to a non-optimal
direction. One way to reduce variance and increase stability is subtracting
the value function from the cumulative reward. This allows one to estimate
how much better the action taken is compared to the return of an average
action. The value function can be estimated by constructing the second neural
network, which estimates the environment’s state value in the manner similar
to DQN. The resulting architecture is called advantageous actor-critic (A2C),
where the critic estimates the value function, while the actor updates the
policy distribution in the direction suggested by the critic [8].

To improve stability of the learning even further, trust region policy opti-
mization (TRPO) relies on minimizing a certain surrogate objective function
that guarantees policy improvement with non-trivial step sizes [9]. TRPO uses
average KL divergence between the old policy and updated policy as a mea-
surement for a region around the current policy parameters within which they
trust the model to be an adequate representation of the objective function,
and then chooses the step to be the approximate minimizer of the model in
this region. Although TRPO has achieved great and consistent high perfor-
mance, the computation and implementation of it is extremely complicated.
The current state-of-art algorithm policy optimization (PPO) attempts to re-
duce the complexity of TRPO implementation and computation by tracing
the impact of the actions with a ratio between the probability of action under
current policy divided by the probability of the action under previous policy
and artificially clipping this value in order to avoid having too large policy
update [11]. Another option to reduce the complexity closer to a first-order
optimization is proposed in [10]. Actor-critic using Kronecker-Factored trust
region (ACKTR) speeds up the optimization by reducing the complexity using
the Kronecker-factored approximation.

To evaluate performance of different RL algorithms, we use OpenAI gym
that has emerged recently as a standardization effort [6]. We run multiple
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copies of the environment in parallel. The training process is divided into
episodes. Each episode lasts a certain fixed amount of time steps, during which
one of the tasks is performed by an agent implemented using OpenAI base-
lines [7]. The tasks include swinging an inverted pendulum up from a random
position and moving a two-dimensional car. We test three state-of-art RL al-
gorithms A2C, ACKTR and PPO in those environments. We concentrate on
these algorithms as they can be applied for both discrete and continuous en-
vironments. In our experiments, PPO consistently provides good results in
terms of both average reward and convergence speed (see Figure 2). We run
several experiments with different network architectures. The results on Fig-
ure 3 show that the network with one shared layer followed by two separate
streams for policy and value function looks the most promising architecture
variant. We also experimented with using shared LSTM layer for both policy
and value function, but the results showed that much more steps is required
for the algorithm convergence in this case, which can be critical in case of more
complicated environment that requires more time per iteration.
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(b) Continuous mountain car.

Fig. 2: Performance of three different RL algorithms in two basic OpenAI gym
environments.

4 Traffic generation

In order to train the reinforcement learning agents a simulation environment
is supposed to be constructed since we cannot deploy, train and test those
agents in a real production network. Traffic in such environment can be at-
tempted to be generated with the help of conditional generative adversarial
networks (GANs) [12]. In GANs, the discriminator generates an estimate of
the probability that a given sample is real or generated. The discriminator
is supplied with a set of samples which include both real and generated ones
and it would generate an estimate for each of these inputs. The error between
the discriminator output and the actual labels would then be measured by
cross-entropy loss. GAN can be extended to a conditional model if both the
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Fig. 3: Performance of PPO2 with different policy and value network architec-
tures in several OpenAI gym environments. Architectures: shared MLP (blue),
one separate layer for value (green), one separate MLP layer for policy (red),
one shared MLP layer (yellow), separate MLPs (purple)

generator and discriminator are conditioned on some extra information [13].
We can perform the conditioning by feeding this information into the both the
discriminator and generator as additional input layer. In our case, this extra
information includes several packets sent in a network traffic flow, and the
GAN is trained to generate features of the next packet, i.e. its payload size,
TCP window size, TCP flags, inter-arrival time, etc. However, cross-entropy
loss fails in some cases and not point in the right direction in other cases. This
may lead to mode collapse when the generator only learns a small subset of
the possible realistic samples which the discriminator cannot recognize. One
potential solution for this problem is using Wasserstein distance metric [14].
The Wasserstein metric looks at the distribution of each variable in the real
and generated samples, and determines how far apart the distributions are for
real and generated data. The Wasserstein metric looks at how much effort, in
terms of mass times distance, it would take to push the generated distribution
into the shape of the real distribution.

We use conditional Wasserstein GANs to generate inter-arrival time be-
tween two consecutive packets, payload size and TCP window size, the second
generates n-gram distribution for the payload of the packet. Features for the
condition include direction (request or reply) and TCP flags. In the genera-
tor network, a random noise vector is concatenated with the condition and
the result is fed to an MLP, output of which is a feature vector for the next
packet. The discriminator network also takes features extracted from the pre-
vious packets of the flow as an input. The second input is the feature vector
generated by the generator. The generator produces packets that are closer
to the real ones extracted from the datasets while the discriminator network
tries to determine the differences between real and fake packets. The goal is
to have a generative network which can produce traffic flows whose features
resemble the ones extracted from the real flows.
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We trained such GANs separately for different attacks presented in the
dataset and the normal HTTP traffic. Figure 4 show the results of applying
the classifiers trained in the previous stage to the traffic generated with GANs.
As one can see, the results for models which are trained with flow features are
more or less inline with the ones obtained using the real data.
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(a) Web brute-force attacks.
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(b) Botnet attack.

Fig. 4: Dependence of TPR on FPR for different intrusion detection with deep
learning models applied to flow features extracted from fake traffic generated
with Wasserstein GANs.

We implement an application for traffic generation in form of a Docker
container. Docker allows users to package an application with all of its de-
pendencies into a standardized unit for software development. Unlike virtual
machines, containers do not have high overhead and hence enable more ef-
ficient usage of the underlying system and resources. The container includes
client and server application implemented with Scapy module which is able to
forge or decode packets of a wide number of protocols. We set the first ECN
bit of each packet generated with the generator trained using malicious traffic
to one in order to be able to provide ground truth labels for the AI in order
to calculate the reward. Generator models of the trained GANs are first con-
verted into a compressed .tflite format and added to the application. This has
been done in order to deploy the trained model without installing the entire
Tensorflow library.

5 Software-defined networking and network function virtualization

The main purpose of the SDN controller in our defense framework, which is
to transform the security intent of the AI core to SDN flows and push them
to the switches, can be implemented as an internal module of an existing SDN
controller or an external application that uses RESTful APIs exposed by one
or more plugins existing in the controller framework. There are many open-
source controller options currently available, that can be modified in order to
be used to redirect traffic between devices under protection and virtual security
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appliances. According to several SDN controller surveys, OpenDayLight [15] is
one of the most featured controllers that are able to run on different platforms.
Being under the partnership of well-known network providers and research
communities, they have a clear development plan and good documentation.
Even though Java-based OpenDayLight is inferior in performance compared
to the controllers implemented in C in terms of throughput, they perform on
similar level in terms of latency [16], which is alongside with high modularity
and proper documentation makes it the most optimal choice to serve as an
SDN controller in the defense system proposed.

Once all the necessary features have been installed on the Opendaylight
controller, we implement a simple application for receiving information from
operational data store of the controller and manipulating its data stores, which
include pushing a flow into a switch table, finding existing tables on a switch,
finding existing flows on a switch, deleting flow from a switch table and deleting
entire table from a switch. These functions allow us to setup basic network
configurations by resubmitting a packet with certain Ethernet protocol to
another table, replying to an ARP request with a MAC address, redirecting
an ARP packet with certain target protocol address to a port, redirecting an
IP packet with certain destination to a port, outputting an IP packet with
certain source to a port and resubmit to another table, modifying ECN of an
IP packet with certain destination to a port and resubmit to another table.
The purpose of the last action is to change the second ECN bit of a packet to
one when it arrives at the first switch and change it back to zero when it sent
from the last switch. The idea is to account for packets which are dropped in
the environment in order to calculate the impact of the defense framework.

Concerning the virtual security functions, there are many open-source in-
trusion detection and packet inspection software available that can be imple-
mented as security middle boxes for timely attack detection and mitigation.
We implement our own security middle box in order to use deep learning
models trained. For that purpose, we first install OpenVSwitch on an Ubuntu
virtual machine and connect it to our Opendaylight controller. It can then
be connected to other network switches via VXLAN tunnels. For intercepting
and analyzing network traffic we use Libnetfilter queue [17] and Iptables fire-
wall rules to gain access to network packets and the ability to reject or accept
these packets for forwarding. Python library Netfilterqueue is used to interface
with Libnetfilter queue [18] from a python program. The interceptor program
receives a network packet and extracts relevant features from it and uses pre-
trained classifier to determine whether it is malicious or not. The malicious
flows are flagged by setting a desired bit in the TCP-protocol DSCP field
(upper 6 bits of the TOS field) facilitating detection and further actions by
downstream devices. All packets are then forwarded regardless of the analysis
result.

Similarly to the traffic generation containers we use Tensorflow Lite inter-
preter in order to avoid installing the entire Tensorflow library. We select the
best classifier in terms of the metric selected (e.g. accuracy or AUC) for each
attack class tested and copy those models to the VNF. We finally implement
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a simple API using Flask which allows to manipulate two parameters: clas-
sifier model to use for the analysis and the threshold according to which we
differentiate normal traffic from malicious one. This is basically a very straight
forward implementation of transfer learning approach, i.e. a model developed
for a task is reused as the starting point for a model on a second task. We
train a model using traffic contained in the dataset and then use all its layers
except the last one as a foundation for the classifier inside our VNF. The last
layer is essentially one number since we only classify traffic as either normal
or malicious. Thus, an intelligent agent can manipulate VNfs implemented by
selecting the most optimal combination of the classifier and the value of the
threshold.

The effect on network performance can be measured by setting up a three
machine virtual network: two virtual machines in separate subnets and a vir-
tual machine running the interceptor program acting as a router between the
subnets. The software tool Qperf [19] is used to analyze network performance.
A Qperf server is started on one of the test machines and a client running
a test against the server was started on the other. All traffic passed through
the interceptor machine and through the analysis. The recorded metrics are
bandwidth and latency of TCP traffic. The test is repeated several times with
the interceptor analyzing packets with several different classifiers. The tested
configurations have 2,3 or 4 layers of 512, 1024, 2048 or 4096 nodes. The re-
sults are shown in figure 5. These results accompanied with the ROC curves
obtained previously allow us to conclude that it is reasonable to use MLP clas-
sifiers with less trainable parameters, since increasing the number of trainable
parameters does not improve accuracy of the models significantly, however it
negatively affects the network performance.

(a) Bandwidth through the interceptor. (b) Latency through the interceptor.

Fig. 5: Network performance of the interceptor with varying number of layers
and nodes in each layer.

6 Prototype environment

The biggest drawback of the reinforcement learning approach is its hunger for
data: RL methods require to interact with the environment at each new train-
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ing iteration. In order to train an intelligent agent in a reasonable amount of
time, the training process can be carried out in several environments in paral-
lel. For this reason, we build our training environment as a network of several
virtual machines using Vagrant. Vagrant [20] is an open-source program which
allows for automatic building and managing virtual machines. Vagrant uses ex-
isting hypervisors, in our case Qemu/KVM through Libvirt, to deploy and run
the machines. Vagrant manages these machines through SSH connections and
can provide access to files for the virtual machines through NFS shares. We use
Vagrant to configure the VMs required for the system implementation which
include SDN controller, several VMs with Docker containers, several VMs with
Tensorflow network traffic flow classifiers, and one VM for traffic monitoring.
All VMs except for the controller have Openflow-enabled OpenVSwitch pre-
installed. Switches are connected between each other with VXLAN tunnels. It
is worth noticing that switch of the traffic monitor is not controlled by Open-
daylight, it simply acts as a ”sink” for the network traffic in order to provide
information on the network state for an RL agent. We use OpenAI gym [6]
to implement the frontend for the virtualized environment. The RL agent is
implemented using OpenAI baselines [7]. The resulting environment is shown
in Figure 6.

Host

OVS

OpenAI gym
interface

RL agent

Docker 
containers

OpenVSwitch

ODL

SDN controller
Opendaylight

MON

OpenVSwitch

IDS

OpenVSwitch

Iptables and
nfqueue

Network traffic
monitorTraffic generation

scripts
Tensorflow

model

Fig. 6: The environment for training RL agent implemented using Vagrant.
Network traffic flows and commands are shown by solid and dashed lines re-
spectively.

The RL agent observes packet and byte counts sent from one host to an-
other for each pair of hosts in the environment, one-hot encoded indexes of
the classifiers deployed in the security boxes, threshold values used in the clas-
sifiers. Action set of the RL agent consists of changing the classifier model
index for a certain VNF, changing the threshold for a certain VNF, redirect-
ing traffic between a certain pair of subnets having certain DSCP label to
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a certain middle box, and blocking traffic between a certain pair of subnets
having certain DSCP label. For the reward function calculation, we utilize our
flow monitor VM. Since all malicious traffic packets generated have the first
ECN bit equal to 1 and all packet which are received on the first switch have
the second ECN bit equal to one, we can calculate percentages of the normal
and malicious traffic which are blocked by the environment. The reward func-
tion is then calculated as a sum of these two components. We initialize flow
tables of each SDN switch with basic flows to forward each packet to its des-
tination. SDN flows to drop packets or redirect them to a particular security
appliance are pushed to the dedicated flow tables with priority higher than
default forwarding rules.

In order to evaluate the framework proposed, we consider the following
attack scenario. Eight devices are connected to the internal network. These
devices can be accessed via SSH and HTTP by both internal and external
hosts. To generate malicious traffic, we generate three types of the attacks:
SSH password brute-force, web application password brute-force and commu-
nication between C&C and one of the devices which is considered infected. The
training process is divided into episodes. Each episode lasts for one minute,
during which both benign and malicious traffic flows are generated. The RL
agent is implemented using OpenAI baselines. The agent selects one of the
actions for one of the flows that are sent to the environment back-end where
they are transformed to SDN rules. We train the RL agent using PPO algo-
rithm with multi-layer perceptron (MLP) as both policy and value function
to detect and mitigate the attacks mentioned. Figure 7 shows the evolution of
the reward function throughout few training episodes in the attack scenario
mentioned. As one can notice, the agent starts to identify and block mali-
cious connections reducing the number of malicious flows and subsequently
increasing the reward value.
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Fig. 7: Reward function during the training and percentage of the malicious
traffic received by the attack targets.
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7 Conclusion and future work

The main contribution of this research is developing a proof-of-concept of an
intelligent network defense system which relies on SDN and NFV technologies
and allows customers to detect and mitigate attacks performed against their
smart devices by letting an artificial intelligent agent control network security
policy. On infrastructure level, the defense framework proposed includes cloud
compute servers in order to emulate elements of real infrastructure as well
as launch security appliances. In order to forward traffic from the network
under protection to these appliances as well as connect the appliances to each
other, the system relies on SDN capabilities that include global visibility of
the network state and run-time manipulation of traffic forwarding rules. The
key component of the defense system proposed is a reinforcement learning
agent that resides on top of the SDN and NFV controllers and is responsible
for manipulating security policies depending on the current network state.
In particular, the agents processes traffic flowing through edge switches as
well as log reports from security appliances deployed and manipulates the
network traffic by instructing the SDN controller to pass, forward or block
certain connections. We used the resulting prototype to evaluate two state-
of-art reinforcement learning algorithms for mitigating three basic network
attacks against a small virtual network environment.

There are however still numerous issues which have to be addressed. Those
are mostly related to the traffic generation procedure. We managed to imple-
ment simple traffic generation application, it however does not really represent
the realistic traffic and therefore its usage is limited in a real world scenario. A
potential solution would be to use real devices and applications and generate
traffic using those. In the future, we are planning to continue this research by
conducting experiments in the environment prototype, as well as testing var-
ious reinforcement learning algorithms for different attack scenarios. We are
also aiming to improve the scalability of the framework proposed and evaluate
the system performance for bigger network environments. We are also going to
implement adversarial module for the traffic generators which would allow for
spoofing a neural-network-based intrusion detection system by manipulating
flow parameters. Finally, we are going to test the working prototype of the
network defense system developed during the project in a non-SDN enterprise
network environment.
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