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Abstract—Quantum Software Engineering (QSE) is a recent
trend - focused on unifying the principles of quantum mechanics
and practices of software engineering - to design, develop,
validate, and evolve quantum age software systems and appli-
cations. Software architecture for quantum computing (a.k.a.
quantum software architectures (QSA)) supports the design,
development, and maintenance etc. phases of quantum software
systems using architectural components and connectors. QSA can
enable quantum software designers and developers to map the
operations of Qubits to architectural components and connectors
for implementing quantum software. This research aims to
explore the role of QSAs by investigating (i) architectural process
having architecting activities, and (ii) human roles that can
exploit available tools to automate and customise architecture-
centric implementation of quantum software. Results of this
research can facilitate knowledge transfer, enabling researchers
and practitioners, to address challenges of architecture-centric
implementation of quantum software systems.

Index Terms—Quantum Software Engineering, Quantum Soft-
ware Architecture, Architecture Process, Reference Architecture

I. INTRODUCTION

Quantum software systems exploit quantum programming
languages - implementing quantum algorithms - that enable
the development, execution, and/or simulation of software
applications on quantum computing platforms [1] [2]. Quan-
tum programming languages enable software engineers and
developers to write source code that manipulates quantum
bits (Qubits) to control quantum gates (Qugates) for opera-
tionalising quantum computing systems [3]. Quantum software
engineering has recently emerged as an engineering paradigm
to design, develop, test, and evolve software systems that
require quantum information processing such as quantum key
distribution, quantum search systems, and quantum simulation
[2]. Academic research [4] as well as industrial developments
(e.g., Q#: Microsoft, Qiskit: IBM, and Cirq: Google), have
promoted engineering and development of quantum age soft-
ware solutions and scaled up strategic investments in quantum
computing platforms [5]. Quantum programming languages
(e.g., Q#, Qiskit), implementing quantum algorithms, are
considered as a foundation for developing quantum software
[1] [3]. However, such programming languages are designed
to mainly focus on specifying the source code that produces

executable specifications but undermines the overall global
view of software systems in terms of architectural components
(i.e., units of computation and storage) and connectors (i.e.,
interconnections between components).

Quantum Software Architecture (QSA) represents a class
of software architectures, aiming to abstract implementation-
specific details such as modules of source code and their
interactions, represented as architectural components and their
connectors for quantum software [6] [7]. QSAs have emerged
as the most recent genre of software architectures and the
current generation of software practitioners, i.e,. software engi-
neers, architects, and developers find themselves less prepared
to tackle architectural challenges of quantum software [2]
[4] [6]. QSA challenges can include aspects of quantum
domain engineering, quantum co-design (mapping Qugates to
Qubits and their representation as architectural components),
validation, deployment, and simulation of quantum software
applications [2] [7]. In recent years, a number of reference
architectures [6] and architectural models have been developed
for QSAs [7]. However, there is no research on the notion of an
architectural process, where the process acts as an umbrella to
cover architecting activities, incorporate tool support to enable
automation, and define professional roles for human decision
support in quantum software development. This research aims
to answer two research questions (RQs).

RQ-1: What architecting process(es) and activities are pro-
posed to develop quantum software?

RQ-1 aims to derive an architectural process, encapsulating
a multitude of architecting activities for QSAs to enable
a systematic and incremental architectural development of
quantum software [8]. From a conceptual perspective, the
existence of a process answers what needs to be done?, while
the activities in a process focus on how it is to be done? [9].

RQ2: Are there any human roles and tool support for
architecting quantum software?

RQ-2 aims to investigate human roles (software practa-
tioners) that incorporate human decision in the process and



available tool support (enabling process automation).
Research method and contributions: This research fo-

cused on investigating a collection of published solutions
on QSA, qualitatively selecting 32 research studies via a
systematic review process [10] [11], also following the guide-
lines from our earlier conceptual modeming effort [12], to
investigate RQ-1 and RQ-2. By following the systematic
review approach, we analysed reference architectures, frame-
works, and architectural implementations of quantum software
systems and identified a total of 5 activities and organised
them in a unified process, in line with the academic findings
[8] [13] and industry-based studies on architectural processes
[9]. To complement the process, human decision support and
automation are also investigated and we identified 4 human
roles specific to quantum software architecting and 11 tool
prototypes that can enable architecture process automation.
The architectural process and its underlying architecting ac-
tivities are demonstrated with a case study on quantum key
distribution architecture. We outline the primary contributions
of this research as:

• Derivation of a process - identifying 5 architecting ac-
tivities - that support a process-centered and incremental
architecting (i.e., design, implementation, validation, and
deployment) of quantum software.

• Identification of 4 professional roles and highlighting 11
available tools that can enrich the architecting process
with human decision support and automation.

II. BACKGROUND: ARCHITECTURE FOR QUANTUM
SOFTWARE SYSTEMS

A. Software Systems for Quantum Computing

Quantum computers represent a paradigm shift from clas-
sical computing that relies on binary gates having [0, 1]
binary digits, representing On and Off states to manipulate a
digital circuit. Quantum gates that control quantum hardware
are managed by quantum bits expressed as | 0 ⟩ and | 1 ⟩.
Additional details about Qugates and Qubits are provided
in [11]. Specifically, in Qubits, the state 0 is expressed as

| 0 ⟩ =
[
1
0

]
and the state 1 is expressed as | 1 ⟩ =

[
0
1

]
.

As in Figure 1, the hardware layer represents the most
primitive element of quantum computing that is controlled
by the software layer above it. The architecture of quantum
software enables abstraction of quantum source code with
architectural components and connectors during system design
and implementation. In order to manage and control Qugates,
quantum software systems rely on quantum compilers, acting
as an intermediary between Qugates (hardware) and Qubits
(software instructions) to compile quantum source code.

B. Quantum Software Architecture

Software architecture follows ISO/IEC/IEEE 42010:2011
standard to enable software designers and architects to imple-
ment software systems incrementally, i.e., design components
and connectors to be translated into executable source code
that can be tested, and evolved using architectural models,
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Fig. 1: A Layered Overview of Quantum Computing Systems

tools, and notations [8] [9]. Architecture for quantum software
systems and applications empowers the role of architects to
abstract the complexities of source code modules and their
interactions as architectural components and connectors [7].
As in Figure 1, to develop a quantum search algorithm, a
partial architectural view represents components for factor-
ization (Factorize) of a generated integer (Gen Integer).
Architectural view helps to reflect an overall representation
of the systems, elements of computation (components) and
how they interact (connectors).

III. PROCESS AND ARCHITECTING ACTIVITIES (RQ-1)

A. Architectural Process for Quantum Software

Academic research [8] and industry based studies [9]
on architecture-centric software engineering have highlighted
three generic architecting activities namely (i) architectural
analysis, (ii) architectural synthesis, and (iii) architectural
evaluation [14] [15]. From QSA perspective, generic activities
need to be extended with a fine-granular process representation
having specific architecting activities, in Figure 2, addressing
quantum aspects of software systems.

The Quantum Aspects of Software Architecting: One
of the limitations of existing architectural process(es) such
as [8] [13], addressing design and development of traditional
software systems, is the lack of support for requirements
specific to QSE lifecycle. This means that software designers
and developers who use QSE principle and practices to design
quantum software need to design QSAs and/or develop the
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Fig. 2: Overview of the Architecture Process, Architecting Activities, and Demonstrative Example of QKD

underlying quantum algorithms attuned to operationalising
quantum bits rather than classical binary digits [1] [3].

Deriving the Architectural Process and Activities: Pro-
cess encapsulates a number of steps, referred to as activities,
empowering the roles of designers and developers to utilise
individual activities for specifying structure and behavior of
software-intensive systems via architectural representation [9]
[16]. To exemplify, consider the process in Figure 2, an activity
named Architectural Requirements can outline the design
challenges to be resolved by the architecture in terms of
required software functionality and desired quality of software
under development. More specifically the outlined ASR in
running example: how to effectively and securely transmit
quantum information over quantum network? highlights a
design challenge, requiring architectural model to enable trans-
mission of quantum information (required functionality) in an
efficient and secure manner (desired quality).

B. Process Centred Architecting: A Demonstrating Example

Process centered architecting of quantum software, driven
by architecting activities, is demonstrated with an incremen-
tal design and development of Quantum Key Distribution
(QKD) solution (Figure 2). The QKD solution [17] enables
secure processing and transmission of quantum information
by generating and distributing symmetric cryptographic keys
between two geo-distributed nodes utilising the principles

of quantum physics. We introduce each activity and detail
the architectural design aspect each activity supports (e.g.,
architectural validation) with an example case of QKD.

• Activity I - Architectural Requirements (AR): as the
initial activity of the process, AR aims to identify and
specify required functionality and desired quality (a.k.a.
functional and quality constraints) of the software.
Example: The architectural requirement(s) specify the
needs for quantum information processing and trans-
mission over quantum network of two nodes referred
to as source (the sender) and destination (the receiver).
AR is formulated as: ’how to (securely and efficiently)
transmit quantum information over quantum network’.
Activity Outcome: is a set of ASRs to streamline the
required functionality, i.e., transmission of quantum infor-
mation along with the desired quality that complements
functionality with efficient and secure transmisison.

• Activity II - Architectural Modeling (AM): relies on
ASR to create a model of the architecture for visual
representation or specification of functionality and quality
of the software. Quantum modeling notations such as
QML [15] or architectural languages [9] can be used for
semi-formal representation of the model.
Example: Modeling of QKD based on ASR indicates that
a pattern named Pipe and Filter architecture [8] is being



applied to enable processing of quantum information
(desire functionality) across network nodes. Quantum key
generation and key reconciliation mechanisms are used to
ensure efficient and secure communication.
Activity Outcome: is an architectural model and its
underlying specifications (pattern based solution) that act
as a blue-print to implement the QKD solution.

• Activity III - Architectural Implementation (AI): fo-
cuses on designing algorithms and writing source code
that adhere to the architectural representation and specifi-
cation [1]. A quantum programming language [3] enables
source coding of quantum software, whereas model-
driven architecting can enable (semi-) automated genera-
tion of source code from architectural specifications [18].
Example: Architectural component (Quantum Packet
Module) as an element of computation abstracts details of
source code modules and architectural connector (Packet
Send/Receive) that represents module interconnection.
Activity Outcome: is source code that can be executed
or simulated on quantum computing platforms. Source
coding provides concrete specifications of the ASR im-
plemented via architectural modeling.

• Activity IV - Architectural Validation (AV): executes or
simulates the source code to validate the ASRs and verify
if the modeled and implemented architecture conforms
to the needed functionality and quality. Architectural
validation is conducted by means of architectural evalu-
ation methods [13] (e.g., Software Architecture Analysis
Method (SAAM)) to objectively evaluate the architecture
and test for faults and errors in quantum source code [19].
Example: In addition to architectural evaluation using
SAAM or alike methods, source code testing is vital for
generating and validating the test code for quantum key
generation and quatum key recociliation.
Activity Outcome: is to validate architecture model
against ASRs and source code to be deployed and ex-
ecuted on quantum computing platforms.

• Activity V - Architectural Deployment (AD): as the
last activity supports deployment of source code modules
on quantum computing platforms. Deployment can be
physical (code executed on quantum hardware) or virtual
(code simulated on hybrid or non-quantum platform) [20].
Supporting either of these two deployments, architectural
process completes a cycle enabling an incremental devel-
opment from requirements to deployment [21] [22].
Example: Architectural components for QKD are de-
ployed on two peer-nodes that can support secure trans-
mission of quantum information via QKD.
Activity Outcome: is architectural configurations man-
aged as source code libraries (e.g., packages, APIs, mod-
ules) that can be replicated and executed on quantum
computing (nodes) after architectural validation.

IV. HUMAN ROLES AND TOOL SUPPORT (RQ-2)
QSAs as an emerging genre of software-intensive systems

require unique expertise such as quantum domain engineering
(mapping quantum hardware and software), quantum software
architecting (translating Qubits to architectural components),
and quantum code simulation (analysing flow of quantum
information processing) as in Figure 3.

A. Quantum Domain Engineers

The role of quantum domain engineer is rooted into domain-
specific software engineering [8], however, in a quantum
domain, the domain engineer needs to analyse quantum-
specific attributes like mapping between Qugates and their
corresponding Qubit representation [18].

• Available Tool Prototype(s): Auto E/E Framework [23],
Link Layer [24]. We identified the above-mentioned tool
prototypes that support the role of quantum domain
engineers as in Figure 3. For example, the tool prototype
named Auto E/E framework [23] automates architectural
requirement activities to bridge the gap between quantum
hardware of an embedded system and the instruction set
(source code specifications) to enable quantum informa-
tion processing in automotive domain.

• Process Support: Quantum domain engineers can help
software designers to map architectural requirements
(e.g., mapping components to Qubits) to create an ar-
chitectural model for quantum software implementation.

B. Quantum Software Architects

The role of software architect in QSE is to oversee the archi-
tectural process. An architect is responsible for identifying the
design problems and planning the development of a software
system that in turn satisfies functional requirements [25].

• Available Tool Prototype(s): Strawberry Fields [26] an
open source tool is developed for quantum software de-
signers and architects to design and optimise the software
applications for photonic quantum computers. Strawberry
Fields automates the design activities by converting the
domain specific code model to be executeed using pho-
tonic quantum computer.

• Process Support: Quantum software architects use quan-
tum simulation tools for modeling the architectural com-
ponents as in Figure 3.

C. Quantum Code Developers

Quantum code developers utilise architectural modeling to
develop quatum source code for architectural implementation
[14]. Developers (both algorithm designers, code developers)
require knowledge about software tool chains in QSE lifecycle.

• Available Tool Prototype(s): Various tools are available
to assist the quantum software developers in performing
the development activities. For example, XACC (eX-
tremescale ACCelerator) [27] is used to compile the code
generated using both quantum and classical programming
languages, Figure 3, independent of programming frame-
works, hardware, and computational models.
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• Process Support: The architecture implementation activ-
ities are supported by the quantum software developers.
They define the implementation strategies of software
architecture at the intersection of quantum hardware,
quantum-classical compilers, and programming models.

D. Quantum Simulation Engineer

Quantum simulation engineer manages execution and sim-
ulation of quantum software, validating the quality, ensuring
that the developed application fits the purpose and is error free.

• Available Tool Prototype(s): QuNetSim [28] simulator
is developed to design and test the robustness of the quan-
tum network protocols. It helps the simulation engineer
to test quantum network applications tasks developed to
transmit and store the quantum information.

• Process Support: Quantum simulation engineer supports
both architectural validation and deployment activities.
The process support involves implementing testing frame-
works, bug triage, enhancing reliability efforts by im-
proving testing infrastructure, and supporting open source
projects like error correction libraries.

V. RELATED WORK

A. Engineering and Development Life-cycles for QSW

Increased adoption of quantum computing systems and
infrastructures in industrial, as well as organisational con-
text [5] [29], has resulted in the application of software
engineering (SE) methods and techniques - referred to as
Quantum Software Engineering (QSE) - to develop quantum
software applications [2] [4]. Traditional SE that focuses
on processes and practices has been tailored to address the
challenges of QSE. Specifically, the research in [30] takes into

account the concepts of quantum computing (e.g., Qugates and
Qubits) to propose a software development lifecycle (SDLC)
for quantum software. The proposed SDLC enables quantum
software designers and architects to incorporate the concepts
of (quantum) domain engineering to model quantum circuits
that act as the foundation for implementing quantum algo-
rithms. Quantum specific SDLCs [30] [2] address some of the
challenges for QSE such as quantum domain engineering [6],
quantum information simulation and validation [19]. However,
such development life-cycles act as reference models and lack
support for specifications (source coding), tools (automation),
and patterns (best practices) for software implementation [14].

B. Software Architecture Solutions for Quantum Computing

Software design is an integral phase of SE that abstracts
away implementation details by establishing an architectural
blueprint for the structure and behavior of software systems [8]
[9]. In the context of QSE [18], a recently conducted mapping
study highlights the role of architectures in the development of
quantum software [7]. Quantum Software Architecture (QSA)
solutions such as [16] exploit architectural models to transform
a quantum algorithm from high-level models to concrete
executable specifications. Specifically, the research exploits
layered architecture pattern [14] [15] to design the quantum
algorithm, implement it, and simulate it in an incremental
manner using software layering. In similar research on QSA-
driven implementation of quantum software, the researchers
in [22] have proposed software architecture and presented the
design flow to compile a quantum program from high-level
host language to hardware-specific instructions.



TABLE I: Roles and Tool Support in Architecture Process

✓: Role Involved, 1-11: ID of Tool
Architecture Process and ActivitiesHuman Roles

AR AM AI AV AD
Quantum Domain
Engineer ✓1 ✓7 ✓10

Quantum Software
Architect ✓2, 3 ✓4

Quantum Code
Developer

✓1, 2
✓5, 6

Quantum Simulation
Engineer

✓2, 8
✓9, 11

Tools Prototypes
1 = Auto E/E Framework. 2 = Strawberry Fields. 3 = qCOR.
4 = eQASIM. 5 = xACC. 6 = GH-QPL. 7 = JKQ. 8 = QuNetSim.
9 = KWANT. 10 = Link Layer 11 = JKQ DD SIM.

VI. CONCLUSIONS

QSE as an emergent class of software engineering aims
to apply principles and practices of software design and
development to engineer quantum algorithms that can be
executed/simulated on quantum platforms. The focus of this
research is overviewed in Table I - acting as a structured
catalogue - that maps architecting activities (Section III),
professional roles, and available tool support (Section IV) to
enrich QSA process. For example, Table I highlights that the
role of Quantum Domain Engineer enables managing (i) ASRs
and supporting (ii) architectural deployment activities in QSA.
Primary contributions of this research are:

• Streamlining the architectural process, professional roles,
and available tool prototypes to complement QSE by
enabling quantum software development via QSAs.

• Architectural process acts a reference model to guide
researchers and practitioners to utilise or customize ex-
isting architectural processes, patterns, tools, and human
expertise to design emerging and next generation QSAs.
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