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1. Introduction 

“Top Secret. Burn before reading!” 
Boris & Arkady Strugatsky (1965). 

“Monday Begins on Saturday” 
en.wikipedia.org/wiki/Monday_Begins_on_Saturday 

Smart manufacturing under the umbrella of Industry 4.0 has dramatically increased its efficiency with the 
advancement in artificial intelligence (AI) and, particularly, in machine learning (ML) techniques and related 
applications [1]. Such applications enable smart production lines with improved flexibility of the product designs and 
configurations and further analysis of the usage data. The industry 4.0 paradigm encourages the usage of smart sensors, 
devices and machines to enable smart factories that continuously collect the production process and the product usage 
data. ML techniques enable the discovery of complex patterns used by decision support systems for many 
manufacturing tasks. However, many open questions and challenges remain regarding the use of ML applications [2], 
e.g., big data management and understanding, especially data-related security and privacy concerns. Unfortunately, 
smart manufacturing is one of the most targeted industries for cyber-attacks, costing billions of dollars worldwide. 
Attackers often aim to steal either intellectual property or private information (e.g., employees’ or customers’ data) 
and sell it to competitors or blackmail the victims. Unlike other industrial revolutions, Industry 4.0 measures, 
generates, collects, preserves, and shares lots of private information. Personal data has already turned out to be a new 
domain of warfare against the key Industry 4.0 components such as AI, ML, internet of things, cyber-physical systems 
and autonomous vehicles, cloud computing, etc. [3]. Personal data nowadays, in addition to customer data and sensitive 
process data, may even include captured models of workers’ behavior while accident handling [4]. Knowledge sharing, 
which is an important enabler for optimized manufacturing processes (e.g., predictive maintenance among many 
others), suffers a lot from sensitive data disclosure issues. Potentially sensitive data may not be evident within the 
maintenance reports and must be identified, removed or anonymized before being shared with other actors [5]. 

The exponential growth of big data collected by smart manufacturing processes and qualitatively new methods to 
process the data gives a unique opportunity to get extra value from the data. ML in general and deep learning in 
particular are increasingly being adopted everywhere in Industry 4.0. Usually, a well-performing ML model relies on 
a large volume of training data and high-powered computational resources. Therefore, ML-as-a-Service (MLaaS), 
which leverages deep learning techniques provided by public clouds for predictive analytics to enhance decision-
making, has become a hot commodity [6]. Providing a training set to some external storage-as-a-service cloud [7] and 
further to MLaaS can be difficult when sensitive user data is involved and the General Data Protection Regulation 
(GDPR) or similar regulations prohibit gathering and processing such sensitive data [8]. The privacy concerns are well 
justified due to the potential risks of leakage of highly privacy-sensitive information and due to the vulnerability of 
trained ML models to adversarial attacks [9]. Therefore, privacy-preserving ML (PPML) has emerged to enable the 
value from data without violating its privacy [10]. The existing work on PPML goes mainly into two directions: the 
variations of privacy-preserving cryptography including homomorphic encryption and secure multi-party computing 
[10], [8], [11], and the variations of data perturbations including synthetic data generation with differential privacy 
[12], [13], [14], each having its advantages and disadvantages. 

Machine vision, which is often called “the eyes of Industry 4.0” [15], uses ML algorithms embedded in advanced 
cameras to enable smart systems’ capability to replace human vision in controlling manufacturing processes and, 
therefore, improving product and process monitoring through inspection [16]. Machine vision tools enhanced with the 
ML-driven image processing algorithms have a huge application potential in Industry 4.0 [17] as they are capable of 
identifying products, objects, components and materials being handled through the manufacturing process and making 
certain decisions as needed. Images may contain sensitive or private information and, therefore, PPML concerns are 
also applied to images. However, specifics of image data representation (values for the features are hidden behind the 
pixels) require special approaches towards encryption and synthetic image generation for PPML [18], [19], [20]. 

In [21], the homeomorphic data space transformation algorithm has been developed as a kind of homomorphic 
encryption. Its specificity is that the anonymization of a sensitive dataset is performed by a secret neural network with 
weights as kind of encryption keys.  This algorithm worked well with numeric tabular data to protect its privacy and 
enabling effective supervised ML (classification with deep neural networks) on top of encrypted data. In this paper, 
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we update and extend the application scope of this method also towards sensitive image data. In addition, we show 
that this algorithm can be combined with synthetic image generation, aiming to create a hybrid privacy protection 
method with the high level of security. 

The rest of the paper is organized as follows: Section 2 presents two PPML approaches (homeomorphic data space 
transformation and synthetic image generation) and recommends using them together as a hybrid; Section 3 updates 
(by including convolutional autoencoders and pre-trained feature extractors into the loop) the PPML algorithms to be 
applied to image data; Section 4 summarizes the corresponding experiments; and we conclude in Section 5. 

2. Privacy-Preserving Supervised ML 

The generic and simplified schema of supervised ML (for classification problem) is as follows. 
We have as an input: 

Data (𝑚𝑚 samples of private data): 𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑚𝑚  with distribution 𝐷𝐷; 
Data sample (𝑛𝑛-dimensional vector of features): 𝑑𝑑𝑖𝑖: {𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛} within feature space 𝐹𝐹𝑛𝑛; 
Labels (𝑘𝑘 class labels): 𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑘𝑘; 
Labelled Data sample: 〈𝑑𝑑𝑖𝑖, 𝑙𝑙𝑗𝑗〉 = {𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛 → 𝑙𝑙𝑗𝑗}, (i.e., Data sample 𝑑𝑑𝑖𝑖 is assigned to the class 𝑙𝑙𝑗𝑗 by some 
expert/supervisor); 

Supervised ML is a function: 
ML (training subset of Labelled Data samples) → MODEL; such that 
MODEL (Data sample 𝑑𝑑𝑖𝑖 from test subset of Labelled Data samples with hidden Label) → 𝑙𝑙𝑗𝑗 ; (automatic 
labelling of test data samples, comparing with the hidden labels, loss evaluation and model’s performance 
assessment). 

As we have mentioned in the previous section, there are two basic options (homomorphic encryption and synthetic 
data generation) to care about the dilemma “privacy of data vs. value from data” or the PPML. 

2.1. Homeomorphic transformation as a kind of homomorphic encryption 

As an example of the first PPML option (homomorphic encryption), we consider the recently developed [21] 
homeomorphic (topology-preserving) data space transformation (see Fig. 1). 

Such encryption (Fig. 1) can be applied to tabular numeric data. As a result, the private data samples will change 
their original locations due to the topologically modified (using secret function) data space. After the encryption, the 
further ML process (e.g., deep learning with neural networks) can be performed remotely on MLaaS public cloud and 
will result in the encrypted model, which can be decrypted and used later in a safe place when necessary. A simplified 
formal model of the homeomorphic data space transformation is as follows: 

Secured Data: 𝑚𝑚 samples of data (𝑑̃𝑑1, 𝑑̃𝑑2, … , 𝑑̃𝑑𝑚𝑚)  with distribution 𝑫̃𝑫, which are the result of secret, locked 
by the KEY homeomorphic (i.e., topology-preserving) transformation (defined by an invertible function 
TOP_TRANS, in which KEY is a set of secret parameters), of the feature space of the original (private) data 
(𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑚𝑚). 

Important properties of a homeomorphic transformation: 
𝑑̃𝑑𝑖𝑖: {𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛} = 𝑇𝑇𝑇𝑇𝑇𝑇_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐾𝐾𝐾𝐾𝐾𝐾, 𝑑𝑑𝑖𝑖: {𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛}); 
𝑑𝑑𝑖𝑖: {𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛} = 𝑇𝑇𝑇𝑇𝑇𝑇_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝐾𝐾𝐾𝐾𝐾𝐾−1, 𝑑̃𝑑𝑖𝑖: {𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛}) ; 
ML (training set: {∀𝑖𝑖〈𝑑̃𝑑𝑖𝑖, 𝑙𝑙𝑗𝑗〉}) → SECURED_MODEL; such that 
SECURED_MODEL (secured test data sample 𝑑̃𝑑𝑖𝑖) → 𝑙𝑙𝑗𝑗 ← MODEL (test data sample 𝑑𝑑𝑖𝑖). 
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Fig. 1. Generic schema of supervised PPML based on homeomorphic data space transformation (topology-preserving encryption). 

The complex Fig. 2 will be used to show: the example of homeomorphic transformation; the example of synthetic 
data generation; and the hybrid of these both. Particularly for the needs of this subsection, in Fig. 2 (a, b, c, d), an 
example of a transformation is shown for a 2D data space and three class labels (“red”, “green” and “blue” data 
samples). The transformation from the original data (Fig. 2 (a)) to the secured data (Fig. 2 (d)) is actually also 
transforming the original (private) data distribution (hidden model or decision boundaries between three classes as 
shown in Fig. 2 (b)) into the new data distribution (secured model) as shown in Fig. 2 (c). 

The advantages of such a homeomorphic transformation for PPML are as follows: 
1) Uncovering (or guessing) any sample of the original private data (𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑚𝑚)  from (𝑑̃𝑑1, 𝑑̃𝑑2, … , 𝑑̃𝑑𝑚𝑚) 

without knowing the KEY is unfeasible (for a properly defined transformation function); 
2) There is no need to keep anywhere the original private data (𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑚𝑚) after the transformation (it can 

be deleted); 
3) Machine learning process over the labelled secured training data could be performed within remote and 

potentially unsecure premises of the MLaaS providers and the trained secured models could be kept there 
and securely queried when needed within their clouds; 

4) After the model is built and in use, there is no need to keep the secured data (𝑑̃𝑑1, 𝑑̃𝑑2, … , 𝑑̃𝑑𝑚𝑚)  anymore and it 
can be deleted; 

5) The transformation could be potentially (with some effort discussed in the following sections) adapted to the 
private image data transformation (i.e., making the homeomorphic transformation on the level of the latent 
feature vectors of the images). 

The potential drawbacks of the homeomorphic transformation are as follows: 
A. The stronger (“deeper”) the transformation KEY would be, the longer the machine learning process could be 

needed to capture an effective (secured) classification model out of the secured data.  For example (in terms 
of Deep Learning), the deeper the KEY (distributed sequence of “locks”), the deeper architecture of a neural 
network (as a potential classifier) and more training time will be needed to achieve the inteded accuracy; 

B. If all the distributed components (unlikely but anyway) of the KEY leak and become known to the MLaaS 
provider (which also gets secured data to build the model), then the original private data could be uncovered. 
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Fig. 2. Illustration of the homeomorphic data space transformation and synthetic data generation processes and their sequential use as a hybrid 
PPML process: (a) example of the original (private) data labelled into three classes (“green”, “blue” and “red”) in 2D space; (b) distribution of the 
original data is illustrated by the decision boundaries between the classes, which could be potentially learned by some ML algorithm; (c) the result 
of the homeomorphic data space transformation, which changes the distribution of the original data, relocates each data sample and corresponding 
decision boundaries; (d) shows the original data samples but relocated due to homeomorphic transformation for privacy reasons; (e) the synthetic 
data generation is illustrated, which preserves the distribution of data (i.e., creates new data samples for each class in new locations but not changing 
the decision boundaries); (f) the result of synthetic data generation is shown, which guarantees the double protection of the original private data (a) 
due to relocation of private samples and then replacing them with the arbitrary number of synthetic samples. 

2.2. Synthetic data generation to enable PPML 

As we have mentioned above, the second PPML option would be a synthetic data generation. A simplified formal 
model of the synthetic data generation process has the following input: 

Data (𝑚𝑚 samples of private data): 𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑚𝑚  (with distribution 𝐷𝐷) labelled to 𝑘𝑘 classes 𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑘𝑘 so that we 
have: 

𝑚𝑚1 samples (with distribution 𝐷𝐷1) labelled as 𝑙𝑙1; 
𝑚𝑚2 samples (with distribution 𝐷𝐷2) labelled as 𝑙𝑙2; 
… 
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𝑚𝑚𝑘𝑘 samples (with distribution 𝐷𝐷𝑘𝑘) labelled as 𝑙𝑙𝑘𝑘, 
where:  𝑚𝑚 = 𝑚𝑚1 + 𝑚𝑚2 + ⋯ + 𝑚𝑚𝑘𝑘 . 

The task of the synthetic data generation process is as follows: 
Generate  𝑚̅𝑚  new samples of synthetic data:  𝑑̅𝑑1, 𝑑̅𝑑2, … , 𝑑̅𝑑𝑚̅𝑚  (within the same distribution 𝐷𝐷) labelled to 𝑘𝑘 classes 

𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑘𝑘 so that we have: 

𝑚̅𝑚1 new samples labelled as 𝑙𝑙1 (within the same distribution 𝐷𝐷1 as the original 𝑚𝑚1 samples with the same 
label); 
𝑚̅𝑚2 new samples labelled as 𝑙𝑙2 (within the same distribution 𝐷𝐷2 as the original 𝑚𝑚2 samples with the same 
label); … 
𝑚̅𝑚𝑘𝑘 new samples labelled as 𝑙𝑙𝑘𝑘 (within the same distribution 𝐷𝐷𝑘𝑘 as the original 𝑚𝑚𝑘𝑘 samples with the same 
label); … where: 𝑚̅𝑚 = 𝑚̅𝑚1 + 𝑚̅𝑚2 + ⋯ + 𝑚̅𝑚𝑘𝑘 . 

The main requirements for the synthetic data generation process are as follows: 
The classification 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅  built (trained) from the set of synthetic data  𝑑̅𝑑1, 𝑑̅𝑑2, … , 𝑑̅𝑑𝑚̅𝑚 will classify the new 
test samples similarly (as much as possible) as the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, which could be built from the set 𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑚𝑚  
of the original [private] data, i.e.: 
MACHINE LEARNING (training set: {∀𝑖𝑖〈𝑑𝑑𝑖𝑖, 𝑙𝑙𝑗𝑗〉}) → 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀;  
MACHINE LEARNING (training set: {∀𝑖𝑖〈𝑑̅𝑑𝑖𝑖 , 𝑙𝑙𝑗𝑗〉}) → 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ;  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (test data sample 𝑑𝑑𝑡𝑡) → 𝑙𝑙𝑞𝑞 ← 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (test data sample 𝑑𝑑𝑡𝑡). 

In Fig. 2 (c, d, e, f), an example of synthetic data samples’ generation for the three classes (“red”, “green” and 
“blue”) is shown for 2D data space. Assume that the original data is the one which is shown on the screen in Fig. 2 
(d) and its distribution is shown in Fig 2 (c). The new synthetic data samples generation process will result in the 
renewed set of data samples like it is shown in Fig. 2 (f), which have the same distribution (Fig. 2 (e) is the same as 
Fig. 2 (c)) as the original data from Fig. 2 (d) has. 

The advantages of such synthetic data generation for PPML are as follows: 
1) There is no one-to-one (neither explicit nor implicit) relationship between any sample 𝑑𝑑𝑖𝑖  of the original 

[private] data and any sample 𝑑̅𝑑𝑗𝑗 of the newly generated [synthetic] data; 
2) There is no need to keep anywhere the original private data (𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑚𝑚) after the new synthetic dataset(s) 

is (are) generated (i.e., private data can be deleted); 
3) After the model is built from the synthetic data and in use, there is no need to keep the synthetic data 

( 𝑑̅𝑑1, 𝑑̅𝑑2, … , 𝑑̅𝑑𝑚̅𝑚) anywhere as well, and it can be deleted. 

The drawbacks of synthetic data generation are as follows: 
A. If the classification model is going to be trained within potentially unsecure premises of the MLaaS providers, 

then it is important that synthetic data samples are located (within the feature space) far enough from any of 
the original [private] samples so that the private entities cannot be identified.  It is very difficult (if possible 
at all) to keep this requirement when we have a multidimensional decision space (𝑛𝑛 is large) and we do not 
have enough original samples within some classes (𝑚𝑚𝑖𝑖 is small). In such cases (to guarantee at least some 
reasonable generalization performance of the model trained from synthetic data), the newly generated 
samples may appear very close to the original samples, violating their privacy (especially if various 
modifications of (conditional) GANs are used. However, also the differential privacy approaches may suffer);    

B. The trained classification model cannot be safely kept and queried within potentially unsecure premises of 
the MLaaS providers because each query itself exposes the private entity;  

C. It is difficult to adapt easily to the [private] image datasets due to the (A)-concern. 
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2.3. The hybrid approach to PPML 

As we can see, both PPML approaches have their different pros and cons. Therefore, we suggest combining these 
two: transformation (i.e., same data - different distribution) and generation (i.e., same distribution – different data) 
processes into one hybrid process so that it will have minimal drawbacks but, in the same time, will inherit advantages 
of both. Fig. 6 as a whole illustrates such a hybrid, where first the homeomorphic data transformation is performed 
(i.e., original data samples change their locations together with the potential decision boundaries) and then new 
synthetic data samples are generated so to fit the new distribution of the data. Evidently, such a hybrid process will 
neither have the (B) drawback of the homeomorphic data transformation process applied alone nor the (A), (B) and 
(C) drawbacks of the synthetic data generation process applied alone.  Therefore, such a hybrid, which inherits the 
advantages of both PPML options, could potentially provide an extremely high level of privacy protection of various 
data and of the models learned out of it (even within the unsafe MLaaS clouds), and, at the same time, enable high 
generalization performance of the models (both individual and federated). 

3. Approaching image data with PPML 

Digital images are made up of pixels, and the features of an image (needed for processing with ML algorithms like 
ordinary numeric tabular data) are not explicit within the image representation. Therefore, the straightforward use of 
the PPML processes described above over the image data is not possible. Certain image pre-processing will be needed 
to enable both homeomorphic image data transformation and synthetic data generation. 

To enable homeomorphic image data transformation, we suggest using the autoencoder concept and its various 
modifications. An autoencoder is a type of deep learning network that is trained to replicate its input (usually image) 
data. A basic or simple autoencoder consists of two networks: Encoder and Decoder (see Fig. 3 (a)). The training 
process is organized so that the Encoder (having some image as an input) learns a set of hidden-within-image features, 
shown as a latent vector in Fig. 3 (a). Simultaneously, the Decoder is trained to reconstruct the original image based 
on the latent vector. The more image-generation-specific option of an autoencoder, which is often used as an 
alternative to popular Generative Adversarial Networks (GANs), is a variational autoencoder [22] shown in Fig. 3 (b). 
The basic idea behind the image generation process with the variational autoencoders assumes the development of a 
low-dimensional latent vector space of representations (see Fig. 3 (b)) where each point can be mapped to a 
realistically looking image. The role of such mapping (latent vector – grid of pixels for an image) is played by the 
Decoder. A similar basic objective with certain specifics could be achieved also with the convolutional autoencoders 
[23], adversarial autoencoders [24], attention autoencoders [25], hybrids of autoencoders with GANs [26], etc.  

In this study, we assumed that, if an image can be encoded by such an autoencoder, which can also extract features 
of an image needed for future classification (e.g., convolutional autoencoder [23]), into the corresponding latent 
vector, then further PPML manipulations with such vectors (homeomorphic encryption, synthetic image generation) 
could be performed within the latent (feature) space in a similar way like with other tabular data. 

Consider the process of homeomorphic image data transformation driven by a convolutional autoencoder in Fig. 
4. First, within a safe place, each private image goes through an autoencoder (i.e., feature extractor) architecture (upper 
part of the figure) until the Decoder will be trained enough to achieve an acceptable reconstruction quality. This would 
also mean that the Encoder becomes capable of giving an acceptable latent vector representation of the image, which 
also includes the extracted features needed for potential classification tasks. After that, the homeomorphic latent space 
transformation (as a kind of homomorphic encryption) is being performed as it is described in Subsection 2.1. Such 
transformation outputs the encrypted (with secret keys) latent vector representation of the original private image. 
Finally, if to apply the already trained (at the first stage) Decoder to that encrypted latent vector, then some new image 
will be reconstructed, which can be considered as an encrypted version of the original image (see lower part of Fig. 
4). Such an encrypted image is supposed to hide all private information from the original image, which cannot be 
uncovered without knowing secret keys. As described in [21], such encryption-decryption keys are the secret weights 
of a (deep) neural network used for homeomorphic transformation of the data space. 
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Fig. 3. Autoencoders: (a) the basic (e.g., convolutional) autoencoder; (b) [convolutional] variational autoencoder. 

  
Fig. 4. The homeomorphic latent space transformation as a PPML approach to encrypt the images using a convolutional autoencoder. 

Synthetic image data generation can be arranged using, e.g., convolutional variational autoencoders 
(www.tensorflow.org/tutorials/generative/cvae) and randomly sampled points within the latent space distribution as 
shown in Fig. 3 (b).  

Finally, the safest option would be a hybrid PPML process (see Subsection 2.3) where we first encrypt the latent 
space using homeomorphic latent space transformation and then generate new images within the encrypted space.  

If there is no need to visualize the images in encrypted form, one can use more powerful (than convolutional 
autoencoders) pre-trained feature extractors and use the extracted and encrypted feature vectors for combining privacy 
protection with good classification accuracy.    

4. Experiments 

In order to prove the concept of hybrid PPML (encryption plus generation) with real data from cyber-physical 
environments of Industry 4.0, we use the capacities of a logistics system and particularly of an interroll cassette 
conveyor. These industrial installations are related to the project IMMUNE: “Cyber-Defence for Intelligent Systems”, 
which is a NATO SPS project (http://recode.bg/natog5511). The conveyor is used for simulating various critical or 
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adversarial situations with military cargo, supplies or luggage delivered by air and for automated video inspection at 
the security checkpoints. The decisions about the distribution of the cassette loads (bags, boxes, packages, etc.) are 
made automatically by AI/ML components [27] trained using labeled images. Such artificial “airport workers” assess 
in real time each load’s safety, aiming to prevent any potential danger caused by the items in the load. Needed models 
for artificial decision-makers are built and constantly updated using remote MLaaS and, therefore, privacy of images 
is an issue here. We experimented with 2198 labelled images of cassettes taken by the cameras installed on the critical 
distribution points of the conveyer. We applied a supervised ML to build a load classification model (a convolutional 
neural network) from the image data before and after the encryption (homeomorphic latent space transformation using 
convolutional autoencoders or feature extractors). The objective was to compare how the level (depth) of encryption 
influences the quality of a learned classifier. The results show that the loss of classification accuracy due to the PPML 
measures is within the 1-3% interval depending on the depth of the transformation, which is an acceptable loss. 

The experimental settings of the described logistics laboratory enable us to simulate various types of attacks [28] 
on the backbone of AI algorithms, including attempts to decrypt the secured images. We have checked the robustness 
of the homeomorphic data space transformation as an encryption algorithm and have shown that, even after a simulated 
leakage of  >90% of the original private images together with the encrypted model, the rest 10% of secured images 
cannot be uncovered (reconstructed to disclose the private information). 

Below we give a few illustrative examples of our experiments with the less sensitive to disclosure, public and 
popular image dataset Kaggle (Cats and Dogs Dataset: www.microsoft.com/en-us/download/details.aspx?id=54765), 
which contains 50K colored images of various cats and dogs. 

Fig. 5 illustrates the result of applying the convolutional (driven by the simplest from the VGG-11 family of neural 
architectures: www.kaggle.com/datasets/pytorch/vgg11) autoencoder for image encryption via homeomorphic 
transformation of the latent space. One can see that the private information from the original image can be safely 
hidden. Classification with the images encrypted in this way is possible yet gives lower classification accuracy 
comparably to the pre-trained feature extractors. 

 
Fig. 5. Example of the homeomorphic latent space transformation and the encrypted image visualization using a convolutional autoencoder. 

For the experiments with the much more powerful (than VGG-11) and pre-trained feature extractors, we have 
chosen the ResNet architecture [29] according to the configuration ResNet-18, see, e.g. [30], which has been 
pretrained for the Kaggle (www.kaggle.com/datasets/pytorch/resnet18). Extracted and encrypted feature vectors for 
Kaggle dataset have been used for image classification and show better classification accuracy comparably to the 
feature vectors extracted by the convolutional autoencoder, as can be seen from Table 1. One can see that there is 
almost no accuracy loss within the classification tasks in safe (three layers of deep encryption) dataset comparably to 
the original dataset. Therefore, if there is no need to visualize and show the encrypted images, then the feature 
extractors are the better choice to assist PPML with the homeomorphic transformation algorithm. 
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The source code and more details related to the Kaggle dataset encryption experiments together with the 
corresponding plots and figures can be found in https://github.com/Adversarial-Intelligence-Group/image-encryption.  

     Table 1. Comparisons of classification accuracy over the original and the encrypted Kaggle dataset images. 

Homeomorphic transformation (encryption): 
assistive model for latent (feature) vector extraction 

Classification accuracy before the 
encryption 

Classification accuracy after 
the encryption 

Convolutional (VGG-11) autoencoder  76.12 % 74.89 % 
ResNet feature extractor [29], [30] 97.92 % 97.34 % 

5. Conclusions 

Lots of private data collected to be processed by various MLaaS to get hidden value out of it for the needs of 
industry 4.0 makes the domain of PPML an emergent one. The algorithms, which are able to secure private data so 
that ML will still be able to capture the needed value (diagnostic, prediction, etc., models) are of great interest 
nowadays. Two orthogonal options for the PPML are homomorphic encryption and synthetic data generation. Image 
data (compared to the traditional tabular data) has certain specifics (features of images are hidden behind the pixels), 
which is the challenge for the mentioned PPML options. In this study, we have expanded the scope of the 
homeomorphic data space transformation algorithm [21] to be also applied to image data. Privacy of an image is 
achieved by special encryption of the correspondent latent (feature) vector, obtained using convolutional autoencoders 
or more powerful pre-trained feature extractors. Such a PPML approach guarantees security of private data in the 
images and, at the same time, does not exclude the possibility to apply ML on top of the encrypted images. In this 
paper, we also show that combining a homeomorphic data space (latent vector space for the images) transformation 
with a synthetic data generation (via convolutional variational autoencoders for the images) into one hybrid PPML 
process will essentially improve privacy. This is due to the fact that such a hybrid inherits the advantages of both 
components and eliminates most of the shortcomings of each one. For example, such a hybrid is capable of generating 
the well-protected synthetic images even on the basis of a relatively small number of the available original data 
samples, which is a problem if you apply the synthetic image generation alone without the encryption phase. Also, 
the leakage of the encryption keys, which is a problem with the encryption algorithm applied alone, will not be a 
problem for a hybrid due to the additional (synthetic image generation) PPML stage. 

The manufacturing domain is constantly facing a wide range of problems related to cybersecurity, and encryption 
is one of the most important ways to protect manufacturers from cyberattacks [31]. Furthermore, deep learning models 
are still not resistant to attacks and can leak important information to an attacker. Standard encryption algorithms like 
AES (Advanced Encryption Standard) or RSA (Rivest, Shamir, and Adleman) have one (symmetric encryption) or 
two (asymmetric encryption) keys to encrypt and decrypt data [32], and here comes another problem of storing 
securely the private keys. Our algorithm resolves these problems by having the encrypted ML models and synthetic 
data. One example of using synthetic data in manufacturing could be video surveillance, activity monitoring and 
recognition, anomaly detection, diagnostics and predictive maintenance, etc. ML trains such models based on images, 
which may include secret objects, processes or individuals, while use of synthetic data will make the ML models 
GDPR compliant. We conducted our experiments with simple images to demonstrate the advantages of using our 
algorithm over standard encryption algorithms in MLaaS, but it can be applied to any image dataset. 

The source code and more additional illustrations for some of our image encryption experiments are available 
online at https://github.com/Adversarial-Intelligence-Group/image-encryption.  
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