
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Optimal C∞-approximation of functions with exponentially or sub-exponentially
integrable derivative

© The Author(s) 2022

Published version

Ambrosio, Luigi; Golo Nicolussi, Sebastiano; Cassano Serra, Francesco

Ambrosio, L., Golo Nicolussi, S., & Cassano Serra, F. (2023). Optimal C∞-approximation of
functions with exponentially or sub-exponentially integrable derivative. Calculus of Variations
and Partial Differential Equations, 62(1), Article 24. https://doi.org/10.1007/s00526-022-02346-
w

2023



Calc. Var.           (2023) 62:24 
https://doi.org/10.1007/s00526-022-02346-w Calculus of Variations

Optimal C∞-approximation of functions with exponentially
or sub-exponentially integrable derivative

Luigi Ambrosio1 · Sebastiano Golo Nicolussi2 · Francesco Cassano Serra3

Received: 8 March 2022 / Accepted: 23 September 2022
© The Author(s) 2022

Abstract
WediscussMeyers-Serrin’s type results for smooth approximations of functions b = b(t, x) :
R × R

n → R
m , with convergence of an energy of the form∫

R

∫
Rn

w(t, x)ϕ (|Db(t, x)|) dxdt ,

where w > 0 is a suitable weight function, and ϕ : [0,∞) → [0,∞) is a convex function
with ϕ(0) = 0 having exponential or subexponential growth.
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1 Introduction and results

In this note we deal with the approximation of functions b = b(t, x) : I × � → R
m by

smooth ones, where I ⊂ R and � ⊂ R
n are an open interval and an open set, respectively.

Our main motivation comes from [4], where m = n and b is a possibly nonautonomous
vector field. In that paper we are dealing with a priori upper bounds for Sobolev norms of
the flow of b by means of quantities Nϕ,w(|Db|) that depend on the spatial derivative Db of
b. The quantities Nϕ,w(|Db|) are energies of the form

Nϕ,w(|Db|) :=
∫
I

∫
�

w(t, x)ϕ (|Db(t, x)|) dx dt,

where w > 0 is a suitable weight function (related to dist(x, ∂�), or to the length of the
maximal interval of the ODE associated to b) and ϕ : [0,∞) → [0,∞) is a convex func-
tion with ϕ(0) = 0 having exponential or sub-exponential growth, the model case being
exp∗(t) := exp(t) − 1. When one tries to extend the a priori estimates from the case of
smooth vector fields b to those having only a Sobolev spatial regularity, one faces the diffi-
culty of passing the quantity Nϕ,w to the limit.

In this context, if ϕ had polynomial growth, a weighted and t-dependent version of the
celebratedMeyers-Serrin Theorem [9] would be applicable, providing even a smooth approx-
imation (bh)h with Nϕ,w(|D(bh − b)|) → 0. In general, as the discussion below shows, this
kind of approximation fails when ϕ does not satisfy a doubling condition. However, we real-
ized that the exponential (or subexponential) case is a borderline one. Indeed, thanks to the
weak subadditivity condition

ϕ(a + b) ≤ k [(1 + ϕ(b)) ϕ(a) + ϕ(b)]
we are able to prove convergence of the energy Nϕ,w and density of smooth functions with
respect tomodular convergencewhenϕ is strictly convex. This kind of convergence in energy,
though weaker than convergence with respect to Luxenburg norm (or modular convergence,
when ϕ is not strictly convex), should be compared with the theory of BV functions, where
smooth functions are not dense in BV norm, but dense in energy. Moreover, this convergence
will be sufficient to pass our a priori estimates to the limit in the paper [4].

In the classical setting of Orlicz spaces (see Sect. 2) the weighted ϕ-energy Nϕ,w is called
a modular and we put some of our results in this context. The main approximation result of
the note reads as follows.

Theorem 1 Let I ⊂ R be an open interval and� ⊂ R
n an open set. Letw : I×� → (0,∞)

be a Borel function uniformly bounded from above and from below on compact subsets of
I × �. Let ϕ : [0,∞) → [0,∞) be a convex function satisfying ϕ(0) = 0 and and for
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which there exists a positive constant kϕ such that

ϕ(a + b) ≤ kϕ[ϕ(a) ϕ(b) + ϕ(a) + ϕ(b)] for alla, b ∈ [0,∞). (1)

Let b ∈ L1
loc(I ;W 1,1

loc (�; R
m)) ∩ C0(I × �; R

m) satisfy

Nϕ,w(|Db|) < ∞. (2)

Then there exist bh ∈ C∞(I × �; R
m) satisfying

bh → b in L1
loc(I × �; R

m), Dbh → Db in L1
loc(I × �; R

nm), (3)

and

wϕ (|Dbh |) → wϕ (|Db|) in L1(I × �). (4)

In particular,

lim
h→∞ Nϕ,w(|Dbh |) = Nϕ,w(|Db|). (5)

Besides the model case of ϕ = exp∗, we are able to consider the functions

exp∗
γ,τ (t) := expγ,τ (t) − 1, (6)

where 0 ≤ γ ≤ 1, τ > 0 and

expγ,τ (t) := exp

(
t

(log(t + τ))γ

)
. (7)

It is easy to see that a convex functionϕwith polynomial growth satisfies (1), seeRemark 6.
Wewill show inLemma21 that exp∗

γ,τ satisfies the conditions inTheorem1 forϕwith kϕ = 1,
if τ is sufficiently large. The functions expγ,τ , though convex, do not have null derivative at
0, and therefore do not fit exactly in the theory of N -functions. Therefore, in order to provide
a bridge with the theory of N -functions of Orlicz spaces, we will also consider the modified
functions

ẽxpγ,τ (t) := expγ,τ (t) − 1 − t

(log τ)γ
= exp∗

γ,τ (t) − t

(log τ)γ
, (8)

which are indeed N -functions and can be treated it by comparison with exp∗
γ,τ .

Corollary 2 Letw : I ×� → (0,∞) be a Borel function uniformly bounded from above and
from below on compact subsets of I × �. Let b ∈ L1

loc(I ;W 1,1
loc (�; R

m)) ∩ C0(I × �; R
m)

satisfy (2) with

ϕ = ẽxpγ,τ with τ sufficiently large (9)

and

either w|Db| ∈ L1(I × �), or w ∈ L1(I × �). (10)

Then there exist bh ∈ C∞(I × �; R
m) satisfying (3), (4) and (5).

Notice that, when the functions ϕ we are dealing with have amore than polynomial growth
at infinity and the weight function w is uniformly bounded from 0 on compact subsets,
Corollary 2, the Sobolev Embedding Theorem grants continuity of b with respect to the
spatial variable. But, in the proof of Theorem 1, it seems that the continuity of b with respect
to t is also needed (cf. the estimate of the term zδ). However, if we assume the weight w to
be time-independent, we can adapt the proof of Theorem 1 to drop the continuity assumption
on b, and we obtain the following extension of Corollary 2.
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Theorem 3 Let w : � → (0,∞) be a Borel function uniformly bounded from above and
from below on compact subsets of �. Assume that either ϕ = exp∗

γ,τ or ϕ = ẽxpγ,τ and (10)

holds, with τ sufficiently large and let b ∈ L1
loc(I ;W 1,1

loc (�; R
m)) satisfy (2). Then there exist

bh ∈ C∞(I × �; R
m) satisfying (3), (4) and (5).

When the function ϕ is strictly convex, from the ϕ-energy convergence of the Jacobian
matrices of autonomous vector fields, one can obtain the modular convergence (see Defini-
tion 10).

Theorem 4 Let ϕ : [0,∞) → [0,∞) be a strictly convex function, and assume that bh → b
in L1

loc(�; R
m) with ∫

�

ϕ(|Dbh |) dx →
∫

�

ϕ(|Db|) dx < ∞. (11)

Then ∫
�

ϕ

( |Dbh − Db|
2

)
dx → 0. (12)

Finally, if ϕ = ẽxpγ,τ , being ẽxpγ,τ a N -function (see Lemma 21.(ii)), we can set our
result in the classical setting of Orlicz-Sobolev spaces (see Sect. 2). Therefore, an immediate
consequence of Theorem 3 is the following approximation result in the Orlicz-Sobolev class
W 1K ẽxpγ,τ

(�).

Theorem 5 Let ϕ = ẽxpγ,τ be the N-function in (8) with τ given by Lemma 21 and u ∈
W 1K ẽxpγ,τ

(�). Suppose that

either |Du| ∈ L1(�), or � has finite measure. (13)

Then there exists (uh)h ⊂ C∞(�) ∩ W 1K ẽxpγ,τ
(�) such that (uh)h is mean convergent to

u (with respect to the modular Nẽxpγ,τ
) and (|Duh |)h is ẽxpγ,τ -energy convergent to |Du|,

that is,

lim
h→∞ Nẽxpγ,τ

(uh − u) = 0 and lim
h→∞ Nẽxpγ,τ

(|Duh |) = Nẽxpγ,τ
(|Du|) . (14)

To our knowledge, the previous result does not seem be a consequence of the well-known
results about approximation by smooth functions in Orlicz-Sobolev spaces (see Sect. 2.6),
even in the classical case with γ = 0.

2 Recalls of some density results of smooth functions in Orlicz and
Orlicz-Sobolev spaces

We will quickly recall here the notions of Orlicz and Orlicz-Sobolev spaces and some their
main properties. In particular, we will focus on the main density results of smooth functions
in Orlicz and Orlicz-Sobolev spaces. We will mainly use the notation from [1, Ch. VIII].

2.1 N-functions

A function ϕ : [0,∞) → [0,∞) is called a N -function, if

ϕ(t) :=
∫ t

0
a(s) ds if t ≥ 0,
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with a : [0,∞) → [0,∞) satisfying:

• a(0) = 0, a(t) > 0 if t > 0, and limt→∞ a(t) = ∞;
• a is nondecreasing, that is, if t ≥ s ≥ 0, then a(t) ≥ a(s);
• a is right continuous, that is, if t ≥ 0, then lims→t+ a(s) = a(t).

Given a N -function ϕ and λ > 0, we denote by ϕλ : [0,∞) → [0,∞) the function

ϕλ(t) := ϕ

(
t

λ

)
if t ≥ 0,

which is still a N -function.
A function ϕ is said to satisfy a global 	2-condition if there exists k > 0 such that

ϕ(2t) ≤ k ϕ(t) for each t ≥ 0.

A function ϕ is said to satisfy a 	2-condition near infinity if there exist k, t0 > 0 such that

ϕ(2t) ≤ k ϕ(t) for each t ≥ t0.

Remark 6 Observe that a convex function ϕ satisfying a global 	2-condition trivially fulfills
condition (1). Indeed, by the convexity and 	2-condition, we can get the following estimate

ϕ(a + b) ≤ 1

2
ϕ(2a) + 1

2
ϕ(2b) ≤ k

2
(ϕ(a) + ϕ(b)) for each a, b ∈ R.

Given � ⊂ R
n and a N-function ϕ, a pair (ϕ,�) is said to be 	-regular if

• ϕ satisfies a global 	2-condition, or
• ϕ satisfies a 	2-condition near infinity and � has finite measure.

2.2 The Orlicz class K'(Ä)

Let � ⊂ R
n be an open set and let ϕ be a N -function. The Orlicz class Kϕ(�) is the set

of all (equivalence classes modulo equality a.e. on � of) measurable functions u : � → R

such that

Nϕ(u) :=
∫

�

ϕ(|u(x)|) dx < ∞.

In the theory of modular spaces, the map u 
→ Nϕ(u) is called a modular ( [10, pg. 82]). A
comprehensive account of modular function spaces can be found in [7]. We treat the case of
real-valued functions for simplicity, but all results have an obvious extension to the case of
R
m-valued maps.
Let us recall some properties of the Orlicz class Kϕ(�).

Proposition 7 Given an open set� ⊂ R
n and a N-function ϕ, the following statements hold:

(i) Kϕ(�) is a convex set of measurable functions.
(ii) Kϕλ(�) ⊇ Kϕ(�) if λ ≥ 1 and Kϕλ(�) ⊆ Kϕ(�) if λ ≤ 1, where ϕλ(t) := ϕ(t/λ) is a

N-function for all λ > 0.
(iii) If f , g ∈ Kϕ(�), then f + g ∈ Kϕ2(�) and

Nϕ2( f + g) ≤ 1

2
Nϕ( f ) + 1

2
Nϕ(g).

(iv) If f ∈ Kϕ(�) and λ > 0, then λ f ∈ Kϕλ(�).
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(v) If � has finite measure, then

L∞(�) ⊂ Kϕ(�) � L1(�).

(vi) If � has finite measure, then for every u ∈ L1(�) there is a N-function ϕ such that
u ∈ Kϕ(�).

Proof Properties (i), (ii), (iii) and (iv) are immediate consequences of the definition of Kϕ(�)

and the convexity of ϕ. For the proof of properties (v) and (vi) see, for instance, [8]. 
�
Lemma 8 ( [1, Lem. 8.8] or [8, Ch. III, Th. 8.2]) Kϕ(�) is a vector space if and only if (ϕ,�)

is 	-regular.

2.3 The Orlicz space L'(Ä)

The Orlicz space Lϕ(�) is defined to be the linear hull of the Orlicz class Kϕ(�), that is the
smallest vector subspace of L1

loc(�) containing Kϕ(�). It is easy to see that, since Kϕ(�) is
convex, one has

Lϕ(�) := {
λ u : λ ∈ R, u ∈ Kϕ(�)

}
.

Moreover, from Lemma 8, Kϕ(�) = Lϕ(�) if and only if (ϕ,�) is 	-regular.
We can endow Lϕ(�) with the following norm, called Luxemburg norm,

‖u‖ϕ = ‖u‖ϕ,� := inf

{
λ > 0 :

∫
�

ϕ

( |u(x)|
λ

)
dx ≤ 1

}
.

Theorem 9 ( [1, Thm. 8.10]) (Lϕ(�), ‖ · ‖ϕ) is a Banach space.

2.4 Convergences in L'(Ä)

The typical convergences that apply in Orlicz spaces are the following.

Definition 10 A sequence of functions (uh)h ⊂ Lϕ(�) is said to be norm convergent to
u ∈ Lϕ(�) if

‖uh − u‖ϕ → 0 as h → ∞.

A sequence of functions (uh)h ⊂ Lϕ(�) is said to be modular convergent to u ∈ Lϕ(�) if
there exists λ > 0 such that

Nϕ

(
uh − u

λ

)
→ 0 as h → ∞. (15)

If λ = 1 in (15), (uh)h is said to be mean convergent to u ∈ Lϕ(�). A sequence of functions
(uh)h ⊂ Kϕ(�) is said to be ϕ-energy convergent to u ∈ Kϕ(�) if

Nϕ(uh) → Nϕ(u) as h → ∞. (16)

Norm and modular convergences are classical in the theory of Orlicz spaces (see, for
instance, [1, 8]). We do not know whether the ϕ-energy convergence has been already named
in the literature.

The following implications between norm, mean, modular and ϕ-energy convergence
hold.
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Proposition 11 Let (uh)h and u be in Lϕ(�).

(i) Suppose that (uh)h is norm convergent to u. Then it is alsomean convergent. The converse
implication in general does not hold. It holds if (ϕ,�) is 	-regular.

(ii) Suppose that (ϕ,�) is 	-regular, ϕ is strictly convex, uh → u a.e. in � and (uh)h is
ϕ-energy convergent to u. Then (uh)h is norm convergent to u.

(iii) (uh)h is norm convergent to u if and only if, for each λ > 0,

Nϕ

(
uh − u

λ

)
→ 0 as h → ∞.

(iv) Suppose that (ϕ,�) is	-regular and (uh)h ⊂ Kϕ(�) is mean convergent to u ∈ Kϕ(�).
Then (uh)h is ϕ-energy convergent to u.

(v) Suppose that (2uh)h ⊂ Kϕ(�) is mean convergent to 2u ∈ Kϕ(�) (with respect to the
modular Nϕ). Then (uh)h ⊂ Kϕ(�), u ∈ Kϕ(�) and (uh)h is ϕ-energy convergent to u.

(vi) Suppose that 2u ∈ Kϕ(�) and (uh)h is norm convergent to u. Then uh ∈ Kϕ(�) for h
large and (uh) is also ϕ-energy convergent to u.

Proof (i) and (ii) are proven in [10, Chap. III, Sect. 3.4, Thm. 12]. The proof of (iii) is
somehow elementary, see for instance [2, Lem. 2.7] and [7, pg. 4].

We prove (iv) when ϕ satisfies a global 	2-condition: in the other case, when � has
finite measure and the ϕ satisfies a 	2-condition near infinity, has a similar proof. From the
assumptions, the sequence (ϕ(|uh − u|))h ⊂ L1(�) converges in L1(�) to 0. Thus, up to a
subsequence, we can assume that

ϕ(|uh − u|) → 0 a.e. in �, as h → ∞.

Since ϕ is a N -function, then ϕ : [0,∞) → [0,∞) is bijective and ϕ−1 : [0,∞) → [0,∞)

is still continuous. Thus, we also get that

|uh − u| = ϕ−1(ϕ(|uh − u|)) → ϕ−1(ϕ(0)) = 0 a.e. in �, as h → ∞. (17)

From the convexity of ϕ and the global 	2-condition of ϕ, it follows that

ϕ(|uh |) ≤ 1

2
ϕ(2|uh − u|) + 1

2
ϕ(2|u|)

≤ k

2
(ϕ(|uh − u|) + ϕ(|u|)) .

(18)

By (17) and (18), we can apply Vitali’s convergence theorem and then

ϕ(|uh |) → ϕ(|u|) in L1(�), as h → ∞.

Thus (16) follows.
For (v), we get at once that (uh)h ⊂ Kϕ(�) and u ∈ Kϕ(�), because ϕ is increasing. We

can show (17) as in the proof of claim (iv), and the convexity of ϕ implies

ϕ(|uh |) ≤ 1

2
ϕ(2|uh − u|) + 1

2
ϕ(2|u|)

Thus, applying Vitali’s convergence theorem, we still get (16).
Finally, we prove (vi). From the norm convergence and (iii), we can infer that, up to a

subsequence,

ϕ(|uh − u|) → 0 a.e. in �, as h → ∞,
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and

ϕ(2|uh − u|) → 0 in L1(�), as h → ∞.

We can show again (17) as in claim (iv) and ϕ(|uh |) ≤ 1
2ϕ(2|uh − u|) + 1

2ϕ(2|u|) from the
convexity of ϕ. Thus, applying Vitali’s convergence theorem, we get (16). 
�
Example 12 From items (iv) and (v) of Proposition 11, one could get the wrong impression
that mean convergence implies ϕ-energy convergence. We show that this is not the case
if (ϕ,�) is not 	-regular: for � = (0, 1) and ϕ = ẽxp0 (cf. (8)), we give a sequence of
functions uh ∈ Kϕ((0, 1)) that is mean convergent to u ∈ Kϕ((0, 1)), but that is not ϕ-energy
convergent.

Let fh, f : (0, 1) → R be the functions

fh(x) :=
{

2
√
h

log h if 0 < x < 1
h

1
log h

1√
x

if 1
h ≤ x < 1

, f (x) := 1√
x
.

Direct computations show that
∫ 1

0
f (x) dx = 2,

∫ 1

0
log( f (x)) dx = 1

2
,

∫ 1

0
fh(x) dx

h→∞−→ 0,
∫ 1

0
log(1 + fh) dx

h→∞−→ 0,

∫ 1

0
f (x) fh(x) dx = 4

log(h)
+ 1

h→∞−→ 1.

Define

u := log( f ) and uh := log( f ) + log(1 + fh).

Then, for ϕ(s) = exp(s) − 1 − s, we have

Nϕ(u) =
∫ 1

0
f (x) dx − 1 −

∫ 1

0
log( f (x)) dx,

Nϕ(uh) =
∫ 1

0
f (x) dx − 1 −

∫ 1

0
log( f (x)) dx

+
∫ 1

0
f (x) fh(x) dx −

∫ 1

0
log(1 + fh) dx,

Nϕ(uh − u) =
∫ 1

0
fh(x) dx −

∫ 1

0
log(1 + fh(x)) dx .

We conclude that u, uh ∈ Kϕ((0, 1)), Nϕ(|u − uh |) → 0 but

Nϕ(|uh |) − Nϕ(|u|) =
∫ 1

0
f (x) fh(x) dx −

∫ 1

0
log(1 + fh) dx

h→∞−→ 1,

that is, uh is notϕ-energy convergent to u. Notice that the key fact is that fh → 0 in L1((0, 1))
but f · fh �→ 0. Let us also observe that (2uh)h ⊂ Kϕ(�), but neither 2u ∈ Kϕ(�) nor
(2uh)h is mean convergent to 2u with respect to Nϕ .
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2.5 The vector space E'(Ä)

Let Eϕ(�) denote the closure in (Lϕ(�), ‖·‖ϕ) of the space of functions u which are bounded
in � with bounded support in �.

One can see ( [1, Sect. 8.14]) that Eϕ(�) ⊂ Kϕ(�) and that, if (ϕ,�) is 	-regular, then

Eϕ(�) = Kϕ(�) = Lϕ(�).

Moreover the following characterization of Eϕ(�) holds ([A, Lemma 8.15]).

Lemma 13 Eϕ(�) is the maximal linear subspace of Kϕ(�).

Corollary 14 If (ϕ,�) is not 	-regular, it holds that

Eϕ(�) � Kϕ(�) � Lϕ(�).

Proof By Lemma 8, Kϕ(�) cannot be a vector space. Thus, by Lemma 13, we get the desired
conclusions. 
�
Let us now recall some density results in (Eϕ(�), ‖ · ‖A).

Theorem 15 ( [1, Thm. 8.20]) Let � ⊂ R
n be an open set and let ϕ be a N-function.

(i) C∞
c (�) are dense in (Eϕ(�), ‖ · ‖ϕ).

(ii) (Eϕ(�), ‖ · ‖ϕ) is separable.
(iii) Let us extend u ∈ Eϕ(�) to the whole R

n so as to vanish outside � and let (ρε)ε be a
family of mollifiers on R

n. Then

ρε ∗ u → u in (Eϕ(�), ‖ · ‖ϕ), as ε → 0.

An immediate consequence of Theorem 15 is that, if (ϕ,�) is not 	-regular, then C0
c (�)

is not dense in (Lϕ(�), ‖ · ‖ϕ). In fact, one can prove the following stronger result:

Theorem 16 ( [8, Chap. II, Thm. 10.2]) If the pair (ϕ,�) is not 	-regular, then
(Lϕ(�), ‖ · ‖ϕ) is not separable.

Let us also point out some density results in Kϕ(�) with respect to the modular conver-
gence.

Theorem 17 Let � ⊂ R
n be an open set and let ϕ be a N-function.

(i) The set of bounded functions on � contained in Kϕ(�) with bounded support is dense
in Kϕ(�) with respect to the mean convergence, that is, for each u ∈ Kϕ(�) there exists
a sequence of bounded functions (uh)h ⊂ Kϕ(�) such that

Nϕ(uh − u) → 0, as h → ∞.

(ii) C0
c (�) is dense in Kϕ(�) with respect to the modular convergence with λ = 4. More

precisely, for each u ∈ Kϕ(�), there is a sequence (uh)h ⊂ C0
c (�) such that

Nϕ

(
uh − u

4

)
→ 0, as h → ∞.

Proof The proof of part (i) can be found in [8, Chap. II, pg. 77] or [1, Sect. 8.14].
To prove part (ii), given u ∈ Kϕ(�) and ε > 0,we first notice that, by a standard truncation

argument in �, there is a function ũ ∈ Kϕ(�) with support compactly contained in � and
with Nϕ(u − ũ) < ε.
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Next, let ũk := max{−k,min{ũ, k}} be the standard truncation of u, Fk := {|ũ| > k} and
f ∈ C0

c (�) with sup | f | ≤ k. We estimate

Nϕ2(ũ − f ) =
∫

�\Fk
ϕ

( |ũk − f |
2

)
dx +

∫
Fk

ϕ

( |ũ − f |
2

)
dx

≤
∫

�\Fk
ϕ

( |ũk − f |
2

)
dx + 1

2

∫
Fk

ϕ(|ũ|) dx + 1

2

∫
Fk

ϕ(| f |) dx

≤
∫

�\Fk
ϕ

( |ũk − f |
2

)
dx +

∫
Fk

ϕ(|ũ|) dx .

Now, since
∫
�

ϕ(|ũ|) dx < ∞, we can choose k so large that the second integral is smaller than
ε/2. Since ũk has compact support and thanks to Lusin’s theorem, we can find f ∈ C0

c (�)

with | f | ≤ k and the Lebesgue measure of {x ∈ � : ũk(x) �= f (x)} sufficiently small, in
such a way that also the first integral gives a contribution smaller than ε/2.

In conclusion, for every ε > 0 we have f ∈ C0
c (�) such that

Nϕ4(u − f ) ≤ 1

2
(Nϕ2(u − ũ) + Nϕ2(ũ − f )) ≤ 1

2
(Nϕ(u − ũ)/2 + ε) ≤ ε.


�

2.6 Orlicz-Sobolev spaces and density results of smooth functions.

Given a N -function ϕ, the Orlicz-Sobolev vector space W 1Lϕ(�) consists of those (equiva-
lence classes of) functions u ∈ Lϕ(�)∩W 1,1

loc (�) whose weak derivatives Diu ∈ Lϕ(�) for
each i = 1, . . . , n. The vector space W 1Eϕ(�) and the convex set W 1Kϕ(�) are defined in
analogous fashion. Obviously

W 1Eϕ(�) ⊂ W 1Kϕ(�) ⊂ W 1Lϕ(�).

It is easy to see (see, for instance, [1, §8.27]) thatW 1Lϕ(�) is a Banach space with respect
to the norm

‖u‖1,ϕ := max{‖u‖ϕ, ‖D1u‖ϕ, . . . , ‖Dnu‖ϕ}.
Notice also that, since

max
i

|Diu| ≤ |Du| ≤
n∑

i=1

|Diu| a.e. in �,

and Lϕ(�) is a linear space, an equivalent norm on W 1Lϕ(�) is given by.

‖u‖ϕ + ‖|Du|‖ϕ.

Observe thatW 1Eϕ(�) turns out to be a closed subspace ofW 1Lϕ(�). MoreoverW 1Eϕ(�)

coincides with W 1Lϕ(�) if and only if (ϕ,�) is 	-regular. Notice also that, for the appli-
cations we have in mind, what is more relevant is the ϕ-integrability of the derivative, rather
than the integrability of the function which, also in view of Sobolev embeddings, could be
qualified in a different way, see also Remark 24.

Celebrated Meyers-Serrin’s result was extended from the classical Sobolev spaces to the
Orlicz-Sobolev space W 1Eϕ(�) in [5] (see also [2]).

Theorem 18 ([5]) C∞(�) ∩ W 1Eϕ(�) is dense in (W 1Eϕ(�), ‖ · ‖1,ϕ).
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It is easy to see that the previous result also fails for functions in the Orlicz-Sobolev class
W 1Kϕ(�), and so also in the Orlicz-Sobolev space W 1Lϕ(�), provided that (ϕ,�) is not
	-regular, as the following example shows.

Example 19 Assume that n = 1, � = (−1, 1), let ϕ = ẽxp0 be N -function in (8) with
γ = 0 and let

u(x) :=
{

x
2 log 1

e|x | if |x | ≤ 1
e

0 if 1
e < |x | < 1

.

Then it is easy to see that u ∈ W 1Kϕ(�)\W 1Eϕ(�), since the weak derivative

u′(x) :=
⎧⎨
⎩
log

1

e
√|x | if |x | < 1

e

0 if 1
e < |x | < 1

a.e. x ∈ �

belongs to Kϕ(�) \ Eϕ(�). Indeed

∫ 1

−1
ϕ(|u′|) dx =

∫ 1

−1

(
exp(|u′|) − |u′| − 1

)
dx < ∞,

but 2|u′| /∈ Kϕ(�), since

∫ 1

−1
ϕ(2|u′|) dx =

∫ 1

−1

(
exp(2|u′|) − 2|u′| − 1

)
dx = ∞.

Thus |u′| /∈ Eϕ(�), since Eϕ(�) is a linear subspace. By contradiction, assume there exists
a sequence (uh)h ⊂ C∞(�) ∩ W 1Lϕ(�) such that uh → u in W 1Lϕ(�), as h → ∞. In
particular, it also follows that

u′
h → u′ in Lϕ(�) as h → ∞. (19)

Let ψ ∈ C0
c (�) such that 0 ≤ ψ ≤ 1 and ψ ≡ 1 in (−1/e, 1/e) and let

vh := ψ u′
h .

By Proposition 11(iii) and (19), it still holds that

Eϕ � ψ u′
h → ψ u′ = u′ in Lϕ(�), as h → ∞.

Then a contradiction since u′ /∈ Eϕ .

A weaker density result of regular functions in W 1Lϕ(�) holds by using the modular
convergence, as shown in [6].

Theorem 20 ( [6]) Let u ∈ W 1Lϕ(�). Then there exist λ > 0 and a sequence of functions
(uh)h ⊂ C∞(�) ∩ W 1Lϕ(�) such that

Nϕ

(
uh − u

λ

)
→ 0 and Nϕ

(
Diuh − Diu

λ

)
→ 0 as h → ∞,

for each i = 1, . . . , n. In particular it suffices to choose λ such that 16
λ
Diu ∈ Kϕ(�).
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3 Exponential and sub-exponential N-functions

It is easy to see that a convex function ϕ with polynomial growth satisfies (1), see Remark 6.
We will show in Lemma 21 that exp∗

γ,τ satisfies the conditions in Theorem 1 for ϕ with
kϕ = 1, if τ is sufficiently large.

Recall from (6) and (7) that we have set

expγ,τ (t) := exp

(
t

(log(t + τ))γ

)
, and exp∗

γ,τ (t) := expγ,τ (t) − 1.

The functions exp∗
γ,τ , though convex, do not have null derivative at 0, and therefore do not fit

exactly in the theory of N -functions. Therefore, in order to provide a bridge with the theory
of N -functions of Orlicz spaces, we will also consider the modified functions

ẽxpγ,τ (t) := expγ,τ (t) − 1 − t

(log τ)γ
= exp∗

γ,τ (t) − t

(log τ)γ
,

which are indeed N -functions and can be treated by comparison with exp∗
γ,τ .

Lemma 21 There exists τ0 > 0 such that, for all τ ≥ τ0 and 0 ≤ γ ≤ 1, one has

(i) expγ,τ is a smooth strictly convex increasing function. Moreover, for all t, s ∈ [0,∞),

expγ,τ (t + s) ≤ expγ,τ (t) expγ,τ (s), (20)

and exp∗
γ,τ satisfies (1) with kϕ = 1, that is,

exp∗
γ,τ (t + s) ≤ exp∗

γ,τ (t) exp
∗
γ,τ (s) + exp∗

γ,τ (t) + exp∗
γ,τ (s). (21)

(ii) ẽxpγ,τ is a N-function satisfying

ẽxpγ,τ (t) ≤ exp∗
γ,τ (t) if t ≥ 0 and lim

t→∞
ẽxpγ,τ (t)

exp∗
γ,τ (t)

= 1. (22)

Proof (i) By a simple calculation, it is easy to see that, if τ > 1, expγ,τ is well-defined,
expγ,τ ∈ C∞([0,∞)) and

exp′
γ,τ (t) = exp

(
t

(log(t + τ))γ

) log(t + τ) − γ t

t + τ

(log(t + τ))γ+1 ,

exp′′
γ,τ (t) =

exp

(
t

(log(t + τ))γ

)

(log(t + τ))2γ+2

[(
log(t + τ) − γ t

t + τ

)2

− (log(t + τ))γ+1 γ τ + γ (t + τ)

(t + τ)2
+ γ (γ + 1)t(log(t + τ))γ

(t + τ)2

]

for all t ≥ 0. Now, observe that, if τ > e and t ≥ 0, then

γ t

t + τ
≤ γ,

γ τ + γ (t + τ)

(t + τ)2
≤ 2 γ

τ
, and log(t + τ) > 1 ≥ γ. (23)

Combining these inequalities, it follows that, if τ > e,

exp′
γ,τ (t) > 0 for each t ≥ 0, (24)
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so that expγ,τ is strictly increasing on [0,∞). Let us now show that, for sufficiently large τ ,
one has

exp′′
γ,τ (t) > 0 for each t ≥ 0. (25)

By (23), for each t ≥ 0 and τ > e, we obtain that
(
log(t + τ) − γ t

t + τ

)2

− (log(t + τ))γ+1 γ τ + γ (t + τ)

(t + τ)2
+ γ (γ + 1)t log(t + τ))γ

(t + τ)2

≥
(
log(t + τ) − γ t

t + τ

)2

− (log(t + τ))γ+1 γ τ + γ (t + τ)

(t + τ)2

≥ (log(t + τ) − γ )2 − 2γ

τ
(log(t + τ))2

= log(t + τ)

(
log(τ ) − 2γ

(
log(τ )

τ
+ 1

))
+ γ 2

≥ log(t + τ)

(
log(τ ) − 2

(
log(τ )

τ
+ 1

))
.

It is clear that, there is τ0 > 0 (independent on γ ), so that the latter quantity is positive for
all τ ≥ τ0 and t ≥ 0. Hence, (25) follows and expγ,τ is strictly convex on [0,∞).

Let us show (20), that is, for every t, s ∈ [0,∞),

expγ,τ (t + s) = exp

(
t + s

(log(t + s + τ))γ

)

≤ expγ,τ (t) expγ,τ (s)

= exp

(
t

(log(t + τ))γ
+ s

(log(s + τ))γ

)
.

(26)

Observe that
t + s

(log(t + s + τ))γ
= t

(log(t + s + τ))γ
+ s

(log(t + s + τ))γ

≤ t

(log(t + τ))γ
+ s

(log(s + τ))γ
,

whence (26) follows, being the exponential function nondecreasing. Inequality (21) follows
by using (20) and the fact that expγ,τ (t) = exp∗

γ,τ (t) + 1.
(ii) Notice that, if

a(t) := exp′
γ (t) − exp′

γ (0) if t ≥ 0,

by (24) and (25), a is continuous, (strictly) increasing, a(0) = 0, a(t) > 0 if t > 0 and
limt→∞ a(t) = ∞. Moreover, being a increasing, we have for t ≥ 0,

ẽxpγ,τ (t) = expγ,τ (t) − 1 − t

(log τ)γ
=

∫ t

0

(
exp′

γ (s) − exp′
γ (0)

)
ds =

∫ t

0
a(s) ds.

Thus, ẽxpγ,τ is (strictly) convex.
Finally, since the functions have amore than linear growth, it is clear that ẽxpγ,τ (t)/ expγ,τ

(t) tends to 1 as t → ∞. 
�
Remark 22 Notice that, by (22), the pair (ẽxpγ,τ , �) is never 	-regular for any � ⊂ R

n . In
particular, by Lemma 8, Kϕ(�) is never a vector space if ϕ = ẽxpγ,τ .
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Remark 23 Exponential growth functions fall also in the class treated by Theorem 1. More
precisely, the functions

e∗
α(t) := exp(αt) − 1,

for α > 0 satisfy the conditions on ϕ given in Theorem 1.

4 Proof of the approximation results

In this section we are going to show our results.

Proof of Theorem 1 Uniform positivity of w on compact subsets gives∫
R

ϕ (|Db(s, x)|) ds dx < ∞ whenever R � I × �. (27)

We are going to exploit an adaptation of the technique of the proof of Meyers-Serrin’s
theorem (see, for instance, [3, Thm. 3.9]). Let Q := I × � and let Uj , j = 0, 1, . . ., be the
nondecreasing sequence of open subsets

U0 := ∅, Uj :=
{
(s, x) ∈ Q : dist((s, x), ∂Q) >

1

j
, |s| + |x | < j

}
( j = 1, 2, . . .),

and let

Q j := Uj+1 \U j−1 j = 1, 2, . . . .

Then ∪ j Q j = Q, each Q j has compact closure in Q and any point of Q belongs to at most
four sets Q j . More specifically, if j ≥ 3 and x ∈ Q j , then x may belong at most to Q j−1

and Q j+1.
Let (ζ j ) j be a partition of unity relative to the covering (Q j ), that is, nonnegative functions

ζ j ∈ C∞
c (Q j ) such that

∑∞
j=1 ζ j ≡ 1 in Q. Moreover, letψ j ∈ C∞

c (Q) be cut-off functions
such that 0 ≤ ψ j ≤ 1 in Q and ψ j ≡ 1 in Q j .

For each j = 1, 2, . . ., let b j : R
n+1 = Rs × R

n
x → R

m denote

b j (s, x) :=
{

ψ j (s, x) b(s, x) if (s, x) ∈ I × �

0 if (s, x) ∈ R
n+1 \ I × �,

so that it is clear that spt(b j ) � Q, b j ∈ L1(Rs;W 1,1(Rn
x ; R

m)) ∩ C0
c (R

n+1, R
m), and

Db j = D(ψ j b) = ψ j Db + ∇ψ j ⊗ b a.e. in Q. (28)

In particular,

b j = b and Db j = Db a.e. in Q j , (29)

Db j ∈ L1(Rn+1; R
nm) . (30)

The monotonicity of ϕ and the weak subadditivity condition (1) give

ϕ
(|Db j |

) ≤ ϕ
(
ψ j |Db| + |∇ψ j ⊗ b|)

≤ kϕ

[
ϕ

(
ψ j |Db|) ϕ

(|∇ψ j ⊗ b|) + ϕ
(
ψ j |Db|) + ϕ

(|∇ψ j ⊗ b|)] .
(31)
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Since, by (27),

ϕ
(
ψ j |Db|) ∈ L1(Rn+1) and ϕ

(|∇ψ j ⊗ b|) ∈ L1(Rn+1) ∩ L∞(Rn+1),

we obtain from (31) that

ϕ
(|Db j |

) ∈ L1(Rn+1). (32)

Let (ρε(s, x))ε be space-time mollifiers on R
n+1 = Rs ×R

n
x . For each δ ∈ (0, 1) we will

make a suitable choice of 0 < ε j < δ and define bδ : Q → R
m as

bδ(s, x) :=
∞∑
j=1

ζ j (s, x) (ρε j ∗ b j )(s, x).

Since the sum is locally finite, bδ is well defined. Moreover, by construction, bδ ∈ C∞(I ×
�; R

m) and one has

bδ → b in L1
loc(Q; R

m), as δ → 0. (33)

Notice now that

Dbδ =
∞∑
j=1

D(ζ j (ρε j ∗ b j )) =
∞∑
j=1

ζ j (ρε j ∗ Db j ) +
∞∑
j=1

∇ζ j ⊗ (ρε j ∗ b)

= vδ + zδ in Q,

(34)

where

vδ :=
∞∑
j=1

ζ j (ρε j ∗ Db j ),

and

zδ :=
∞∑
j=1

(∇ζ j ⊗ (ρε j ∗ b j ) − ∇ζ j ⊗ b j
)
,

where we used the fact that, since
∑∞

j=1 ∇ζ j ≡ 0, we have
∑∞

j=1 ∇ζ j ⊗ b ≡ 0.
For each δ > 0 and j = 1, 2, . . ., we can find 0 < ε j < δ such that

∫
Q

|ζ j (ρε j ∗ b j ) − ζ j b| dx ds <
δ

2 j
(35)

and

‖ζ j (ρε j ∗ Db j ) − ζ j Db j‖L1(Rn+1;Rm ) <
δ

2 j+1 . (36)

In addition, setting

Mj := max{1, sup
Q j

w} ,

we can also ensure that

‖∇ζ j ⊗ (ρε j ∗ b j ) − ∇ζ j ⊗ b‖L p(Q j ;Rnm )

= ‖∇ζ j ⊗ (ρε j ∗ b j ) − ∇ζ j ⊗ b‖L p(Rn+1;Rnm ) <
δ

2 j+1Mj
if p = 1,∞ (37)
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and

‖ρε j ∗ ϕ(|Db j |) − ϕ(|Db j |)‖L1(Rn+1) <
δ

2 j M j
. (38)

Notice that, by assumption on w, Mj < ∞. Notice also that the choices in (35) and (37)
are possible thanks to the continuity of b (in particular, for (37) with p = ∞, we are using
also continuity of b with respect to the time variable), while the choices in (36) and (38)
are possible thanks to the classical properties of convolution together with (30) and (32),
respectively. From (37), it follows that

‖zδ‖L p(Q;Rnm ) <
δ

2
if p = 1,∞, and

∫
Q

|zδ| w dx ds < δ. (39)

Moreover, by (39) with p = ∞ and the convexity of ϕ, if we set L := ϕ(1), then ϕ(0) = 0
and the monotonicity of difference quotients give

σδ := ϕ(|zδ|) ≤ L|zδ| in Q. (40)

Notice now that, since Db = ∑∞
j=1 ζ j Db = ∑∞

j=1 ζ j Db j , by (36) and (39) with p = 1,
we have

‖Dbδ − Db‖L1(Q;Rm ) = ‖vδ + zδ − Db‖L1(Q;Rm )

≤ ‖vδ − Db‖L1(Q;Rm ) + ‖zδ‖L1(Q;Rm )

≤
∞∑
j=1

‖ζ j (ρε j ∗ Db j ) − ζ j Db j‖L1(Rn+1;Rm ) + δ

2

≤
∞∑
j=1

δ

2 j+1 + δ

2
= δ.

(41)

By (41), it follows that

lim
δ→0

‖Dbδ − Db‖L1(Q;Rm ) = 0. (42)

In particular, by the continuity of ϕ and (42), there exists an infinitesimal sequence (δh)h
such that, if bh := bδh ,

ϕ (|Dbh |) → ϕ (|Db|) a.e. in Q, as h → ∞. (43)

Let us now show (4). One has, a.e. in Q,

ϕ (|Dbδ|) ≤ ϕ (|zδ| + |vδ|) ≤ kϕ (ϕ (|zδ|) ϕ (|vδ|) + ϕ (|zδ|) + ϕ (|vδ|))
≤ kϕ((1 + σδ) ϕ (|vδ|) + σδ),

where σδ = ϕ (|zδ|). Set σ∞
δ := ‖σδ‖L∞(Q), so that, a.e. in Q,

ϕ (|Dbδ|) ≤ kϕ((1 + σ∞
δ ) ϕ (|vδ|) + σδ). (44)
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By the monotonicity and convexity of ϕ, by Jensen’s inequality and taking into account that
(ζ j ) j is a partition of unity, we get, a.e. in Q,

ϕ (|vδ|) = ϕ

⎛
⎝

∣∣∣∣∣∣
∞∑
j=1

ζ j (ρε j ∗ Db j )

∣∣∣∣∣∣

⎞
⎠ ≤ ϕ

⎛
⎝ ∞∑

j=1

ζ j (ρε j ∗ |Db j |)
⎞
⎠

≤
∞∑
j=1

ζ j (ρε j ∗ ϕ
(|Db j |

)
) =: Gδ.

(45)

Hence, by (44) and (45), if follows that

wϕ (|Dbδ|) ≤ kϕ((1 + σ∞
δ ) wGδ + wσδ) a.e. in Q. (46)

It is clear that, by (39) and (40),

w σδ converges to 0 in L1(Q) and σ∞
δ → 0, as δ → 0. (47)

Let us now prove that

w Gδ converges towϕ(|Db|) in L1(Q), as δ → 0. (48)

Observe that, by (29),

ϕ(|Db|) =
∞∑
j=1

ζ jϕ(|Db|) =
∞∑
j=1

ζ jϕ(|Db j |) a.e. in Q,

so that (38) gives (48).
The combination of (48) and (46) gives the equi-integrability ofwϕ (|Dbδ|). By using (43),

Vitali’s form of the dominated convergence theorem (see, for instance, [3, Exercise 1.18]),
gives (4) and the proof is complete. 
�
Remark 24 Let � : [0,∞) → [0,∞) be any continuous function with �(0) = 0 and linear
growth at the origin. Notice that all the terms ζ j (ρε j ∗b j )−ζ j b can be made arbitrarily small
not only in L∞

t (L∞
x ), but also in L1

t (L
1
x ), choosing ε j � 1. Then, using the representation

(bδh − b) =
∞∑
j=1

ζ j (ρε j ∗ b j ) − ζ j b

we can improve the construction to get also

lim
h→∞

∫
I

∫
�

�(|bδh − b|) dx ds = 0.

More precisely, choosing ε j � 1 properly, we can make arbitrarily small all terms

∫
Q j

�(|
∞∑
j=1

ζ j (ρε j ∗ b j ) − ζ j b|) dx ds

since the sum is locally finite and Q j � I × �.

Remark 25 Since the proof of Theorem 1 is based on a convolution argument, we have more
control on the convergence depending on the properties of b. We give two cases that can be
of interest.
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First, if b ∈ L1(I ;C(�; R
m)) is continuous in the spatial variable, then the approxi-

mating sequence bh ∈ C∞(I × �; R
m) in Theorem 1 can be taken so that bh → b in

b ∈ L1(I ;C(�; R
m)).

Second, if there exists a bounded open set �′ � � such that

spt(b(t, ·)) ⊂ �′ for every t ∈ I , (49)

then the approximating sequence bh ∈ C∞(I × �; R
m) can be taken with

spt(bh(t, ·)) ⊂ �′ for each t ∈ I and h ∈ N. (50)

Proof of Corollary 2 Let us prove that∫
I

∫
�

w(s, x) exp∗
γ,τ (|Db(s, x)|) dx ds < ∞. (51)

Notice that, since b satisfies (2) with (9), then w ẽxpγ,τ (|Db|) ∈ L1(I × �). On the one
hand, if w|Db| ∈ L1(I × �), since

w exp∗
γ,τ (|Db|) = wẽxpγ,τ (|Db|) + w|Db|

(log τ)γ

and w ẽxpγ,τ (|Db|) ∈ L1(I × �) we immediately obtain (51). On the other hand, if w ∈
L1(I × �), by (22), there exists t̄ > 0 such that

1

2
exp∗

γ,τ (t) ≤ ẽxpγ,τ (t) for each t ≥ t̄ . (52)

Thus ∫
I×�

w exp∗
γ,τ (|Db|) ds dx =

∫
{|Db|< t̄}

w exp∗
γ,τ (|Db|) ds dx

+
∫

{|Db|≥ t̄}
w exp∗

γ,τ (|Db|) ds dx

≤ exp∗
γ,τ

(
t̄
) ∫

I×�

w ds dx

+ 2
∫
I×�

w ẽxpγ,τ (|Db|) ds dx < ∞

and (51) follows once more.
By (51), we can apply Theorem 1 to get the existence of bh ∈ C∞(I × �; R

m) satisfying
(3) and (4) with ϕ = exp∗

γ,τ . Since w ẽxpγ,τ (|Dbh |) ≤ w exp∗
γ,τ (|Dbh |), by applying

Vitali’s convergence theorem, we obtain again the desired conclusion. 
�
In the proof of Theorem 3 we will need the following lemma.

Lemma 26 Let f ∈ L1
loc(Rs × �) and (ρε(s))ε be a family of time mollifiers in Rs . Then,

for a.e. x ∈ �, the time convolution product f ε(·, x) : Rs → R

f ε(s, x) = (ρε ∗ f (·, x))(s)
:=

∫
R

ρε(s − v) f (v, x) dv for each s ∈ R

and

f ε(·, x) ∈ C0(Rs) for each ε > 0, for a.e. x ∈ �. (53)
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In addition, for any open set ω ⊂ � one has

‖ f ε‖L1(Rs×ω) ≤ ‖ f ‖L1(Rs×ω) for each ε > 0 (54)

and

f ε → f in L1(Rs × ω) as ε → 0, (55)

provided that f ∈ L1(Rs × ω).
Finally, if we assume that, for each ball B(x0, r) � � one has

f ∈ L1(
Rs;C0(B(x0, r))

)
, (56)

then

f ε ∈ C0(Rs × �) for each ε > 0. (57)

Proof Properties (53), (54) and (55) can be proved as in the case of the global (s, x)-
convolution by mollifiers (see, for instance, [3, Section 2.1]). Let us prove (57). Let
(s0, x0) ∈ Rs × � and let ((sh, xh))h ⊂ Rs × � a sequence converging to (s0, x0). From
(56), ∫

R

F(s) ds < ∞ if F(s) := sup
B(x0,r)

| f (s, ·)|,

and, without loss of generality, we can assume that (xh)h ⊂ B(x0, r) for a fixed r > 0. Then,
since

|ρε(sh − v) f (v, xh)| ≤ sup
R

ρε F(v) for a.e.v ∈ R,

by Lebesgue’s dominated convergence theorem, it follows that

lim
h→∞ f ε(sh, xh) = lim

h→∞

∫
R

ρε(sh − v) f (v, xh) dv

=
∫
R

lim
h→∞(ρε(sh − v) f (v, xh)) dv

=
∫
R

ρε(s0 − v) f (v, x0) dv = f ε(s0, x0).


�
Proof of Theorem 3 We extend b to R × � setting b(t, x) = 0 whenever t /∈ I . Denoting by
bε the mollified functions with respect to the time variable, one has

Dbε(t, x) =
∫
R

ρε(t − s)Db(s) ds

and therefore Jensen’s inequality gives∫
�

w(x)ϕ(Dbε(t, x)) dx ≤
∫

�

w(x)
∫
R

ρε(t − s)ϕ(|Db(s, x)|) ds dx

=
∫
R

ρε(t − s)
∫

�

w(x)ϕ(Db(s, x)|) dx ds.

By integration on I , it follows that Nϕ,w(|Dbε |) ≤ Nϕ,w(|Db|). Notice now that bε satisfy
the assumptions of Corollary 2, thanks to (57). Thus for all ε > 0 we get the existence of
a sequence (bε

h)h ⊂ C∞(I × �; R
m) satisfying (3) and (4). Finally, by taking a diagonal

sequence, we get the desired conclusion. 
�
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Proof of Theorem 4 Notice that for any open set A ⊂ � the weak L1(A; R
mn) convergence

of derivatives grants

lim inf
h→∞

∫
A

ϕ (|Dbh |) dx ≥
∫
A

ϕ (|Db|) dx .

Therefore, by applying an elementary lemma (see, for instance, the proof of Proposition 1.80
in [3]) the convergence of the integrals on � can be localized, getting

lim
h→∞

∫
A

ϕ (|Dbh |) dx =
∫
A

ϕ (|Db|) dx

whenever A ⊂ � is open with Lebesgue negligible boundary. In particular, choosing A � �

with this property, since A has finite measure we can use the strict convexity of ϕ and [11]
to get that Dbh → Db in L1(A; R

mn). It follows that Dbh → Db in L1
loc(I × �; R

nm) and
therefore, modulo the extraction of a subsequence, we can assume that Dbh → Db a.e. in
�.

Combining the pointwise convergence

lim
h→∞ ϕ(|Dbh |) = ϕ(|Db|) a.e. in �

with the convergence of the integrals, Scheffé’s lemma gives that ϕ(|Dbh |) converges in
L1(�) to ϕ(|Db|). Now, the inequality

ϕ

( |Dbh − Db|
2

)
≤ 1

2
ϕ (|Dbh |) + 1

2
ϕ (|Db|)

grants the equi-integrability of ϕ(|Dbh − Db|/2). Vitali’s convergence theorem can finally
be applied to get the result. 
�
Proof of Theorem 5 Notice that, being ẽxp a N -function, it has a linear growth at the origin.
Thus by applying Remark 24 with� = ẽxp and Corollary 2 with b(t, x) = u(x) andw ≡ 1,
we get the desired conclusion. 
�
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