
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Generation of Error Indicators for Partial Differential Equations by Machine Learning
Methods

© Springer Nature Switzerland AG 2022

Accepted version (Final draft)

Muzalevskiy, Alexey; Neittaanmäki, Pekka; Repin, Sergey

Muzalevskiy, A., Neittaanmäki, P., & Repin, S. (2022). Generation of Error Indicators for Partial
Differential Equations by Machine Learning Methods. In T. T. Tuovinen, J. Periaux, & P.
Neittaanmäki (Eds.), Computational Sciences and Artificial Intelligence in Industry : New Digital
Technologies for Solving Future Societal and Economical Challenges (pp. 63-96). Springer.
Intelligent Systems, Control and Automation: Science and Engineering, 76.
https://doi.org/10.1007/978-3-030-70787-3_6

2022

Generation of Error Indicators for Partial
Differential Equations by Machine Learning
Methods

Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Abstract Computer simulation methods for models based on partial differential
equations usually apply adaptive strategies that generate sequences of approxima-
tions for consequently refined meshes. In this process, error indicators play a crucial
role because a new (refined) mesh is created by analysis of an approximate solu-
tion computed for the previous (coarser) mesh. Different error indicators exploit
various analytical and heuristic arguments. The main goal of this paper is to show
that effective indicators of approximation errors can be created by machine learn-
ing methods and presented by relatively simple networks. We use the "supervised
learning" conception where sequences of teaching examples are constructed due to
earlier developed tools of a posteriori error analysis known as "functional type error
majorants". Insensitivity to specific features of approximations is an important prop-
erty of error majorants, which allows us to generate arbitrarily long series of diverse
training examples without restrictions on the type of approximate solutions. These
new (network) error indicators are compared with known indicators. The results
show that after a proper machine learning procedure we obtain a network with the
same (or even better) quality of error indication level as the most efficient indicators
used in classical computer simulation methods. The final trained network is approx-
imately as effective as the gradient averaging error indicator, but has an important
advantage because it is valid for a much wider set of approximate solutions.

Key words: mesh adaptive methods, machine learning, network error indicator

Alexey Muzalevskiy
Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Polytechnicheskaya,
29, Russia

Pekka Neittaanmäki · Sergey Repin (�)
University of Jyväskylä, Faculty of Information Technology, P.O. Box 35, FI-40014 University of
Jyväskylä, Finland, e-mail: pekka.neittaanmaki@jyu.fi, sergey.repin@jyu.fi

1

2 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

1 Introduction

Machine learning methods offer new possibilities for analysis of various mathe-
matical and technical models. In particular, they are used in scientific computing
and mathematical modelling as solvers (or parts of solvers) trained to solve par-
ticular classes of problems (e.g., see Sirignano and Spiliopoulos [25], Tsui et al.
[26], Wang et al. [30] and references cited in these publications). In Iqbal and Carey
[14], Manevitz et al. [18], these methods were applied for a closely related problem:
generation of meshes for approximate solutions.

This paper is concerned with another important problem in numerical analysis
of PDEs that arises in the process of mesh adaptive computations. It is the error
indication problem. Known approaches to error indication are briefly discussed in
Sect. 2, where we present the main known groups of indicators and introduce two
characteristics of their accuracy (strong andweak). They are later used to compare the
performance of different error indicators. The main goal of the paper is to introduce
and study error indicators of a new type obtained by methods of supervised machine
learning. We call them Network Error Indicators.

At first glance, the problem of creating a networkable to make successful error
indication in a real life computational problem seems to be extremely difficult because
the set of geometrical and numerical parameters (which are associated with a mesh
and numerical solution) may be very large. Moreover, in different examples this set
may be quite different, so that a network well trained for one particular problem could
be useless for others. The idea bywhichwemanage to overcome these difficulties and
make the training geometry-agnostic is presented in Sect. 3. Theoretically, it is based
on the decomposition principle combined with special analytical tools (a posteriori
estimates of the functional type) that provide guaranteed error bounds for a wide
set of approximations. These estimates have the form of integral functionals, which
admit decomposition into local quantities associated with subdomains. The network
is trained for a small mesh fragment (patch) and, therefore, the corresponding set
of input data have a relatively small dimension. The output set consists of certain
parameters to be defined (in the considered examples, the parameters are defined as
normal components of fluxes on the element boundaries). If these parameters are
properly defined, then the error majorant is close to the true error and, moreover, it
generates a very good indicator of local errors (a systematic consideration of these
questions is presented in Repin [23], Mali et al. [17]). In general, the parameters are
unknown and finding them may requirer essential computational efforts. However,
the range of additional efforts essentially depends on the goal of error estimation.
It may be high if we wish to find guaranteed and very sharp error bounds for an an
arbitrary approximation (which does not possess special properties such as Galerkin
orthogonality or local conservation). In this case, finding exact parameters may be
computationally expensive. But formaking error indicationwith the quality sufficient
for practical applications, the exact values of parameters are not very important. In
numerous experiments (see Mali et al. [17]), it was confirmed that the method
provides good error indication if computed parameters are only "close" to the exact
ones. This fact suggest the idea to use specially trained networks as fast solvers

Generation of Error Indicators by Machine Learning Methods 3

that provide suitable values of the parameters. In this case, such a network can be
viewed as certain reduced order model formed by the machine learning technology.
Considering the mesh cells (patches) iteratively we improve the global set of output
parameters and finally obtain the parameters that imply an effective indicator of local
errors and also a guaranteed bound of the overall error (see Sect. 3.1).

To be computationally successful an error indicator must possess a collection
of features. It must be fast and sufficiently accurate. At the same time, it must be
insensitive (robust) with respect to properties of meshes and approximations. Net-
work error indicators discussed in Sect. 3.1 satisfy these requirements because they
are developed for small (basic) patches. Therefore, they are rather simple and easily
adaptable to changing geometry of mesh cells. They are robust because originate
from a posteriori estimates of the functional type, which are valid for any conforming
approximation. Numerical examples presented in Sect. 4 show that network error
indicators are indeed effective. They have the same quality as the most efficient
indicators typically used in computer simulation methods (in many cases network
indicators perform even better). For Galerkin approximations of sufficiently regular
exact solutions they provide almost the same indication as gradient averaging indi-
cators. But network indicators has an important advantage. The use of them is not
burdened by specific conditions (e.g., Galerkin orthogonality, regularity of meshes
and exact solutions). Therefore, network indicators are method-robust and can be
successfully used for analysis of approximations generated by different methods.
Moreover, the authors believe that their effectivity (with respect to computational
time and quality of error indication) can be multiply enlarged (notice that the method
is perfectly adapted for parallelisation).

Training procedure is another essential component of the suggested computa-
tional technology. Tomake it fast and stable we use networks special structure, which
separates the geometrical data and the parameters associated with numerical approx-
imations (see Fig. 4). This structure allows us to determine characteristics (weights)
of the network efficiently using teaching problems with minimal dimensionality.
Experiments presented in Sect. 4 are performed using MATLAB computations with
video-cards (GPU support). Certainly network indicators can be realised using other
software (e.g., Python). We plan to present the corresponding results in subsequent
publications.

2 Indicators of Computational Errors

2.1 Adaptive Numerical Methods and Error Indicators

In the vast majority of cases, modern computer simulation methods for models based
on partial differential equations (PDEs) use mesh-adaptation and a posteriori error
indicators (e.g., see Ainsworth and Oden [2], Babuška and Rheinboldt [3], Bangerth
and Rannacher [6], Bank and Weiser [7], Eriksson et al. [12], Johnson and Szepessy
[16], Johnson and Hansbo [15], Mali et al. [17], Verfürth [27]). The general scheme

4 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

EI 6
EI 2

EI 7

EI 3EI 4

EI 1

EI 8

M 1
1
0

10
0

0
Refinement

Fig. 1 Error indicator, marker, and mesh adaptation

is as follows. A continuous (differential) problem

Au = F, u ∈ V, F ∈ V∗, (1)

is replaced by a finite dimensional problem

Ahuh = Fh, uh ∈ Vh ⊂ V, (2)

where A : V → V∗ is a bounded operator, V is a Banach space, V∗ is the space dual
to V , F is a given function, Vh is a finite dimensional space (dim Vh = N(h) < +∞)
used instead of V , and Ah and Fh are discrete counterparts of A and F, respectively.
Proper selection of the subspace Vh is an important and difficult task. Even if types
of approximations and mesh cells are defined, it may be difficult to detect a priori the
best subspace Vh (in the sense of error minimization) among many others having the
same dimensionality N(h). Certainly, the choice of Vh also depends on the selected
measure of the difference between u and uh . Typically, it is the measure is generated
by energy norm associated with the equation studied, but other (e.g., local, goal-
oriented) measures can be used as well. Exact evaluation of local errors may be
too complicated or even impossible. Therefore, many computer simulation codes
(e.g., the PDE Toolbox of MATLAB) use special tools (called Error Indicators EI)
that furnish information on the error e and control the generation of new (adapted)
meshes.

In the mesh-adaptive computational strategies, the problem is firstly solved on
the coarsest mesh (associated with the space V1). The corresponding approximate
solution u1 is examined by an error indicator, which detects zones with exceptionally
large errors. A new (refined) space V2 has more degrees of freedom (nodes) in these
regions and, therefore, produces a more accurate solution u2. The error indicator
it applied to u2 and the next iteration is done with the space V3. Schematically the
process is depicted as follows:

V1
EI (u1)
−−→ V2

EI (u2)
−−→ ... Vk

EI (uk)
−−→ Vk+1. (3)

An error indicator produces local quantities EI k associated with subdomains
(mesh cells). A practically useful indicator must satisfy certain requirements, such
as computability (it should be easily computable), efficiency (indicator correctly
reproduces the distribution of local errors), and robustness (indicator is applicable to
a wide set of approximations). Certainly some of these requirements may contradict

Generation of Error Indicators by Machine Learning Methods 5

others, e.g., in real life problems it is unlikely to have a computationally inexpensive
error indicator that will be very efficient and robust simultaneously.

First error indicationmethodswere suggested at the end of 19 century by C. Runge
(a discussion of the heuristic Runge’s rule can be found in Repin [23]). At present,
the amount of publications related to this question is huge (see, e.g., Ainsworth
and Oden [2], Babuška and Strouboulis [5], Bangerth and Rannacher [6], Repin
[23], Wahlbin [28] and many references cited therein). The most known classes of
error indicators widely used in adaptive computations are as follows:1

A. Residual method (Ainsworth and Oden [2], Babuška and Strouboulis [5],
Babuška and Rheinboldt [3], Verfürth [27]),

B. Averaging (post-processing) methods (Babuška and Rheinboldt [3], Babuška and
Rodriguez [4], Carstensen and Bartels [9], Ewing et al. [13], Wahlbin [28], Wang
[29], Zienkiewicz and Zhu [32], Zio [33]),

C. Functional type error estimates and indicators (Repin [22, 23], Mali et al. [17]),
D. Hierarchical indicators (Agouzal [1], Bank andWeiser [7], Duran and Rodriguez

[11]),
E. Dual-weighted residual method (Bangerth and Rannacher [6], Johnson and

Szepessy [16], Rannacher [21]),
F. Goal oriented indicators (Bangerth and Rannacher [6], Eriksson et al. [12],

Johnson and Hansbo [15]).

First residual type error indicators were suggested in Babuška and Rheinboldt [3]
and some other publications of the authors. After that, this class of indicators was
under a very intensive investigation. Indicators of this type exploit the Galerkin
orthogonality property (hence they are applicable to Galerkin approximations only)
and special type interpolation estimates associated with local patches (unions of
neighbouring elements).

Another widely used group of error indicators exploits various post-processing
procedures to recover computed gradients (or functions). One of the first publications
in this direction is Zienkiewicz and Zhu [32]. It generated a large interest to error
indication methods based on post-processing of numerical solutions. Nowadays indi-
cators of this type are widely used. Very often they produce quite good indication of
approximation errors for successful mesh adaptive procedures (e.g., see a systematic
analysis in Carstensen andBartels [9] and numerous subsequent publications of same
authors). Mathematical justifications of the most used variant of this approach (gra-
dient recovery methods) follow from the so-called superconvergence phenomenon
(see, e.g., Ewing et al. [13], rížek and Neittaanmäki [24], Oganesyan and Rukhovets
[20], Wahlbin [28]). However, in general, these error indication methods are also
applicable to Galerkin approximations (or to approximations very close to them).
Indicators of the third group follow from a posteriori estimates of the functional type
(see Repin [22], Neittaanmäki and Repin [19], Repin [23], Mali et al. [17] and many
publications cited therein). We discuss them later in Sect. 2.3.

1 There exist many publications associated with each of the items (A)–(F). In brackets we mention
several well-known representatives. Using them, the reader may find many others related to the
same class.

6 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Hierarchically based methods generate error indicators with the help of auxiliary
problems constructed for enriched finite dimensional subspaces (local or global).
These methods can be viewed as further development of the idea suggested by C.
Runge. Among recent publications related to this method we mention Buffa and
Garau [8], Carstensen et al. [10], Yu et al. [31]. In these publications, the reader will
find many other references related to the method (see also Agouzal [1], Bank and
Weiser [7], Duran and Rodriguez [11] and the references therein). Error indicators
using adjoint problems are often applied if error control is performed it terms of
specially constructed (goal oriented) quantities. These methods are very popular in
engineering applications.

Dual-weighted residual (DWR) and goal-orientedmethods use the adjoint bound-
ary value problem. This method is free from the difficulties related to interpolation
constants (that arise in the explicit residual type method). Another attractive feature
is that it offers a way to obtain computable error indicators for specially constructed
error functionals focused on most interesting (important) features of a numerical
solution (see a systematic exposition in Bangerth and Rannacher [6], Johnson and
Szepessy [16] and many other publications cited therein).

2.2 Accuracy of Error Indicators

We begin with a concise overview of the basic terminology and notion important for
subsequent sections. Here we follow the lines of the book Mali et al. [17, Chapter 2],
where the reader can find a systematic consideration of the error indication theory
for approximations of differential equations.

There are many different error indicators that estimate the computational error

eh(x) := u(x) − uh(x).

They analyse not only eh(x) but also other quantities formed by eh (e.g., various
norms of this function), which we denote by one common symbol E(eh). (They could
be the L2 norm of derivatives ‖∇eh(x)‖2,Ω or Lq norm of the error ‖eh(x)‖q.Ω, mean
values {| eh |}ω := 1

|ω |

∫
ω

ehdx, maximal values maxx∈Ω eh(x), etc.) Depending on
the goal of computer simulation, a particular quantityE(eh) is selected tomeasure the
quality of approximations and a series of consequent mesh adaptations are performed
to minimize it.

Error Indicator EI (x) is aimed to adequately represent the error quantity. This
function must be computable and satisfy the relation

EI (x) ∼ E(eh). (4)

Different error indicators use different meanings of the equivalence symbol ∼. How-
ever, almost all of them can be collected into two main groups treating this symbol
in a weak and strong sense, respectively.

Generation of Error Indicators by Machine Learning Methods 7

To explain the difference, we need to define one other notion always used in
mesh adaptive technologies. Let B(Th) denote the set of boolean functions defined
on partition (mesh) Th . We assume that Th consists of polygonal cells Th (e.g.,
simplexes), whose diameters are bounded from above and below by h with some
multipliers independent of h and Card(Th) = n.

A marking operator (marker) M maps real valued functions to boolean valued
ones, i.e., M : EI → B(Th). For any [∈ B(Th), [= ([1, [2, ..., [n), the norm is defined
by the relation ‖[‖B :=

∑
i [i .

Definition 1 EI is a weak (boolean) ε-approximation of the quantity E(eh) if

1
n
‖M(EI) ⇐⇒ M(E(eh))‖B ≤ ε . (5)

Here ⇐⇒ denotes the logical equality, ε is a small positive number (accuracy of
error indication), and M is the marker used in the process of transferring real valued
data to the boolean valued data.

In this approximation concept, it is not required that the indicator EI reproduces
true values of local errors. The goal of this weak error indicator is to correctly
detect the subdomains, where the errors are sufficiently larger than on others. In
principle, an indicator may provide a weak approximation with one marker and do
not provide it with another one. Usually the indicators are used with the so-called
"greedy marking algorithm", which we also use in the examples. Typically mesh
adaptation procedures used in various codes are based on error indicators, which are
correct in a weak sense only. They do not provide a reliable information on the real
quality of a numerical solution.

The strong error indication method treats the symbol ∼ in a different sense.

Definition 2 EI is a strong ε-approximation of E if∫
Ω

|EI − E(eh)|dx ≤ ε . (6)

If EI is correct in this (strong) sense, then∫
Ω

E(eh)dx is close to
∫
Ω

EI dx,

i.e.,
∫
Ω

EI dx provides a correct quantitative estimation of the overall error. Moreover,
if ε is small, then the Lebesgue measure of the set

ωε := {x ∈ Ω | |EI (x) − E(eh)(x)| ≥ ε}

is small. This means, that the indicator EI and the real error E(eh)may be essentially
different only in some small parts of the domain and, therefore, the computed
indicator EI provides a correct view on the distribution of local errors. It is clear
that any indicator providing ε-approximation in the strong sense will be also coorect

8 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

in the weak sense (this fact directly follows from (5) and (6)). However, the opposite
statement is not true. Getting error indicators of this (strong) type may be a difficult
task (especially for nonlinear problems and problems with complicated geometry).
Therefore, computer codes using adaptivity are mainly supplied with indicators that
satisfy Definition 1, but may not satisfy Definition 2.

2.3 A Class of Boundary Value Problems

To discuss error indication methods we consider a diffusion type boundary value
problem, which often serves as the first test model to be studied if different error
indication methods are compared with each other. The problem is to find u such that

div A∇u + f = 0 in Ω, u = u0 on Γ, (7)

where Ω ∈ Rd is a bounded connected domain with Lipschitz continuous boundary
Γ, u0 ∈ H1(Ω), f ∈ L2(Ω), and A = {ai j} is a symmetric matrix with bounded
coefficients, which satisfies the condition

c2
1 |ξ |

2 ≤ Aξ · ξ ≤ c2
2 |ξ |

2, c2 ≥ c1 > 0, ∀ξ ∈ Rd .

Let v be a conforming approximation of u. Henceforth, we focus attention on the
following three error indicators, which are often used in computer simulation and
mesh adaptive numerical methods for partial differential equations.

Patch Averaging of Fluxes
In this method, the numerical flux ph := A∇uh is computed for each elementTh ∈ Th .
The averaging operator Gh averages these values on each patch of elements having
a common node. Then, the corresponding nodal values are extended to Ω using
standard (e.g., piecewise affine) approximations. There are many other variants of
this method, which in the literature is often called gradient averaging. The function
EI GA = ph −Ghph computed on each element Th generates an error indicator, which
often serves as an efficient representer of the actual error (see the literature cited in
the item B).

Residual Based Error Indicator
Indicators of this type use specially weighted sums of equation residuals (i.e.,
‖ div A∇uh + f ‖Th) defined on elements of Th and jumps of normal fluxes com-
puted on interelement boundaries. A systematic exposition of this approach can
be found in the monographs Ainsworth and Oden [2], Babuška and Strouboulis
[5], Verfürth [27]. Henceforth, this indicator is denoted EI Resid.

Error Indicator Generated by A Posteriori Estimates of the Functional Type
It is known (see Repin [22, 23] and references to some other publications cited
therein) that

‖∇e‖2A = inf
y∈H(Ω,div)

M⊕(v, y), (8)

Generation of Error Indicators by Machine Learning Methods 9

where
e := u − v, ‖∇e‖2A :=

∫
Ω

A∇e · ∇e dx,

and the functionalM⊕ (error majorant) is defined by the relation

M⊕(v, y) :=
∫
Ω

(
A∇v · ∇v + A−1y · y − 2y · ∇v

)
dx + C2

FΩ‖ f + div y‖2. (9)

Here H(Ω,div) is the Hilbert space of vector valued functions in L2(Ω,Rd) with the
divergence in L2(Ω), ‖ · ‖ stands for the norm of L2(Ω), and CFΩ is a constant in the
Friedrichs type inequality for the functions vanishing on ∂Ω.

It is easy to see that infimum in (8) is attained if y = p := A∇u. In this case, the
second term of the majorant vanishes and the integrand of the first one coincides
with the exact squared error:

e2(x) := A∇e · ∇e(x).

This means that a vector-valued function yτ found by minimisation of the error
majorantM⊕(v, y) on a certain finite-dimensional space Yτ implies an efficient error
indicator

EI Maj(v, yτ) := A∇v · ∇v + A−1yτ · yτ − 2yτ · ∇v. (10)

Since e2 − EI Maj(v, yτ) = A−1p · p − A−1yτ · yτ + 2(yτ − p) · ∇v, it is easy to see that
the indicator EI Maj is indeed accurate (in the sense of Definition 2) provided that yτ is
close to p. This property holds for any conforming approximation v and, therefore,
the indicator EI Maj is robust with respect to the approximation type.

Error indicators of this typewere tested for various elliptic and parabolic problems
and have confirmed high robustness and efficiency (see Mali et al. [17]). At the same
time, these indicators are more expensive then indicators of the group (B). Below
we use EI Maj for two purposes. The first (and the main) application is to create an
arbitrary large amount of diverse teaching examples for learning a network indicator
EI ML.

3 Network Error Indicator

Now we discuss a way to generate an error indicator EI ML by the machine learning
technology. It is worth noting, that the idea to use ML methods for error indication
problems is quite natural. This technology is known to be very successful in analysis
of images and error indication can be treated as a special kind of the Image Recogni-
tion (IR) problem. Indeed, the problem consists of getting an adequate image of the
error distribution by analysing the geometrical and computational data encompassed
in the approximate solution uh , i.e.,

We wish to create a network able to analyse uh and generate a set of boolean data
that show elements to be refined. Moreover, such a network should be able to make

10 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Computational Data =⇒ Error Distribution Image

Fig. 2 Approximate solution (left) and the corresponding image B(Th) generated by an error
indicator and a marker (right)

a conclusion on the quality of a numerical solution and give an adequate picture of
the error distribution.

Let D(uh) denote the set of data related to uh , E be the set of local errors defined
on the elements of Th , and B(Th) be the boolean set that defines marking of elements.
An error indicator EI is a part of the estimation-marking process

D(uh) → EI → E −→ B(Th)

Typically, the sets D(uh), E, and B(Th) are very large (they may contain millions of
elements). It is practically impossible to generate an efficient network indicator EI ML
directly on the global level because the corresponding network would be too large
and too complicated. Besides, such a network would be strongly connected with
a particular mesh. To overcome these difficulties caused by high dimensionality,
we use the decomposition principle, by which a complicated highly dimensional
problem is reduced to a sequence of simple (low-dimensional) sub-problems. For
this purpose,we use the principal identity (8). In accordancewith (9),M⊕ is presented
by an integral. Therefore, the problem of finding yτ can be localised and reduced to
problems for small subdomains (patches). Networks presented in the next section are
able to solve these local subproblems very fast. Applying them iteratively we obtain
a suitable yτ and the corresponding error indicator EI ML.

3.1 Local Networks

In what follows, we consider problem (7) with the unit matrix A and assume that
Ω is a polygonal set covered by a simplicial partition Th . The set D(uh) contains
the data of a numerical solution uh (nodal values, geometrical parameters). The sets
Dk(uh) are associated with the mesh fragments of two types. The type 1 is presented

Generation of Error Indicators by Machine Learning Methods 11

q0

q1
q2

T

(0, 0) (l, 0)

(λl, −h)

q0

q1 q2

T1

T2

(0, 0) (l, 0)

(λ1l, −h1)

(λ2l, h2)

q3 q4

Fig. 3 Exterior simplex and two neighbouring interior simplexes.

by two neighbouring simplexes (it is used for the interior of Ω). The type 2 is used
for elements having common edge with the boundary ∂Ω and uses only one simplex.
Since uh is known, we can find the corresponding flux qh and define its normal
components on edges of all simplexes. Our goal is to construct networks that make
post-processing of qh and to use it for getting an error indicator.

Consider first a mesh fragment of the second type. Without a loss of generality,
we present it as the simplex with vertexes (0,0), (l,0), (λl,−h) (see Fig. 3, left).
Notice, that by scaling and rotation any simplex can be represented in such a form.

Assume that the values of q1 and q2 are given. We find q0 in the following form:

q0 =

2∑
i=1

aiqi + a3{ f }T + a4
∂uh
∂x1
+ a5

∂uh
∂x2

, (11)

where ai are some coefficients defined by the networks. This representation is natural
because the optimal value of q0 (i.e., such that it minimises the corresponding
contribution in the error majorant) should clearly depend on two other components
q1 and q2, mean value of f , and components of ∇uh . Coefficients ai depend on
geometrical parameters only. Certainly (11) is the simplest (linear) representation
and one can also use more complicated forms with nonlinear terms. However, for our
problem this simple representation provides sufficiently accurate results provided that
the networks computing ai are well taught. It is convenient to organise the process of
machine learning by setting only one of the "main" parameters q1,q2, { f }T ,

∂uh
∂x1

, ∂uh∂x2
equal to 1 and setting all others zero. Then, the corresponding ai is generated by
a network, which input is geometrical data ζi (in our case they are presented by
the parameters l, λ, h). Thus, the process follows the principle of separate learning,
where the networks for ai are learned independently, but within the framework of
one and the same generator of teaching examples.

It is worth noting that neural networks are not adapted to the multiplication of
input data. Therefore, a proper selection of input parameters is an essential question.
In our case, the parameters ζi were selected as follows:

12 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

ζ1 =
h
l
, ζ2 =

l
h
, ζ3 =

λl
h
, ζ4 =

λ2l
h
, ζ5 =

C2
F

|T |
.

We generate a teaching sequence of any desired length by means of the majorant
(9), where the vector valued function y is defined by means of the Raviart-Thomas
elements. We use the lowest order elements RT0, for which the boundary normal
fluxes q0, q1, and q2 are uniquely define y inside T . The constant CF entering the
majorant is also considered as one of the input parameters. The majorant (9) yields
the following local subproblem for the definition of q0:

min
q0 , β>0

G(q, ζ, β), (12)

where q = {q1,q2,q3}
T and ζ is the above defined vector of geometrical parameters.

The function G has the form

G(q, ζ, β) := (1 + β)

[
1
2

(
M +

C2
F

β
K

)
q · q + L1 · q +

C2
F

β
L2 · q

]
, (13)

where

M :=

©­­­­­­«

(1 − 3λ + 3λ2)l
6h

+
h
2l
(1 − λ − λ2)l

6h
−

h
6l
(−1 + 3λ − λ2)l

6h
−

h
6l

(−1 + 3λ − λ2)l
6h

−
h
6l
(1 − 3λ + 3λ2)l

h
+

h
2l
(1 − λ − λ2)l

h
−

h
6l

(1 − λ − λ2)l
6h

−
h
6l
(−1 + 3λ − λ2)l

h
−

h
6l
(1 − 3λ + 3λ2)l

h
+

h
2l

ª®®®®®®¬
,

and K ∈ M3×3 has the coefficients equal to 2
|T | . The vectors L1 and L2 are defined

by the relations

L1 :=
l(1 − 2λ)

3
∂uh
∂x1

©­«
1
1
1

ª®¬ − 2h
3
∂uh
∂x2

©­«
1
1
1

ª®¬ and L2 := 2{ f }T
©­«
1
1
1

ª®¬ .
For an interior edge ofTh (which length is l),we need to consider twoneighbouring

elements T1 and T2 (see Fig. 3, right). Their geometrical properties are defined by
the parameters h1, h2, λ1, and λ2. By scaling and rotation any pair of nonintersecting
neighbouring simplexes can be represented in such a form. In this case, we define q0
by the relation analogous to (11)

q0 =

4∑
i=1

aiqi + a5{ f }T1 + a6<11 + a7<12 + a8{ f }T2 + a9<21 + a10<22, (14)

where

<11 =
∂uh
∂x1
|T1, <12 =

∂uh
∂x2
|T1, <21 =

∂uh
∂x1
|T2, <22 =

∂uh
∂x2
|T2 .

Generation of Error Indicators by Machine Learning Methods 13

Networks for the coefficients ai are constructed by the samemethod using a generator
of teaching examples, which gives the correct q0 for any given q1, q2, q3, q4,
geometrical parameters l, λ1, h1, T1, λ2, h2, T2, mean values on elements { f }T1 ,
{ f }T2 , and values of the derivatives of uh on triangles T1 and T2.

Analysing the majorant, we obtain the following subproblem to be used for
generating correct values of q0 (which are used in the teaching process). Now the
main parameters vector is q = {q0,q1,q2,q3,q4}

T . Then the corresponding function
G has a form similar to (13), where

M :=

©­­­­­«
m1 + m2 m3 m4 −m5 −m6

m4 m1 m3 0 0
m3 m4 m1 0 0
0 0 −m6 −m2 −m5
0 0 −m5 −m6 −m2

ª®®®®®¬
, K :=

©­­­­­«
k1 + k2 k1 k1 −k2 −k2

k1 k1 k1 0 0
k1 k1 k1 0 0
0 0 −k2 −k2 −k2
0 0 −k2 −k2 −k2

ª®®®®®¬
,

and the linear terms are defined by the relations

L1 :=
l<11

3

©­­­­­«
−2λ1

1 − 2λ1
1 − 2λ1

0
0

ª®®®®®¬
−

2h1<12
3

©­­­­­«
1
1
1
0
0

ª®®®®®¬
+

l<21
3

©­­­­­«
2λ2
0
0

2λ2 − 1
2λ2 − 1

ª®®®®®¬
−

2h2<22
3

©­­­­­«
1
0
0
1
1

ª®®®®®¬
,

and

L2 := 2{ f }T1

©­­­­­«
1
1
1
0
0

ª®®®®®¬
− 2{ f }T2

©­­­­­«
1
0
0
1
1

ª®®®®®¬
.

Here k1 =
2
|T1 |

, k2 =
2
|T2 |

, and

m1 =
(1 − 3λ1 + 3λ2

1)l

6h1
+

h1
2l
, m2 =

(1 − 3λ2 + 3λ2
2)l

6h2
+

h2
2l
,

m3 =
(1 − λ1 − λ

2
1)l

6h1
−

h1
6l
, m4 =

(−1 + 3λ1 − λ
2
1)l

6h1
−

h1
6l
,

m5 =
(1 − λ2 − λ

2
2)l

6h2
−

h2
6l
, m6 =

(−1 + 3λ2 − λ
2
2)l

6h2
−

h2
6l
.

We see that as in the previous case, the set of external data can be split into two
principally different subsets: the set of main parameters and the set of geometrical
data. In Fig. 4, we depict the principal architecture of the network, which reflects
this decomposition. Here ζ1, . . . , ζk are the geometrical data related to the selected
simplex (or two neighbouring simplexes) and g1, . . . ,gm are the data associated with
the differential equation and numerical solution uh .

14 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Geometric data
ζ1, . . . , ζk

Network 1 Network 2 Network m. . .

q0 =
m∑
i=1

aigi
Approximation data

g1, . . . , gm
q0

a1
a2 am

Fig. 4 Principal architecture of the global net. The data gi is formed by the equation and approxi-
mate solution.

Fig. 5 Networks ML10 and ML10+10

Local networks constructed for ai may have different levels of complexity2.
Figures 5 and 6 show three different networks used in different tests for the coefficient
a1. Networks for other coefficients look analogously.

After constructing a network we verify its quality by a series of control tests of
the size N (typically N = 100000) and define the quantity (accuracy index)

Inet(ai) :=
1
N

N∑
k=1

|a(k),neti − a(k)i |

|a(k)i |
,

where a(k)i is the exact value of the parameter ai in the test i and a(k),neti is the value
generated by the network. The results generated by a network are considered as
"good" if Inet is close to zero.

2Certainly complicated networks require larger amount of teaching examples, but in general provide
better indication of errors.

Generation of Error Indicators by Machine Learning Methods 15

Fig. 6 Network ML20+20

Table 1 Index Inet for the networks calculating a1, a2, a3, a4

Net Inet(a1) Inet(a2) Inet(a3) Inet(a4)

8 2.1e-2 1.6e-2 2.0e-2 2.1e-2
10 4.1e-3 2.9e-3 7.5e-3 5.2e-3
20 1.7e-3 1.5e-3 8.3e-4 9.5e-4
10+10 2.1e-5 1.8e-5 2.1e-5 2.2e-5
20+20 2.1e-6 3.5e-6 3.1e-6 2.8e-6

Table 1 and Fig. 7 present these quantities for the networks created for the
coefficients a1, a2, a3, a4 (numbers in the left column show the structure of the
network, e.g., 8 is related to the simplest network consisting of only one layer with
8 neurones and 20 + 20 is the most complicated network with two layers having 20
neurones each). Since the coefficients represent similar mathematical structures, it
is not surprising that the corresponding networks (constructed by different codes3)
have similar accuracy. Table 1 and the histogram in Fig. 7 show that the networks
become more efficient if the amount of neurones enlarges and one-layer networks
are replaced by two-layer ones.

4 Examples

Here we present some of the results obtained in the process of verification of EI ML
and comparison with other indicators. In the tests, we computed and analysed the
following indicators of elementwise errors:

1. indicator based on the true error distribution;
2. the gradient averaging indicator;

3 Here we have used inbuilt MATLAB functions trainlm and trainbr.

16 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Fig. 7 Index Inet for the networks calculating a1, a2, a3, a4 on patches formed by two neighbouring
simplexes; teaching examples are generated by the majorant.

3. by the residual indicator used in MATLAB;
4. indicator computed by minimisation of the majorant (9);
5. indicator computed by the network 8.
6. indicator computed by the network 10.
7. indicator computed by the network 10+10.
8. indicator computed by the network 20+20.

The results are presented in different forms. First, we depict them with the help
of histograms (as, e.g., Fig. 9). The histogram uses special numeration of elements
(from 1 to n), where the elements are numbered in accordance with values of the
corresponding errors (from the smallest to the largest). Hence for the true error the
very last peak represents the largest local error related to a certain element (which
is now numbered n). The exact error indicator produces the picture in the left upper
corner of Fig. 9. If the indicator is "good", then the picture should be similar (may
be with some defects as on the histograms GA or Maj which, however, do not change
the picture essentially). For a "bad" indicator, the two pictures are very different
and the monotonicity property is lost completely. Using the histograms, we can
see how accurate is an indicator in the strong sense (see Definition 2). Also, we
need a quantitative qualification of the accuracy of error indicators. This is done by
"efficiency indexes" presented in Table 3.

Another part of the results is related to marking. By the "greedy marker" M
we select the elements to be refined (e.g., see Fig. 10 where these elements are
coloured red). We compare the results produced by different indicators with the
correct marking done by the same marker M applied to the exact error function.
These pictures give a presentation on how accurate are the indicators in the weak
sense (see Definition 1).

Generation of Error Indicators by Machine Learning Methods 17

In the examples, we analyse approximations of the equation ∆u + f = 0 with
homogeneous Dirichlet boundary conditions in different domainsΩ and for different
source terms f .

Example 1 Let Ω = (0,1)2 \ [1/2,1]2, and

f = (−12x1 + 6)x2(1 − x2)(2x2 − 1) + (−12x2 + 6)x1(1 − x1)(2x1 − 1).

The exact solution is u = x1(1 − x1)(2x1 − 1)x2(1 − x2)(2x2 − 1) and uh is com-
puted on different finite element meshes with the amount of elements (Nt =

384,670,1237,2397, see Table 4). Hence we know the exact error e := u − uh
between the exact solution and Galerkin approximations. We compare it with the
results produced by the indicators (2)–(8). Figure 9 shows that the indicator based
on the error majorant (9) is the most accurate. Error indicator based on gradient
averaging works with practically the same accuracy and the indicator ML20+20 is
very close to these two. The indicators ML10 and ML10+10 produce more coarse
results, which however can be viewed as "acceptable". The residual based indicator
ofMATLAB does not generate acceptable in the sense of Definition 2. Table 4 shows
the results of mesh adaption based on different error indicators. The first line corre-
sponds to the adaptation process using exact error. The corresponding finite element
meshes consist of 384, 670, 1237, and 2397 elements and on the finest mesh the
energy error norm is equal to 3.045 × 10−3. If the adaptation process uses gradient
averaging indicator and the indicator generated by the majorant then the results are
very close.

All network indicators work with the same efficiency as the exact one and produce
meshes of approximately same sizewith very close values of the error. Residual based
indicator of MATLAB is much lesser efficient. It generates the final mesh with twice
larger amount of elements and practically the same accuracy as other indicators
have achieved using much smaller meshes. Figure 8 depicts the situation graphically.
We see that in this (rather simple) example all network indicators work with the
same efficiency as the exact one. Figure 10 presents the corresponding markings
of elements that was done by means of the "greedy marking" algorithm with the
selection of elements forming 50 % of the total error. Comparison of different
indicators in other test examples lead to similar conclusions.

When discussing the efficiency of error indicators we should take into account
the computational cost of an indicator measured in terms of the computation (CPU)
time. Table 2, compares different indicators from this position. Evidently the CPU
time may be essentially different depending on a particular computer so that making
measurements in terms of real time units does not have sense. Therefore, we accept
the time used by the GA indicator as the time unit and expressed working times of
other indicators in these units.

We see that the proportion does not depend on the amount of elements. Network
indicators are as fast as the GA indicator (which is known to be one of the most
easily computable). It is not surprising that the computation of Maj indicator is
more expensive. This indicator is applicable to all conforming approximations and
is robust with respect to violations of Galerkin orthogonality and other additional

18 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Table 2 CPU time used by different indicators

Nt GA ML10 ML10+10 ML20+20 Maj

384 1 1.1 1.1 1.1 2.8
1536 1 1.1 1.1 1.1 3.1
6144 1 1.1 1.1 1.1 2.9

Table 3 Example 1: Global efficiency indexes for Galerkin and not Galerkin approximations for
various error indicators

Method Maj GA Res ML8 ML10 ML10+10 ML20+20

Non-Galerkin 1.46 4.10 21.50 2.35 1.89 1.69 1.70
Galerkin 2.09 7.20 49.63 2.74 2.71 2.76 2.70

conditions (e.g., regularity of meshes and exact solutions). Moreover, it generates
guaranteed error bounds. Certainly, all these additional properties are based on
more sophisticated analysis, which requires more time. Table 2 is related to the first
example. The results of time measurements for other examples are analogous.

Also we studied not Galerkin approximations. It is worth noting that in real life
computations approximate solutions often do not satisfy the Galerkin condition and,
therefore, robustness of an error indicator with respect to violations of this condition
is practically important. In our tests, we used certain disturbances of uh and defined
the approximation as v = uh + 0.005πh(sin(2πx1) sin(2πx2)). For a finite element
mesh with Nt = 384 similar simplexes, we estimate the errors (Fig. 11) and the
marking (Fig. 12).

It is not surprising that the gradient averaging method produces rather coarse
estimation (it is valid only for approximations of regular exact solutions close to
Galerkin ones). The same is true for the residual error indicator. Network error
indicators work quite successfully. This fact is seen on the pictures. Also, it is
confirmed by the data presented in Tables 3 and 4.

It is commonly accepted to compare the efficiency of an error estimator by means
of the so-called efficiency index

Ieff :=
Error estimate

Error
.

In Table 3, we present the values of Ieff for different error indicators applied to
the above mentioned approximation v. Error estimator for the residual method was
computed by the inbuilt procedure of MATLAB. Table 3 shows the evolution of
mesh size in the process of adaptation for different error indicators. The first line is
related to the case, where the exact error distribution was used for making and mesh
refinement. These results could serve as an "etalon". We see that on the last step this
(optimal) indicator has generated a mesh with 2397 nodes and the corresponding
approximate solution has the error (in the energy norm) 3.045 × 10−3. Similar
accuracy was achieved by all other indicators, but with rather different meshes. If

Generation of Error Indicators by Machine Learning Methods 19

Table 4 Example 1: Mesh adaptation with different indicators and respective errors. Nt is the
amount of elements.

step 0 step 1 step 2 step 3

Nt 384 670 1237 2397
‖∇e ‖(Exact) 8.090e-03 5.804e-03 4.133e-03 3.045e-03

Nt 384 704 1358 2544
‖∇e ‖(GA) 8.090e-03 5.690e-03 3.976e-03 2.905e-03

Nt 384 880 2074 4388
‖∇e ‖(Res) 8.090e-03 5.412e-03 3.370e-03 2.331e-03

Nt 384 685 1355 2505
‖∇e ‖(Maj) 8.090e-03 5.722e-03 4.012e-03 3.045e-03

Nt 384 714 1420 2618
‖∇e ‖(ML8) 8.090e-03 5.521e-03 3.857e-03 2.885e-03

Nt 384 724 1439 2397
‖∇e ‖(ML10) 8.090e-03 5.501e-03 3.882e-03 2.881e-03

Nt 384 719 1426 2622
‖∇e ‖(ML10+10) 8.090e-03 5.519e-03 3.871e-03 3.045e-03

Nt 384 719 1440 2622
‖∇e ‖(ML20+20) 8.090e-03 5.519e-03 3.853e-03 2.882e-03

we compute the coefficient κ = error
Nt

(it shows how efficiently we use degrees of
freedom), then the best result is achieved for ML20+20: κ ≈ 0.11 × 10−5, all others
give κ ≈ 0.12 × 10−5 except the residual indicator with κ ≈ 0.5 × 10−6.

Example 2 In this example, we consider a Π-shaped domain

Ω = (−1,1) × (0,1) \ ([−0.5,0.5] × [0,0.5])

and f = −(12x2
1 − 2.5)(x3

2 − 1.5x2
2 + 0.5x2) − (x4

1 − 1.25x2
1 + 0.25)(6x2 − 3). The

exact solution is u = (x1 − 1)(x1 + 1)(x1 − 0.5)(x1 + 0.5)x2(x2 − 1)(x2 − 0.5).
The function compared with u is the Galerkin approximation uh computed for the

space of piecewise affine functions defined on a simplicial mesh. The corresponding
results are exposed in Table 5. As in the previous example, the histogram in Fig. 14
gives a presentation on how accurate the indicators are in the strong sense and Fig.
15 depicts results of element marking done by the "greedy marking" algorithm with
the selection of 50% of elements.

Again all network indicators produce markings almost the same as the marking
produced by the exact error indicator. Figure 13 shows the meshes obtained on the
last step of adaptation by three different error indicators. Two of them (produced
by the GA indicator and the network indicator ML10) are quite similar. The mesh
generated by the MATLAB residual indicator is quite different and contains much
larger amount of elements.

20 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Table 5 Example 2: Mesh adaptation with different indicators and respective errors. Nt is the
amount of elements.

step 0 step 1 step 2 step 3

Nt 768 1298 2416 4587
‖∇e ‖(Exact) 8.542e-03 6.211e-03 4.507e-03 3.310e-03

Nt 768 1396 2673 4916
‖∇e ‖(GA) 8.542e-03 5.977e-03 4.236e-03 3.105e-03

Nt 768 1686 3986 8538
‖∇e ‖(Res) 8.542e-03 5.757e-03 3.577e-03 2.511e-03

Nt 768 1287 2481 4634
‖∇e ‖(Maj) 8.542e-03 6.264e-03 4.493e-03 3.307e-03

Nt 768 1388 2731 5064
‖∇e ‖(ML8) 8.542e-03 5.956e-03 4.198e-03 3.1248e-03

Nt 768 1412 2807 5198
‖∇e ‖(ML10) 8.542e-03 5.921e-03 4.110e-03 3.076e-03

Nt 768 1385 2714 5064
‖∇e ‖(ML10+10) 8.542e-03 5.964e-03 4.159e-03 3.083e-03

Nt 768 1384 2733 5088
‖∇e ‖(ML20+20) 8.542e-03 5.955e-03 4.167e-03 3.082e-03

Example 3 Here we consider the unit squareΩ = (0,1)2 and jumping right-hand side

f =

{
1 if x1 < 0.5,
2 overwise.

Since the exact solution is unknown, we used instead the so-called "reference"
solution computed on a very fine mesh with 299313 nodes.

Table 6 exposes the results and Fig. 16 depicts the meshes generated by different
error indicators.Here the results are not so good, but nevertheless networksML10+10
and ML20+20 produce final meshes with 921 and 931 elements and the error 1.4 ×
10−2 what is comparable with the result obtained by the exact error indicator (646
elements and the error 1.8×10−2). Figure 16 present themeshes generated by different
indicators. Here again we used the "greedy marking" algorithm with the selection of
50% of elements. For Galerkin solutions network indicators generate results close to
those obtained by the GA and Maj error indicators. They are essentially better than
results produced by the indicator used in MATLAB.

Generation of Error Indicators by Machine Learning Methods 21

Table 6 Example 3: Mesh adaptation with different indicators and respective errors. Nt ia the
amount of elements.

0 1 2 3

Nt 128 182 346 646
‖∇e ‖(Exact) 4.651e-02 3.365e-02 2.366e-02 1.796e-02

Nt 128 222 449 894
‖∇e ‖(GA) 4.651e-02 3.085e-02 2.084e-02 1.481e-02

Nt 128 320 726 1659
‖∇e ‖(Res) 4.651e-02 2.724e-02 1.706e-02 1.132e-02

Nt 128 213 432 833
‖∇e ‖(Maj) 4.651e-02 3.158e-02 2.231e-02 1.622e-02

Nt 128 241 497 929
‖∇e ‖(ML8) 4.651e-02 2.783e-02 1.948e-02 1.389e-02

Nt 128 241 505 949
‖∇e ‖(ML10) 4.651e-02 2.783e-02 1.935e-02 1.384e-02

Nt 128 241 497 921
‖∇e ‖(ML10+10) 4.651e-02 2.783e-02 1.948e-02 1.403e-02

Nt 128 241 504 931
‖∇e ‖(ML20+20) 4.651e-02 2.783e-02 1.934e-02 1.391e-02

5 Conclusions

We present a network type indicator of computational errors by combining a posteri-
ori error estimates of the functional type with the machine learning technology. The
indicator EI ML is compared with the main classes of error indicators used standard
computer simulation methods for PDEs. It was found that after a suitable teaching
procedure, the indicators EI ML are

• robust (i.e., they are universal and applicable for any approximation v);
• correct in the weak sense (i.e., provide correct marking for mesh adaptation

procedures);
• correct in the strong sense (i.e., provide a good presentation on quantitative values

of local errors).

In many cases, EI ML produces better results than other indicators (in particular, it is
better than the residual type indicator inbuilt in MATLAB). We believe that similar
indicators can be obtained for other partial differential equations, provided that the
process of machine learning is correctly organised and based on a sufficiently large
collection of teaching examples. These first examples show high potential of artificial
intelligence and machine learning methods for fast analysis of computational errors.

22 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Appendix

For convenience of the reader we collect here graphical materials illustrating the
results exposed in Sect. 4.

References

[1] A. Agouzal. On the saturation assumption and hierarchical a posteriori error
estimator. Comput. Methods Appl. Math., 2(2):125–131, 2002.

[2] M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element
Analysis. Wiley and Sons, New York, 2000.

[3] I. Babuška and W. C. Rheinboldt. Error estimates for adaptive finite element
computations. SIAM J. Numer. Anal., 15(4):736–754, 1978.

[4] I. Babuška and R. Rodriguez. The problem of the selection of an a posteriori
error indicator based on smoothening techniques. Internat. J. Numer. Methods
Engrg., 36(4):539–567, 1993.

[5] I. Babuška and T. Strouboulis. The Finite Element Method and Its Reliability.
Oxford University Press, New York, 2001.

[6] W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differ-
ential Equations. Birkhäuser, Basel, 2003.

[7] R. E. Bank and A.Weiser. Some a posteriori error estimators for elliptic partial
differential equations. Math. Comp., 44(170):283–301, 1985.

[8] A. Buffa and E. M. Garau. A posteriori error estimators for hierarchical B-
spline discretizations. Math. Models Methods Appl. Sci., 28(8):1453–1480,
2018.

[9] C. Carstensen and S. Bartels. Each averaging technique yields reliable a
posteriori error control in FEMon unstructured grids. I. Low order conforming,
nonconforming, and mixed FEM. Math. Comp., 71(239):945–969, 2002.

[10] C. Carstensen, D. Gallistl, and Y. Huang. Saturation and reliable hierarchical
a posteriori Morley finite element error control. J. Comput. Math., 36(6):
833–844, 2018.

[11] R. Duran and R. Rodriguez. On the asymptotic exactness of Bank-Weiser’s
estimator. Numer. Math., 62(3):297–303, 1992.

[12] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to adaptive
methods for differential equations. Acta Numer., pages 105–158, 1995.

[13] R. E. Ewing, R. D. Lazarov, and J. Wang. Superconvergence of the velocity
along the Gauss lines in mixed finite element methods. SIAM J. Numer. Anal.,
28(4):1015–1029, 1991.

[14] S. Iqbal and G. F. Carey. Neural nets for mesh assessment. Technical report,
Defense Technical Information Center, Fort Belvoir, VA, 2005.

[15] C. Johnson and P. Hansbo. Adaptive finite elements in computational mechan-
ics. Comput. Methods Appl. Mech. Engrg., 101(1–3):143–181, 1992.

Generation of Error Indicators by Machine Learning Methods 23

[16] C. Johnson and A. Szepessy. Adaptive finite element methods for conservation
laws based on a posteriori error estimates. Comm. Pure Appl. Math., 48(3):
199–234, 1995.

[17] O.Mali, P. Neittaanmäki, and S. Repin. Accuracy VerificationMethods: Theory
and Algorithms. Springer, Berlin, 2014.

[18] L. Manevitz, M. Yousef, and D. Givoli. Finite-element mesh generation using
self-organizing neural networks. Comput.-Aided Civil Infrastruct. Engrg., 12
(4):233–250, 2002.

[19] P. Neittaanmäki and S. Repin. Reliable Methods for Computer Simulation:
Error Control and A Posteriori Estimates. Elsevier, Amsterdam, 2004.

[20] L. A. Oganesyan and L. A. Rukhovets. Study of the rate of convergence of
variational difference schemes for second-order elliptic equations in a two-
dimensional field with a smooth boundary. USSR Comput. Math. Math. Phys.,
9(5):158–183, 1969.

[21] R. Rannacher. The dual-weighted-residual method for error control and mesh
adaptation in finite element methods. In J. Whiteman, editor, The Mathematics
of Finite Elements and Applications, X, MAFELAP 1999 (Uxbridge), pages
97–116, Oxford, 2000. Elsevier.

[22] S. Repin. A posteriori error estimation for variational problems with uniformly
convex functionals. Math. Comp., 69(230):481–500, 2000.

[23] S. Repin. A Posteriori Estimates for Partial Differential Equations. Walter de
Gruyter, Berlin, 2008.

[24] M. Křížek and P. Neittaanmäki. On superconvergence techniques. Acta Appl.
Math., 9(3):175–198, 1987.

[25] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving
partial differential equations. J. Comput. Phys., 375:1339–1364, 2018.

[26] W. Tsui, M. Slim Masmoudi, F. Karray, I. Song, and M. Masmoudi. Soft-
computing-based embedded design of an intelligent wall/lane-following vehi-
cle. IEEE/ASME Trans. Mechatron., 13(1):125–135, 2008.

[27] R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-
refinement Techniques. Wiley-Teubner, New York, 1996.

[28] L. B. Wahlbin. Superconvergence in Galerkin Finite Element Methods, volume
1605 of Lecture Notes in Mathematics. Springer, Berlin, 1995.

[29] J. Wang. Superconvergence analysis of finite element solutions by the least-
squares surface fitting on irregular meshes for smooth problems. J. Math.
Study, 33(3):229–243, 2000.

[30] M. Wang, S. W. Cheung, W. T. Leung, E. T. Chung, Y. Efendiev, and
M. Wheeler. Reduced-order deep learning for flow dynamics. The interplay
between deep learning and model reduction. J. Comput. Phys., 401:108939,
20 pp., 2020.

[31] P. Yu, C. Anitescu, S. Tomar, S. P. A. Bordas, and P. Kerfriden. Adaptive isoge-
ometric analysis for plate vibrations: An efficient approach of local refinement
based on hierarchical a posteriori error estimation. Comput. Methods Appl.
Mech. Engrg., 342:251–286, 2018.

24 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

[32] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive
procedure for practical engineering analysis. Internat. J. Numer. Methods
Engrg., 24(2):337–357, 1987.

[33] E. Zio. Reliability engineering: Old problems and new challenges. Reliab.
Engrg. System Safety, 94(2):125–141, 2009.

Generation of Error Indicators by Machine Learning Methods 25

Exact GA

Residual Maj

ML8 ML10

ML10+10 ML20+20

Fig. 8 Example 1: Meshes Th generated by different error indicators; see column 5 of Table 4

26 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Exact GA

Residual Maj

ML8 ML10

ML10+10 ML20+20

Fig. 9 Example 1: Histograms of local errors; column 5 of Table 4

Generation of Error Indicators by Machine Learning Methods 27

Exact GA

Residual Maj

ML8 ML10

ML10+10 ML20+20

Fig. 10 Example 1: Errors marking M(EI); column 4 of Table 4

28 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Exact GA

Residual Maj

ML8 ML10

ML10+10 ML20+20

Fig. 11 Example 1: Histograms of errors generated by different indicators. Non-Galerkin approxi-
mation. Nt = 384.

Generation of Error Indicators by Machine Learning Methods 29

Exact GA

Residual Maj

ML8 ML10

ML10+10 ML20+20

Fig. 12 Example 1: Errors marking M(EI). Non-Galerkin approximation. Nt = 384.

30 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Fig. 13 Example 2: Structure of the meshes Th obtained on the last step of adaptation: exact error
indicator (top), residual indicator (middle), indicator ML10 (bottom)

Generation of Error Indicators by Machine Learning Methods 31

Exact GA

Residual Maj

ML8 ML10

ML10+10 ML20+20

Fig. 14 Example 2: Histograms of errors; the last step of mesh adaptation, Nt = 4587.

32 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Exact GA

Residual Maj

ML8 ML10

ML10+10 ML20+20

Fig. 15 Example 2: Errors marking M(EI), Nt = 2416

Generation of Error Indicators by Machine Learning Methods 33

Exact GA

Residual Maj

ML8 ML10

ML10+10 ML20+20

Fig. 16 Example 3: Meshes Th generated by different error indicators; see the last column of Table
6

34 Alexey Muzalevskiy, Pekka Neittaanmäki, and Sergey Repin

Exact GA

Residual Maj

ML8 ML10

ML10+10 ML20+20

Fig. 17 Example 3: Histograms of local errors, Nt = 646

