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We define Hardy spaces Hp, 0 < p < ∞, for quasiconformal 
mappings on the Korányi unit ball B in the first Heisenberg 
group H1. Our definition is stated in terms of the Heisenberg 
polar coordinates introduced by Korányi and Reimann, and 
Balogh and Tyson. First, we prove the existence of p0(K) > 0
such that every K-quasiconformal map f : B → f(B) ⊂
H1 belongs to Hp for all 0 < p < p0(K). Second, we 
give two equivalent conditions for the Hp membership of a 
quasiconformal map f , one in terms of the radial limits of 
f , and one using a nontangential maximal function of f . As 
an application, we characterize Carleson measures on B via 
integral inequalities for quasiconformal mappings on B and 
their radial limits. Our paper thus extends results by Astala 
and Koskela, Jerison and Weitsman, Nolder, and Zinsmeister, 
from Rn to H1. A crucial difference between the proofs in Rn
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and H1 is caused by the nonisotropic nature of the Korányi 
unit sphere with its two characteristic points.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A holomorphic function f on the unit disk D in C belongs to the Hardy class Hp, for 
some 0 < p < ∞, if

sup
0<s<1

⎛⎝ 2πˆ

0

|f(seiϕ)|p dϕ

⎞⎠1/p

< ∞. (1.1)

According to a result by Hardy and Littlewood [36], condition (1.1) holds for a holomor-
phic function f on D if and only if the nontangential maximal function of f belongs to 
Lp(S1). Here and in the rest of this paper, we consider Lebesgue spaces Lp of p-integrable 
functions for all exponents 0 < p < ∞, not only in the normed case p ≥ 1.

While Hardy spaces play an important role in complex analysis, they have also spurred 
the development of real-variable methods used to study their analogs in Rn, or even on 
homogeneous groups [22,25,26,29,69]. Another line of research, close in spirit to the 
condition (1.1), is the Hp theory for quasiconformal or quasiregular mappings on the 
unit ball in Rn, where “quasiconformal” and “quasiregular” serve as substitutes for 
“conformal” and “holomorphic”, respectively, see [5,44,62–64,71,2].

http://creativecommons.org/licenses/by/4.0/
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The purpose of the present paper is to develop an Hp theory for quasiconformal 
mappings on the unit ball in the first Heisenberg group H1, thus extending some of 
the previously mentioned results from Rn to H1. Quasiconformal maps in H1 have been 
studied extensively, both as prototypes for quasiconformal maps in non-Euclidean metric 
measures spaces [38] and due to their connection with complex hyperbolic geometry 
[66,52].

We consider mappings defined on the unit ball B := B(0, 1) ⊂ H1 with respect to 
the Korányi norm ‖ · ‖. This gauge function plays a distinguished role on H1 as it is 
connected to the fundamental solution of the sub-Laplacian, and it gives rise to a system 
of polar coordinates (s, ω) ∈ (0, ∞) ×[∂B \ {z = 0}], see [51,8]. For the precise definitions, 
we refer the reader to Section 2; for now we simply mention that (1.1) motivates the 
following definition.

Definition 1.2. Let 0 < p < ∞. A quasiconformal map f : B ⊂ H1 → f(B) ⊂ H1 belongs 
to the Hardy class Hp if

‖f‖Hp := sup
0<s<1

⎛⎝ˆ

∂B

‖f(γ(s, ω))‖p dS3(ω)

⎞⎠1/p

< ∞.

Here, S3 denotes the 3-dimensional spherical Hausdorff measure with respect to a 
metric that is bi-Lipschitz equivalent to the Korányi distance d. This is a natural measure 
to work with since, with respect to the Korányi metric, ∂B has Hausdorff dimension 
3, while the entire space H1 is 4-dimensional. However, unlike in Rn, we will employ 
several different canonical measures on ∂B, depending on the context. In addition to the 
Hausdorff measure S3|∂B , these are the measure σ0 appearing in the polar coordinates 
formula, and the measure σ from the formula for the modulus of a ring domain, see 
Section 2. These measures qualitatively differ from each other in a neighborhood of the 
north and south pole of the Korányi sphere, which are the two characteristic points of 
∂B. The nonisotropic nature of ∂B is the main reason for the challenges one faces when 
extending the Hp theory to H1.

To motivate our definition of Hardy spaces, we first prove that every quasiconformal 
map on the Korányi unit ball belongs to some Hp space:

Theorem 1.3. For every K ≥ 1, there exists a constant p0 = p0(K) > 0 such that every 
K-quasiconformal map f : B → f(B) ⊂ H1 belongs to Hp for all 0 < p < p0.

This extends a result by Jerison and Weitsman [44] from Rn to H1. In Rn, more precise 
information on the admissible exponents is due to Nolder [64], Astala and Koskela [5]. 
In the second part of our paper, we give necessary and sufficient conditions for the Hp

membership of a quasiconformal map f : B → f(B) ⊂ H1 for a fixed exponent p.
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Theorem 1.4. Let 0 < p < ∞. The following conditions are equivalent for a quasiconfor-
mal map f : B → f(B) ⊂ H1:

(1) f ∈ Hp,
(2) the nontangential maximal function Mf of f belongs to Lp(S3|∂B),
(3) the Korányi norm of the radial limit f∗ of f belongs to Lp(S3|∂B).

This extends earlier work by Zinsmeister [71] and by Astala and Koskela [5]. The 
implication “(3) ⇒ (2)” in Theorem 1.4 is the most challenging, and analogously as in 
Rn, we also obtain quantitative information, see Proposition 5.4. Our proof combines 
elements from [5] (the use Hardy-Littlewood maximal functions on ∂B) and [71] (the use 
of specific Carleson measures on B). However, an important tool in [71,5], the subgroup 
of Möbius transformations that keep B invariant, is not flexible enough in our setting. 
We use as a substitute a specific class of 1-quasiconformal maps that do not necessarily 
preserve the unit ball, but nonetheless have useful metric properties.

In order to put Proposition 5.4 in a slightly wider perspective, let us mention that 
similar inequalities, for a more restrictive range of integrability exponents, have been 
studied for harmonic functions e.g., on Lipschitz domains in Rn by Dahlberg, see [17, 
(2.1)]. Integral inequalities for nontangential maximal functions appear also in connection 
with the Dirichlet problem for the sub-Laplacian on certain domains in H1 or more 
general H-type groups, with rough boundary values, see [65, Theorem 1.8], [12, Theorem 
1.1].

Our main application of Theorem 1.4 is a characterization of Carleson measures on 
B in terms of radial limits of quasiconformal maps on B.

Theorem 1.5. Assume that μ is a Carleson measure on B. If f : B → f(B) ⊂ H1 is 
K-quasiconformal, then

ˆ

B

‖f(q)‖p dμ(q) ≤ C

ˆ

∂B

‖f∗(ω)‖p dS3(ω), for all 0 < p < ∞ (1.6)

where C depends only on p, K, and the Carleson measure constant of μ. Conversely, 
for every K ≥ 1, there exists p(K) < 3 such that if p > p(K) is fixed and μ is a Borel 
measure for which (1.6) holds for all K-quasiconformal mappings, then μ is a Carleson 
measure.

In fact we prove a more general result for the α-Carleson measures, Theorem 6.13, 
which can be applied to relate Hp and Bergman-type spaces Ap, analogously as in [5, 
Theorem 9.1], see Theorem 6.18. Theorems 1.5 and 6.13 are Heisenberg versions of results 
by Nolder [62,63], and Astala and Koskela [5] which in turn were motivated by Carleson’s 
embedding theorem [13]. We prove the first part of Theorem 6.13 in two steps: (i) a result 
for Carleson measures and nontangential maximal functions in rather general metric 
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spaces (Proposition 6.3) and (ii) the relation between nontangential maximal functions 
and radial limits of quasiconformal maps given by Theorem 1.4, or more specifically, 
Proposition 5.4. The second part of Theorem 6.13 follows by applying (1.6) to specific 
maps f that are constructed using the H1 radial stretch map from [6].

In the process of proving the stated theorems, we establish results of independent 
interest. Extending a theorem by Jones [45], we show that for every quasiconformal map 
f on B omitting the origin, |∇H log ‖f(q)‖| dq defines a Carleson measure on B. This 
is a consequence of Proposition 4.25. Related to the Heisenberg polar coordinates, we 
prove that there exists a parameter κ such that every radial curve segment connecting 
a point ω ∈ ∂B to the origin stays inside the nontangential approach region Γκ(ω) in B
(Proposition 2.15). This is a nontrivial statement in H1, due to the non-geodesic feature 
of the radial curves, and the non-isotropic nature of ∂B. The Heisenberg geometry enters 
the picture in other ways, too. For instance, rotations do not act transitively on ∂B. In 
Section 4.1 we introduce a family of canonical maps on B that serve as the mentioned 
substitutes for the Möbius self-maps of the unit ball. Since these maps do not necessarily 
keep B invariant, we have to formulate several of the auxiliary results for a more general 
class of domains in H1. This can be done by replacing explicit computations for the 
Euclidean unit ball with abstract arguments using concepts from metric geometry such 
as corkscrew and QED domains.

Structure of the paper. In Section 2 we introduce preliminaries about the Heisenberg 
group and quasiconformal maps, and state the definitions of radial limits and nontan-
gential maximal functions. In Section 3 we prove our first main result: quasiconformal 
maps on the Korányi ball belong to Hardy spaces. Section 4 and Appendix A contain 
auxiliary results on Carleson measures and radial curves, respectively. In Section 5 we 
prove our second main result, a characterization of the Hp-membership of a quasicon-
formal map, for a fixed exponent p. We apply this result in Section 6 to characterize 
Carleson measures on B using radial limits of quasiconformal maps on B.

Notation. If f, g ≥ 0, the notation f � g signifies the existence of a positive absolute 
constant C such that f ≤ Cg. The notation f �p g means that C is allowed to depend 
on a parameter “p”. Finally, f ∼ g is an abbreviation of f � g � f .

Acknowledgments. We thank Tuomas Orponen for help with Proposition 6.24.

2. Preliminaries

2.1. The Heisenberg group

The Heisenberg group H1 is the set R3 endowed with the group product

(x, y, t) · (x′, y′, t′) = (x + x′, y + y′, t + t′ − 2xy′ + 2yx′)

for (x, y, t), (x′, y′, t′) ∈ R3. Sometimes we will identify (x, y) ∈ R2 with z = x + iy ∈ C. 
Similarly, if g = (g1, g2, g3) is a H1-valued map, we will occasionally denote gI = g1 +ig2, 
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or gI = (g1, g2). We collect here the properties of H1 that are most relevant for this paper 
and we refer the reader to [10] for more details.

2.1.1. Metric structure
We denote the Korányi norm by

‖(z, t)‖ = (|z|4 + t2)1/4, (z, t) ∈ H1

and the Korányi unit ball by B := {p ∈ H1 : ‖p‖ < 1}. The Korányi distance is the 
left-invariant metric given by

d(p, q) := ‖q−1 · p‖, p, q ∈ H1.

For q ∈ H1 and A ⊂ H1, we write d(q, A) := infa∈A d(q, a). A curve γ : [a, b] → H1 is 
rectifiable with respect to d if and only if it is absolutely continuous as a curve in R3 and 
for almost every s ∈ [a, b] the tangent vector γ̇(s) is contained in the horizontal plane
Hγ(s)H

1 given by

H(x,y,t)H
1 = span

{( 1
0
2y

)
,

( 0
1

−2x

)}
.

We denote the left-invariant vector fields

(x, y, t) �→ (1, 0, 2y) and (x, y, t) �→ (0, 1,−2x)

by X and Y , respectively, and identify them with the differential operators ∂x + 2y ∂t
and ∂y − 2x ∂t, respectively. The horizontal gradient of a function u : Ω → R on an open 
set Ω ⊂ H1 is

∇Hu = (Xu)X + (Y u)Y.

We also equip HqH1 with the norm | · | defined by |aXq + bYq| :=
√
a2 + b2.

2.1.2. Polar coordinates and radial curves
The following polar coordinates formula was first proved by Korányi and Reimann 

[51], and later in greater generality by Balogh and Tyson [8, Example 3.11]. Here and in 
the following, integration on H1 is performed with respect to the Lebesgue measure on 
R3, which is a Haar measure of the group H1. We will use the symbol |A| to denote the 
Lebesgue measure of a set A.

Theorem 2.1. There exists a unique Radon measure σ0 on ∂B \ {z = 0} such that for all 
u ∈ L1(H1),
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ˆ

H1

u(q) dq =
ˆ

∂B\{z=0}

∞̂

0

u(γ(s, ω))s3 ds dσ0(ω), (2.2)

where the radial curves are given by the horizontal curves

γ(s, (z, t)) =
(
sze

−i t
|z|2 log s

, s2t
)
, (z, t) ∈ ∂B \ {z = 0}.

Moreover, using the parametrization

∂B \ {z = 0} =
{
(z, t) = (

√
cosαeiϕ, sinα) : −π

2 < α < π
2 , 0 ≤ ϕ < 2π

}
, (2.3)

the measure σ0 takes the form dσ0 = dα dϕ.

Abusing notation, we will often identify a set E ⊂ ∂B\{z = 0} with the corresponding 
set in the parameter space (−π/2, π/2) × [0, 2π).

2.1.3. Modulus of curve families
The modulus of curve families is a crucial tool in this paper. We refer to [57] for 

a detailed discussion, and only recall the relevant definitions and properties. Given a 
family Γ of curves in H1, a Borel function ρ : H1 → [0, +∞] is said to be admissible for 
Γ, denoted ρ ∈ adm(Γ), if 

´
γ
ρ ds ≥ 1 for all locally rectifiable γ ∈ Γ. The 4-modulus of 

Γ is then defined as

mod4(Γ) := inf
ρ∈adm(Γ)

ˆ

H1

ρ4(q) dq.

Given sets U ⊂ H1 and E, F ⊂ U , we denote by Γ(E, F, U) the family of all curves 
contained in U that connect E and F . Korányi and Reimann proved in [51] that the 
family

Γa,b := Γ(∂B(0, a), ∂B(0, b),H1)

of all curves joining the Korányi spheres ∂B(0, a) and ∂B(0, b) for 0 < a < b < ∞ has 
modulus

mod4(Γa,b) = π2
(

log b

a

)−3

. (2.4)

A slight modification of the argument in [51] yields the following useful formula concern-
ing the radial curves introduced in Theorem 2.1.

Proposition 2.5. Fix 0 < r < 1 and a Borel set E ⊂ ∂B \{z = 0}. If Γ denotes the family 
of radial curves joining ∂B(0, r) to E, then
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mod4(Γ) = σ(E)
(

ln 1
r

)−3

, (2.6)

where dσ = cos2 αdα dϕ in the coordinates given by (2.3).

Proof. The proof is almost verbatim the same as for (2.4) with a = r, b = 1, observing 
that σ(∂B \{z = 0}) = π2. The inequality “≥” in (2.6) is proven like [51, (4.5)], with the 
only difference that instead of integrating over (α, ϕ) ∈ (−π/2, π, 2) × [0, 2π], the domain 
of integration now corresponds to the set E. To prove the converse inequality, we follow 
the proof of [51, (4.6)], but observe that it suffices to consider radial curves, instead of 
arbitrary rectifiable ones. Moreover, the domain of integration is now restricted to the 
part of the annulus {q ∈ H1 : r ≤ ‖q‖ ≤ 1} foliated by segments of the radial curves 
passing through the set E. �
2.1.4. Measures on the Korányi unit sphere

The two points q± := (0, 0, ±1) ∈ ∂B are characteristic points of the Korányi sphere: 
the tangent planes to the surface ∂B agree with the horizontal planes H±qH1 at the 
respective points. The distinguished role of these points is reflected in the behavior of 
the measures that we consider on the Korányi unit sphere outside q±: the measure σ0
from the polar coordinates formula (2.2), the measure σ from the modulus formula (2.6), 
and the Hausdorff measure S3|∂B\{z=0}. The latter is a restriction of the 3-dimensional 
spherical Hausdorff measure computed with respect to the metric d∞ induced by the 
gauge function ‖(z, t)‖∞ = c max{|z|, 

√
|t|} for a suitable constant c > 0. Since d∞ is 

bi-Lipschitz equivalent to the Korányi distance d, we might as well use the standard 3-
dimensional Hausdorff measure with respect to d for our purposes, but S3|∂B is related 
to the horizontal perimeter measure of B and we can thus use some results from [27].

Lemma 2.7. If we parametrize ∂B \ {z = 0} as in (2.3), then

dS3|∂B\{z=0} =
√

cosαdαdϕ.

Proof. Since the boundary ∂B of the Korányi unit ball is of class C1, we know by [27, 
Corollary 7.7] that, if the constant c in the definition of ‖ · ‖∞ is chosen suitably, we have

dS3|∂B = |CnB | dH2|∂B , (2.8)

where nB is the Euclidean outward unit normal to the Korányi unit sphere, H2 denotes 
the 2-dimensional Euclidean Hausdorff measure and

C(x, y, t) :=
(

1 0 2y
0 1 −2x

)
.

To prove the lemma, it suffices to express the right-hand side of (2.8) using the co-
ordinates (α, ϕ) from (2.3). First, since nB = ∇v/|∇v| with v(x, y, t) := ‖(x, y, t)‖4 =
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(x2+y2)2+t2, we compute for (x, y, t) = (
√

cosα cosϕ, 
√

cosα sinϕ, sinα) ∈ ∂B\{z = 0}
that

∇v(x, y, t) =

⎛⎝4(x2 + y2)x
4(x2 + y2)y

2t

⎞⎠ =

⎛⎝4 cos3/2 α cosϕ
4 cos3/2 α sinϕ

2 sinα

⎞⎠
and

C(x, y, t)∇v(x, y, t) =
(

4(x2 + y2)x + 4yt
4(x2 + y2)y − 4xt

)
= 4

(
cos3/2 α cosϕ + cos1/2 α sinα sinϕ
cos3/2 α sinϕ− cos1/2 α sinα cosϕ

)
.

Hence

|CnB | = |C∇v|
|∇v| = |∇Hv|

|∇v| =
√

cosα√
cos3 α + sin2 α

4

. (2.9)

On the other hand, using the parametrization Φ(α, ϕ) = (
√

cosα cosϕ, 
√

cosα sinϕ,

sinα), we find that the surface measure is given by

dH2|∂B\{z=0} = |Φα × Φϕ| dαdϕ =
√

cos3 α + sin2 α

4 dαdϕ. (2.10)

Inserting (2.9) and (2.10) in formula (2.8) then yields the claim. �
In addition to its simple expression in the coordinates (α, ϕ), the measure S3|∂B has 

another useful feature:

Lemma 2.11. The measure S3|∂B is 3-regular, that is, there exists a constant C ≥ 1 such 
that

C−1r3 ≤ S3(B(p, r) ∩ ∂B) ≤ Cr3, for all p ∈ ∂B, 0 < r < diam(∂B).

The lemma follows e.g., from [20, Theorem 6.2]. Alternatively, one can also obtain it 
by combining [19, Theorem 5.1], [11, Propositions 9 and 10] and [24, Proposition 4.1].

The formulae for σ0, σ, and S3|∂B\{z=0} given in Theorem 2.1, Proposition 2.5, and 
Lemma 2.7, respectively, show that

σ(E) ≤ S3(E) ≤ σ0(E), for all Borel sets E ⊆ ∂B \ {z = 0}. (2.12)

The difference between the measures becomes more pronounced for sets E concentrated 
near the characteristic points of ∂B as such sets are harder to reach by short radial 
curves from inside the ball. Indeed, the curves γ(·, (z, t)) defined in Theorem 2.1 begin 
to spiral more as z tends to 0, approaching in the limit the t-axis, a curve that fails to 
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be locally rectifiable with respect to the Korányi metric. However, since cosα > 0 for 
α ∈ (−π/2, π/2), the three measures are still mutually absolutely continuous:

σ(E) = 0 ⇔ σ0(E) = 0 ⇔ S3(E) = 0, for all E ⊂ ∂B \ {z = 0} Borel.
(2.13)

2.1.5. Nontangential regions and nontangential maximal functions
To study how a mapping on the Korányi unit ball B behaves close to the boundary ∂B, 

we use two different tools: nontangential maximal functions and radial limits. While the 
former are purely metric concepts, our definition of radial limit is tailored specifically to 
the Korányi unit ball, as it makes use of the radial curves in Theorem 2.1. The geometry 
of B is also reflected in the choice of the parameter κ for which we apply the definition of 
nontangential region and associated maximal function, see Proposition 2.15. However, the 
nontangential maximal functions will not appear in our final result, Theorem 6.13, where 
they are only used as tools along the way. The first step in the proof of Theorem 6.13, 
namely Proposition 6.3, works in abstract proper metric spaces, which is why we state 
the following definitions in this generality.

Definition 2.14. Let (X, d) be a metric space, and Ω a fixed nonempty domain in X. 
For a point ω ∈ ∂Ω and a parameter κ > 0, we define the nontangential region in Ω with 
parameter κ centered at ω as follows:

ΓΩ,κ(ω) := {x ∈ Ω : d(x, ω) < (1 + κ)d(x, ∂Ω)}.

If (X, d) = (H1, d), Ω = B, and κ is as in Proposition 2.15, we often abbreviate

Γ(ω) := Γκ(ω) = ΓB,κ(ω).

If (X, d) is the Euclidean plane, and Ω the open unit disk, then Γκ,Ω(ω) is a Stolz 
region (or nontangential approach region) in the usual sense. In general, we do not 
require the domain Ω in Definition 2.14 to have the interior corkscrew property or satisfy 
other geometric conditions, but in our main application, the nontangential regions carry 
relevant information thanks to the following result.

Proposition 2.15. Let B be the Korányi unit ball in H1. There exists κ > 0 such that for 
every ω ∈ ∂B \ {z = 0},

γ(s, ω) ∈ ΓB,κ(ω), for all s ∈ (0, 1).

We postpone the proof to the Appendix.

Remark 2.16. By [11, Corollary 1] and by the discussion in the beginning of Section 6 
in [31], we have that B is a John domain. This already shows that there is a constant 
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κ, and for every ω ∈ ∂B, a rectifiable curve in B emanating from ω and contained in 
ΓB,κ(ω) until it hits the John center of B. The purpose of Proposition 2.15 is to provide 
specific information about the radial curves γ(·, ω).

Definition 2.17. Let (X, d) be a metric space, and Ω a fixed domain with nonempty 
boundary in X. For a point x ∈ Ω and a parameter κ > 0, we define the shadow
associated to x and κ > 0 as

SΩ,κ(x) := ∂Ω ∩B(x, (1 + κ)d(x, ∂Ω)).

If (X, d) = (H1, d), Ω = B, and κ is as in Proposition 2.15, we often abbreviate

S(q) := Sκ(q) := SB,κ(q),

and we also call the shadow a spherical cap in this case.

The definition is tailored so that nontangential regions and shadows are related in the 
following way:

x ∈ ΓΩ,κ(ω) ⇔ ω ∈ SΩ,κ(x).

Definition 2.18. Let (X, d) be a metric space, and Ω a fixed nonempty domain in X with 
nonempty boundary ∂Ω. If κ > 0 is such that ΓΩ,κ(ω) �= ∅ for all ω ∈ ∂Ω, we define the 
κ-nontangential maximal function

NΩ,κh(ω) := sup
x∈ΓΩ,κ(ω)

h(x), ω ∈ ∂Ω

of a function h : Ω → [0, +∞).
If (X, d) = (H1, d), Ω = B, and κ is as in Proposition 2.15, we define the nontangential 

maximal function of f : B → H1 as

M(f)(ω) := Mκ(f)(ω) := NB,κ‖f‖(ω) = sup
q∈ΓB,κ(ω)

‖f(q)‖.

Remark 2.19. For (X, d), Ω ⊂ X, κ > 0 and h : Ω → [0, +∞) as in Definition 2.18, the 
nontangential maximal function NΩ,κh : ∂Ω → [0, +∞] is lower semicontinuous. Indeed, 
if λ ∈ R and ω ∈ ∂Ω are such that NΩ,κh(ω) > λ, then there exists x ∈ ΓΩ,κ(ω) such 
that h(x) > λ. Since

x ∈ ΓΩ,κ(ω′) for all ω′ ∈ ∂Ω with d(ω, ω′) < [(1 + κ)d(x, ∂Ω) − d(x, ω)] ,

we see that NΩ,κh(ω′) > λ for all ω′ in a relatively open neighborhood of ω in ∂Ω.
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2.2. Quasiconformal mappings

A homeomorphism f : Ω → Ω′ between domains in H1 is quasiconformal if

Hf (q) := lim sup
r→0

maxd(q,q′)=r d(f(q), f(q′))
mind(q,q′)=r d(f(q), f(q′))

is uniformly bounded on Ω. We say that f is K-quasiconformal for a constant K ≥ 1, if

‖Hf‖∞ := esssupq∈ΩHf (q) ≤ K,

where the essential supremum is computed with respect to the Lebesgue measure on R3.
We refer to the literature for equivalent characterizations of quasiconformal mappings 

and simply recall that a K-quasiconformal map f : Ω → Ω′ between domains in H1 has 
the following properties:

(1) The map f is absolutely continuous along mod4 a.e. curve in Ω, and there exists a 
constant K ′, depending only on K, such that for each curve family Γ in Ω,

1
K ′mod4(Γ) ≤ mod4(f(Γ)) ≤ K ′mod4(Γ). (2.20)

(2) The components f1, f2, f3 all belong the horizontal Sobolev space HW 1,4
loc (Ω) of 

L4
loc(Ω)-functions with weak X and Y derivatives in L4

loc(Ω), they satisfy the contact 
conditions Xf(q), Y f(q) ∈ HqH1 for almost every q ∈ Ω, and there exists a constant 
K ′′, depending only on K, such that

|DHf(q)|4 ≤ K ′′Jf (q), for almost every q ∈ Ω, (2.21)

where the operator norm is |DHf(q)| := supξ∈HqH1,|ξ|=1 |DHf(q)ξ|, and the formal 
horizontal derivative is given with respect to the frame {X, Y } by

DHf(q) :=
(
Xf1(q) Y f1(q)
Xf2(q) Y f2(q)

)
,

and Jf (q) = (detDHf(q))2.

These properties follow from [66,52,38], see also [18], and [40, Section 9] for a discussion 
in abstract metric measure spaces of locally Q-bounded geometry. If the quasiconformal 
map f is also a diffeomorphism, then Jf agrees with its standard Jacobian, see [52, 
Section 2.3].
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2.2.1. Radial limits

Definition 2.22. The radial limit of a map f : B ⊂ H1 → H1 is defined as

f∗(ω) := lim
s→1

f(γ(s, ω))

for all ω ∈ ∂B, where the limit exists.

Lemma 2.23. If f : B → f(B) ⊆ H1 is quasiconformal, then the radial limit f∗ exists 
almost everywhere on ∂B \ {z = 0} with respect to any of the measures σ0, σ, and 
S3|∂B\{z=0}. Moreover, f∗ is Borel measurable.

By (2.6), the proof is a straightforward adaptation of [5, p. 21]. Polar coordinates 
were also used in connection with radial limits at ∞ for homogeneous Sobolev functions 
[54].

Proof. If ω ∈ ∂B \ {z = 0} is such that f ◦ γ(·, ω) : [1/2, 1) → H1 is rectifiable, then it 
extends to a rectifiable curve on the closed interval [1/2, 1] (see e.g. [3, Theorem 2.1]), 
and consequently, f∗(ω) is defined. In other words, the set A0 of points ω ∈ ∂B \{z = 0}
for which the radial limit f∗(ω) does not exist is a subset of the set E of points ω in 
∂B \ {z = 0} for which f ◦ γ(·, ω) : [1/2, 1) → H1 fails to be rectifiable.

Now let A ⊂ E be an arbitrary Borel set and denote by ΓA the family of radial curves 
connecting ∂B(0, 1/2) to A. Then, since the modulus of non-rectifiable curves is zero, 
see e.g. [41, Proposition 5.3.3.], we have mod4(f(ΓA)) = 0 and hence mod4(ΓA) = 0 by 
the quasiconformality of f and (2.20). Then formula (2.6) implies that σ(A) = 0. This 
holds for arbitrary Borel sets A ⊂ E, in particular for the set A0 defined above, which 
is indeed a Borel set by standard arguments. Thus we conclude that f∗ is defined on 
the Borel set ∂B \ [{z = 0} ∪A0] with σ(A0) = 0, and hence also σ0(A0) = S3(A0) = 0
by (2.13). Moreover, since each component of f∗ is the limit of a convergent sequence of 
Borel functions, f∗ itself is Borel measurable. �
3. Quasiconformal maps belong to Hardy spaces

In this section we prove Theorem 1.3, which states that every K-quasiconformal map 
on the Korányi unit ball is of class Hp, for all p less than a threshold that depends only 
on the distortion K. We show this by establishing the following counterpart of a result 
by Jerison and Weitsman [44, Theorem 1]. Obviously Theorem 3.1 implies Theorem 1.3.

Theorem 3.1. For every K ≥ 1, there exists a constant p0 = p0(K) > 0 such that every 
K-quasiconformal map f : B → f(B) ⊂ H1 satisfies

lim sup
r→1

ˆ
‖f(γ(r, ω))‖p dS3(ω) < ∞ for all p < p0,
∂B
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where γ(·, ω), ω ∈ ∂B \ {z = 0}, are the radial curves given by Theorem 2.1.

3.1. Consequences of modulus estimates

Readers interested in the main argument used to prove Theorem 3.1 may want to 
proceed directly to Section 3.2. The purpose of the present section is to establish growth 
estimates for quasiconformal maps on B that will be used as a tool in the proof of 
Theorem 3.1. Analogous estimates for balls in Rn have been proven using Euclidean 
techniques, such as spherical symmetrization and Grötzsch rings [53,5,59]. Our proof re-
lies on standard estimates for abstract Ahlfors regular Loewner spaces. This allows us to 
formulate the statement not only for the unit ball, but also for bounded 1-quasiconformal 
images thereof that contain the origin. This generalization is possible since the Korányi 
ball and its conformal images are quasiextremal distance domains (QED) in the termi-
nology of [32], [57, (13.33)], with a universal constant. Our use for this property, and a 
challenge in proving it, is that the Korányi inversion with center at 0 does not keep the 
sphere ∂B pointwise fixed. Hence simple reflection arguments as in Rn are not available. 
On the other hand, it is then natural to discuss the proof for more general domains than 
B, following the reasoning used to prove [57, Lemma 3.6] in Rn.

Adapting the Euclidean terminology [46], we say that a domain D ⊂ H1 is an exten-
sion domain for the Dirichlet energy space (EDE) if there exists a bounded extension 
operator

ext : L1
4(D) → L1

4(H1) with ‖ext(u)‖L1
4(H1) ≤ C‖u‖L1

4(D), ext(u)|D = u, (3.2)

for the homogeneous horizontal Sobolev space L1
4, i.e., for the semi-normed space of 

locally integrable functions with weak X and Y derivatives in L4.

Lemma 3.3. If D ⊂ H1 is an extension domain for the Dirichlet energy space, then it is a 
quasiextremal distance domain, quantitatively, that is, for all disjoint nonempty continua 
E and F in D, it holds

mod4(Γ(E,F,H1)) ≤ Cmod4(Γ(E,F,D)), (3.4)

where C is the constant in (3.2).
In particular, all domains that arise as images of the Korányi ball B under 1-

quasiconformal maps T : B → T (B) ⊂ H1 are QED with a constant C that does not 
depend on T .

The first part is based on results about 4-capacities. The QED property of B follows 
from work by Lu [55], see also Greshnov [33], which extends a result by Jones [46, 
Theorem 2] to Carnot groups. The QED property of T (B) is then a consequence of a 
Liouville-type theorem in H1 and conformal invariance of the 4-modulus.
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Proof. Let D be an EDE as in the first part of the Lemma. To establish (3.4) for D, 
we follow the same reasoning as used to prove [57, Lemma 3.6] in Rn. The existence of 
the extension operator (3.2) has immediate consequences for capacities. For a domain 
U ⊂ H1, and nonempty disjoint compact sets C0, C1 ⊂ U , we define the 4-capacity

cap4(C0, C1;U) := inf
u∈W

ˆ

U

|∇Hu(q)|4 dq, (3.5)

where W := W (C0, C1; U) = {u ∈ C(U) ∩ L1
4(U) : u|C0 ≤ 0 and u|C1 ≥ 1}. We apply 

this definition first for U = D, C0 = E and C1 = F as in the statement of the lemma. 
Thus, for every ε > 0, there exists u ∈ W (E, F ; D) such that

ˆ

D

|∇Hu(q)| dq ≤ cap4(E,F ;D) + ε

2 .

Our goal is to control the left-hand side of the inequality from below by cap4(E, F ; H1). 
To achieve this, we will apply the extension operator (3.2) to a modification v of u, so 
as to obtain a competitor in W (E, F ; H1). Namely, we choose r > 0 small enough such 
that v := 1+r

1−r (u − r) satisfies

ˆ

D

|∇Hv(q)|4 dq ≤ cap4(E,F ;D) + ε, v|E ≤ −r, v|F ≥ 1 + r. (3.6)

Clearly, v ∈ L1
4(D) with ∇Hv = 1+r

1−r ∇Hu. By (3.2), there exists ext(v) ∈ L1
4(H1) with

ext(v)|D = v and
ˆ

H1

|∇Hext(v)(q)|4 dq ≤ C

ˆ

D

|∇Hv(q)|4 dq, (3.7)

for the constant C given by (3.2). Even if v is continuous on D, a priori, ext(v) is only 
an element in L1

4(H1) and does not necessarily have a continuous representative on H1. 
However, there exists a sequence (vn)n∈N ⊂ C∞(R3) such that

vn → ext(v) locally in L1(R3) and ∇Hvn → ∇H ext(v) in L4(R3),

see [52, Section 3.1], and also [26, Chapter 1.B]. Recalling that ext(v)|E ≤ −r and 
ext(v)|F ≥ 1 + r almost everywhere, this allows us to choose a (smooth) function ϕ ∈
W (E, F ; H1) with

ˆ

H1

|∇Hϕ(q)|4 dq ≤
ˆ

H1

|∇Hext(v)(q)|4 dq + ε.

Combining this with (3.6) and (3.7), and then letting ε tend to 0, we deduce that
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cap4(E,F ;H1) ≤ C cap4(E,F ;D).

To conclude the proof of the QED property of D, it suffices to replace the 4-capacities in 
the above estimate by the 4-modulus of the curve families Γ(E, F ; H1) and Γ(E, F ; D), 
respectively. In Rn, the corresponding modulus-capacity equality is due to Hesse [42]. 
There are several related statements for H1, but the assumptions for instance in [38] and 
Eichman’s result [23] cited in [52, Section 3.2] are a bit different from ours. Instead, we 
apply [47, Theorem 1.1], which holds for p-modulus and all disjoint compact non-empty 
sets C0 and C1 in arbitrary domains U of proper ϕ-convex metric measure spaces with a 
doubling measure supporting a (1, p)-Poincaré inequality with 1 < p < ∞. This class of 
metric measure spaces includes (H1, d) with the Lebesgue measure for p = 4. The caveat 
is that the capacities appearing in [47] are defined using upper gradients, specifically,

Cont − Cap4(C0, C1;U) = inf
g

ˆ

U

g(q)4 dq, (3.8)

where the infimum is taken over all non-negative Borel functions g that are upper gradi-
ents – or weak upper gradients – of functions u ∈ C(U) with the property u|C0 ≤ 0 and 
u|C0 ≥ 1. By the proof of [48, Proposition C.12], the definitions in (3.5) and (3.8) yield 
the same result. Thus we have shown that every EDE D ⊂ H1 is indeed a QED domain.

The second part of the lemma can be deduced by applying the previous statement to 
the Korányi unit ball D = B. The EDE property of B follows from [55, Theorem C] since 
B is uniform and hence an (ε, ∞)-domain in the sense of [55, Definition 1.1]; see also 
[33, Theorem 5], [60, Theorem 3.2.], and the comment below [61, Theorem 1.1]. Then 
every domain T (B) as in the lemma is also a QED domain, with the same constant, by 
conformal invariance of mod4. Indeed, by a version of Liouville’s theorem [9, Corollary 
1.4], T is the restriction of a conformal self-map of the one-point compactification Ĥ1. 
The claim (3.4) for D = T (B) follows from the QED property of B by applying T to 
the curve families Γ(T−1(E), T−1(F ), B) and Γ(T−1(E), T−1(F ), H1), recalling that the 
family of all nonconstant curves passing through one point in H1 has vanishing 4-modulus 
by [37, Corollary 7.20], so we may ignore the points T (∞) and T−1(∞). �

Lemma 3.3 allows us to prove the following proposition with constants C and α
that do not depend on the particular domain Ω in the statement. The class of sets Ω
covered by Proposition 3.9 is strictly larger than the class of Korányi balls, since the 
1-quasiconformal maps on B include suitable compositions with the Korányi inversion, 
see Section 4.1.

Proposition 3.9. For every K ≥ 1 and 0 < m < M < ∞, there exist constants C, α > 1
such that whenever Ω ⊂ H1 is a 1-quasiconformal image of B with B(0, m) ⊂ Ω ⊂
B(0, M) and g : Ω → g(Ω) ⊂ H1 \ {0} is a K-quasiconformal map, then



T. Adamowicz, K. Fässler / Journal of Functional Analysis 284 (2023) 109832 17
C−1 d(q, ∂Ω)α ≤ ‖g(q)‖
‖g(0)‖ ≤ Cd(q, ∂Ω)−α, for all q ∈ Ω. (3.10)

Proof of Proposition 3.9. If Ω is as assumed in the proposition, then

d(q, ∂Ω) ≤ M, for all q ∈ Ω. (3.11)

Indeed, since q ∈ Ω belongs to B(0, M), there exists a horizontal line segment � of d-
length at most M connecting q to H1 \ B(0, M) ⊆ H1 \ Ω. As � is a connected set, it 
must intersect ∂Ω in at least one point, which proves that d(q, ∂Ω) ≤ M as claimed.

Fix now an arbitrary point q ∈ Ω. We first show the upper bound in (3.10). There are 
two cases to consider. If ‖g(0)‖ > 1

2‖g(q)‖, then we find by (3.11) that

‖g(q)‖
‖g(0)‖ < 2 ≤ 2Mαd(q, ∂Ω)−α ≤ Cd(q, ∂Ω)−α

for every α > 0 and C ≥ 2Mα, establishing the upper bound in (3.10) in that case.

If instead ‖g(0)‖ ≤ 1
2‖g(q)‖, we will use the modulus of suitable curve families Γn to 

prove the corresponding estimate. To define Γn, let first E′ be the line segment connecting 
g(0) to 0, and let F ′ be the half ray on the line through 0 and g(q) that emanates from 
g(q) and does not contain 0. By convexity of Korányi balls,

E′ ⊂ B(0, ‖g(0)‖) and F ′ ⊂ H1 \B(0, ‖g(q)‖). (3.12)

Moreover, E′ and F ′ are disjoint since ‖g(0)‖ < ‖g(q)‖ by assumption. Essentially, we 
would like to work with the family of curves connecting E′ ∩ g(Ω) and F ′ ∩ g(Ω) inside 
g(Ω), but this would lead to technical problems since the two sets are neither compact 
nor necessarily connected. To address this, we consider suitable sequences of continua 
E′

n ⊂ E′, F ′
n ⊂ F ′. By assumption, Ω is the image of B under a 1-quasiconformal map 

T , and we define Ωn := T (B(0, 1 − 1
n )). Then g(0) ∈ g(Ωn), and for n large enough, 

also g(q) ∈ g(Ωn). On the other hand 0 /∈ g(Ωn) by our assumption on g, and also the 
unbounded ray F ′ must contain points outside the compact set g(Ωn). It follows that 
E′ and F ′ must intersect ∂g(Ωn). These considerations imply that, for n large enough 
depending on q, the sets

E′
n = connected component of E′ ∩ g(Ωn) containing g(0),

F ′
n = connected component of F ′ ∩ g(Ωn) containing g(q)

are disjoint continua as desired. If

Γ′
n := Γ(E′

n, F
′
n, g(Ω))

denotes the family of curves in g(Ω) that connect E′
n and F ′

n, then every element in Γ′
n

must have a subcurve connecting ∂B(0, ‖g(0)‖) and ∂B(0, ‖g(q)‖) by (3.12). This yields
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mod4(Γ′
n) ≤ mod4(Γ(∂B(0, ‖g(0)‖), ∂B(0, ‖g(q)‖),H1)),

and formula (2.4) for the modulus of Korányi annuli implies

mod4(Γ′
n) ≤ π2

(
ln ‖g(q)‖

‖g(0)‖

)−3

. (3.13)

On the other hand, if Γn denotes the family g−1(Γ′
n), we know by (2.20) that

mod4(Γn) ≤ K ′mod4(Γ′
n), (3.14)

with K ′ depending only on K. To find a lower bound for mod4(Γn), we observe that 
Γn consists of all curves in Ω that connect the two continua En := g−1(E′

n) and Fn :=
g−1(F ′

n). By (3.14) and the QED property stated in Lemma 3.3, there exists a universal 
constant 0 < c ≤ 1, independent of the choice of Ω in Proposition 3.9, and independent 
of En, Fn, such that

mod4(Γ′
n) ≥ c

K ′mod4(Γ(En, Fn,H
1)). (3.15)

The right-hand side can be bounded from below using the fact that (H, d) equipped with 
the Haar measure is a 4-regular 4-Loewner space in the sense of [39], see for instance 
[37,34] and references therein. This means that

mod4(Γ(En, Fn,H
1)) ≥ ψ(Δ(En, Fn)), (3.16)

where ψ denotes a decreasing homeomorphism as in [39, (3.9)] and

Δ(En, Fn) := dist(En, Fn)
min{diamEn,diamFn}

is the relative distance of En and Fn. Hence, by (3.13), (3.15), and (3.16), we obtain for 
large enough n,

π2
(

ln ‖g(q)‖
‖g(0)‖

)−3

≥ c

K ′ψ(Δ(En, Fn)). (3.17)

Since 0 ∈ En ⊂ Ωn and q ∈ Fn ⊂ Ωn, and the endpoints of En and Fn lie in ∂Ωn, we 
find

diamEn ≥ d(0, ∂Ωn), diamFn ≥ d(q, ∂Ωn) and dist(En, Fn) ≤ ‖q‖ ≤ M. (3.18)

Recall that Ω is the image of B = B(0, 1) under a 1-quasiconformal map T , and Ωn =
T (B(0, 1 − 1 )), where T is the restriction of a conformal self-map of Ĥ1, which we 
n
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continue to denote by T . Since the image T (B) ⊂ B(0, M) is bounded, T is uniformly 
continuous on B. This can be used to prove for every q ∈ Ω that

2d(q, ∂Ωn) ≥ d(q, ∂Ω) (3.19)

for all n large enough, depending on q and T . Since B(0, m) ⊂ Ω by assumption, we 
have d(0, ∂Ω) ≥ m, and hence we may assume that

d(0, ∂Ωn)
(3.19)
≥ m

2
(3.11)
≥ md(q, ∂Ω)

2M

for n large enough. If we apply (3.19) also to the lower bound for diamFn in (3.18), then 
the monotone decrease of the Loewner function yields

ψ(Δ(En, Fn)) ≥ ψ

(
2M2

md(q, ∂Ω)

)
. (3.20)

By [39, Theorem 3.6], we may assume that ψ(t) ∼ (ln t)−3 for large enough t, i.e.,

ψ(Δ(En, Fn)) �
(

ln
(

2M2

md(q, ∂Ω))

))−3

(3.21)

if d(q, ∂Ω) is small enough, where the notation “�” means that the inequality holds up 
to a positive multiplicative constant that does not depend on q, En or Fn. Hence, if 
d(q, ∂Ω) is, say, such that

md(q, ∂Ω)
2M2 ≤ 1

t0
, (3.22)

for some t0 that depends only on the geometry of H1, then (3.21) holds for all large 
enough n. On the other hand, if (3.22) fails, then we will simply use the estimate

ψ(Δ(En, Fn)) ≥ ψ(t0) > 0. (3.23)

This suffices to treat that case since we always have that d(q, ∂Ω) ≤ M by (3.11), so if 
d(q, ∂Ω) is also bounded from below by a positive constant in terms of m and M (and 
the absolute constant t0), then actually d(q, ∂Ω) is comparable to a constant depending 
on m and M . Hence in that case

π2
(

ln ‖g(q)‖
‖g(0)‖

)−3

≥ c

K ′ψ(t0)

implies that q satisfies the second inequality in (3.10) for any α with large enough 
constant C, depending only on K, m, and M . Hence it remains to discuss the case of q
as in (3.22). By (3.17) and (3.21) applied to large enough n, we obtain
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π2
(

ln ‖g(q)‖
‖g(0)‖

)−3

�
(

ln
(

2M2

md(q, ∂Ω)

))−3

. (3.24)

It follows that

‖g(q)‖
‖g(0)‖ �

(
2M2

md(q, ∂Ω)

)C(K)3

,

which concludes the proof of the upper bound in (3.10).

In order to show the lower estimate in the assertion (3.10), we follow a similar approach 
as above, and hence we only sketch the proof. First assume that ‖g(q)‖ > 1

2‖g(0)‖. By 
(3.11) we immediately obtain that

‖g(0)‖ < 2‖g(q)‖ ≤ 2M‖g(q)‖d(q, ∂Ω)−1.

So in that case the lower estimate in (3.10) holds for every α > 0 and with sufficiently 
large C, depending on M . If ‖g(q)‖ ≤ 1

2‖g(0)‖, then we define sets E′ and F ′ as above 
with g(q) instead of g(0) in the definition of E′ and with the opposite change in the 
definition of F ′. Then the counterpart for (3.13) reads:

mod4(Γ′) ≤ mod4(Γ(∂B(0, ‖g(q)‖), ∂B(0, ‖g(0)‖),H1)) = π2
(

ln ‖g(0)‖
‖g(q)‖

)−3

,

and the rest of the proof follows as before. �
Remark 3.25. By applying Proposition 3.9 to the case Ω = B (with m = M = 1), we get 
the growth estimates (3.10) for quasiconformal maps on B omitting the origin, hence 
generalizing Lemma 2.2 in [5].

Having proven Proposition 3.9 for quasiconformal mappings that omit the origin, we 
next deduce information for maps with f(0) = 0.

Proposition 3.26. For every K ≥ 1, there is α > 0 such that whenever f : B ⊂ H1 →
f(B) ⊂ H1 is a K-quasiconformal map with f(0) = 0, then

‖f(q)‖ ≤ C1(f) + C2(f) d(q, ∂B)−α, for all q ∈ B,

for positive and finite constants C1(f) and C2(f), which do not depend on q.

The proof below will in fact yield

d(f(0), f(q)) ≤ 1 + Cd(q, ∂B)−α, for all q ∈ B.

d(f(0), ∂f(B))
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The crucial feature is that this holds for all points q ∈ B, arbitrarily close to the 
boundary, with a constant C depending only on K thus controlling the rate at which 
‖f(q)‖ can grow as q approaches ∂B.

Proof. If f satisfies the assumptions of the proposition, then f(B) is a strict subset of H1. 
Indeed, suppose towards a contradiction that f(B) = H1. This yields a quasiconformal 
map f−1 : H1 → B, which is in fact quasisymmetric, see for instance [67, Lemma 5.2]. 
Since the quasisymmetric image of a complete space is complete, this would imply that 
the open ball B is complete, a contradiction. Hence we can pick a point τ ∈ H1 \ {0}
that is omitted by f . The constants C1(f) and C2(f) will depend on the choice of τ . Now 
the map g : B → g(B), defined by g(q) := τ−1 · f(q), is quasiconformal with the same 
constant K as f , and it fulfills the assumptions of Proposition 3.9 for Ω = B. Then,

‖f(q)‖ = d(τ−1, g(q)) ≤ ‖τ−1‖ + ‖g(q)‖ ≤ ‖τ−1‖ + C ‖g(0)‖ d(q, ∂B)−α

= ‖τ‖ + C ‖τ‖ d(q, ∂B)−α

for all q ∈ B, and constants C and α depending only on the distortion K of f . �
3.2. Proof that quasiconformal maps belong to Hardy classes

To prove Theorem 3.1, we have to consider the radial curves γ(·, ω) from Theorem 2.1
more closely. We will use in particular that they are horizontal curves, that is

γ̇(s, ω) ∈ Hγ(s,ω)H
1 = span{Xγ(s,ω), Yγ(s,ω)},

and that ∣∣∣∣∂γ∂s (s, (z, t))
∣∣∣∣ = 1

|z| , (3.27)

where | · | on the left-hand side of (3.27) denotes the norm on Hγ(s,(z,t))H
1 that makes 

Xγ(s,(z,t)), Yγ(s,(z,t)) orthonormal, see the formula below (4.4) in [51], or [8, Lemma 3.3 
and Example 3.6]. This allows us to prove the following:

Lemma 3.28. If f : B → f(B) ⊂ H1 is quasiconformal, then for almost every ω = (z, t) ∈
∂B \ {z = 0} (with respect to any of the measures σ0, σ, or S3) and for almost every 
s ∈ (0, 1), we have∣∣∣∣ ∂∂s‖f(γ(s, ω))‖

∣∣∣∣ ≤ |fI(γ(s, ω))|
‖f(γ(s, ω))‖ |DHf(γ(s, ω))| 1

|z| ,

where |DHf | is defined as below (2.21).
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Proof. Taking into account Proposition 2.5, it follows from well-known properties of 
quasiconformal mappings [52], and of rectifiable curves in the Heisenberg group [35], 
that f ◦ γ(·, ω) is a horizontal curve for σ almost every ω ∈ ∂B \ {z = 0}. On the 
other hand, being quasiconformal, the map f is differentiable in the sense of Pansu 
[66] at Lebesgue almost every point in B. By the polar coordinates formula stated in 
Theorem 2.1, this means that for σ almost every ω in the Korányi sphere, for almost 
every s ∈ (0, 1), the point γ(s, ω) is a Pansu differentiability point of f . We fix now 
ω ∈ ∂B \ {z = 0} such that λ := f ◦ γ(·, ω) is horizontal, and we further fix s ∈ (0, 1)
such that the tangent vectors ∂sγ(ω, s) and λ̇(s) exist and are horizontal, and such that 
f is Pansu differentiable at γ(s, ω) with Pansu differential given by its formal Pansu 
differential as in [18, Theorem 5.1]. The horizontality of λ means that

λ̇3 = 2(λ̇1λ2 − λ̇2λ1), almost everywhere on (0, 1). (3.29)

Then, almost everywhere,

∂

∂s
4
√

(λ2
1 + λ2

2)2 + λ2
3 = 1

4
4(λ2

1 + λ2
2)(λ1λ̇1 + λ2λ̇2) + 2λ̇3λ3

‖λ‖3

(3.29)= (λ2
1 + λ2

2)(λ1λ̇1 + λ2λ̇2) + λ̇1λ2λ3 − λ̇2λ1λ3

‖λ‖3

= λ̇1((λ2
1 + λ2

2)λ1 + λ2λ3) + λ̇2((λ2
1 + λ2

2)λ2 − λ1λ3)
‖λ‖3 .

Hence ∣∣∣∣ ∂∂s‖λ‖
∣∣∣∣ ≤ |λ̇I |

‖λ‖3 |λI |‖λ‖2 = |λ̇I |
|λI |
‖λ‖ , (3.30)

where we have denoted λI = λ1 + iλ2. The lemma follows upon observing that

λ̇(s) = DHf(γ(s, ω))∂sγ(s, ω) ∈ Hλ(s)H
1,

which is based on the fact that the restriction of the Pansu derivative of f to Hγ(s,ω)H
1

coincides with the formal horizontal derivative DHf(γ(s, ω)) defined below (2.21), and 
a chain rule holds for Pansu derivatives, see [56]. Hence we obtain

|λ̇I(s)| ≤ |DHf(γ(s, ω))|
∣∣∣∣ ∂∂sγ(s, ω)

∣∣∣∣ ,
which yields the claim in Lemma 3.28 by (3.30) and (3.27). �

We now prove the main result of this section. With Proposition 3.26 and Lemma 3.28
in place, our argument follows the proof by Jerison and Weitsman of [44, Theorem 1].
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Proof of Theorem 3.1. Using left translations and Heisenberg dilations, we may assume 
without loss of generality that f(0) = 0 and that there exists ε > 0 so that

‖f |B\B(0,1/2)‖ > ε. (3.31)

Points ω ∈ ∂B will be denoted by ω = (z, t). Since f is quasiconformal, it is absolutely 
continuous along mod4 almost every curve. By the modulus formula (2.6), this implies 
that f is absolutely continuous along the radial curve segment γ(·, ω) : [1/2, 1] → H1 for 
S3 almost every ω, recalling that S3|∂B\{z=0} is absolutely continuous with respect to 
σ.

Let us now fix an exponent p > 0, to be determined later, and 1
2 < r < 1. We apply 

Lemma 3.28 to obtain
ˆ

∂B

‖f(γ(r, ω))‖p dS3(ω) −
ˆ

∂B

‖f(γ(1
2 , ω))‖p dS3(ω)

=
ˆ

∂B

rˆ
1
2

∂

∂s
‖f(γ(s, ω))‖p ds dS3(ω)

≤
ˆ

∂B

rˆ
1
2

∣∣∣∣ ∂∂s‖f(γ(s, ω))‖p
∣∣∣∣ ds dS3(ω)

≤ p

rˆ

1/2

ˆ

∂B

‖f(γ(s, ω))‖p−2|fI(γ(s, ω)| |DHf(γ(s, ω))| 1
|z|dS

3(ω) ds.

The second integral on the left-hand side is a finite positive number C = C(f, p) that 
does not depend on r. Thus, by the distortion inequality (2.21) for quasiconformal maps,

ˆ

∂B

‖f(γ(r, ω)‖pdS3(ω)

≤ (K ′′)1/4p
rˆ

1/2

ˆ

∂B

‖f(γ(s, ω))‖p−2|fI(γ(s, ω)| Jf (γ(s, ω))1/4 1
|z|dS

3(ω) ds + C

= (K ′′)1/4p
rˆ

1/2

ˆ

∂B

g(s, ω) · h(s, ω)dS3(ω) ds + C =: I(r) + C,

where, for ω = (z, t), we have

g(s, ω) := ‖f(γ(s, ω))‖−(p+1)Jf (γ(s, ω))1/4 1
1/4 s

3/4

|z|
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h(s, ω) := ‖f(γ(s, ω))‖2p−1|fI(γ(s, ω)| 1
|z|3/4 s

−3/4.

We estimate I by applying Hölder’s inequality with exponents 4 and 4/3. This yields 
I(r) ≤ (K ′′)1/4pI1(r)1/4I2(r)3/4, where by the area formula for quasiconformal maps 
[18, Theorem 5.4], and (3.31),

I1(r) :=
rˆ

1/2

ˆ

∂B

‖f(γ(s, ω))‖−4(p+1)Jf (γ(s, ω))s3 1
|z| dS

3(ω) ds

=
rˆ

1/2

ˆ

∂B

‖f(γ(s, ω))‖−4(p+1)Jf (γ(s, ω))s3 dσ0(ω) ds

=
ˆ

B(0,r)\B(0,1/2)

‖f(q)‖−4(p+1)Jf (q) dq

≤
ˆ

H1\B(0,ε)

‖q‖−4(p+1) dq < ∞,

and

I2(r) :=
rˆ

1/2

ˆ

∂B

‖f(γ(s, ω))‖(2p−1)4/3|fI(γ(s, ω))|4/3s−1 dσ0(ω) ds

≤
rˆ

1/2

ˆ

∂B

‖f(γ(s, ω))‖2p4/3s−1 dσ0(ω) ds

≤ C

rˆ

1/2

(1 − s)−2pα4/3 ds + C.

Here we used that dS3 = |z|dσ0 by Lemma 2.7 for σ0 as in the polar coordinates formula 
of Theorem 2.1. The estimate in the last line is a consequence of Proposition 3.26, which 
yields that

‖f(q)‖ ≤ C1(f) + C2(f)d(q, ∂B)−α ≤ C1(f) + C2(f) (1 − ‖q‖)−α
, for all q ∈ B,

for some positive and finite constants C1(f) and C2(f), and α = α(K) > 0 that only 
depends on the distortion K of f . If 2pα4/3 < 1, then sup1/2<r<1 I2(r) is clearly finite. 
This proves the theorem with p0(K) := 3 . �
8α(K)
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4. Carleson measures

The aim of this section is to prove Proposition 4.25, which states that every quasi-
conformal map f : B → f(B) ⊂ H1 \ {0} gives rise to certain Carleson measures on B. 
This will be an important tool in the proof of Theorem 1.4. A straightforward corollary 
of Proposition 4.25 says that |∇H log ‖f(q)‖| dq defines a Carleson measure for every 
quasiconformal map f as above. This extends to H1 a result that was proven in Rn first 
by Jones [45, Lemma 4.2 and p. 65] in order to show that log |f | belongs to BMO(Sn−1), 
quantitatively, for each K-quasiconformal map f on the unit ball in Rn that omits 0, 
where f on Sn−1 is understood as the radial limit. Jones’ result about Carleson measures 
was also obtained, with a different method, by Astala and Koskela [5, Lemma 5.6], and 
we follow roughly their approach. However, the class of Möbius self-maps of B is not rich 
enough to perform the standard normalization arguments done in [45,5]. The generality 
in which we stated Proposition 3.9 allows us to work with 1-quasiconformal maps that 
do not necessarily preserve B.

4.1. The canonical Möbius transformation

Möbius transformations are a commonly used tool to simplify proofs concerning Hardy 
spaces and Carleson measures on the unit ball Bn in Rn. Möbius self-maps of Bn are 
discussed in great detail in Ahlfors’ monograph [4, p. 24 ff.]. The computations there use 
specific properties of the Euclidean metric and Möbius transformations in Rn. The rele-
vant maps in H1 arise as restrictions of conformal maps of the compactified Heisenberg 
group, they are compositions of left translations, Heisenberg dilations, rotations about 
the vertical t-axis, and the Korányi inversion. While these share many properties with 
Möbius transformations in Rn, see e.g. [14,28], there are important differences. To give 
some examples, the conformal group in our case is not transitive on the set of triples of 
distinct points [50], rotations are not transitive on ∂B, and unlike x �→ x

|x|2 , the Korányi 
inversion does not keep ∂B pointwise fixed. Nonetheless, 1-quasiconformal maps of, but 
not necessarily onto, B play an important role in our proof of Theorem 1.4. Here we 
discuss the preliminaries.

The Korányi inversion in the Korányi unit sphere centered at the origin is defined 
as follows: I(y) = − 1

‖y‖4

(
yz(|yz|2 + iyt), yt

)
, where y = (yz, yt) ∈ H1 \ {0}. It is the 

restriction of a conformal self-map of the compactification Ĥ1, with I(0) = ∞ and 
I(∞) = 0, see [52]. This inversion was introduced by Korányi [49, (1.8)] to define a 
Kelvin transform for functions on the Heisenberg group. The inversion has the crucial 
property that

d(I(y), I(y′)) = d(y, y′)
‖y‖ ‖y′‖ , y, y′ ∈ H1 \ {0}, (4.1)

see, e.g., [10, p. 19]. The Jacobian of I at a point y ∈ B, y �= 0, can be expressed 
as follows: JI(y) = (Xf1Y f2 − Xf2Y f1)2(y) = 1

8 , see [16, (3.5)]. We will use the 
‖y‖
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inversion I to define certain canonical 1-quasiconformal mappings. We start with the 
most general definition, and later add more requirements on the parameters, as we prove 
finer properties.

Proposition 4.2. For x ∈ H1, a ∈ H1 \ {x}, and ρ > 0, the map

T := Tx,a,ρ : Ĥ1 → Ĥ1, T (y) := δρ

([
I(a−1 · x)

]−1 ·
[
I(a−1 · y)

])
has the following properties:

T (x) = 0, T (a) = ∞, T (∞) = δρ
(
[I(a−1 · x)]−1) , (4.3)

T |H1\{a} : H1 \ {a} → H1 \ {δρ
(
[I(a−1 · x)]−1)} is 1-quasiconformal, (4.4)

for all y, y′ ∈ H1 \ {a}, it holds that

d(T (y), T (y′)) = ρ
d(y, y′)

d(a, y)d(a, y′) , (4.5)

‖T (y)‖ = ρ
d(x, y)

d(a, y)d(a, x) , (4.6)

JT (y) = ρ4

d(a, y)8 , (4.7)

and for all r > 0, one has

T (∂B(a, r)) = ∂B
(
δρ
(
[I(a−1 · x)]−1) , ρ

r

)
. (4.8)

Proof. Property (4.3) is immediate from the definition of T , recalling that I(0) = ∞
and I(∞) = 0. Then T maps H1 \ {a} homeomorphically onto H1 \ {δρ

(
[I(a−1 · x)]−1)}

and it is 1-quasiconformal on H1 \ {a} as a composition of left-translations, dilations, 
and the 1-quasiconformal inversion I. This proves (4.4). Since the metric d is invariant 
under left translations, scales by factor ρ under the dilation δρ, and interacts with the 
inversion I as stated in (4.1), we can deduce (4.5) immediately from the definition of T . 
Next, (4.6) follows from (4.5) applied to y′ = x (recalling that T (x) = 0 as stated in 
(4.3)). The Jacobian of T can be computed by the chain rule. Denoting left translations 
by Lq0(q) := q0 · q, we find

JT (y) = Jδρ
(
[I(a−1 · x)]−1 · [I(a−1 · y)]

)
JL[I(a−1·x)]−1(I(a−1 · y)) JI(a−1 · y) JLa−1(y)

= ρ4 · 1 · 1
d(a, y)8 · 1.

This yields (4.7). Finally, (4.8) follows since I(∂B(0, r)) = ∂B(0, 1/r) for all r > 0. �
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Corollary 4.9. There exists a constant C ≥ 1 such that for all x ∈ B, a ∈ H1 \ B and 
ρ > 0, the map T = Tx,a,ρ from Proposition 4.2 satisfies

T (B) ⊂ B

(
0, Cρ

d(a, ∂B) + ρ

d(a, x)

)
.

In particular, if

ρ � d(a, ∂B) and ρ � d(a, x), (4.10)

then T (B) ⊂ B(0, M) for a radius M that depends on x, a, and ρ only through the 
implicit multiplicative constants in the inequalities in (4.10).

Proof. Formula (4.6) in Proposition 4.2 yields by the triangle inequality that

‖T (y)‖ = ρ
d(x, y)

d(a, y)d(a, x) ≤ ρ

d(a, y) + ρ

d(a, x) , y ∈ H1 \ {0}.

Now if y ∈ B, then Cd(a, y) ≥ d(a, ∂B) for a universal constant C. Indeed, the inequality 
holds true with constant 1 if d is replaced by the sub-Riemannian distance, and then the 
constant C can be found by comparing the two distances. �

Corollary 4.9 concerned the size of balls B(0, M) that contain Tx,a,ρ(B). Similarly, we 
next study the size of a ball B(0, m) that can be included in Tx,a,ρ(B).

Corollary 4.11. Assume that x ∈ B, a ∈ H1 \B and ρ > 0 are such that

d(x, ∂B) � ρ, d(a, x) � ρ. (4.12)

Then B(0, m) ⊂ Tx,a,ρ(B) for a constant m > 0 that depends on x, a, and ρ only through 
the implicit multiplicative constants in the inequalities in (4.12).

Proof. By Proposition 4.2, the map T = Tx,a,ρ satisfies for all w′ ∈ ∂B that

‖T (w′)‖ = d(T (x), T (w′)) = ρd(x,w′)
d(a, x) d(a,w′)

(4.12)
� d(x,w′)

d(a,w′) � d(x,w′)
d(a, x) + d(x,w′)

(4.12)
� d(x,w′)

ρ + d(x,w′)
(4.12)
� d(x,w′)

d(x,w′) + d(x,w′) � 1. �
We now discuss the behavior of Tx,a,ρ on B(ω, r) ∩ B for ω ∈ ∂B and r > 0, under 

certain conditions on these parameters.
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Proposition 4.13. Let ω ∈ ∂B, x ∈ B, and ρ > 0. Assume that a ∈ H1 \B and r > 0 are 
such that

d(a, ω) � r, d(a,B) ≥ Cr (4.14)

for a constant C > 1. Then, the map T = Tx,a,ρ from Proposition 4.2 satisfies

d(T (y), ∂T (B))
d(y, ∂B) ∼C

ρ

d(y, a)2 , for all y ∈ B(ω, r) ∩B. (4.15)

Proof. By (4.5) in Proposition 4.2, we know that

ρ

d(y, a)2 = d(T (y), T (y′)) d(a, y′)
d(a, y) d(y, y′) , y, y′ ∈ H1 \ {a}. (4.16)

First, we apply (4.16) for y ∈ B and y′ ∈ ∂B with the property that

d(T (y), T (y′)) = d (T (y), T (∂B)) .

For this pair of points, (4.16) yields

ρ

d(y, a)2 = d(T (y), T (∂B)) d(a, y′)
d(a, y) d(y, y′) ≤ d(T (y), T (∂B))

[
1

d(y, y′) + 1
d(a, y)

]
� d(T (y), ∂TB)

d(y, ∂B) .

Here the last inequality holds since y ∈ B, a ∈ H1 \ B, and y′ ∈ ∂B, hence d(y, ∂B) ≤
d(y, y′) and, as in the proof of Corollary 4.9, d(y, ∂B) � d(y, a). Thus,

ρ

d(y, a)2 � d(T (y), ∂TB)
d(y, ∂B) , y ∈ B.

Second, to prove the converse inequality in (4.15), we apply (4.16) to y ∈ B(ω, r) ∩ B

and y′ ∈ ∂B with the property that

d(y, y′) = d (y, ∂B) .

For this pair of points, (4.16) yields

ρ

d(y, a)2 = d(T (y), T (y′)) d(a, y′)
d(a, y) d(y, ∂B) ≥ d(T (y), T (∂TB)) d(a, y′)

d(a, y) d(y, ∂B) .

Thus it suffices to show that d(a, y′) �C d(a, y). To this end, we use the assumptions 
stated in (4.14), which yield, since C > 1 and d(y, ∂B) ≤ d(y, ω) < r, that
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d(a, y′) ≥ d(a, y) − d(y, y′) = d(a, y) − d(y, ∂B)
(4.14)
≥ (C − 1)r,

and

d(a, y) ≤ d(a, ω) + d(ω, y)
(4.14)
� r.

Combining these estimates, we deduce that d(a, y′) �C d(a, y) and conclude the 
proof. �
Lemma 4.17. Assume that ω ∈ ∂B, x ∈ B, a ∈ H1 \ B, ρ > 0 and r > 0 satisfy the 
conditions in Proposition 4.13, and additionally, ρ ∼ r. Let f : B → f(B) ⊂ H1 \ {0}
be a K-quasiconformal map, and let T = Tx,a,ρ be the 1-quasiconformal map defined in 
Proposition 4.2. Then

g|T (B(ω,r)∩B) := f ◦ T−1|T (B(ω,r)∩B)

satisfies

|DHf(y)|p
‖f(y)‖p d(y, ∂B)p−1 ∼p,K r3 |DHg(T (y))|p

‖g(T (y))‖p d(T (y), ∂T (B))p−1 JT (y) (4.18)

for 0 < p < 4 and almost every y ∈ B(ω, r) ∩B(0, 1).

Proof. The maps f and g are K-quasiconformal on B(ω, r) ∩ B and T (B(ω, r) ∩ B), 
respectively. Hence their Pansu derivatives exist and agree with the formal Pansu deriva-
tives almost everywhere. Since T is conformal and T -preimages of null sets are null sets, 
the chain rule [56, Proposition 3.2.5] and elementary linear algebra imply that the oper-
ator norms satisfy

|DHf | ∼K |DHg(T (·))| J1/4
T , almost everywhere. (4.19)

By Proposition 4.2, the assumptions ρ ∼ r ∼ d(a, y) for y ∈ B(ω, r) ∩ B, and by 
Proposition 4.13, we have

JT (y)1/4 (4.7)∼ ρ

d(y, a)2
(4.15)∼ d(T (y), ∂T (B))

d(y, ∂B) ∼ 1
r
, for all y ∈ B(ω, r) ∩B. (4.20)

Therefore we can proceed as follows:

|DHf |p (4.19)∼ p,K |DHg(T (·))|p Jp/4
T ∼ |DHg(T (·))|p J (p−1)/4

T J
−3/4
T JT

(4.20)∼ |DHg(T (·))|p
(
d(T (·), ∂T (B))

d(·, ∂B)

)p−1

r3 JT

almost everywhere on B(ω, r) ∩B. This yields (4.18). �
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Remark 4.21. Given ω ∈ ∂B and 0 < r � 1, it is possible to choose x ∈ B, a ∈ H1 \ B, 
and ρ > 0 such that all the assumptions of the results stated in this section are satisfied. 
To see this, we use the fact that B satisfies interior and exterior corkscrew conditions 
[11] (or apply Proposition 2.15 to find interior corkscrew points). This means that there 
exist constants M0 ≥ 1 and r0 > 0 such that the following holds:

• For every ω ∈ ∂B and 0 < r < r0, there exists Ai,r(ω) ∈ B such that

r

M0
≤ d(Ai,r(ω), ∂B) ≤ d(Ai,r(ω), ω) ≤ r.

• For every ω ∈ ∂B and 0 < r < r0, there exists Ao,r(ω) ∈ H1 \B such that

r

M0
≤ d(Ao,r(ω), ∂B) ≤ d(Ao,r(ω), ω) ≤ r.

We consider r < r0/(M0N) =: r∗ for a fixed constant N > 1 to be determined. We claim 
that N can be chosen such that

ρ := r, x := Ai,r(ω) ∈ B, a := Ao,M0Nr(ω) ∈ H1 \B

have the desired properties. Indeed, we have

(1) d(x, ∂B) ≥ r/M0,
(2) r/M0 ≤ d(x, ω) ≤ r,
(3) Nr ≤ d(a, ∂B) ≤ d(a, ω) ≤ M0Nr,
(4) (N − 1)r ≤ d(a, ω) − d(ω, x) ≤ d(x, a) ≤ d(x, ω) + d(ω, a) ≤ (1 + M0N)r.

Finally, arguing as in the proof of Corollary 4.9, we find a universal constant η < 1 such 
that

d(a, q) ≥ ηd(∂B, a) ≥ ηNr =: Cr, q ∈ B.

Thus we choose N > 1 large enough, depending on η, such that C := ηN > 1.

Remark 4.22. The maps Tx,a,ρ are in general not self-maps of B. For a simple example, 
consider x = (x1, 0, 0) and a = (a1, 0, 0) with 0 < x1 < 1 < a1. Then T = Tx,a,ρ does 
not map B onto itself for any choice of ρ > 0. This can be seen by computing ‖T (y)‖ for 
y ∈ {(1, 0, 0), (−1, 0, 0), (0, 2− 1

4 , 2− 1
2 )}. This is in contrast to the situation in Rn, where 

the relevant maps preserve the unit ball thanks to the identity [4, (33)].

4.2. Carleson measures related to quasiconformal maps

Carleson characterized in [13, Theorem 1] the measures μ on the unit disk D in C for 
which ‖f‖Lp(μ) ≤ C(μ)‖f‖Hp holds for all holomorphic functions on D that belong to the 
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Hardy space Hp, p ≥ 1. These are measures μ with the property that μ(D∩B(ω, r)) � r

for ω ∈ ∂D and r > 0. Such measures, and various generalizations thereof, are now 
known as Carleson measures. Carleson’s result was reproved by Hörmander [43] and, 
in extended form, by Duren [21]. Later Nolder [63], and Astala and Koskela [5, 4.5. 
Corollary], generalized Carleson’s and Duren’s result to Hardy spaces of quasiconformal 
mappings on the unit ball in Rn. We will prove an analogous result for H1 in Section 6. 
This motivates the following definition (cf. Definition 6.1 for metric spaces).

Definition 4.23. Let 1 ≤ α < ∞. We say that a (positive) Borel measure μ on B is an 
α-Carleson measure on the Korányi unit ball B, if there exists a constant C > 0 such 
that

μ(B ∩B(ω, r)) ≤ Cr3α, for all ω ∈ ∂B and r > 0. (4.24)

The α-Carleson measure constant of μ is defined by

γα(μ) := inf{C > 0 such that (4.24) holds for all ω ∈ ∂B and r > 0}

We also call 1-Carleson measures simply Carleson measures.

The following is an extension to H1 of a result originally due to Jones [45]. Our 
argument is inspired by a proof of Jones’ result that was given later by Astala and 
Koskela in [5, Lemma 5.6], but we avoid the use of Möbius self-maps of B.

Proposition 4.25. Fix 0 < p < 4 and let f be a quasiconformal map on B ⊂ H1 with 
f(q) �= 0 for all q ∈ B. Then the following measure μ is a Carleson measure in B, with 
an upper bound for the Carleson measure constant that depends only on K and p:

dμ = |DHf(q)|p
‖f(q)‖p d(q, ∂B)p−1dq. (4.26)

Proof. Let f be an arbitrary map satisfying the assumptions of the proposition, and 
fix 0 < p < 4. We aim to prove that the associated measure μ in (4.26) is a Carleson 
measure. In the course of the proof below, we will show that μ(B(0, 1)) can be bounded 
by a finite constant depending only on p and K, see (4.35). Taking this for granted, it 
suffices to verify the Carleson condition for small r > 0, say r < r∗, where r∗ is the 
absolute constant in Remark 4.21 that only depends on the geometry of H1. Indeed, for 
r > r∗ and ω ∈ ∂B, we trivially have

μ (B ∩B(ω, r)) ≤ μ(B) �K,p (1/r∗)3r3.

Thus let us fix ω ∈ ∂B and 0 < r < r∗. Then choose x ∈ B, a ∈ H1 \ B and ρ > 0, 
depending on ω and r, as in Remark 4.21, and consider the associated 1-quasiconformal 
map T = Tx,a,ρ defined in Proposition 4.2. Writing g := f ◦T−1|TB , Lemma 4.17 yields:
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ˆ

B∩B(ω,r)

|DHf(q)|p
‖f(q)‖p d(q, ∂B)p−1dq

∼K r3
ˆ

B∩B(ω,r)

|DHg(T (q))|p
‖g(T (q))‖p d(T (q), ∂T (B))p−1JT (q)dq. (4.27)

By the change of variables q �→ T (q) and Hölder’s inequality with exponents 4/p and 
4/(4 − p), the last line in (4.27) becomes:

r3
ˆ

T (B∩B(ω,r))

|DHg(q))|p
‖g(q)‖p d(q, ∂T (B))p−1dq (4.28)

≤ r3

⎛⎜⎝ ˆ

T (B∩B(ω,r))

|DHg(q)|4
‖g(q)‖4 d(q, ∂T (B))ε

4
p dq

⎞⎟⎠
p
4

×

⎛⎜⎝ ˆ

T (B∩B(ω,r))

d(q, ∂T (B))
4(p−1−ε)

4−p dq

⎞⎟⎠
4−p
4

.

Here, ε > 0 is a suitably chosen constant (depending only on p) that makes the last 
integral converge. To see that such a constant ε exists, recall from Proposition 4.13, 
formula (4.7) and the choice of parameters according to Remark 4.21, that

d(T (q), ∂TB) ∼ 1
r
d(q, ∂B), JT (q) ∼ 1

r4 , q ∈ B(ω, r) ∩B, (4.29)

with implicit constants independent of ω and r. Hence, for any η < 1, we find
ˆ

T (B∩B(ω,r))

d(q, ∂T (B))−η dq =
ˆ

B∩B(ω,r)

d(T (q), ∂T (B))−ηJT (q) dq

(4.29)∼ rη

r4

ˆ

B∩B(ω,r)

d(q, ∂B)−η dq

∼ rη

r4

∞∑
j=0

r−η2ηj |{q ∈ B ∩B(ω, r) : r2−j−1 ≤ d(q, ∂B) < r2−j}|

� 1
r4

∞∑
j=0

2ηj |{q ∈ B ∩B(ω, r) : d(q, ∂B) < r2−j}|. (4.30)

It remains to find a good upper bound for the Lebesgue measure of the sets

Aj(ω, r) := {q ∈ B ∩B(ω, r) : d(q, ∂B) < r2−j}, j ∈ N0.
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First, we observe that

Aj(ω, r) ⊂
⋃

ω̃∈B(ω,2r)∩∂B

B(ω̃, r2−j). (4.31)

Indeed, if q ∈ Aj(ω, r), then d(q, ωq) < r2−j for some ωq ∈ ∂B with d(q, ωq) = d(q, ∂B). 
Since

d(ωq, ω) ≤ d(ωq, q) + d(q, ω) < r2−j + r,

we see that ωq ∈ B(ω, 2r) ∩ ∂B, so (4.31) holds. Then we apply the 5r-covering lemma 
to find a disjoint subfamily

{B(ω̃i, r2−j) : i = 1, 2, . . . , Ij(ω, r)}

such that the 5-times enlarged balls still cover Aj(ω, r). To conclude the argument, we 
control the cardinality Ij(ω, r) from above by observing that

Ij(ω, r) r32−3j � S3

⎛⎝Ij(ω,r)⋃
i=1

B(ω̃i, r2−j) ∩ ∂B

⎞⎠ ≤ S3(B(ω, 3r) ∩ ∂B) � r3

by the 3-regularity of S3|∂B , recall Lemma 2.11. Thus Ij(ω, r) � 23j , and hence

|Aj(ω, r)| � Ij(ω, r) r42−4j � r42−j . (4.32)

Inserting this estimate in (4.30), we conclude that for every η < 1 (positive or negative), 
it holds

ˆ

T (B∩B(ω,r))

d(q, ∂T (B))−η dq �
∞∑
j=0

2(η−1)j �η 1.

Applying these considerations for η = 4(ε + 1 − p)/(4 − p), we see that if we choose 
ε = ε(p) < 3

4p, the second integral in (4.28) can be bounded from above by a finite 
constant depending only on p.

Combining the above estimates, we have so far found that

ˆ

B∩B(ω,r)

|DHf(q)|p
‖f(q)‖p d(q, ∂B)p−1dq �K,p r3

⎛⎜⎝ ˆ

T (B∩B(ω,r))

|DHg(q)|4
‖g(q)‖4 d(q, ∂T (B))ε

4
p dq

⎞⎟⎠
p
4

�K,p r3

⎛⎜⎝ ˆ

T (B)

|DHg(q)|4
‖g(q)‖4 d(q, ∂T (B))ε

4
p dq

⎞⎟⎠
p
4

.
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In order to estimate the last integral, we proceed as follows, using the fact that g is 
quasiconformal, with constant K, and the change-of-variables formula holds,

ˆ

T (B)

|DHg(q)|4
‖g(q)‖4 d(q, ∂T (B))ε

4
p dq �K

ˆ

T (B)

d(q, ∂T (B))ε
4
p

‖g(q)‖4 Jg(q)dq

∼K

ˆ

g(T (B))

d(g−1(q), ∂T (B))ε
4
p

‖q‖4 dq

∼K I1 + I2, (4.33)

where

I1 :=
ˆ

g(T (B))∩{q:‖q‖<‖g(0)‖}

d(g−1(q), ∂T (B))ε
4
p

‖q‖4 dq

and

I2 :=
ˆ

g(T (B)∩{q:‖q‖≥‖g(0)‖}

d(g−1(q), ∂T (B))ε
4
p

‖q‖4 dq.

The integrals I1 and I2 can be bounded from above using the first and second inequality 
in Proposition 3.9, respectively:

I1 �p,K

ˆ

‖q‖<‖g(0)‖

‖q‖−4 ‖q‖ ε4
pα

‖g(0)‖ ε4
pα

dq �p,K
1

‖g(0)‖ ε4
pα

‖g(0)‖ˆ

0

s
ε4
pα−1 ds ∼p,K 1

and

I2 �p,K

ˆ

‖q‖≥‖g(0)‖

‖q‖−4 ‖g(0)‖ ε4
pα

‖q‖ ε4
pα

dq �p,K ‖g(0)‖ ε4
pα

∞̂

‖g(0)‖

s−
ε4
pα−1 ds ∼p,K 1.

In conclusion, we have shown that

ˆ

B∩B(ω,r)

|DHf(q)|p
‖f(q)‖p d(q, ∂B)p−1dq �K,p r3, for all ω ∈ ∂B, 0 < r < r∗. (4.34)

Finally, the argument by Hölder’s inequality and change-of-variables q �→ g(q) that 
we applied above to “g” and “T (B)” works also for “f” and “B” to show that
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ˆ

B

|DHf(q)|p
‖f(q)‖p d(q, ∂B)p−1dq �K,p 1. (4.35)

More precisely, we have
ˆ

B

|DHf(q))|p
‖f(q)‖p d(q, ∂B))p−1dq

≤

⎛⎝ˆ

B

|DHf(q)|4
‖f(q)‖4 d(q, ∂B)ε

4
p dq

⎞⎠
p
4
⎛⎝ˆ

B

d(q, ∂B)
4(p−1−ε)

4−p dq

⎞⎠
4−p
4

,

where ε is as before. The first integral can be bounded by a finite constant depending 
only on K and p by the same argument as we used for (4.33), with “g” and “T (B)” 
replaced by “f” and “B” The second integral is finite constant depending only on p, 
thanks to (4.32) (for r ∼ 1). As remarked at the beginning of the proof, (4.34) and 
(4.35) together suffice to show the Carleson measure condition for all scales r > 0. �

The following corollary of Proposition 4.25 extends [45, Lemma 4.2] to H1.

Corollary 4.36. If f is a quasiconformal map on B ⊂ H1 with f(q) �= 0 for all q ∈ B, 
then

|∇H log ‖f(q)‖| dq

defines a Carleson measure on B, with an upper bound for the Carleson measure constant 
depending only on K.

Proof. Since for Lebesgue almost every q ∈ B, we have

|∇H log ‖f‖(q)| = |∇H(‖ · ‖ ◦ f)(q)|
‖f(q)‖ � |DHf(q)|

‖f(q)‖

this is an immediate consequence of Proposition 4.25 for p = 1. The above inequality 
can be verified by a direct computation using the contact equations for f , or observing 
that |∇H‖ · ‖| ≤ 1 and using the chain rule for Pansu derivatives. �
5. Characterization of the Hp property for quasiconformal mappings

The purpose of this section is to prove Theorem 1.4, which characterizes membership 
in Hp for a quasiconformal mapping in terms of its radial limit and nontangential maxi-
mal function, respectively. This is motivated by a result for quasiconformal mappings on 
the Euclidean unit ball in Rn, n ≥ 2, originally due to Zinsmeister [71], and later obtained 
with different methods by Astala and Koskela in [5, Theorem 4.1]. Our proof combines 
elements from both approaches with arguments tailored to the Heisenberg geometry.
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5.1. Conditions implying p-integrability of the radial limit

By Lemma 2.23 and (2.13), the radial limit f∗ of a quasiconformal map f on the 
Korányi unit ball B exists for S3-almost every boundary point, and it is a Borel function. 
We will use this fact throughout the section to prove the straightforward implications 
(1) ⇒ (3), (2) ⇒ (3), and (2) ⇒ (1) in Theorem 1.4.

Lemma 5.1. Fix 0 < p < ∞ and f : B ⊂ H1 → f(B) ⊂ H1 be a quasiconformal map. 
Then

ˆ

∂B

‖f∗‖p dS3 ≤ ‖f‖pHp .

In particular, f ∈ Hp implies ‖f∗‖ ∈ Lp(S3|∂B).

Proof. Since f is quasiconformal and f∗ exists S3|∂B almost everywhere on ∂B, the 
claim follows by Fatou’s lemma:

ˆ

∂B

‖f∗(ω)‖p dS3(ω) =
ˆ

∂B

‖ lim
r↗1

f(γ(r, ω))‖p dS3(ω)

≤ lim inf
r↗1

ˆ

∂B

‖f(γ(r, ω))‖p dS3(ω)
Def.1.2
≤ ‖f‖pHp . �

In what follows we will frequently refer to Proposition 2.15. It asserts that there exists 
κ > 0 such that for every ω ∈ ∂B \ {z = 0}, we have

γ(s, ω) ∈ Γ(ω) := Γκ(ω), for all s ∈ (0, 1),

see the Appendix for the proof. The nontangential maximal function M(f) is defined 
with respect to that parameter κ. We also recall from Remark 2.19 that M(f) is Borel 
measurable. These observations immediately yield the next two propositions.

Proposition 5.2. Let f : B ⊂ H1 → f(B) ⊂ H1 be a quasiconformal map. Then

‖f∗(ω)‖ ≤ M(f)(ω), S3 a.e. ω ∈ ∂B.

In particular, for 0 < p < ∞, the condition M(f) ∈ Lp(S3|∂B) implies that ‖f∗‖ ∈
Lp(S3|∂B).

Proposition 5.3. Let 0 < p < ∞ and let f : B → f(B) ⊆ H1 be a quasiconformal map. 
Then

‖f‖pHp ≤
ˆ

M(f)p dS3.
∂B



T. Adamowicz, K. Fässler / Journal of Functional Analysis 284 (2023) 109832 37
In particular, M(f) ∈ Lp
(
S3|∂B

)
implies that f ∈ Hp.

5.2. Conditions implied by the p-integrability of the radial limit

In this section, we prove the main implication in Theorem 1.4, namely (3)⇒ (2):

Proposition 5.4. Assume that K ≥ 1, 0 < p < ∞, and that f : B → f(B) ⊂ H1 is 
K-quasiconformal. Then

‖M(f)‖Lp(S3|∂B) ≤ C(K, p)
∥∥‖f∗‖

∥∥
Lp(S3|∂B)

for a constant C(K, p) that depends only on K and p.

Proposition 5.4 is a counterpart for Zinsmeister’s result [71, Proposition 1] in Eu-
clidean spaces, which was re-proven with a different argument by Astala and Koskela 
in [5, Corollary 4.3 and Theorem 4.1]. We establish our result by combining the use of 
a specific Carleson measure inspired by [71] with a Hardy-Littlewood maximal function 
argument as in [5]. The core of the proof is then to relate the nontangential maximal 
function of f and the Hardy-Littlewood maximal function of its radial limit. This is 
achieved with Lemma 5.6, where the geometry of the Heisenberg group enters the pic-
ture due to the nonisotropic nature of the Korányi ball. In contrast to [71], we do not 
involve log ‖f‖ in our discussion, although Corollary 4.36 shows that for a quasiconformal 
f on B ⊂ H1, omitting the origin, |∇H log ‖f‖| always defines a Carleson measure on B. 
In [71], an analogous result is used to observe that if a Sobolev mapping f is such that 
f �= 0 in B and |∇ log ‖f‖| defines a Carleson measure, then the radial limit f∗ exists 
(see [71, pg. 128]), whereas for us f is quasiconformal and f∗ exists by Lemma 2.23. 
The Carleson measure induced by |∇ log ‖f‖| appears in [71] also in a more subtle way, 
through condition [71, (10)]. There is a similar element in our argument, where we apply 
the Carleson measure defined by |DHf |/‖f‖ to establish Lemma 5.11, but our proof nec-
essarily looks different due to the presence of characteristic points in the Korányi sphere 
and the rigidity of Möbius self-maps of the Korányi ball. We now turn to the details.

For a Borel function h : ∂B → [0, +∞], we define the non-centered Hardy-Littlewood 
maximal function

M∂Bh(ω) := sup
B(ω′,r)�ω

1
S3(B(ω′, r) ∩ ∂B)

ˆ

B(ω′,r)∩∂B

h dS3, for all ω ∈ ∂B.

Proposition 5.4 will be established through a series of intermediate results, but the core 
of the argument is the chain of inequalities

ˆ

∂B

M(f)p dS3 =
ˆ

∂B

(
sup
Γ(·)

‖f‖q
) p

q

dS3
Lem. 5.6

�
ˆ

∂B

(M∂B(‖f∗‖q))
p
q dS3 �

ˆ

∂B

‖f∗‖p dS3,

(5.5)
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for 0 < q < p and every quasiconformal map f : B → f(B) ⊂ H1, with implicit constants 
depending on p, q, and K. Exactly as in the proof of [5, Theorem 4.1], the last inequality 
holds since the operator M∂B is of strong type (s, s) for all s > 1, see e.g., [15,37] and 
recall that (∂B, d|∂B , S3|∂B) is a doubling metric measure space. By fixing a suitable 
constant q, depending on p, Proposition 5.4 follows from (5.5), so we concentrate on 
Lemma 5.6.

Lemma 5.6. For K ≥ 1 and 0 < q < ∞, there exists a constant C such that for every 
quasiconformal map f : B → f(B) ⊂ H1, its radial limit f∗ satisfies

sup
Γ(ω)

‖f‖q ≤ CM∂B(‖f∗‖q)(ω), for all ω ∈ ∂B.

Lemma 5.6 follows from the subsequent result:

Lemma 5.7. Let 0 < q < ∞ and K ≥ 1. Then there exists a constant C, depending on q
and K, such that for every quasiconformal map f : B → f(B) ⊂ H1, we have

‖f(x)‖q ≤ C
1

S3(S(x))

ˆ

S(x)

‖f∗(ω)‖q dS3(ω), for all x ∈ B. (5.8)

Here S(x) = B (x, (1 + κ)d(x, ∂B)) ∩ ∂B with κ given by Proposition 2.15.

Proof of Lemma 5.6 using Lemma 5.7. Under the assumptions of Lemma 5.7, we have 
for every ω0 ∈ ∂B that

sup
x∈Γ(ω0)

‖f(x)‖q ≤ C sup
x∈Γ(ω0)

1
S3(S(x))

ˆ

S(x)

‖f∗(ω)‖q dS3(ω). (5.9)

Now for every x ∈ B, there exists ωx ∈ ∂B such that d(x, ωx) = d(x, ∂B) and it is easy 
to see that then

B (ωx, κ d(x, ∂B)) ∩ ∂B ⊂ S(x) ⊂ B (ωx, (2 + κ) d(x, ∂B)) ∩ ∂B. (5.10)

Using the 3-regularity of S3|∂B , we can deduce from (5.9) that

sup
x∈Γ(ω0)

‖f(x)‖q

≤ C sup
x∈Γ(ω0)

1
S3(B (ωx, (2 + κ) d(x, ∂B)) ∩ ∂B)

ˆ

B(ωx,(2+κ) d(x,∂B))∩∂B

‖f∗(ω)‖q dS3(ω),

where C now also depends on κ and the 3-regularity constant of S3|∂B , which we consider 
as universal constants. Since ω0 ∈ B(ωx, (2 + κ)d(x, ∂B) ∩ ∂B) if x ∈ Γ(ω0), the right-
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hand side of the above inequality can be bounded from above by M∂B‖f∗‖q(ω0) on ∂B
as claimed. �

Thus Proposition 5.4 will follow if we manage to prove Lemma 5.7.

5.2.1. Points and shadows: proof of Lemma 5.7
The main ingredient for Lemma 5.7 is a statement for a quasiconformal map f on B, 

saying that if 0 /∈ f(B), then ‖f∗(ω)‖ cannot be too small compared to ‖f(x)‖ for too 
many ω ∈ S(x).

Lemma 5.11. For every K ≥ 1, there exists N(K) and a function ΨK with
limN→∞ ΨK(N) = 0 such that the following holds. If f : B → f(B) ⊂ H1 \ {0} is 
K-quasiconformal, then, for all x ∈ B and all N ≥ N(K), we have

S3
({

ω ∈ S(x) : ‖f∗(ω)‖ ≤ ‖f(x)‖
N

})
≤ ΨK(N)S3(S(x)).

This lemma is easy to prove by standard modulus techniques if x is deep inside B and 
the shadow S(x) is large, see Lemma 5.16 for the case x = 0. In Euclidean spaces, the 
general case can be reduced to this one by a suitable Möbius self-map of the unit ball 
that sends a small spherical cap to a large one in a canonical, metrically controlled way, 
see the proof of [5, Lemma 4.2]. Möbius automorphisms of the Korányi unit ball B are 
not flexible enough for this approach. In our setting, we therefore give a separate proof 
of the statement in Lemma 5.11 for x close to ∂B with the help of a Carleson measure 
provided by Proposition 4.25. To do so, we again make use of the growth estimate in 
Proposition 3.9 and the specific Möbius transformations introduced in Section 4.1. Yet 
this time we start from a point x ∈ B (close to ∂B), and assign to it the data

ωx ∈ ∂B, ax ∈ H1 \B, ρx > 0

and associated Möbius transformation

Tx := Tx,ax,ρx
(5.12)

as described in the following. Without loss of generality, we may assume that the constant 
r∗ in Remark 4.21 satisfies r∗ < 1. Then there exists R∗ ∈ [1 − r∗, 1) such that

d(y, ∂B) < r∗ for all ‖y‖ > R∗.

Now, for x ∈ B with ‖x‖ > R∗, we define:

(d1) ρx := d(x, ∂B),
(d2) ωx a point in ∂B such that d(x, ωx) = d(x, ∂B),
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(d3) ax := A0,M0Nρx
(ωx) (outer corkscrew point with “N” as in Remark 4.21).

To prove Lemma 5.11 for ‖x‖ > R∗, we will study the behavior of f ◦ T−1
x on

Tx

⎛⎝⎡⎣ ⋃
ω∈S(x)

B(ω, ρx)

⎤⎦ ∩B

⎞⎠ ,

recalling that Tx(x) = 0. The precise statement, given in Lemma 5.15, therefore requires 
us to control the time for which the radial segment γ(·, ω) stays inside B(ω, ρx).

Lemma and Definition 5.13. Let κ be as in Proposition 2.15. For all ω ∈ ∂B \ {z = 0}
and ρ ∈ (0, 1), there exists sω,ρ ∈ (0, 1) such that

(1) γ(s, ω) ∈ B(ω, ρ) ∩ Γκ(ω) for all s ∈ [sω,ρ, 1),
(2) γ(sω,ρ, ω) ∈ ∂B(ω, ρ),
(3) sω,ρ ≥ 1 − ρ.

Moreover, the choice ω �→ sω,ρ can be made Borel measurable on ∂B \ {z = 0}. If 
x ∈ B \ {0} and ρ = ρx := d(x, ∂B), we denote sω,x := sω,ρx

.

Proof. Let ω ∈ ∂B \ {0}. By Proposition 2.15 we know that γ(s, ω) ∈ Γκ(ω) for all 
s ∈ (0, 1). Since the radial curves are continuous with

d(γ(0, ω), ω) = 1 and d(γ(1, ω), ω) = 0,

we can take sω,ρ to be the largest number in (0, 1) such that

γ(sω,ρ, ω) ∈ ∂B(ω, ρ).

By maximality, this satisfies also

γ(s, ω) ∈ B(ω, ρ), for all s ∈ [sω,ρ, 1).

Moreover, it is clear that

sω,ρ = ‖γ(sω,ρ, ω)‖ ≥ ‖ω‖ − d(γ(sω,ρ, ω), ω) ≥ 1 − ρ.

To prove the Borel measurability of ω �→ sω,ρ, we use that the function (s, ω) �→
d(γ(s, ω), ω) is continuous on (0, 1) × (∂B \ {z = 0}) and it extends to a continuous 
function h : [0, 1] × ∂B → [0, 1], cf. (A.3). Then, for a given 0 < ρ < 1, the function

ω �→ s(ω) := max{s ∈ [0, 1] : h(s, ω) = ρ}
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is upper semicontinuous. Indeed, for any λ ≤ 1, if s(ω) < λ, then h(s, ω) < ρ for all 
s ∈ [λ, 1] while h(s(ω), ω) = ρ, and thus there exists a small relatively open neighborhood 
U of ω in ∂B such that for all ω′ ∈ U and s ≥ λ, we also have h(s, ω′) < ρ, and 
hence s(ω′) < λ. This shows that ω �→ s(ω) is upper semicontinuous as claimed, and in 
particular,

ω �→ sω,ρ := max{s ∈ (0, 1) : d(γ(s, ω), ω) = ρ}

is a Borel function. �
If a point x ∈ B is close to ∂B, then so is γ(sω,x, ω). The map Tx allows us to normalize 

the situation in such a way that we obtain a point at a uniformly bounded distance away 
from the boundary of the new domain, independently of the choice of x and ω ∈ S(x).

Lemma 5.14 (Normalization). There exists a constant c > 0 such that, for all x ∈ B with 
‖x‖ > R∗ and all ω ∈ S(x) \ {z = 0}, we have

d (Tx(γ(sω,x, ω)), ∂TxB) ≥ c.

Proof. Let x ∈ B and ω ∈ S(x) be as assumed in the lemma. By definition of Tx, it 
holds for every ω̃ ∈ ∂B that

d (Tx(γ(sω,x, ω)), Tx(ω̃)) = ρx
d(γ(sω,x, ω), ω̃)

d(γ(sω,x, ω), ax) d(ω̃, ax)

Since ω ∈ S(x), we can apply Lemma 5.13 (2) and Remark 4.21 to deduce that

d (Tx(γ(sω,x, ω)), Tx(ω̃)) � ρx
d(γ(sω,x, ω), ω̃)

ρx [d(γ(sω,x, ω), ω̃) + d(γ(sω,x, ω), ax)]
� ρx

ρx
= 1.

In the last step we also used that

d(γ(sω,x, ω), ax) � ρx � d(γ(sω,x, ω), ∂B) � d(γ(sω,x, ω), ω̃). �
Lemma 5.13 and Lemma 5.14 are useful to deduce consequences of a small radial 

limit:

Lemma 5.15. There exists a constant C > 0 and, for every K ≥ 1, a number N(K) > 1
such that the following holds. Whenever x ∈ B is such that ‖x‖ > R∗ and f : B →
f(B) ⊂ H1 \ {0} is K-quasiconformal, then for all N ≥ N(K) and S3 almost every 
ω ∈ S(x), we have

‖f∗(ω)‖ ≤ ‖f(x)‖
N

⇒
1ˆ |DH(f ◦ T−1

x )(Tx(γ(s, ω)))|
‖f(γ(s, ω))‖ s3 ds ≥ Cρx|(ω1, ω2)| logN
sω,x
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where Tx is the Möbius transformation defined in (5.13), and sω,x is given by 
Lemma 5.13.

We postpone the proof to Section 5.2.2. The next result serves as a substitute for 
Lemma 5.15 in case x ∈ B is far away from the boundary. This is a Heisenberg version 
of [5, Lemma 4.2] in the special case when the distinguished point is the origin. This 
case is particularly simple since

Sκ(0) = ∂B ∩B(0, (1 + κ)d(0, ∂B)) = ∂B.

Lemma 5.15 and Lemma 5.16 look different at first, but their similarity will become 
clear latest in Remark 5.22. The integral in Lemma 5.15 is a new element in our proof, 
but the inspiration for using it came from the proof of Zinsmeister’s [71, Lemma 4], 
where Möbius self-maps of B appear through the definition of ‖u‖∗ at the bottom of [71, 
p. 127].

Lemma 5.16. If f : B → f(B) ⊂ H1 \ {0} is K-quasiconformal, then

S3
({

ω ∈ ∂B : ‖f∗(ω)‖ ≤ ‖f(0)‖
N

})
≤ C(K) (lnN)−

3
4 ,

where the constant C(K) depends only on K.

Proof. We first prove a similar inequality for the measure σ on ∂B \ {0}. Namely, for 
every K ≥ 1, we show that there exists a constant C(K) such that if f : B ⊂ H1 →
f(B) ⊂ H1 \ {0} is a K-quasiconformal map, then for all N > 1, one has

σ ({ω ∈ ∂B \ {z = 0} : ‖f∗(ω)‖ < ‖f(0)‖/N}) ≤ C(K)σ(∂B \ {z = 0})(lnN)−3.

(5.17)
As in the proof of [5, Lemma 4.2], we set

d(f(0), ∂f(B)) := c.

We apply Corollary 3.5 in [1] with g = f , U = B, U ′ = f(B), β := 5 and a ball 
B = B(0, r0), where r0 = r0(K) is such that 3kB ⊂ B (k depends on K only) to obtain 
that for all q ∈ B(0, r0) we have

d(f(0), f(q)) ≤ diam f(B(0, r0)) ≤ d(f(0), ∂f(B(0, r0))) ≤
c

2 .

Since c := d(f(0), ∂f(B)) ≤ ‖f(0)‖, it holds for any q′ ∈ f(B(0, r0)) that

d(q′, 0) = ‖q′‖ ≥ ‖f(0)‖ − d(q′, f(0)) ≥ ‖f(0)‖ − c

2 ≥ 1
2‖f(0)‖.

Thus f(B(0, r0)) ∩B(0, 1‖f(0)‖) = ∅. Then, for any given N > 1 we denote
2
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E := EN := {ω ∈ ∂B \ {z = 0} : ‖f∗(ω)‖ < ‖f(0)‖/N} ,

and we define a family of radial curves ΓE = Γ(∂B(0, r0), E, B), see the discussion 

following Theorem 2.1. By (2.6) we obtain that mod4(ΓE) = π2
(
ln 1

r0

)−3
σ(E). If 

N > 3, then (radial) curves in f(ΓE) have one endpoint in ∂f(B(0, r0)) and another 
in B(0, ‖f(0)‖/N) and so, in particular, they connect the complement of B(0, ‖f(0)‖/2)
to B(0, ‖f(0)‖/N). Hence, by (2.4),

mod4(f(ΓE)) �K

(
ln N

2

)−3

≤ C(lnN)−3.

Therefore, σ(E) �K
(ln 1

r0
)3

π2 (lnN)−3. If 1 < N ≤ 3, then the estimate is trivial:

σ(E) ≤
(

ln 3
lnN

)3

σ(∂B \ {z = 0}).

Thus σ(E) �K (lnN)−3, and the proof of (5.17) is complete.

The statement of Lemma 5.16 can be reduced to this estimate. Since

dσ = cos2 αdσ0 and dS3 =
√

cosαdσ0,

Hölder’s inequality with exponents p = 4 and q = 4/3 yields

S3(E) =
ˆ

E

√
cosαdσ0 ≤

⎡⎣ˆ
E

cos2 αdσ0

⎤⎦
1
4
⎡⎣ˆ
E

dσ0

⎤⎦
3
4

= σ(E) 1
4 σ0(E) 3

4 .

Now we bound σ(E) from above with the help of (5.17), and thus conclude that

S3(E) ≤ C(K) 1
4 σ(∂B \ {z = 0}) 1

4 (lnN)−
3
4 σ0(∂B \ {z = 0}) 3

4 . �
Lemmas 5.15 and 5.16 allow to control the set of points ω in S(x) where ‖f∗(ω)‖ is 

small compared to ‖f(x)‖, as made precise by Lemma 5.11.

Proof of Lemma 5.11. The proof is split in two cases: ‖x‖ ≤ R∗ and ‖x‖ > R∗, where 
the first case is handled with Lemma 5.16 and Proposition 3.9, while Lemma 5.15 and 
the Carleson measure |DHf(q)|/‖f(q)‖ dq are used to treat the second case.

Let us assume first that ‖x‖ ≤ R∗. Since 0 /∈ f(B), Proposition 3.9 for Ω = B and 
g = f implies that there exist constants CK , αK > 1 such that

‖f(x)‖ ≤ CK d(x, ∂B)−αK ≤ CK (1 −R∗)−αK .
‖f(0)‖
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Then Lemma 5.16 with Ψ(N) = (lnN)−
3
4 implies that

S3
({

ω ∈ S(x) : ‖f∗(ω)‖ ≤ ‖f(x)‖
N

})
≤ S3

({
ω ∈ ∂B : ‖f∗(ω)‖ ≤ CK (1 −R∗)−αK

‖f(0)‖
N

})
≤ C(K)Ψ

(
N

CK (1 −R∗)−αK

)
≤ C(R∗)C(K) Ψ

(
N

CK (1 −R∗)−αK

)
S3(S(x)),

where we have used in the last inequality that S3(S(x)) �R∗ 1 for ‖x‖ ≤ R∗. This is the 
case by the inclusion (5.10), the inequality d(x, ∂B) ≥ 1 − R∗, and the 3-regularity of 
S3|∂B stated in Lemma 2.11. Thus the estimate in Lemma 5.11 holds for all x ∈ B(0, R∗)
with any function ΨK satisfying limN→∞ ΨK(N) = 0 and

ΨK(N) ≥ C(R∗)C(K) Ψ
(

N

CK (1 −R∗)−αK

)
.

In the second part of the proof, we assume that ‖x‖ > R∗. Choosing N(K) as in 
Lemma 5.15, we find for N ≥ N(K) that

S3
({

ω ∈ S(x) : ‖f∗(ω)‖ <
‖f(x)‖

N

})

≤ S3

⎛⎜⎝
⎧⎪⎨⎪⎩ω ∈ S(x) : 1

ρx C logN |(ω1, ω2)|

1ˆ

sω,x

|DH(f ◦ T−1
x )(Tx(γ(s, ω)))|

‖f(γ(s, ω))‖ s3 ds ≥ 1

⎫⎪⎬⎪⎭
⎞⎟⎠

≤ 1
ρx C logN

ˆ

S(x)

1
|(ω1, ω2)|

1ˆ

sω,x

|DH(f ◦ T−1
x )(Tx(γ(s, ω)))|

‖f(γ(s, ω))‖ s3 ds dS3(ω)

= 1
ρx C logN

1ˆ

0

ˆ

S(x)

χ[sω,x,1](s)
|DH(f ◦ T−1

x )(Tx(γ(s, ω)))|
‖f(γ(s, ω))‖ dσ0(ω) s3ds,

where we have used dS3|∂B(ω) = |(ω1, ω2)|dσ0(ω) and the Borel measurability of ω �→
sω,x, recall Lemma 5.13.

Let us take a closer look at the domain of the double integration. By the choice of 
sω,x in Lemma 5.13, we know that for all ω ∈ ∂B, we have

d(γ(s, ω), ω) ≤ ρx, for all s ∈ [sω,x, 1]. (5.18)
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If we assume that ω is contained in the spherical cap S(x), then by definition we also 
have

d(ω, x) ≤ (1 + κ)ρx. (5.19)

Finally, by definitions (d1)-(d2) below (5.12), we have

d(x, ωx) = ρx. (5.20)

Recalling that S(x) := Sκ(x), a combination of (5.18), (5.19), and (5.20) shows that

{γ(s, ω) : s ∈ [sω,x, 1], ω ∈ S(x)} ⊂ B ∩B(ωx, (3 + κ)ρx).

Thus we can continue with the previous estimate as follows

S3
({

ω ∈ S(x) : ‖f∗(ω)‖ <
‖f(x)‖

N

})
≤ 1

ρx C logN

ˆ

B∩B(ωx,(3+κ)ρx)

|DH(f ◦ T−1
x )(Tx(q))|

‖f(q)‖ dq.

We now derive an upper bound for the operator norm of the horizontal derivative ap-
pearing in that integral. The chain rule for Pansu derivatives, the contact and the Lusin 
property of quasiconformal maps yield for Lebesgue almost every q ∈ B that

DH(f ◦ T−1
x )(Tx(q)) = DHf(q)DHT−1

x (Tx(q)).

Then, for almost every q ∈ B ∩B(ωx, (3 + κ)ρx), we find by similar computations as in 
the proof of Lemma 4.17 that

|DH(f ◦ T−1
x )(Tx(q))| ≤ |DHf(q)| |DHT−1

x (Tx(q))| = |DHf(q)| JTx
(q)− 1

4

= |DHf(q)| d(ax, q)
2

ρx

�κ |DHf(q)| ρx.

Here the first equation holds since T−1
x is 1-quasiconformal and the next equation is due 

to (4.7), the formula for the Jacobian of Tx. Finally, the last inequality holds because 
q ∈ B ∩ B(ωx, (3 + κ)ρx) and d(ax, ωx) � ρx by the choices we made below (5.12)
in (d1)-(d3). Inserting the obtained estimate for |DH(f ◦ T−1

x )(Tx(q))| in our chain of 
inequalities, we find that

S3
({

ω ∈ S(x) : ‖f∗(ω)‖ <
‖f(x)‖

N

})
≤ 1

C logN

ˆ |DHf(q)|
‖f(q)‖ dq.
B∩B(ωx,(3+κ)ρx)
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Now we apply Proposition 4.25 for p = 1 to deduce that

dμ(q) = |DHf(q)|
‖f(q)‖ dq

is a Carleson measure with Carleson measure constant depending only on K. Hence,

S3
({

ω ∈ S(x) : ‖f∗(ω)‖ <
‖f(x)‖

N

})
�K

1
logN ρ3

x � 1
logN S3(S(x)),

where in the last step we used the 3-regularity of S3|∂B , recall Lemma 2.11, and (5.10). 
This concludes the proof of Lemma 5.11 in the second case, that is, if ‖x‖ > R∗. �

With these preparations in hand, we are now ready to prove Lemma 5.7, following 
the proof of [5, Corollary 4.3] by Astala and Koskela.

Proof of Lemma 5.7. If 0 /∈ f(B), then we can directly apply Lemma 5.11 by choosing 
N large enough, depending only on K, such that

S3
({

ω ∈ S(x) : ‖f∗(ω)‖ ≤ ‖f(x)‖
N

})
<

1
2S

3(S(x)), for all x ∈ B.

This yields (5.8) in that case, cf., the proof of Corollary 4.3 in [5]. If, on the other hand, 
0 ∈ f(B), then we can choose a point y ∈ H1 such that

‖y‖ ≤ ‖f∗(ω)‖, for almost all ω ∈ ∂B.

Then the map g := Ly−1 ◦ f is K-quasiconformal on B with 0 /∈ g(B). Applying the 
inequality from the previous case yields

‖f(x)‖q ≤ 2q‖g(x)‖q + 2q‖y‖q

≤ 2q‖g(x)‖q + 2q

S3(S(x))

ˆ

S(x)

‖f∗(ω)‖q dS3(ω)

≤ 2qC
S3(S(x))

ˆ

S(x)

‖g∗(ω)‖q dS3(ω) + 2q

S3(S(x))

ˆ

S(x)

‖f∗(ω)‖q dS3(ω)

≤ 2qC
S3(S(x))

ˆ

S(x)

(2‖f∗(ω)‖)q dS3(ω) + 2q

S3(S(x))

ˆ

S(x)

‖f∗(ω)‖q dS3(ω),

which concludes the proof also in that case. �
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5.2.2. Proof of Lemma 5.15
We will deduce Lemma 5.15 for quasiconformal maps f on B from a related statement 

for quasiconformal maps on certain conformal images of B, similarly to the reasoning in 
the proof of Proposition 4.25.

Lemma 5.21. There exists a constant C > 0, and for every K ≥ 1 a number N(K) > 1, 
such that for all x ∈ B with ‖x‖ > R∗ with associated Möbius transformation Tx as in 
(5.12), and for all K-quasiconformal g : Tx(B) → g(Tx(B)) ⊂ H1 \ {0}, we have for all 
N ≥ N(K) and S3 almost all ω = (ω1, ω2, ω3) ∈ S(x) that

‖ lim
s→1

g(Tx(γ(s, ω)))‖ ≤ ‖g(Tx(x))‖
N

⇒ Gx(ω) ≥ Cρx|(ω1, ω2)| logN,

where

Gx(ω) =
1ˆ

sω,x

|DHg(Tx(γ(s, ω)))|
‖g‖(Tx(γ(s, ω))) s3 ds.

Remark 5.22. Lemma 5.21 implies

S3
(
ω ∈ S(x) : ‖ lim

s→1
g(Tx(γ(s, ω)))‖ <

‖g(0)‖
N

)
≤ 1

C ρx |(ω1, ω2)| logN ‖Gx‖L1(S3|∂B)

Lemma 5.15 follows immediately by applying Lemma 5.21 to g := f ◦ T−1
x . So 

Lemma 5.21 is the last missing piece. We prove it by applying Proposition 3.9, which is 
possible thanks to the normalization provided by Tx. This is inspired by ideas from [71], 
but at the same time geometric properties of radial curves and Möbius transformations 
in H1 play an important role in our argument via the following auxiliary result.

Lemma 5.23. For a point x ∈ B with ‖x‖ > R∗, let Tx be the associated Möbius transfor-
mation defined in (5.12), and let g : Tx(B) → g(Tx(B)) ⊂ H1 \ {0} be quasiconformal. 
Then, for S3 almost every ω ∈ S(x) and almost every s ∈ (0, 1), we have

|DHg(Tx(γ(s, ω)))| ≥
∣∣∣∣ ∂∂s‖g(Tx(γ(s, ω)))‖

∣∣∣∣ |(ω1, ω2)|
JTx

(γ(s, ω))1/4
.

Proof. Since g ◦ Tx is quasiconformal, the curve s �→ g(Tx(γ(s, ω))) is horizontal for S3

almost every ω ∈ S(x). Fix such ω = (ω1, ω2, ω3). Applying Lemma 3.28 to f = g ◦ Tx

and using the chain rule we find∣∣∣∣ ∂∂s‖g(Tx(γ(s, ω)))‖
∣∣∣∣≤ |(g ◦ Tx)I(γ(s, ω)))|

‖g(Tx(γ(s, ω)))‖ |DHg(Tx(γ(s, ω)))||DHTx(γ(s, ω))| 1
|(ω1, ω2)|

.

We conclude that
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|DHg(Tx(γ(s, ω)))| ≥
∣∣∣∣ ∂∂s‖g(Tx(γ(s, ω)))‖

∣∣∣∣ ‖g(Tx(γ(s, ω)))‖
|(g ◦ Tx)I(γ(s, ω)))|

|(ω1, ω2)|
|DHTx(γ(s, ω))|

≥
∣∣∣∣ ∂∂s‖g(Tx(γ(s, ω)))‖

∣∣∣∣ |(ω1, ω2)|
JTx

(γ(s, ω))1/4
. �

With these preparations in hand, we can conclude the proof of Lemma 5.21, and thus, 
in particular the whole proof of Proposition 5.4.

Proof of Lemma 5.21. Fix x ∈ B with ‖x‖ > R∗, and a constant N to be determined 
(not to be confused with the universal constant N from Remark 4.21). To simplify 
notation, we denote

Fx,N :=
{
ω ∈ S(x) where (g ◦ Tx)∗(ω) exists and ‖ lim

s→1
g(Tx(γ(s, ω)))‖ <

‖g(0)‖
N

}
.

Our goal is to prove for S3 almost every ω ∈ Fx,N that

Gx(ω) ≥ C ρx |(ω1, ω2)| logN (5.24)

for some universal constant C > 0. Indeed, for such ω, we find by the definition of sω,x

(recall Lemma 5.13 (3)) and by the choice of R∗ below (5.12) that

Gx(ω) ≥ (1 − r∗)3
1ˆ

sω,x

|DHg(Tx(γ(s, ω)))|
‖g‖(Tx(γ(s, ω)) ds.

Applying the bound for the horizontal derivative given in Lemma 5.23, we observe that

1ˆ

sω,x

|DHg(Tx(γ(s, ω)))|
‖g‖(Tx(γ(s, ω)) ds ≥

1ˆ

sω,x

∣∣∣∣∂s‖g(Tx(γ(s, ω)))‖
‖g(Tx(γ(s, ω)))‖

∣∣∣∣ |(ω1, ω2)|
JTx

(γ(s, ω))1/4
ds

≥
1ˆ

sω,x

∣∣∣∣ ∂∂s log ‖g(Tx(γ(s, ω)))‖
∣∣∣∣ |(ω1, ω2)|
JTx

(γ(s, ω))1/4
ds.

By the formula for the Jacobian JTx
stated in (4.7), the last expression equals

1ˆ

sω,x

∣∣∣∣ ∂∂s log ‖g(Tx(γ(s, ω)))‖
∣∣∣∣ |(ω1, ω2)| d(ax, γ(s, ω))2

ρx
ds.

By Remark 4.21, we have

d(ax, γ(s, ω))2 ≥ Cρx,
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and hence we obtain from the above chain of inequalities that

Gx(ω) ≥ C2 (1 − r∗)3 ρx |(ω1, ω2)|

∣∣∣∣∣∣∣
1ˆ

sω,x

∂

∂s
log ‖g(Tx(γ(s, ω)))‖ ds

∣∣∣∣∣∣∣
≥ C2 (1 − r∗)3 ρx |(ω1, ω2)|

∣∣∣∣log ‖(g ◦ Tx)(ω)‖
‖g(Tx(γ(sω,x, ω)))‖

∣∣∣∣ .
To control the logarithm term, we first apply Proposition 3.9 to obtain

‖g(0)‖ ≤ CK‖g(Tx(γ(sω,x, ω)))‖
d(Tx(γ(sω,x, ω)), ∂TxB)αK

(5.25)

for some constants CK and αK , which depend only on the distortion K. To justify this 
application of Proposition 3.9, we observe that there exist universal constants 0 < m <
M < ∞ such that

B(0,m) ⊂ Tx(B) ⊂ B(0,M) (5.26)

holds for all x ∈ B with ‖x‖ ≥ R∗ and Tx = Tx,ax,ρx
defined in Proposition 4.2 for a = ax

and ρ = ρx as in (d1)-(d3) below (5.12). Indeed, the second inclusion in (5.26) can be 
arranged by Corollary 4.9 since the choice of parameters ρx, ωx, and ax in (d1)-(d3) 
implies that conditions (4.10) are satisfied for ρ = ρx and a = ax:

d(ax, ∂B) (d3)= d(Ao,M0Nρx
(ωx), ∂B) ≥ ρx and d(ax, x)

(d1)−(d3)
> d(x, ∂B) (d1)= ρx.

On the other hand, the first inclusion in (5.26) can be arranged by Corollary 4.11 since 
(d1)-(d3) ensure that conditions (4.12) are satisfied for our choice of x, ρ = ρx, and 
a = ax:

d(x, ∂B) (d1)= ρx, d(ax, x) ≤ d(ax, ωx) + d(ωx, x)
(d2),(d3)

� ρx.

Then we use the normalization provided by Lemma 5.14 to continue the estimate in 
(5.25):

‖g(0)‖ �K ‖g(Tx(γ(sω,x, ω)))‖. (5.27)

On the other hand, since ω ∈ Fx,N , we know that

‖(g ◦ Tx)∗(ω)‖ <
‖g(0)‖
N

. (5.28)

Combining (5.27) and (5.28), we find for some constant C(K), which depends only on 
the distortion K, that
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‖(g ◦ Tx)∗(ω)‖
‖g(Tx(γ(sω,x, ω))))‖ <

‖g(0)‖
N

C(K)
‖g(0)‖

and hence

log ‖(g ◦ Tx)∗(ω)‖
‖g(Tx(γ(sω,x, ω))))‖ < log C(K)

N
< log 1

N1/2 = −1
2 logN(< 0)

if we have initially chosen

N > C(K)2 =: N(K),

so that C(K)/N < 1/N1/2. Thus for this choice of N , the previous estimates yield

Gx(ω) ≥ C2 (1 − r∗)3 ρx |(ω1, ω2)|
∣∣∣∣log ‖(g ◦ Tx)(ω)‖

‖g(Tx(γ(sω,x, ω)))‖

∣∣∣∣
≥ C2 (1 − r∗)3 ρx |(ω1, ω2)|

1
2 logN

for almost every ω = (ω1, ω2, ω3) ∈ Fx,N . �
6. Carleson measures and radial limits of quasiconformal maps on B

We apply the results from the previous section, notably Proposition 5.4, to character-
ize Carleson measures on B. While this proposition concerns the nontangential maximal 
function, the inequalities concerning this maximal function will only be used as inter-
mediate results and not appear in the main result. Below we take the strategy to first 
discuss a general type result in metric spaces and then apply it in the Heisenberg setting.

6.1. Carleson measures and nontangential maximal functions in metric spaces

It is well known that several variants of Carleson’s embedding theorem on the Eu-
clidean unit ball and half-space can be proven using nontangential maximal functions as 
an intermediate tool, see [68, VII. 4.4], [30, I. Exercise 19] and [5, Corollary 4.5]. The 
first step in these arguments works in rather general metric spaces, as we now show. 
Later we will apply this abstract result in the context of quasiconformal maps on the 
Korányi unit ball.

Recall that a non-empty domain Ω ⊂ X of a metric space (X, d) has s-regular boundary
for some s > 0, if its boundary is Ahlfors s-regular with respect to the Hausdorff measure 
on X restricted to ∂Ω, i.e., there exists a constant C ≥ 1 such that

C−1 rs ≤ Hs(B(x, r) ∩ ∂Ω) ≤ C rs, for all x ∈ ∂Ω and 0 < r < diam(∂Ω).
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Definition 6.1. Fix 1 ≤ α < ∞ and s > 0. Let (X, d) be a metric space and Ω ⊂ X a 
domain with nonempty s-regular boundary. We say that a (positive) Borel measure μ
on Ω is an α-Carleson measure on Ω if there exists a constant C > 0 such that

μ(Ω ∩B(ω, r)) ≤ Crα s, for all ω ∈ ∂Ω and r > 0. (6.2)

The α-Carleson measure constant of μ is defined by

γα(μ) := inf{C > 0 such that (6.2) holds for all ω ∈ ∂Ω and r > 0}

We also call 1-Carleson measures simply Carleson measures.

Recall Definition 2.18 and Remark 2.19.

Proposition 6.3. Fix s > 0 and 1 ≤ α < ∞. Let (X, d) be a proper metric space and 
let Ω ⊂ X be a bounded domain with nonempty s-regular boundary and let κ > 0 be 
such that the nontangential region Γκ(ω) is nonempty for all ω ∈ ∂Ω. Assume that μ
is an α-Carleson measure on Ω. Then the κ-nontangential maximal function Nκh of an 
arbitrary Borel function h : Ω → [0, +∞) satisfies

ˆ

Ω

hαp dμ ≤ C

⎛⎝ˆ

∂Ω

(NΩ,κh)p dHs

⎞⎠α

, for all 0 < p < ∞ (6.4)

where C depends on p, α, s, κ, γα(μ), and the s-regularity constant of ∂Ω. If α = 1, 
then C can be chosen independently of p.

Our proof of Proposition 6.3 is inspired by the first part of the proof of [5, Corollary 4.5]
in the context of the Euclidean unit ball. We generalize this approach using a Whitney 
decomposition in abstract doubling metric spaces, in the spirit of [15, Theorem 3.2]. For 
this purpose, it will be more natural to work directly with covering balls centered at 
points in ∂Ω, rather than analogs of the spherical caps S(xk), k = 1, 2, . . ., in [5].

Proof. Let p, α, s, κ, γα(μ), and h be as in the statement of the proposition. For sim-
plicity, we abbreviate throughout the proof Nκh := NΩ,κh and S(x) := Sκ(x). To prove 
(6.4), we define the superlevel sets

E(λ) := {x ∈ Ω : h(x) > λ} and U(λ) := {ω ∈ ∂Ω : Nκh(ω) > λ}, λ > 0.

It suffices to show that there exists a constant C, depending only on α, s, κ, γα(μ), and 
the s-regularity constant of ∂Ω, such that

μ(E(λ)) ≤ CHs(U(λ))α for all λ > 0. (6.5)
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If α = 1, then (6.4), with C independent of p, follows immediately from (6.5) by a 
standard application of Cavalieri’s principle. If α > 1, then by a similar reasoning, one 
concludes as follows:

ˆ

∂Ω

hαp dμ = αp

∞̂

0

λαp−1μ(E(λ)) dλ ≤ C

∞̂

0

λαp−1Hs(U(λ))α dλ

�

⎛⎝ ∞∑
j=−∞

Hs(U(2j))2jp
⎞⎠α

�

⎛⎝ˆ

∂Ω

(Nκh)p dHs

⎞⎠α

,

where the implicit constants now depend additionally also on α and p.
It remains to prove the superlevel set estimate (6.5), which we will do by a Whitney-

type decomposition of U(λ) if the latter is a strict subset of ∂Ω (otherwise the claim 
is trivial). Recall that U(λ) is a relatively open subset in ∂Ω, and (∂Ω, d|∂Ω) is metri-
cally doubling since it is s-regular. Thus we can for instance apply the general result 
[41, Proposition 4.1.15] to the metric space (∂Ω, d|∂Ω) and the open set U(λ) to find a 
countable collection Wλ = {B(ωi, ri) : i = 1, 2, . . .} of balls with ωi ∈ U(λ) such that

U(λ) =
⋃

i=1,2,...
B(ωi, ri) ∩ ∂Ω, (6.6)

∑
i

χB(ωi,2ri)∩∂Ω ≤ 2N5, (6.7)

where ri = (1/8)d(ωi, ∂Ω \U(λ)) and N depends only on s and the s-regularity constant 
of ∂Ω. (For our purposes, it would in fact suffice to obtain (6.7) with “B(ωi, ri)” instead of 
“B(ωi, 2ri)”.) To prove the superlevel set estimate, we want to show that E(λ) is included 
in the union of the balls B(ωi, Cri), for a suitable geometric constant C = C(κ). If x is 
an arbitrary point in E(λ), then

Nκh(ω) > λ, for all ω ∈ S(x) = B (x, (1 + κ)d(x, ∂Ω)) ∩ ∂Ω,

and hence

S(x) ⊂ U(λ) (6.6)=
⋃
i

B(ωi, ri) ∩ ∂Ω, for all x ∈ E(λ). (6.8)

Next, for x ∈ E(λ), let ωx ∈ ∂B be such that

d(x, ωx) = d(x, ∂Ω). (6.9)

Such a point may not be unique, but there exists at least one since ∂Ω is compact. By 
definition, ωx ∈ S(x), and therefore (6.8) implies that there exists ix ∈ {1, 2, . . .} such 
that ωx ∈ B(ωix , rix). Since S(x) ⊂ U(λ), we moreover know that
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d(ωx, ∂Ω \ U(λ)) ≥ d(ωx, ∂Ω \ S(x)). (6.10)

Combining this information, we find that

rix = 1
8d(ωix , ∂Ω \ U(λ)) ≥ 1

8 [d(ωx, ∂Ω \ U(λ)) − d(ωx, ωix)]

(6.10)
≥ 1

8d(ωx, ∂Ω \ S(x)) − 1
8rix . (6.11)

Since d(ωx, x) = d(x, ∂Ω), it is easy to see that

B (ωx, κd(x, ∂Ω)) ∩ ∂Ω ⊂ S(x).

Hence the above chain of inequalities implies that

9 rix
(6.11)
≥ d(ωx, ∂Ω \ S(x)) ≥ d(ωx, ∂Ω \B (ωx, κd(x, ∂Ω))).

As the right-hand side of the above inequality is bounded from below by κd(x, ∂Ω) =
κd(x, ωx), we obtain that

x ∈ B
(
ωix ,

( 9
κ + 1

)
rix

)
. (6.12)

Since x was chosen arbitrarily from E(λ), we have thus shown that E(λ) is covered by 
the countable family of balls B(ωi, Cri), i = 1, 2, . . ., where C = C(κ) = 9

κ + 1. Using 
that μ is an α-Carleson measure by assumption, the fact that Hs|∂Ω is s-regular, and 
the multiplicity of the Whitney balls is controlled by (6.7), we deduce that

μ(E(λ)) ≤ μ

(⋃
i

B(ωi, Cri) ∩ Ω
)

≤
∑
i

μ(B(ωi, Cri) ∩ Ω)

≤ γα(μ)
( 9
κ + 1

)sα ∑
i

rsαi

≤ γα(μ)
( 9
κ + 1

)sα (∑
i

rsi

)α

�
(∑

i

Hs(B(ωi, ri) ∩ ∂Ω)
)α

(6.7)
� Hs(U(λ))α,

as desired. This concludes the proof of Proposition 6.3, as explained above. �
6.2. Carleson measures and nontangential maximal functions in H1

We now apply Proposition 6.3 in H1 and observe that in this setting it can be strength-
ened to give an integral inequality involving the radial limit of a quasiconformal map. 
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The fact that such inequalities actually characterize Carleson measures on the Korányi 
ball B follows by an application of the Heisenberg radial stretch map [6]. Moreover, we 
provide consequences of this characterization in Section 6.2.1, where we present a rela-
tion between Hardy spaces and Bergman-type spaces for quasiconformal maps on B, see 
Theorem 6.18.

Theorem 6.13. Let 1 ≤ α < ∞ and assume that μ is an α-Carleson measure on B. If 
f : B → f(B) ⊂ H1 is K-quasiconformal, then

ˆ

B

‖f(q)‖αp dμ(q) ≤ Cp

⎛⎝ˆ

∂B

‖f∗(ω)‖p dS3(ω)

⎞⎠α

, for all 0 < p < ∞, (6.14)

where Cp depends only on p, α, K, and a Carleson measure constant γα(μ).
Conversely, for every K ≥ 1, there is p(K) < 3 such that if p > p(K) is fixed and μ

is a Borel measure for which (6.14) holds for all K-quasiconformal maps, then μ is an 
α-Carleson measure.

By Lemma 5.1, the first part of Theorem 6.13 immediately yields a necessary condition 
for α-Carleson measures μ on B in terms of Lαp(μ) integral inequalities for quasiconfor-
mal maps in Hp and ‖ · ‖Hp .

Corollary 6.15. Let 1 ≤ α < ∞ and assume that μ is an α-Carleson measure on B. If 
f : B → f(B) ⊂ H1 is K-quasiconformal, then, for all 0 < p < ∞,

⎛⎝ˆ

B

‖f(q)‖αp dμ(q)

⎞⎠
1
αp

≤ Cp‖f‖Hp ,

where Cp depends only on p, α, K, and γα(μ).

Proof of Theorem 6.13. In order to show the sufficiency part of the theorem, we apply 
Proposition 6.3 to (X, d) = (H1, d), Ω = B, and h = ‖f‖, where f : B → f(B) ⊂ H1 is 
K-quasiconformal, and we combine the result with Proposition 5.4.

For the proof of the necessity part of Theorem 6.13, let K ≥ 1 and assume that 
p > p(K) for a constant 0 < p(K) < 3 to be determined. We suppose that (6.14) holds 
for all K-quasiconformal mappings, and we will apply this condition to a particular 
such map in order to deduce that μ has to be an α-Carleson measure. The choice of 
the map in question is inspired by the proof of [5, Corollary 4.5] and it involves a 
quasiconformal Heisenberg radial stretch map, see [58,6,7,70] for different contexts in 
which such stretch maps have arisen. The only relevant information for us is that there 
exists a K-quasiconformal map fK : H1 → H1 with fK(∂B(0, r)) = ∂B(0, rβ(K)) for 
some β(K) ≥ 1 (this follows by considering the inverse of the map fk studied in [6, 
Section 4.1]).



T. Adamowicz, K. Fässler / Journal of Functional Analysis 284 (2023) 109832 55
Let us verify the α-Carleson measure condition for μ at an arbitrary point ω0 ∈ ∂B. 
Since (6.14) holds for all K-quasiconformal maps on B, it holds in particular for left 
translations, which shows that μ(B) < ∞. For this reason, it suffices to verify the α-
Carleson measure condition of μ for 0 < r < r0, where r0 ∈ (0, 1) is as in Remark 4.21
concerning the corkscrew property of B. Thus let us fix ω0 ∈ ∂B and 0 < r < r0. We 
will apply condition (6.14) to the map

f := fω0,r : H1 \ {a} → H1 \ {0}, f(y) := fK(I(a−1 · y)),

for suitably chosen a = a(ω0, r) ∈ H1 \ B, where fK is the K-quasiconformal radial 
stretch map discussed above and

I(y) = − 1
‖y‖4

(
yz(|yz|2 + iyt), yt

)
is the 1-quasiconformal inversion at ∂B. Since left translations are 1-quasiconformal as 
well, it follows that f |B is K-quasiconformal and (6.14) is applicable. The point a can 
be chosen using the exterior corkscrew condition of B such that

r

M0
≤ d(a, ∂B) ≤ d(a, ω0) ≤ r, (6.16)

recall Remark 4.21. It follows from the formula for the inversion that ‖I(y)‖ = 1/‖y‖ for 
all y ∈ H1 \ {0}, and hence

‖f(y)‖ = ‖I(a−1 · y)‖β(K) = 1
d(y, a)β(K) , y ∈ H1 \ {a}.

For all y ∈ B(ω0, r) ∩B, we know by (6.16) that d(y, a) ≤ 2r, and hence

1 = d(y, a)β(K) ‖f(y)‖ ≤ 2β(K) rβ(K)‖f(y)‖, for all y ∈ B(ω0, r) ∩B.

Hence, by (6.14),

μ(B(ω0, r) ∩B) ≤ 2αpβ(K)rαpβ(K)
ˆ

B

‖f(y)‖αp dμ(y)

�α,p,K rαpβ(K)

⎛⎝ˆ

∂B

‖f∗(ω)‖p dS3(ω)

⎞⎠α

.

Thus the α-Carleson measure property of μ will follow if we manage to show that
ˆ

‖f∗(ω)‖p dS3(ω) �p,K r3−β(K)p. (6.17)

∂B
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To upper bound the integral, we decompose the domain of integration as follows:

∂B ⊂
∞⋃
j=0

Aj , where Aj :=
{
ω ∈ ∂B : r

M0
2j ≤ d(ω, a) < r

M0
2j+1

}
.

The number of nonempty Aj depends on ω0 and r, so we need estimates that do not 
depend on this number. Indeed,

ˆ

∂B

‖f∗(ω)‖p dS3(ω) =
ˆ

∂B

d(ω, a)−β(K)p dS3(ω) �
∞∑
j=0

r−β(K)p2−jβ(K)p S3(Aj).

From (6.16), it follows that

Aj ⊂ B

(
ω0,

(
1
M0

+ 1
)

2j+1r

)
∩ ∂B, j = 0, 1, . . . ,

and hence, by the 3-regularity of S3|∂B , the integral can be further estimated as follows:

ˆ

∂B

‖f∗(ω)‖p dS3(ω) �
∞∑
j=0

r−β(K)p2−jβ(K)p S3
(
B
(
ω0,

(
1
M0

+ 1
)

2j+1r
)
∩ ∂B

)

� r3−β(K)p
∞∑
j=0

2j(3−β(K)p).

This yields (6.17) provided that p > 3/β(K), so that the above series is a finite constant 
depending on K and p. This concludes the proof with p(K) := 3/β(K). �
6.2.1. Applications of Theorem 6.13

We apply the characterization of Carleson measures on B ⊂ H1 to relate Hardy spaces 
and quasiconformal mappings integrable on the unit ball (a counterpart of the Bergman 
spaces), thus generalizing Theorem 9.1 in [5]. For a map f : B → H1 and 0 < p < ∞ we 
define

‖f‖Ap :=

⎛⎝ˆ

B

‖f(q)‖p dq

⎞⎠
1
p

,

and write f ∈ Ap if ‖f‖Ap < ∞.

Theorem 6.18. Let f be a quasiconformal mapping f : B → f(B) ⊂ H1.

(1) If f ∈ Hp, then f ∈ A
4
3p.

(2) If f ∈ Ap, then f ∈ Hp′ for all 0 < p′ < 3p.
4



T. Adamowicz, K. Fässler / Journal of Functional Analysis 284 (2023) 109832 57
The proof of the theorem employs a quantity that is inspired by [5, Theorem 3.3]. 
Given f : B ⊂ H1 → H1, we define

M(r, f) := sup
q∈Σr

‖f(q)‖, 0 ≤ r < 1,

where Σr := {q ∈ B : d(q, ∂B) = 1 − r}. The set Σr is different from ∂B(0, r) (it 
contains, e.g., the point (0, 0, 1 − (1 − r)2) = (0, 0, r(2 − r))), and its definition is tailored 
to play along well with the measure S3|∂B .

Proposition 6.19. Let 0 < p < ∞ and K ≥ 1. Then every K-quasiconformal map f :
B → f(B) ⊂ H1 with f(0) = 0 satisfies

ˆ

∂B

‖f∗(ω)‖p dS3(ω) ≤ C

1ˆ

0

(1 − r)2M(r, f)p dr, (6.20)

for a constant C that depends only on p and K.
If f : B → f(B) ⊂ H1 is an arbitrary quasiconformal map, then

1ˆ

0

(1 − r)2M(r, f)p dr < ∞ implies f ∈ Hp. (6.21)

We first show how Proposition 6.19 implies Theorem 6.18.

Proof of Theorem 6.18 based on Proposition 6.19 . Let f ∈ Hp be quasiconformal on 
B ⊂ H1. Since the Lebesgue measure on H1 is 4-Ahlfors regular, we obtain by (6.2)
for s = 3 that its restriction to B is α-Carleson for α = 4

3 and hence f ∈ A
4
3p by 

Corollary 6.15.
In order to show the second assertion of the theorem, we may without loss of generality 

assume that 0 /∈ f(B), using compositions with suitable left translations if necessary. 
Now for every quasiconformal map f : B → f(B) ⊂ H1 \ {0}, there exist constants 
0 < λ < 1 and C > 1 such that

‖f(q)‖ ≤ C‖f(y)‖, y ∈ B(q, λd(q, ∂B)), q ∈ B.

This Harnack property follows for instance from [1, Proposition 3.12], observing that 
d(f(y), ∂f(B)) ≤ ‖f(y)‖ since 0 /∈ f(B). Hence it holds that

‖f(q)‖ �

⎛⎜⎝ −
ˆ

B(q,λd(q,∂B))

‖f(y)‖p dy

⎞⎟⎠
1
p

� 1
d(q, ∂B)

4
p

,

where in the last inequality we also use that f ∈ Ap. Therefore,
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1ˆ

0

(1 − r)2M(r, f)p
′
dr �

1ˆ

0

(1 − r)2−
4
pp

′
dr

and the integral is finite if 3 − 4
pp

′ > 0. By Proposition 6.19 this yields that f ∈ Hp′ . �
Proof of Proposition 6.19. We prove the first part of the proposition under the assump-
tion f(0) = 0. If the integral on the left-hand side of (6.20) was computed with respect 
to the measure σ, which arises naturally from the modulus formula (2.6), then the proof 
of the estimate would follow almost verbatim the first part in the proof of [5, Theorem 
3.3] with “n” replaced by “4”. The main challenge is to prove the stronger inequality 
with σ replaced by S3|∂B . Analogously as in the proof of [5, Theorem 3.3], we define

Eλ := {ω ∈ ∂B : ‖f∗(ω)‖ > λ}.

As M(0, f) = 0, and since the sets Σr, 0 < r < 1, are topological spheres foliating B by 
Proposition 6.24, there exists a unique r(λ) ∈ (0, 1) such that

2M(r(λ), f) = λ (6.22)

whenever Eλ �= ∅. Since

ˆ

∂B

‖f∗(ω)‖p dS3(ω) =p

∞̂

0

S3 ({ω ∈ ∂B : ‖f∗(ω)‖ > λ}) λp−1 dλ

(6.22)
≤ S3(∂B) 2p M(1/2, f)p

+ p

ˆ

{λ∈(0,∞]: 1/2<r(λ)<1}

S3 ({ω ∈ ∂B : ‖f∗(ω)‖ > λ}) λp−1 dλ,

it suffices to prove that

S3(Eλ) �K (1 − r(λ))3, for all λ > 0 such that 1/2 < r(λ) < 1. (6.23)

Indeed, if we manage to show (6.23), the proof can be concluded exactly as below [5, 
(3.7)]. In order to establish (6.23), we divide each relevant Eλ into two “good” parts at 
safe distance from the characteristic points, and a “bad” part close to the characteristic 
points. To state the definition, for every ω ∈ ∂B \ {z = 0} and λ as before, we let 
sω := sλ,ω ∈ (0, 1) be such that

γ(sω, ω) ∈ Σr(λ).

Similarly as in Lemma and Definition 5.13, sω, one can make a Borel measurable choice 
ω �→ sω. Then we define
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G0,λ := {(
√

cosαeiϕ, sinα) ∈ Eλ : cosα ≥ 1/2},

Gλ := {ω = (
√

cosαeiϕ, sinα) ∈ Eλ \G0,λ : 1 − sω ≤ cosα},

and

Bλ := {ω = (
√

cosαeiϕ, sinα) ∈ E(λ) \G0,λ : 1 − sω > cosα}.

First, we observe that (6.23) holds with “Eλ” replaced by “G0,λ”. Using the modulus 
formula (2.6) and 1 − sω ∼ 1 − r for ω = (

√
cosαeiϕ, sinα) with cosα ≥ 1/2 (cf., e.g., 

Lemma A.2), this can be shown exactly as in the proof of [5, Theorem 3.3]. The resulting 
estimate is a priori stated in terms of the measure σ, but σ(G0,λ) ∼ S3(G0,λ) since the 
measures σ and S3|∂B are comparable on the parametric region {| cosα| ≥ 1/2}.

Second, we prove (6.23) with “Eλ” replaced by “Gλ”. We let Γλ be the family of radial 
segments in B that connect Σr(λ) to Gλ. We use the same modulus argument as in [5], 
but more subtle estimates for 1 − sω. Indeed, the standard modulus argument yields

mod4(Γλ) ≥
ˆ ⎛⎝ 1ˆ

sω

1
s
ds

⎞⎠−3

cos2 αdαdϕ =
ˆ ⎛⎝cos−1/2 α

1ˆ

sω

1
s
ds

⎞⎠−3
√

cosαdαdϕ.

Since 1 − sω ≤ cosα for ω = (
√

cosαeiϕ, sinα) ∈ Gλ and r(λ) > 1/2, we obtain by 
Lemma A.4 and the definition of sω that

1ˆ

sω

1
s
ds � (1 − sω) � (1 − r(λ))

√
cosα.

This shows that

1 � mod4(f(Γλ)) ∼K mod4(Γλ) � (1 − r(λ))−3 S3(Gλ),

as desired for (6.23).
Finally, we show that (6.23) holds also with “Eλ” replaced by the bad set “Bλ”. If 

ω = (
√

cosαeiϕ, sinα) ∈ Bλ, then

cosα ≤ 1 − sω � (1 − r(λ))2,

where we invoke Lemma A.4 for the last estimate. Thus we have the crude estimate:

S3(Bλ) ≤ 2π
ˆ

{α∈(−π/2,π/2): cosα≤(1−r(λ))2}

√
cosαdα

� (1 − r(λ))
∣∣{α ∈ (−π/2, π/2) : cosα ≤ (1 − r(λ))2

}∣∣ .
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Since r(λ) ≥ 1/2 by assumption, we only have to consider α ∈ (−π/2, π/2) with cosα ≤
1/4, so that α is either close to π/2 or to −π/2. In the first case, we have∣∣α− π

2
∣∣ �

∣∣cosα− cos π
2
∣∣ = cosα ≤ (1 − r(λ))2,

and in the second case we obtain analogously that α lies in an interval of length (1 −r(λ))2
around −π/2. This shows as desired that

S3(Bλ) � (1 − r(λ))3.

Summing the upper bounds for S3(G0,λ), S3(Gλ) and S3(Bλ) yields (6.23) and thus 
yields the first part of the proposition. By Theorem 1.4, the established inequality (6.20)
shows that (6.21) holds if f(0) = 0. The full statement of the proposition can be reduced 
to this one. Indeed, if f satisfies the assumption in (6.21), but f(0) �= 0, then consider 
the new map f̃ := Lf(0)−1 ◦ f , which has the desired property f̃(0) = 0. Since

M(r, f̃) = sup
q∈Σr

‖f(0)−1f(q)‖ ≤ sup
q∈Σr

‖f(q)‖ + ‖f(0)−1‖ = M(r, f) + ‖f(0)−1‖

for all r ∈ [0, 1), it follows that f̃ satisfies the assumption in (6.21) and by the first part 
of the proof, we conclude that f̃ ∈ Hp. Then it also follows that f ∈ Hp. �

We conclude this section by proving the topological result that we applied earlier.

Proposition 6.24. The sets

Σr := {q ∈ B : d(q, ∂B) = 1 − r}, 0 < r < 1,

are topological spheres.

Proof. We fix 0 < r < 1 and analyze the intersection of Σr with planes parallel to the 
xy-plane. Clearly,

Σr ∩
(
R2 × {t}

)
= ∅ for t ∈ (−∞,−1 + (1 − r)2) ∪ (1 − (1 − r)2,∞),

so it suffices to consider t ∈ [−1 + (1 − r)2, 1 − (1 − r)2]. Since rotations Rϕ about 
the t-axis are isometries for the Korányi metric, and the set B is invariant under such 
rotations, we observe that

Σr ∩
(
R2 × {t}

)
= {Rϕ(x, 0, t) : (x, 0, t) ∈ Σr and ϕ ∈ [0, 2π)}.

We claim that the function

δ : R → [0,+∞), δ(x) := d ((x, 0, t), ∂B)
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is strictly monotone increasing on the interval (− 4
√

1 − t2, 0), has a local maximum at 
x = 0, and then decreases strictly monotonically on (0, 1 + 4

√
1 + t2). To see this, we fix

x ∈ (0,+ 4
√

1 + t2) and v ∈ (−x, x). (6.25)

We denote

x− := (−x, 0, t), v := (v, 0, t), x+ := (x, 0, t)

By rotational symmetry, δ(−x) equals δ(x). We obtain that

B(x−, δ(x)) ∪B(x+, δ(x)) ⊂ B. (6.26)

We aim to deduce that B(v, δ(x)) lies in the convex hull of B(x−, δ(x)) and B(x+, δ(x)). 
Indeed, the latter two balls are left translates of B(v, δ(x)) by (−x − v, 0, 0) and (x −
v, 0, 0), respectively and therefore, every p ∈ B(v, δ(x)) lies on a line segment

�v,p := {(s, 0, 0) · p : s ∈ [−x− v, x− v]}

starting in B(x−, δ(x)) and ending in B(x+, δ(x)). By convexity of B, the segment 
�v,p is entirely contained in B, and in particular, B(v, δ(x)) ⊂ B. Since B is strictly 
convex, we obtain in fact that the closure of B(v, δ(x)) is contained in B, and hence 
d(v, ∂B) > δ(x), as desired. Since this argument works for arbitrary points x and v as 
in (6.25), we conclude that the distance function δ has the claimed strict monotonicity 
properties. This implies that Σr is foliated by circles. More precisely, there exists a 
function ρr such that

Σr =
⋃

t∈[−1+(1−r)2,1−(1−r)2]

{(x, y) ∈ R2 : x2 + y2 = ρr(t)2} × {t}, (6.27)

and ρr(t) = 0 for t = −1 + (1 − r)2 or t = 1 − (1 − r)2.
To conclude the argument, we will show that ρr is a continuous function. To this 

end, let t ∈ [−1 + (1 − r)2, 1 − (1 − r)2] be arbitrary, and let (tn)n be a sequence of 
points in (−1 + (1 − r)2, 1 − (1 − r)2) converging to t. Since Σr is compact (it is closed 
because d(·, ∂B) is continuous), the sequence ((ρr(tn), 0, tn))n ⊂ Σr has a subsequence 
that converges to a point (x′, 0, t′) ∈ Σr. Since the original sequence (tn)n converges to 
t, we have t′ = t. Moreover, since ρr(tn) ≥ 0 for all n, we have x′ ≥ 0, and (x′, 0, t) ∈ Σr

implies that x′ = ρr(t). Repeating the same reasoning for every subsequence of (tn)n, 
we obtain limn→∞ ρr(tn) = ρr(t), as desired. Hence ρr is continuous and the proposition 
follows by (6.27). �
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Appendix A. Radial curves and nontangential regions

The purpose of the Appendix is to prove Proposition 2.15, which states that there 
exists κ > 0 such that for every ω ∈ ∂B \ {z = 0}, the radial segment γ(s, ω) is 
contained in the nontangential approach region Γκ(ω) for all s ∈ (0, 1). This can be 
easily verified for ω = (eiϕ, 0), in which case γ(·, ω) is a horizontal line and d(γ(s, ω), ω) =
d(γ(s, ω), ∂B) for all s ∈ [0, 1]. It is also straightforward to check in the limiting case 
that unit segments on the vertical axis are contained in Γκ(ω) for ω = (0, 0, ±1) and 
any choice of κ. For arbitrary ω, the curve γ(s, ω) stays close to the horizontal normal 
of ∂B through ω for some time s ∈ [s(ω), 1] since it is obtained by a flow along a 
vector field tangential to ∇H‖ · ‖, see [8, (3.1)]. The distance estimates for the remaining 
curve segment γ(·, ω)|[0,s(α)] are similar to those for the vertical line segment. This is 
reminiscent of the construction of John curves in [60, (1.3)], but our focus lies on verifying 
the John property for the given radial curves. This is achieved by estimating d(γ(s, ω), ω)
(Lemma A.2) and d(γ(s, ω), ∂B) (Lemma A.4); the complete proof of Proposition 2.15
is given at the end.

First, we compute the distance between points in ∂B and in the paraboloid

Pα := {(x, y, t) ∈ H1 : t
x2+y2 = tanα}, α ∈ (−π/2, π/2).

Let s > 0, p = (s
√

cosαeiϕ, sinα) ∈ ∂B(0, s) ∩ Pα, and ω̃ ∈ ∂B, ω̃ = (
√

cos α̃eiϕ̃, sin α̃)
be arbitrary. By applying a rotation about the t-axis, we obtain

d(p, ω̃) = ‖(−s
√

cosα, 0,−s2 sinα) · (
√

cos α̃ cos(ϕ̃− ϕ),
√

cos α̃ sin(ϕ̃− ϕ), sin α̃)‖.

Denoting φ := ϕ̃− ϕ, a straightforward computation yields that

d(p, ω̃)4 (A.1)

=
(
(
√

cos α̃ cosφ− s
√

cosα)2 + cos α̃ sin2 φ
)2

+
(
sin α̃− s2 sinα + 2s

√
cosα

√
cos α̃ sinφ

)2

= 1 + s4 + s2(6 cosα cos α̃− 2 sinα sin α̃)

− 4s
√

cosα
√

cos α̃
(
cos(α̃ + φ) + s2 cos(α− φ)

)
.

We will estimate d(γ(s, ω), ω) in two different ways, which will yield better estimates 
depending on which range of parameters we consider.

Lemma A.2. If ω = (
√

cosα cosϕ,
√

cosα sinϕ, sinα) with ϕ ∈ [0, 2π), α ∈ (−π/2, π/2), 
then

d (γ(s, ω), ω) � min
{

1 − s√ ,
√

1 − s + 4
√

1 − s 4
√

cosα
}
, s ∈ (0, 1].
cosα
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Proof. The bound by the first expression in the minimum follows if we estimate the 
distance between γ(s, ω) and ω from above by the length of the radial curve segment 
that connects the two points:

d(γ(s, ω), ω) ≤ length(γ(·, ω)|[s,1])
(3.27)=

1ˆ

s

1√
cosα

dσ = 1 − s√
cosα

.

To prove the second bound for d(γ(s, ω), ω), we recall the formula for radial curves 
provided by Theorem 2.1 and apply (A.1) to p = γ(s, ω) and ω̃ = ω. This yields:

d (γ(s, ω), ω)4 = 1 + s4 + s2 [
6 cos2 α− 2 sin2 α

]
(A.3)

− 4s cosα
[
cos (α + tanα ln s) + s2 cos (α− tanα ln s)

]
.

It is convenient to write this formula as

d(γ(s, ω), ω)4 = sin2 α(1 − s2)2 + cos2 α(1 − s)4 − Λ

where

Λ := 4s cosα
[
− sinα sin(tanα ln s)(1 − s2) − cosα(1 + s2)(1 − cos(tanα ln s))

]
.

To conclude the proof, it suffices to find a suitable upper bound for |Λ|. If s ∈ (0, 1/4], 
then we simply use |Λ| � s ≤ (1 − s)2, which yields in that case d(γ(s, ω), ω) �

√
1 − s. 

On the other hand, if s ∈ (1/4, 1], then by the mean value theorem, we find that

|Λ| � cosα(1 − s2) |sin(tanα ln s) − sin(tanα ln 1)|
+ cos2 α(1 + s2) |cos(tanα ln s) − cos(tanα ln 1)|

�(1 − s)| ln s− ln 1| + cosα| ln s− ln 1|
�(1 − s)2 + (1 − s) cosα,

which yields the desired estimate in that case. �
Lemma A.4. There exists s0 ∈ (0, 1) such that for all s ∈ [s0, 1] the following holds. If 
ω = (

√
cosα cosϕ,

√
cosα sinϕ, sinα) with ϕ ∈ [0, 2π], α ∈ (−π/2, π/2), |α| ≥ c, then

d(γ(s, ω), ∂B)4 �c

{
(1 − s)2, if 1 − s ≥ cosα,
(1−s)4
cos2 α , if 1 − s ≤ cosα.

Proof. Using formula (A.1) for an arbitrary point ω̃ = (
√

cos α̃eiϕ̃, sin α̃) ∈ ∂B, we write

d(γ(s, ω), ω̃)4 =
(√

1 + s4 + 2s2 cos(α + α̃)
)2

+
(
2s
√

cosα
√

cos α̃
)2



64 T. Adamowicz, K. Fässler / Journal of Functional Analysis 284 (2023) 109832
− 4s
√

cosα
√

cos α̃
(
cos(α̃ + φ) + s2 cos(α− φ)

)
, (A.5)

where φ = ϕ̃− ϕ + tanα ln s. We claim that for all φ ∈ R it holds that

[cos(α̃ + φ) + s2 cos(α− φ)]2 ≤ 1 + s4 + 2s2 cos(α + α̃). (A.6)

Factoring out the left-hand side, the claim is easily seen to be equivalent to

2s2 cos(α̃ + φ) cos(α− φ) ≤ sin2(α̃ + φ) + 2s2 cos(α + α̃) + s4 sin2(α− φ).

Using trigonometric formulas, it follows that (A.6) is further equivalent to

2s2 cos ((α̃ + φ) + (α− φ)) + 2s2 sin(α̃ + φ) sin(α− φ) ≤ sin2(α̃ + φ) + 2s2 cos(α + α̃)

+ s4 sin2(α− φ),

which is clearly true since 0 ≤
(
sin(α̃ + φ) − s2 sin(α− φ)

)2 holds for all φ. Thus, 
claim (A.6) is proven. Assume now that ω̃ ∈ ∂B realizes the distance d(γ(s, ω), ∂B). 
Inserting (A.6) in (A.5), we find that

d(γ(s, ω), ∂B)4
(A.6)
≥

(√
1 + s4 + 2s2 cos(α + α̃) − 2s

√
cosα cos α̃

)2

≥
(

1 − 2s2 cos(α− α̃) + s4√
1 + 2s2 cos(α + α̃) + s4 + 2s

√
cosα cos α̃

)2

≥ (1 − s2)4(
cosα + s2 cos α̃ + 2s

√
cosα cos α̃ + | sinα− s2 sin α̃|

)2 . (A.7)

The denominator of the last expression can be bounded from above, recalling that |α| ≥ c

and that

d(γ(s, ω), ∂B) = d(γ(s, ω), ω̃) ≥ |s
√

cosα−
√

cos α̃| ≥ |
√

cosα−
√

cos α̃|− (1− s)
√

cosα.

Since 1 − s ≤ d(γ(s, ω), ∂B), this yields the following estimates

|
√

cosα−
√

cos α̃| � d(γ(s, ω), ∂B)

| cosα− cos α̃| �
(√

cosα + d(γ(s, ω), ∂B)
)
d(γ(s, ω), ∂B)

|α− α̃| �c

(√
cosα + d(γ(s, ω), ∂B)

)
d(γ(s, ω), ∂B).

This, in turn, yields the following estimate for the denominator in (A.7) above,
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∣∣∣ cosα + s2 cos α̃ + 2s
√

cosα cos α̃ + | sinα− s2 sin α̃|
∣∣∣

≤ s2(cosα− | sinα|) + 2s cosα + cosα + | sinα|
+ s2| cosα− cos α̃| + s2| sinα− sin α̃| + 2s

√
cosα|

√
cos α̃−

√
cosα|

�c cosα + (1 − s2)| sinα| +
(√

cosα + d(γ(s, ω), ∂B)
)
d(γ(s, ω), ∂B)

=: I1 + I2 + I3.

To conclude the proof, it suffices to observe that if 1 − s ≥ cosα, then I2 � max{I1, I3}, 
while if 1 − s ≤ cosα, then I1 � max{I2, I3}. The first inequality is a consequence of the 
direct estimate relying on |α| ≥ c, s ≥ s0 and on the following observation:

1 − s ≥
√

cosα
√

1 − s �
√

cosαd(γ(s, ω), ∂B).

Thus I2 � max{I1, I3}. If 1 − s ≤ cosα, the inequality I1 � max{I2, I3} follows simi-
larly. �

With Lemmas A.2 and A.4 at hand, we are ready to prove Proposition 2.15.

Proof of Proposition 2.15. The goal is to find κ > 0 such that for all ω = (
√

cosαeiϕ,

sinα),

d(γ(s, ω), ω) ≤ (1 + κ)d(γ(s, ω), ∂B), for all s ∈ (0, 1). (A.8)

We fix a constant 0 < c < π/2. If |α| ≤ c (and hence cosα ∼c 1), Lemma A.2 yields

d(γ(s, ω), ω) �c 1 − s = 1 − ‖γ(s, ω)‖ ≤ d(γ(s, ω), ∂B), s ∈ (0, 1). (A.9)

If |α| ≥ c, we first prove the estimate under the assumption that s ∈ [s0, 1) for s0 < 1
as in Lemma A.4. In this situation, we discuss separately the cases 1 − s ≤ cosα and 
1 − s ≥ cosα, using the two different bounds provided by Lemma A.2. If 1 − s ≤ cosα, 
we deduce

d(γ(s, ω), ω) � 1 − s√
cosα

�c d(γ(s, ω), ∂B) for all s ∈ [s0, 1). (A.10)

If 1 − s ≥ cosα, we obtain

d(γ(s, ω), ω) �
√

1 − s �c d(γ(s, ω), ∂B) for all s ∈ [s0, 1). (A.11)

Finally, if |α| ≥ c and s ∈ (0, s0), then we simply use the crude estimate

d(γ(s, ω), ω) � 1 ≤ 1
1 − s0

d(γ(s, ω), ∂B). (A.12)

Combining the estimates (A.9) - (A.12), we find κ such that (A.8) holds as desired. �
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