
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

On Attacking Future 5G Networks with Adversarial Examples : Survey

© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Published version

Zolotukhin, Mikhail; Zhang, Di; Hämäläinen, Timo; Miraghaei, Parsa

Zolotukhin, M., Zhang, D., Hämäläinen, T., & Miraghaei, P. (2023). On Attacking Future 5G
Networks with Adversarial Examples : Survey. Network, 3(1), 39-90.
https://doi.org/10.3390/network3010003

2023

Citation: Zolotukhin, M.; Zhang, D.;

Hämäläinen, T.; Miraghaei, P. On

Attacking Future 5G Networks with

Adversarial Examples: Survey.

Network 2023, 3, 39–90. https://

doi.org/10.3390/network3010003

Academic Editor: Markus Fiedler

Received: 17 November 2022

Revised: 9 December 2022

Accepted: 27 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

On Attacking Future 5G Networks with Adversarial
Examples: Survey
Mikhail Zolotukhin 1,* , Di Zhang 2, Timo Hämäläinen 1 and Parsa Miraghaei 3

1 Magister Solutions Ltd., 40720 Jyväskylä, Finland
2 Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
3 Faculty of Information Technology and Communication Sciences, Tampere University,

33100 Tampere, Finland
* Correspondence: mikhail.zolotukhin@magister.fi

Abstract: The introduction of 5G technology along with the exponential growth in connected devices
is expected to cause a challenge for the efficient and reliable network resource allocation. Network
providers are now required to dynamically create and deploy multiple services which function
under various requirements in different vertical sectors while operating on top of the same physical
infrastructure. The recent progress in artificial intelligence and machine learning is theorized to be
a potential answer to the arising resource allocation challenges. It is therefore expected that future
generation mobile networks will heavily depend on its artificial intelligence components which may
result in those components becoming a high-value attack target. In particular, a smart adversary may
exploit vulnerabilities of the state-of-the-art machine learning models deployed in a 5G system to
initiate an attack. This study focuses on the analysis of adversarial example generation attacks against
machine learning based frameworks that may be present in the next generation networks. First,
various AI/ML algorithms and the data used for their training and evaluation in mobile networks
is discussed. Next, multiple AI/ML applications found in recent scientific papers devoted to 5G
are overviewed. After that, existing adversarial example generation based attack algorithms are
reviewed and frameworks which employ these algorithms for fuzzing stat-of-art AI/ML models
are summarised. Finally, adversarial example generation attacks against several of the AI/ML
frameworks described are presented.

Keywords: 5G networks; artificial intelligence; deep learning; adversarial machine learning; 5G
cybersecurity knowledge base

1. Introduction

According to IMT-2020 requirements, the 5th generation networks shall provide for
20 times faster communication and 90% less latency compared to 4G-LTE which calls for
a series of new technologies being innovated, applied and developed [1]. This revolution
takes place in each networking component including radio access network (RAN), core
network (CN) and user equipment (UE). Millimetre waves (mmWave) utilising higher
frequency, e.g., 24.25–27.5 GHZ demand more agile and precise mobility management to
maintain service continuity [2] whereas massive multi-input multi-output (MIMO) antenna
technology since applying 64T/64R requires more accurate resource allocation mechanisms
and prediction algorithms to enhance the space diversity [3]. Dynamic time-division
duplexing (TDD) that aims to improve the spectrum efficiency by continuously adapting
the transmission direction needs more real-time reacting algorithms [4]. Despite these
frequency, space and domain technologies sound valuable in theory, they are hard to
coordinate in effect. The significantly raised management requirements are expected to be
solved by introducing artificial intelligence (AI) and machine learning (ML), as proposed
in new 3GPP study item “Artificial Intelligence and Machine Learning in NG-RAN: New

Network 2023, 3, 39–90. https://doi.org/10.3390/network3010003 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network3010003
https://doi.org/10.3390/network3010003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0001-8058-7902
https://doi.org/10.3390/network3010003
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network3010003?type=check_update&version=1

Network 2023, 3 40

Study in RAN3” [5]. Furthermore, AI/ML frameworks are proved to be more resource
efficient and they allow mobile network providers to reduce operational expenses (OpEx),
especially when facing more complex hard to model systems [6] or embracing new kinds
of applications to the wireless communication systems [7]. Furthermore, AI/ML improves
the ability of the operators to learn about their networks and customers’ needs. This in
return leads to better understanding and reasoning when making decisions in different
scenarios and environment conditions [8].

As AI/ML has recently become an indispensable part of modern mobile networks,
vulnerability of AI/ML models to adversarial effects causes an increasing concern. Due
to the shared nature of wireless medium, mobile network applications are vulnerable to
adversaries that can manipulate the training and inference processes of AI/ML-driven
frameworks over the air. However, due to different channel gain values, an adversary is
not capable of observing the input features of the target AI/ML model directly. In addition,
since the output of the target model is most of the time used internally by the network
component and it is not accessible from outside, the attacker does not have access to the
output label. Finally, the adversary usually can only change the input data indirectly by
adding some signal perturbations to the existing transmissions [9].

Therefore, from the methodology point of view, the attack resembles radio jamming,
i.e., an adversary uses a malicious fake BS (FBS) to emit a radio signal on top of existing
transmissions to perturb the input to the model in such a way that its output is incorrect
which in turn may negatively affect the functionality of the corresponding network compo-
nent in which the model is deployed. In the majority of cases, the effect from the attack is
similar to the one caused by radio jamming and denial-of-service attacks, i.e., deterioration
of the network data rate which can lead to mobile customers being unable to use certain
network services as described in FS.30 Security Manual of 5G Cybersecurity Knowledge
Base [10]. For this reason, mitigation measurements from RAN-3 of the Baseline Security
Controls FS.31 can be employed [11] as well as security techniques described in IR.77 [12]
and fraud mitigation measurements [13].

Speaking in more details of the adversarial machine learning attacks, those may take
place during both the training or inference stage. During the training, the adversary either
poisons the training data directly or injects perturbations to the training samples so that
the target model is trained with the resulting malicious samples leading to it making errors
later during the inference [14]. There are two main variations of such poisoning attacks:
those targeting the model’s availability, and those targeting its integrity. The first group
of the attacks aims to distort the patterns present in the data in order to make the model
inaccurate and therefore useless. The second group of the attacks is more sophisticated as
it aims to poison the training data in such an intelligent way that a backdoor is introduced
into the target model. A backdoor is a type of input the attacker can leverage to make the
model under attack to label data samples with certain characteristics as the target class.
As a result, the trained model produces correct results on regular clean data, however, it
misclassifies a source category sample as the target category one when the attacker injects
the trigger to the source input feature vector [15].

Concerning the poisoning attacks in 5G, an adversary can in theory utilise the end
users’ equipment to send false signals and messages to the RAN domain after authentication
and authorization in the CN domain. If a network provider decides to use the data collected
to train an AI/ML model, it ends up with the model that is either inaccurate or, in the worst
case scenario, vulnerable to backdoor triggers. Apart from data poisoning via end users’
equipment, poisoning attacks may also take place when transmitting model parameters
and/or data in certain transmission procedures as RAN can also exchange data with
the CN and the operation and maintenance (OAM) domains to collaboratively improve
specific end users’ quality of experience (QoE) with regards to data rate [16] and to enhance
cooperatively the service continuity of the end users [17] as well as RAN throughput [18].
Despite such a threat certainly exists, this attack approach can be successful only in the case
of some major flaw in the data processing pipeline. For example, the provider decides to

Network 2023, 3 41

use the training dataset obtained from a non-trusted source or the adversary has access to
some internal components of the AI/ML model during the training stage which allows it
to inject poisonous data.

In our research, we focus on adversarial example attacks. This type of attack is a more
realistic threat to the AI/ML models deployed in a 5G network since it takes place in the
inference stage and therefore requires having access to neither the target model nor the
datasets during the training. During such an adversarial example generation attack the
adversary aims to supply such input features to the target model that it outputs some
wrong result [19]. As mentioned above, adversarial examples in mobile networks are
usually generated via adding carefully crafted radio signal perturbations. In this case,
the adversary as a rule perturbs the samples on the decision boundary. This allows the
attacker to increase the chance of the target model making an error [20]. The algorithms
for adversarial example generation usually fall into one of two main categories: white-box
or black-box. In the former scenario, the adversary has access to the target model and in
some cases even the data used for its training. In the latter case, the attacker is only capable
of observing the labels returned by the model for the inputs provided making the attack
algorithms from this category more applicable in real-world use case scenarios.

In a 5G network system, white-box attacks in the inference stage would require having
the ability to access the target network components, e.g., centralised unit (CU) in RAN,
network data analytics function (NWDAF) in CN, management data analytics function
(MDAF) in OAM and data storage centre, which needs to initiate an eavesdropping or
man-in-the-middle attack in advance. Despite being more efficient, these attack vectors are
much more difficult to implement due to defending mechanisms defined in 3GPP SA3 [21].
As mentioned earlier, in a real world wireless networking system the adversary has direct
access to neither the target model nor its input feature space and output labels. For this
reason, black-box attack scenarios are more realistic in a 5G system as such attacks are much
easier to carry out by utilising end users’ equipment to send intelligently crafted signals.

As we have recently become interested in this research area, we find that amusing that
to our knowledge there is no all-in-one type of document devoted to this topic that would
allow a reader to obtain extensive information about every important aspect of the problem
including AI/ML applications in 5G networks, datasets and simulators that can be used
for experimentation, algorithms for crafting adversarial examples and fuzzing frameworks
which provide stable implementations of these algorithms. The purpose of this survey is to
fill this gap by providing detailed introduction and references for each of the issues listed.
Our contribution is therefore two-fold. First, we summarise and categorise the studies
devoted to applications of AI/ML in the mobile networking domain including the data
used and the algorithms employed. Second, we survey and analyse potential attacks which
can be carried out using adversarial examples in the next generation mobile networks and
outline future research directions and use case scenarios to study which might be useful for
other researchers interested in this topic.

The rest of the document is organised as follows. Section 2 overviews big data used
in 5G. Various AI/ML algorithms that are proposed to be employed in 5G networks
are summarised in Section 3. Section 4 surveys a multitude of recent scientific papers
devoted to enhancing 5G networks with AI/ML. Both white-box and black-box adversarial
example generation attacks against these algorithms are listed in Section 5. Existing tools
and frameworks which can be deployed for AI/ML fuzzing are overviewed in Section 6.
Transferability of the attack algorithms and tools studied to the 5G network domain is
discussed in Section 7. The main points of the survey are discussed in Section 8. Section 9
concludes the paper and outlines future work.

2. Big Data in 5G

Based on its source, the mobile network data can be divided into two main categories:
network-level and application-level [22]. The former is obtained throughout network
infrastructure while the latter as a rule is collected by the mobile devices on the edge.

Network 2023, 3 42

Network-level mobile data may include global mobile network performance metrics which
include but are not limited to throughput, end-to-end delay, and jitter, as well as individual
session times, information about the sender and the receiver, communication types, call
detail records (CDRs) and many others. Network-level data is usually utilised for net-
work diagnosis and management. Moreover, spatio-temporal patterns extracted from the
network-level data can be employed for user mobility analysis and public transportation
planning. Network-level data can be further subdivided into the following four sub-classes:
radio information, CDR, key performance indicators (KPI), and infrastructure data [8].
The first group includes such radio signal statistics as the serving BS, modulation scheme,
spectrum, frequency and signal power. CDR data may contain information about the
sender and the receiver, packet inter-arrival times, session start and end times and several
others. Frequently used KPIs in the third group are bit/packet error rate, end-to-end delay,
jitter, quality of experience (QoE), and throughput. The last group consists of information
about equipment holders, infrastructure locations and capabilities.

In distinction from the network-level category, application-level data is recorded by
mobile devices’ sensors or applications installed on those devices. The data sources may
include mobile cameras and video recorders as well as global positioning systems (GPS)
and several others. Data gathering, preprocessing, and subsequent distribution of such
data to specific locations is carried out on mobile devices themselves [23]. The data as
a rule is related to public events and it is collected through crowdsourcing schemes. Such
increase of social data can be explained by availability of the mobile Internet which has
made multimedia communication accessible for everyone. Furthermore, preferences of
individuals or social groups can also be extracted and analysed due to wide spread and
popularity of mobile social networks. Another distinct group of application-level data is
related to cloud servers and multimedia content stored on them. Users’ preferences for
specific multimedia content can be analysed and used to predict content demands in the
future which in turn allows the network providers to perform recommendation actions in
order to improve user experience.

Many studies devoted to application of AI/ML in wireless networks generate the data
using various simulation software. Such software includes specialised network simulators
such as Vienna LTE-A [24], 6TiSCH [25] and OMNeT++ [26]. Another group of researchers
generate the data implementing well known channel models using programming and
scripting software, e.g., Python and Matlab. The third data simulation option is using a real
radio network testbed. Even though this option allows one to carry out the most realistic
experiments, it is obviously the most expensive one. In addition, such an approach is most
of the time not scalable in the lab environment. Finally, the data for training and evaluating
AI/ML models can be retrieved from publicly available datasets. The datasets used in the
studies surveyed and summarised later in this document are listed in Table 1.

Network 2023, 3 43

Table 1. Mobile network datasets used by researchers for training AI/ML models.

Dataset Description Features and Labels Mobile Network
Applications

DeepMIMO [27] Dataset for mmWave and massive
MIMO

Channel matrix, ray-tracing path
parameters, line-of-sight status, tx-rx

distance path loss, UE and BS locations

Channel estimation in
MIMO [28]

RadioML [29]
Synthetic dataset consisting of
several modulations at varying

SNRs

The received signal in
in-phase/quadrature (I/Q) format,

SNR, modulation type

Automatic modulation
classification [30–32]

Raymobtime [33] Realistic dataset with ray tracing,
mobility and time evolution

UE positions, ray-tracing, lidar and
video image data Beam selection [34]

SPHERE [35] Activity recognition with
multi-modal sensor data

Accelerometer data, features extracted
from video, passive sensor data, activity Activation control [36]

Massive MIMO [37]
Data for power allocation in the
downlink of a massive MIMO

network

UE positions, max-min and max-prod
power allocation vectors Power allocation [37]

IBM/Watson [38] SNMP records for IBM Watson
research centre over several weeks

Aggregated network traffic features for
each user of several APs Scheduling [39]

CTU [40] Real botnet, normal and
background traffic

Raw packet captures, per-flow network
traffic data features, flow labels

Network intrusion
detection [41]

AWID [42] Real 802.11 WLAN traces including
normal and malicious traffic

MAC layer, radio and general frame
information extracted from 802.11

WLAN traffic, attack labels

Network intrusion
detection [43]

CICIDS18 [44] Realistic network traffic data for
multiple attack scenarios

Raw packet captures, per-flow network
traffic data features

Network intrusion
detection [45]

WSN-DS [46] Dataset for intrusion detection
systems in wireless sensor networks

Node state features: energy
consumption, packets sent/received,

distance to BS, attack labels

Jamming detection and
classification [47]

3. Algorithms

In this section, we summarise multiple AI/ML algorithms which are employed for big
data analysis in 5G networks. They are usually grouped into one of the following three gen-
eral categories depending on whether or not a human supervision is required: supervised,
unsupervised and reinforcement. Supervised learning requires large quantities of human-
labelled data available to learn a functional mapping between the input features and the
output labels. Two main advantages of supervised learning are the convergence speed
and high accuracy. Unsupervised learning infers the underlying information structure of
the data without any external supervision. As a rule unsupervised learning methods are
less accurate than supervised ones, but on the other hand no prior knowledge is required
to train an AI/ML model in an unsupervised way. Finally, reinforcement learning (RL)
discovers optimal actions through interactions in uncertain time-varying environments
with the help of reward signals retrieved by an agent during the learning process. Direct
supervision is not required for an RL agent, but shaping an efficient reward function may
require considerable manual effort. It is also worth mentioning that training an RL agent
is most of the time carried out in a realistic simulation software designed to emulate the
corresponding real world environment since often training in the real world environment
is either extremely time consuming and expensive or not feasible at all. Furthermore,
implementing such a simulation software may require huge amounts of resources which
poses additional limitations on this machine learning approach.

Network 2023, 3 44

3.1. Supervised Learning

Table 2 summarises AI/ML algorithms proposed to be deployed in various mobile
network components. As one can notice, the major part of the AI/ML applications is based
on deep learning architectures trained in a supervised way. Deep learning approach relies
on training multi-layered neural networks the first layers of which look for extraction of fea-
tures from raw data samples whereas the achievement of the task given is the responsibility
of the later layers. The neurons are activated through weighted connections. As a rule,
the neuron output is calculated by applying a nonlinear activation function, which allows
the network to approximate nonlinear transformations. The learning process is carried
out by back-propagating the loss calculated in the output layer towards the input layer.
Speaking of the loss function, in classification tasks it is usually categorical cross-entropy,
whereas in regression tasks the mean square error (MSE) is commonly used. The simplest
deep learning architecture frequently used is a fully-connected neural network. Each
neuron in the output or a hidden layer of such a network is connected to each neuron of
the previous layer. Fully-connected, or dense, layers have few trainable parameters which
allows them to learn faster than other more complicated deep learning structures, however
they cannot extract spatio-temporal patterns present in the data which can be a critical
issue when dealing with time-series or images.

Convolutional neural networks (CNNs) are often used in image related problems as
they are capable of extracting low-level features including edges as well as colour and
gradient orientations [48]. The main building block of a CNN is the convolutional layer
which calculates the overlap of the layer’s filter over its input. As previously, to account for
nonlinearity in the data the output value is passed through an activation function. As a rule,
the final output of the convolution layer consists of multiple convolutions of the input with
different filters. After a convolution operation, pooling can be performed to reduce the
dimensionality of the output. Max pooling is probably the most frequently used pooling
mechanism. It uses a moving window over its inputs with a given step and calculates the
maximum value in each such window. A CNN as a rule includes several convolutional
layers mixed with few pooling layers followed by dense layers. In such architecture,
the convolutional layers allow for extraction of local features present in the image data
supplied whereas the dense layers provide for global overview of the features extracted.

In order to extract features from time-series data, recurrent neural networks (RNNs)
are often employed. Such deep learning architectures have one or several recurrent layers.
Each recurrent layer has some sort of an internal memory which changes with every new
batch of training samples supplied. The value of this memory also affects the output of the
layer. As a rule, the output value is simply equal to the weighted sum of the input sample
and the internal memory state vector. As in previous cases, an activation function is applied
to this output to account for nonlinearities. At the training stage, the error is propagated
through time back to a certain moment. This may result in infinite or extremely small
gradient values. The former problem can be solved via gradient clipping [49]. The latter
one requires introducing specific gate structures which control the internal state updates.
The most popular gate-based RNN layers include long short-term memory (LSTM) [50] and
gated recurrent units (GRUs) [51]. Another RNN architecture is echo state network (ECN)
which addresses computational expensiveness of gated RNNs [52]. In ECN, the weights
of the hidden reservoir layer are randomly assigned and they are not trainable. The same
applies to the weights between the input and the hidden layer. The only trainable part of
the network consists of the weights of the output neurons. It is learned in a supervised way
so that the entire framework reproduces specific temporal patterns. It is worth mentioning
that convolutional layers can also be employed to extract features from temporal data.
For example, DeepMind’s Q-network that teaches itself to play Atari games, stacks the last
four frames of the historical data to produce an input for the CNN [53].

Recent studies propose a new architecture that replaces RNNs with attention mecha-
nisms [54]. As a rule, an attention function maps a set of key-value pairs and a query to
some output. The attention weight for each value in this mapping is computed as a com-

Network 2023, 3 45

patibility function of the query with the corresponding key. The sum of the values each of
which is multiplied by the corresponding weight acts as the output of the attention function.
Transformer, the neural network architecture proposed in the aforementioned study [54], is
based on the attention mechanism entirely. The transformer allows one to achieve a new
state-of-the-art accuracy in certain language processing tasks. At the same time, it can be
trained significantly faster than architectures based on recurrent or convolutional layers.

The last but not the least deep learning mechanism worth mentioning in the intro-
duction is residual neural networks [55]. Such networks aim to alleviate the problem of
vanishing gradients that is typical in deep learning architectures: as the gradient is back-
propagated to earlier layers, repeated multiplication makes the gradient infinitely small.
The core idea of residual networks is introducing an identity shortcut connection that skips
one or several layers. Stacking the resulting residual blocks on top of each other allows one
to build a very deep network architecture which does not suffer from vanishing gradients.
The original paper that introduced residual networks used two different blocks: identity
block and convolutional block. The difference is the latter has additional convolution, batch
normalisation and activation layers in the main path and convolution accompanied by the
batch normalisation in the shortcut.

There are several supervised algorithms not based on deep learning which are still
popular among AI/ML researchers. For example, a support vector machine (SVM) con-
structs a hyperplane or a set of hyperplanes in a high- or infinite-dimensional space to
separate samples in a dataset. Such hyperplanes are usually found by solving the corre-
sponding constrained optimization problem. Linear regression is the simplest regression
method which is essentially a single-layer neural network with linear activation function.
Support vector regression (SVR) is closely related to both SVM and linear regression algo-
rithms. The SVR algorithm aims to find the best fit hyperplane such that the maximum
number of the training samples can be placed within some small distance from it. K-nearest
neighbours (k-NN) algorithm is another classification algorithm. It predicts the label of
a new sample based on several closest samples from the training set. In regression tasks,
the output value is calculated as the average of the nearest training samples. Some studies
still rely on employing the naive Bayes algorithm which is a classification technique which
assumes that the presence of a certain feature in a class does not depend on other features
and predicts the label using Bayes theorem. According to this theorem the probability
of an event is calculated using prior knowledge of conditions connected to this event.
The next category of algorithms is based on decision trees. A decision tree classifier can
be trained using a variety of algorithms. Probably the most popular one, called ID3, is
based on measuring entropy values of the features and selecting the one with the smallest
value at each iteration to build the tree. Decision tree classifiers are often combined into
ensembles. For example, the random forest algorithm constructs multiple decision trees
at the training stage and outputs the mean of the labels returned by those trees during
the inference. Finally, the gradient boosting decision tree is an algorithm which builds
a prediction model in the form of an ensemble of decision trees in an iterative fashion: each
tree in the ensemble attempts to correct the errors of its predecessor [56].

Network 2023, 3 46

Table 2. AI/ML algorithms used by researchers in the mobile networking domain.

Category Algorithm Mobile Network Applications

Supervised

Fully-connected neural network

Channel estimation [28,57], symbol detection [58], automatic modulation
classification [59], channel coding [60–62], beamforming [34,63–65],

activation control [66,67], power allocation [37,68–71], scheduling [72],
routing [73], security [41,43,47,74]

CNN
Channel estimation [57,75–77], automatic modulation

classification [31,78], channel coding [61,62,79–81], beamforming [34],
power allocation [82], routing [83], localization [84]

RNN (GRU, LSTM and ECN)
Automatic modulation classification [32], channel coding [61], power

allocation [85], scheduling [39], routing [83], localization [84],
security [45], slicing [86], caching [87]

Attention (transformer) Channel coding [62,79]

Residual neural network Beamforming [34]

K-NN Security [74]

SVM (and SVR) Beamforming [88], security [47]

Linear regression Beamforming [88], security [74]

Decision trees (including random
forest and gradient boosting trees) Beamforming [88], security [74]

Naive Bayes Security [74]

Unsupervised

Autoencoder Channel estimation [77], channel coding [79], scheduling [39],
caching [89], security [43]

GAN Channel estimation [76], beamforming [90]

Denoising CNN (DIP, LDAMP and
DnCNN) Channel estimation [91,92]

Reinforcement

Q-learning Channel coding [60], beamforming [90], power allocation [93],
caching [94]

DQN Activation control [67], power allocation [70,82,85], scheduling [95],
routing [83], slicing [96–98]

DDPG Activation control [66], scheduling [72], routing [99]

SARSA Activation control [36]

Policy gradients Channel coding [62], scheduling [39,95]

TRPO Routing [73]

PPO Slicing [100]

3.2. Unsupervised Learning

Speaking of the unsupervised learning, autoencoder is probably the most popular
deep learning architecture in this category. In general, an autoencoder includes an input
layer, several hidden layers, and an output layer. The model aims to adjust its parameters
in such a way that the output layer is equal to the input one despite the information
bottleneck caused by the hidden layers. The role of the loss function is often played by
the reconstruction error which is the difference between the input and the output. There
are several autoencoder variations depending on the properties of the hidden layers and
additional terms in the loss function. For example, in variational autoencoders (VAEs)
the encoder returns a distribution over the latent space instead of a single point. Another
autoencoder architecture variation is called sparse autoencoder. To train this architecture,
the loss function includes not only the reconstruction error but also a special penalty
function. This penalty is the bigger the greater the number of units which fire in the
bottleneck layer. Autoencoders can be employed for anomaly detection. This process

Network 2023, 3 47

usually involves two main steps. First, the training data is fed to an autoencoder until it is
well trained to reconstruct the expected output with minimum error. Second, the same data
is fed again to the trained autoencoder and the error term of each reconstructed data point
is measured. In theory, a well-trained autoencoder learns how to reconstruct an input that
follows a certain format. A badly formatted data point fed to such an autoencoder model
results in something that is quite different from the expected output, and therefore a large
error term. This mechanism can for example be used to classify anomalies by comparing
the reconstruction error of an unknown sample to the error threshold observed during
the training.

One interesting unsupervised CNN-based network architecture which is close to the
autoencoder is deep image prior (DIP) model, which fits the parameters of a CNN on the
fly instead of training beforehand [101]. In this model, the input is a codeword and the
output is an image sized tensor. The model weights are updated iteratively to minimise
the difference between the network output and the real image given. This learning-free
model can be used for image restoration problems, where the information lost during
the degradation process is expected to be supplemented with the image prior. Another
CNN-based deep learning architecture employed for image recovery is learned denoising-
based approximate message passing (LDAMP) neural network [102]. This network aims to
solve the problem of finding the image given the low-dimensional codeword by exploiting
the fact that the image is sampled from the set of all natural images. Another denoising
network based on CNN is proposed in [103]. The input to such a denoising CNN (DnCNN)
is a noisy observation, during the training the model learns to minimise the difference
between the output of the network and the noise tensor.

Another deep learning framework which shares a similar idea with autoencoders is
the restricted Boltzmann machine (RBM). In distinction to autoencoders, it uses stochastic
units with a particular distribution instead of deterministic distribution. An RBM consists
of only two layers: visible and hidden, both of the layers have binary-valued neurons.
The RBM training process is different from the one used for traditional neural network
models. It starts with taking a training sample, computing the probability of each hidden
unit and using this probability distribution to sample a hidden activation vector. After that,
the outer product of these two vectors is calculated and called the positive gradient. Next,
a reconstruction vector of the visible units is sampled from the hidden distribution and
it is used to resample the hidden activations via Gibbs sampling [104]. This routine is
repeated several times. The last outer product of the two resampled vectors is called the
negative gradient. The weight matrix update is calculated as the positive gradient minus
the negative gradient times some learning rate. RBMs are usually stacked together to
build a deep belief network (DBN). During the DBN training, each RBM layer is trained
separately in an unsupervised way. Given a labelled dataset, the entire DBN can be then
fine-tuned in a supervised way.

The next unsupervised deep learning approach worth to be mentioned is generative
adversarial networks (GANs) [105]. A GAN consists of two neural networks: a generator
and a discriminator. The former transforms a random vector into a sample from the
input domain, whereas the latter learns to discriminate between real samples and the ones
produced by the generator. The error between the actual label and the discriminator output
is measured with the cross-entropy loss. The generator’s weights are adjusted based on
how well the samples produced by the generator fool the discriminator. A conditional
extension of the GAN algorithm is proposed in [106]. Such conditioning is usually carried
out by extending both the generator and discriminator with an additional input layer to
feed some extra information.

Outside of the deep learning area, K-means is probably the most popular unsupervised
algorithm. It partitions a dataset of objects into a predefined number of clusters. The al-
gorithm attempts to minimise the sum of distances between each sample and the mean
value of the cluster into which this sample falls. As a rule, it uses an iterative refinement
technique. First, cluster means are initiated, e.g., by picking samples from the dataset at

Network 2023, 3 48

random. Next, each sample is assigned to the cluster which corresponds to the least distant
mean. New means are then calculated for the new clusters built. These two steps are
repeated until there are no longer changes in clusters during the assignment step.

3.3. Reinforcement Learning

Speaking of reinforcement learning, there are two main approaches: value-based and
policy-based. The goal of the former is to maximise a function which evaluates the total
reward expected to be accumulated in the future iterations starting at a particular state.
Once such a value function has been learned, it is used by the agent at each step to pick such
an action which is believed to maximise the value of this function. Contrary to the value-
based RL approach, policy-based agents attempt to optimise the policy function directly
without learning the value function. The policy function usually outputs a probability for
each action the agent can select at the given state.

Deep Q-network (DQN) proposed in [53] presents the first deep value-based RL
model to learn control policies directly from high-dimensional sensory input. In particular,
the original DQN algorithm uses the images shown on the Atari emulator as the input and
a convolution neural network - to process the image data. The role of this neural network
is to approximate Q-function used to estimate the value of the action taken by an agent at
a certain time step. The real reward value observed in the environment is used to calculate
the target Q-function value using the Bellman Equation [107]. The neural network weights
are then updated to minimise the difference between the target and current Q-function
values. The Q-learning algorithm is proven to converge to an optimal value [108].

There are two main issues with using deep Q-networks. First, deep learning assumes
data samples to be independent, however, the training data for the Q-network are collected
by the sequence correlated states which are led out by actions chosen. Second, the collected
data distributions are non-stationary, since the agent keeps learning new strategies at every
iteration. To overcome these issues, two following mechanisms can be employed: experi-
ence replay and freezing the target. The latter requires constructing two neural networks
with the same structure, but different weight values. One of these networks is updated on-
line at each training step, while weights of the other one are kept frozen for a fixed amount
of iterations. To calculate the value of the loss function during training, Q-function value is
predicted with the first neural network, while the target is evaluated using the second one.
Weights of the target network are periodically updated with weight values of the online
network. Since the evaluation of the target value uses the old parameters whereas the
predicted value uses the current parameters, this can break the data correlation efficiently.
Moreover, this mechanism allows one to avoid policy oscillations caused by rapid changes
of the Q-function. The second mechanism, experience replay, is the method which aims
to break correlations between data samples by accumulating a buffer of experiences from
many previous episodes and training the agent by sampling mini-batches of experiences
from this buffer uniformly at random.

DQN can handle the problems with discrete low-dimensional observations and actions.
However, in real world engineering applications, not only the dimensionality of both states
and actions can be high, both of them are often continuous. If the number of discrete actions
is finite, Q-function maximisation poses no problem, since Q-values can be computed for
each action separately and then they can be simply compared to each other. However,
in case the action space is continuous, solving the resulting optimization problem is non-
trivial. Deep deterministic policy gradient (DDPG) has been developed specifically for
dealing with environments that operate in continuous action spaces [109]. Similarly to
DQN, DDPG learns the Q-function with the help of the Bellman equation. The Q-function
is then used to derive and learn an optimal policy. In addition to the value-function in
DDPG, the second neural network that represents the agent’s policy is employed to learn
a deterministic policy which for every given state of the environment returns the action
that maximises the Q-function. Assuming the Q-function is differentiable with respect to
the action, a gradient ascent is performed with respect to policy parameters only to find the

Network 2023, 3 49

action that maximises the Q-value. Both DQN tricks, experience replay and freezing the
target, can be also used with DDPG.

The DQN and DDPG algorithms are off-policy meaning that experiences collected in
an environment are appended to a data buffer and then data from this buffer is used to
train an updated new policy. In general, off-policy algorithms are more sample-efficient,
however, they may be biassed due to the fact that past policies are quite different from
the current ones and therefore in the old data does not suit well to calculate updates
for the current policies. This may cause the algorithms to become unstable and difficult
to tune [110]. State-action-reward-state-action (SARSA) algorithm [111] is an on-policy
variation of DQN. It uses the action performed by the current policy to learn the Q-value.
This difference is visible during the approximation of neural network parameter updates.

Another on-policy RL approach is called policy gradients. An agent trained using
this method observes the total cumulative reward at the end of each training episode.
If this reward is positive, the agent starts taking each action in the sequence that has led to
this reward more frequently. The policy network weights are updated by minimising the
negative log likelihood between the actions taken and the network outputs. The main issue
with the policy gradients algorithm is the fact that, since trajectories during the training
stage can deviate significantly from each other, updating the policy network weights by
sampling a random action may result in a high variability in cumulative reward values and
action probabilities. This may lead to the policy distribution being skewed to a non-optimal
direction. In order to increase stability and reduce variance, the value function can be
subtracted from the cumulative reward. This allows for evaluating the action taken in terms
of the average action return. For this purpose, another neural network is built to estimate
the value function. The resulting two-layered architecture is named an advantageous
actor-critic (A2C), in which the value function is estimated by the critic and the policy
distribution is updated by the actor in the direction pointed by the critic [112].

By employing trust region policy optimization (TRPO) algorithm, stability of the
learning can be even further improved [113]. This algorithm uses average Kullback–Leibler
divergence between the old and the current policies to find a region around the current
policy within which the model is trusted to be an accurate estimation of the objective
function. After that, a step inside this region is chosen to be an approximate minimizer
of the model. Despite the fact that this method achieves consistently great performance,
its implementation is extremely complicated and computationally heavy. Proximal policy
optimization (PPO) algorithm reduces complexity of TRPO by limiting the impact of each
action via clipping the ratio of the probability of the action under the current policy to the
probability of the action under the previous policy [114]. Such a technique allows the agent
to avoid having too large policy updates.

4. AI/ML in 5G

In this section, we discuss successful applications of AI/ML in mobile networks found
in scientific literature. We focus on the recent studies published in the last five years and
attempt to find use cases of employing AI/ML techniques that would benefit 5G mobile
networking in high degree. We divide the use cases found into several categories based
on the network component in which AI/ML is employed. For each use case, we provide
information about the statistical features extracted from the data during the preprocessing
stage, technical details of the learning algorithm used and modus operandi of the resulting
intelligent framework. All the use cases found are summarised in Table 3.

Network 2023, 3 50

Table 3. AI/ML applications in mobile networks.

Category Ref. Description Data and Features Algorithm Modus Operandi

Channel estimation

[75]

Estimates CSI of the
whole

time-frequency
using the

transmitted pilots

Received pilot
signals

transmitted in
lattice formation

Supervised:
CNN

Transmit pilots; train a CNN and freeze its
parameters; train another CNN; in both cases,

MSE between the estimated and the actual
channel responses is used as the loss function

[57]

Estimates CSI at the
uplink for mixed
ADCs massive
MIMO systems

The least square
channel

estimations of
pilot signals

Supervised:
fully-connected
neural network

and CNN

Transmit pilots; estimate the channel with the
least squares; either train one neural network for
all antennas or two networks: one for high- and
another for low-resolution ADCs and combine

the outputs; in both cases, MSE between the
estimated and the actual channel responses is

used as the loss function

[91]

Estimates CSI for
high-dimensional
signals in massive

MIMO-OFDM

Received signal
powers of OFDM

symbols

Unsupervised:
CNN-based DIP
neural network

Initiate the DIP network; transmit pilots and
measure the received signal; optimise the network
parameters to minimise L2 loss between the signal
received and the output of the network given the
input is a randomly chosen input tensor; use the
resulting network to estimate the signal; estimate

the channel using the least squares method

[76]

Predicts CSI in DL
based on the past
UL measurements

in OFDM FDD

Time-frequency
UL-CSI

Supervised:
CNN and GAN

Transmit UL pilots; measure the received signal;
use the CNN to predict DL-CSI to minimise MSE

between the real and predicted values;
alternatively, train the GAN to generate UL- and
DL-CSI, initialise a random vector and update it
using the gradient descent so that the generated

and the real UL part become similar with regards
to the loss function equal to the weighted sum of
the difference between the real and predicted UL

CSIs and discriminator loss

[28]

Maps CSI at one set
of antennas and

frequency band to
CSI at another set of

antennas and
frequency band

CSI matrix for a
subset of antennas

in the uplink

Supervised:
fully-connected
neural network

Estimate channel matrix for a subset of antennas
in the uplink; preprocess the data: normalise,
zero-mask, flatten; train the fully-connected
network to predict the channel matrix for all
antennas in the downlink; normalised MSE
averaged over mini-batches is used as the

loss function

[92]

Estimates CSI in
beamspace

mmWave massive
MIMO

Received pilot
signals

Supervised:
CNN-based

LDAMP neural
network with

DnCNN
denoiser

Transmit pilots and measure the received signal;
train an LDAMP network with DnCNN denoiser
to minimise MSE between the real and predicted

channel matrix; use the network trained to
estimate CSI

[77]

Recovers CSI on the
BS through

feedback links in
OFDM

CSI matrix
estimated at UE

Unsupervised:
CNN-based
autoencoder

Transmit pilots and measure the received signal at
the UE; evaluate CSI at the downlink; train an

autoencoder to minimise MSE between the real
CSI matrix and its reconstruction; deploy the

encoder at the UE and the decoder - at the BS to
reduce CSI feedback overhead

Symbol detection

[58]
Recovers the

transmitted symbols
in OFDM

The received data
of the pilot block

and one data block

Supervised:
fully-connected
neural network

Transmit pilots and one data block, use the data
received as the input to a neural network; train

the network to minimise the L2 loss between its
output and the data transmitted; use the network

trained to recover the transmitted symbols

[115]

Estimates the signal
transmitted given
the signal received
and the CSI matrix

Received signal
and the CSI matrix

Supervised:
neural network

MMNet

Transmit a signal and measure the signal received;
estimate the CSI at the current time interval; train
a neural network for 1000 iterations for the 1-st
subcarrier and fine-tune using only 3 training

iterations per subcarrier for subsequent
subcarriers; use the models trained to detect the
signals received in the current time interval on

the corresponding subcarriers; the training
algorithm is repeated at each time interval

Network 2023, 3 51

Table 3. Cont.

Category Ref. Description Data and Features Algorithm Modus Operandi

[116]

Estimates the signal
transmitted given
the signal received
and the CSI matrix

Received signal
and the channel

state matrix

Supervised:
neural network

ScNet

Transmit a signal and measure the signal received;
estimate the channel state at the current time

interval; train an ScNet to minimise the Euclidean
distance between the real signal sent and the one
predicted by the neural network; use the network
trained to estimate the original signal transmitted

given the signal received and the CSI matrix

AMC

[31]

Performs AMC
based on sequences

of the received
signals and SNR

Sequences of the
signals received,

SNR, noise values

Supervised:
CNN

Collect received signals, SNR and noise values;
train a network to predict the modulation type

and noise level; replace the output layer with the
new one without the noise output; fine-tune the
network using only modulation types; in both

cases use multi-class cross-entropy as the
loss function

[32]
Performs AMC

using the received
signal

Received signal in
I/Q format, FFT

magnitudes

Supervised:
LSTM

Measure the received signal or retrieve averaged
FFT magnitude; train an LSTM network to predict
the modulation type; the loss function is softmax

cross-entropy with logits

[59]
Performs AMC

based on manually
crafted features

Amplitude var.,
max PSD of the

amplitude,
in-band spectral

var. and deviation
from unit circle,
cumulants, SNR

Supervised:
fully-connected
neural network

Process the received signal; extract a specific set
of manually designed features; train a neural

network which predicts the modulation type; the
loss function is multi-class cross-entropy between
the real modulation expressed as a one-hot vector

and the softmax output of the network

[78]
Performs AMC

using constellation
diagrams

Constellation
diagrams of the

modulated signals

Supervised:
CNN

Measure the received signal; transform the signal
into constellation diagrams; train an AlexNet to

predict the modulation type; softmax
cross-entropy with logits is used as the

loss function

Channel coding

[79]

Interprets
end-to-end

communication
systems as

autoencoders

A message
transformed into

one-hot vector

Unsupervised:
autoencoder,

attention
CNN-based

RTN

Select and transmit messages; train an
autoencoder neural network to learn

representations of the messages that are robust
with respect to noise, fading and distortion; use
the categorical cross-entropy between the input

message and the reconstruction as the loss
function; the trained autoencoder can be used for

both encoding and decoding so that the
transmitted message can be recovered with small

probability of error

[60]

Searches for an
optimal decoding
strategy for binary

linear codes

PC matrix,
hard-decisions

vector

Reinforcement:
Q-table or

Q-learning with
a

fully-connected
network

Initiate a deep neural network; receive a
codeword; initiate the state as PC matrix

multiplied by the hard decisions vector; perform
an action by flipping a bit in the received word;

evaluate the reward based on whether the
codeword is decoded or not; calculate Q-function
value based on Bellman equation; repeat until the

terminal state is obtained, i.e., the codeword is
decoded; explore the environment with either

selecting a random action or an action which flips
one of the incorrect bits

[61]

Views the decoding
problem as a
classification

problem

Received symbol
vector after

channel encoding,
BPSK mapping
and simulated
channel noise

Supervised:
fully-connected
neural network,

CNN, LSTM

Transmit and receive a codeword; train a
fully-connected neural network, CNN or LSTM to

minimise MSE between the original codeword
sent and the output of the network; estimate

information bits from the new received symbol
using the network trained

[80]

Solves the decoding
problem for

convolutional and
LDPC codes

Received symbol
vector after

channel encoding,
BPSK mapping

and channel noise

Supervised:
CNN

Transmit and receive a codeword; train a CNN to
minimise MSE between the original codeword
sent and the output of the network; estimate

information bits from the new received symbol
using the network trained

Network 2023, 3 52

Table 3. Cont.

Category Ref. Description Data and Features Algorithm Modus Operandi

[81]
Solves the decoding
problem for LDPC

codes

Received symbol
vector after

channel encoding,
BPSK mapping

and channel noise

Supervised:
CNN

Transmit and receive a codeword; train a CNN to
minimise the weighted sum of the residual noise
power (squared L2 loss) and the normality test;

use BP decoder to estimate transmit symbols and
calculate; reconstruct the noise with the CNN

trained; construct the new version of the received
vector the noise reconstructed and feed it back to

the BP decoder to perform another round of
BP decoding

[62]

Learns to
communicate over

an unknown
channel without a

reliable link

Transmitter:
message sent,

receiver: received
signal

Reinforcement:
policy gradients,

supervised:
fully-connected
neural network,

attention
CNN-based

RTN

Transmit messages over the channel; build the
receiver network to estimate the conditional

probability of the message sent given the signal
received; build the transmitter using policy

gradients to minimise the loss obtained at the
receiver and sent back to the transmitter over an
unreliable channel; train both the transmitter and

the receiver iteratively to minimise the MSE
between the message sent and the

receiver’s output

Beamforming

[88]

Predicts mmWave
beam power based
on positions of the

RSU and
neighbouring cars

Position of the
RSU and the cars
in different lanes

with regards to the
receiver

Supervised:
linear, support
vector, random

forest and
gradient
boosting

regression
models

Measure and encode positions of the RSU and
surrounding cars; calculate received power for

each beam pair using the channel model
provided; train one of the regression models

mentioned to predict the maximum beam power
or all beam powers based on the feature values
using root MSE between the real and predicted

values as the loss function

[63]

Predicts achievable
rate with every
beamforming

codeword based on
the OFDM

omni-received
sequences

The OFDM
omni-received

sequences
collected from

several BSs

Supervised:
fully-connected
neural network

Receive omni uplink pilots from multiple UEs on
multiple BSs; evaluate the achievable rate of every
beamforming vector; train a network to minimise

the MSE between the desired normalised
achievable rate and the network output given the
OFDM omni-received sequences collected from

all the BSs; use the network trained for
coordinated beamforming

[64]

Predicts the best
beam based on a

subset of RSS
measurements

RSS values from a
subset of beams

Supervised:
fully-connected
neural network

Measure RSS values for a given subset of beams;
calculate the optimal beam by measuring the

angle between the receiver and the transmitter;
train a neural network to retrieve the best beam

based on the subset of RSS values; use the
network to map this subset and to the best beam
overall; the subset of beams used as the input is
selected by cycling through the combinations of
beams and then selecting the beam subset with

the best accuracy

[34]

Performs beam
selection using

context-awareness
of the UE

GNSS and lidar
data

Supervised:
fully-connected

and residual
CNN

Measure GNSS positions, collect lidar image;
train a neural network to predict the optimal
beam based on the aforementioned data; use

categorical cross-entropy as the loss function; use
the network trained to determine the beam

direction with the use of context information

[90]
Calculates optimal
antenna diagrams
for massive MIMO

User distribution,
channel

information

GAN +
reinforcement

learning:
Q-learning

Use the first generator to produce a sample of
users’ locations; use the second generator to

produce an antenna diagram; use the
discriminator to evaluate the reward in terms of

the total aggregate throughput; update the
discriminator using Bellman equation; repeat

until the convergence criteria is met, namely, all
users have the highest possible spectral

efficiency values

Network 2023, 3 53

Table 3. Cont.

Category Ref. Description Data and Features Algorithm Modus Operandi

[65]

Performs beam
training based on

measurements for a
subset of codewords

RSS values for a
subset of BS

codewords and
the user

codewords
combinations

Supervised:
fully-connected
neural network

Send a subset of all possible combinations of the
BS codewords and the user codewords; measure

the received signal power; train a network to
predict the optimal beam combination based on
the RSS measurements; use the network trained

to select the optimal combination of the combiner
and the precoder

Activation control

[66]
Searches for an

optimal SBS
activation strategy

Traffic rates, SBS
on/off modes

Reinforcement:
DDPG,

supervised:
fully-connected
neural networks

Initialise networks; observe historical data rates;
predict the future data rate using a traffic rate

prediction network; observer SBS on/off modes;
calculate continuous action using a policy

network; transform the action into a set of discrete
actions and select the best using a cost-estimation

network; observe actual traffic rates and costs;
update all the network parameters

[67] Controls BS
sleeping Traffic volumes

Reinforcement:
DQN with

fully-connected
neural network

Initialise the agent and IPP model; observe traffic
volumes; filter the traffic information with IPP
model; feed the filtered observation to a neural

network; calculate and scale the reward based on
the number of requests served and not served;

store the experience in a replay buffer; sample an
experience from the buffer and update the

network parameters; update the reward scaling
factor; use the network trained to decide whether

the BS should sleep or not at the given
time interval

[36]
Selects sensor

power mode for
indoor localisation

Sensor mode:
low-power or

enhanced

Reinforcement:
SARSA

Initialize an RL agent; observe sensor modes;
infer location using HMM model; estimate the

localisation error depending on the sensor mode;
update the agent’s Q-function using Bellman
equation; use the algorithm for continuous
learning of energy-efficient location sensing

Power allocation

[37]

Maps positions of
UEs to the optimal
power allocation

policies

UE positions
Supervised:

fully-connected
neural network

Obtain UE positions; calculate an optimal power
allocation policy vector; train a network using
UE positions as the input and the MSE between

the network output and the optimal power
allocation policy vector as the loss function; the
resulting network can be used to calculate the

optimal power allocation policy for a new set of
UEs’ positions

[68]
Learns to optimise

interference
management

Channel
coefficients

Supervised:
fully-connected
neural network

Measure channel coefficients; calculate optimal
power allocation values using WMMSE

algorithm; train a neural network to minimise
MSE between the network output and the signal
power given the channel coefficient values; use

the network trained to estimate the power
allocation policy for new channel coefficient

values to reduce real-time processing

[69]

Develops a
framework for
energy-efficient
power control

Channel
realisations

Supervised:
fully-connected
neural network

Use the BB algorithm to generate the training set
containing optimal power allocations for many

different channel realisations; train a neural
network to minimise MSE between the network
output and the optimal power allocation policy;

use the model trained as an effective and
low-complexity online power allocation method

[93]
Selects power level
to mitigate smart

jamming

Estimated
jamming power
and all the users’

SNR at the current
time slot

Reinforcement:
Q-learning

Initialize the agent; estimate jamming power and
users’ SNR at the current time slot; sample

transmission power using the model; calculate
the transmission utility as the weighted sum of

the users’ SNR values and the transmission costs;
update the model using Bellman Equation

Network 2023, 3 54

Table 3. Cont.

Category Ref. Description Data and Features Algorithm Modus Operandi

[82]

Selects optimal relay
signal power on an

UAV during a
jamming attack

BER of the
previous user

messages,
the jamming

power received by
the UAV, gains of

the channels
between the BSs,
UAV, user and

jammer

Reinforcement:
DQN with

CNN

Initialise the agent; estimate feature values;
sample the relay power; calculate the utility based
on the BER of the user message received by the

serving BS, the BER of the weaker message signal
received by UAV or the relay BS, and the relay

cost; store the experience in a replay buffer;
sample an experience from the buffer and update

the network parameters

[70]

Develops a
distributively

executed dynamic
power allocation

scheme

Tx power,
contribution to the
network objective,
direct DL channel,
SNR, interference

and its
contribution to the
objective from the

interferer and
interfered sets

Reinforcement:
DQN with

fully-connected
neural network

Initialize RL agents; for each agent determine
interferer and interfered sets; measure feature

values; sample the discrete power levels; calculate
the reward for each agent based on its direct
contribution to the network objective and the
penalty due to its interference to all interfered

neighbours; store the experience in a replay
buffer; sample an experience from the buffer and

update the network parameters

[85]

Performs jointly
dynamic channel
access and power

control

the channel
selected, its power
level, the feedback

signal,
the indicator of no

transmission

Reinforcement:
DQN with

LSTM

Initialise RL agents; for each agent determine the
feature values; sample the discrete power levels

for the channels selected or no transmission;
calculate the reward which can be either
individual transmission rate, sum-rate or

proportional fairness; store the experience in a
replay buffer; sample an experience from the
buffer and update the network parameters

[71]

Studies the power
allocation problem
based on channel

gains

Channel gains
Supervised:

fully-connected
neural network

Transmit pilot signals from the BS from each
subcarrier; estimate the channel gains at the UE

and report them to the BS; train a network to
return each subcarrier power by minimising the

error between the network output and the
optimal power allocation vector calculated using

the interior point method; use the network
trained to estimate power allocation vectors for

all the UEs

Scheduling

[39]

Formulates the
resource allocation

problem in
LTE-LAA as a

non-cooperative
game

Traffic load history

Reinforcement:
policy gradients,

autoencoder,
LSTM

Initialise the LSTM autoencoder; feed the past
traffic observations for each SBS and WLAN into
LSTM traffic encoders; compute the actions for all
SBSs; sample an action for each SBS depending on

the actions expected to be taken by other SBSs;
use policy gradients algorithm to update model

parameters; train the model until all coupled
constraints are satisfied

[117]
Infers free slots in

MF-TDMA
networks

Last MF-TDMA
frames

Supervised:
fully-connected
neural network

Observe few last frames and traffic information;
use a neural network to predict its probability

matrix of free slots in the next frame; forward the
result to the root node; receive the full schedule

from the root; transmit according to the schedule;
update the network weights using the total

number of collisions as the loss function

[95]

Formulates the
cooperative

localization problem
as multi-agent RL

Estimated node
positions; number

of neighbours;
local covariance

matrix

Reinforcement:
DQN, policy

gradients

Initialise an RL agent; observe estimated node
positions; calculate and execute measurement

action; measure the reward function; update the
agent’s network parameters according to the
algorithm selected; the process is terminated

when each node’s uncertainty falls below
the threshold

Network 2023, 3 55

Table 3. Cont.

Category Ref. Description Data and Features Algorithm Modus Operandi

[72] Schedules HVFT
application traffic

KPIs: cell
congestion,
number of

sessions, cell
efficiency

Reinforcement:
DDPG with

fully-connected
neural network

Initialize an RL agent; measure the KPIs; sample
an action; estimate the average throughput using

an RF model trained on the real data; use the
throughput estimation to calculate the reward;

update the agent’s network parameters

Routing

[83]
Selects AP to

maximise the user
throughput

RSSIs of uplink
user traffic data

for each AP

Reinforcement:
DQN with

CNN and RNN

Initialize a policy network; observe RSSIs for each
AP; select the AP to which the user should be

allocated using the network; evaluate the user’s
throughput as the reward function; store the

experience in a replay buffer; sample an
experience from the buffer and update the

network parameters; use the network trained to
select the optimal AP

[99] Optimizes routing
in SDN Traffic matrix Reinforcement:

DDPG

Initialize an RL agent; observe the traffic matrix;
sample link-weights for each source-destination
pair of nodes using the neural network; evaluate
the mean network delay as the reward function;
update the network parameters; use the network

trained to perform the routing

[73] Optimizes online
routing in OTNs

Statistics of the
several candidate

paths of all the
sourcedestination

pairs in the
network

Reinforcement:
TRPO with

fully-connected
neural network

Initialize an RL agent; collect statistics of the
candidate paths for each source-destination pair;
use the policy network to sample an end-to-end

path from the list of candidate paths that connect
the source and the destination given and provide
the bandwidth required; evaluate the bandwidth
of the current traffic demand; update the network
parameters; use the network trained to route new

source–destination traffic

Localization [84] Estimates the travel
time

GPS trajectory
points, travel

distance,
information about

weather, driver
and time

Supervised:
CNN+ LSTM

Initialise attribute, spatio-temporal and multi-task
learning components of the network; embed

information about weather, driver and time into a
low-dimensional feature vector; feed this vector

and the travel distance to the attribute component;
feed the output of the attribute network to the

spatio-temporal learning network; feed the
outputs of the attribute and spatio-temporal

learning components to the multi-task learning
network; train the entire framework end-to-end in

a supervised way by minimising the error
between the travel time of the entire path and the

output of the multi-task network

Slicing

[118]

Predicts REVA
metric for RAN slice
broker to provision
network slices with

RAN resource

REVA metric
historical values

Supervised:
LSTM

Calculate REVA for last time intervals; train a
network using these values to minimise the loss
function between the REVA predictions and the

actual values; use the network trained to estimate
future REVA values; use these estimations
coupled with CSI to derive wireless link

throughput and RAN resources required for
each slice

[86]
Proposes proactive
dynamic network

slicing scheme

Network traffic
historical data

Supervised:
GRU

Collect the standardised traffic load data; train
multiple neural networks to predict future

network loads for each slice; select the best model
for each slice; use the data predictions to adjust
and schedule traffic in the future; periodically

retrain the models

[96]

Formulates the
radio resource

allocation problem
as an MDP

Number of
arrived packets in
each slice within

specific time
window

Reinforcement:
DQN

Initialize an RL agent; observe numbers of arrived
packets in the network slices under consideration;
sample the bandwidth allocation vector using the
Q-network; measure the weighted sum of SE and
QoE as the reward function; store the experience
in a replay buffer; sample an experience from the
buffer and update the agent network parameters

Network 2023, 3 56

Table 3. Cont.

Category Ref. Description Data and Features Algorithm Modus Operandi

[100]

Formulates the
network slice

resource allocation
as an MDP

Numbers of users
using different

slices

Reinforcement:
PPO

Initialise an RL agent; observe numbers of users
using the network slices under consideration;

sample the bandwidth allocation policy using the
agent’s policy network; measure the network

throughput; update the agent
network parameters

[97]

Formulates the
network slicing

resource allocation
problem at the

network edge as an
MDP

Allocated
resources,

resources in use,
the serving node,
the task priority,

the resources
required, holding

time

Reinforcement:
DQN

Initialize an RL agent; observe values of the
features; select the fog node for the task or reject

the task using the Q-network; calculate the
reward function; store the experience in a replay
buffer; sample an experience from the buffer and

update the agent network parameters

[98]

Proposes a dynamic
resource allocation
scheme for radio
access network

slicing

Frequency-time
blocks, CPU usage,

and transmit
power available at

the time slot

Reinforcement:
DQN

Initialise an RL agent; observe available resources
at the current time slot; select the requests to

serve using the Q-network; calculate the
weighted sum of requests satisfied which acts as

the reward function; store the experience in a
replay buffer; sample an experience from the

buffer and update the agent network parameters

Caching

[87]

Proposes a
proactive caching

framework for
CRANs

Content request
time, week,

gender,
occupation, age,
and device type

Supervised:
ECN

Collect content request data; train an ECN model;
use the ECN to predict the distribution of content

requests and user mobility patterns; determine
which content to cache based on the content

request percentage; based on the content request
distribution, cluster and sample the content

request distributions to calculate the percentage
of each content; use it to select the contents

to cache

[119] Learns content
cache priorities

Historical
sequence of video
content requests

Supervised:
LSTM

Observe sequence of video content requests, train
a network to predict cache priority values; use the
network trained to decide which content should
be evicted from the cache when a new content

request in one base station arrives

[89]
Predicts content

popularity class in
evolved packet core

Historical traffic
volumes of each

content type

Supervised:
sparse

autoencoder

Collect historical data on content popularity; train
a neural network to predict content popularity

using the historical patterns; train each
autoencoder in the network in unsupervised way
to minimise the reconstruction error; fine-tune the
network to minimise the prediction error; use the
network trained to evaluate content popularity

[94] Finds optimal
caching policy

local and global
user request

profiles

Reinforcement:
Q-learning

Initialize the agent; observe user request profiles;
calculate binary caching policy vector; calculate
the reward based on the cost of refreshing the

cache contents, the operational cost and the cost
of mismatch between the caching action vector
and the global popularity profile; update the

agent parameters using Bellman equation

Security

[41]
Classifies network

flows, classifies
attack symptoms

Network traffic
flow features,

timestamps, attack
class

Supervised:
fully-connected
neural network,

DBN, LSTM

Train one neural network to classify feature
vectors extracted from network flows as either

normal or attack symptoms; use the feature vector,
timestamp and symptom type as the input to

another neural network; train the second neural
network to classify symptom sequences as attacks

[43] Detects intrusion in
WiFi networks

MAC layer, radio
and general frame

information

Unsupervised:
autoencoder,
supervised:

fully-connected
neural network

Extract and preprocess features; train an
autoencoder to minimise the reconstruction error;
use the output of the autoencoder pre trained as
the input to a fully-connected network; train the

second network to minimise the categorical
cross-entropy between its output and the attack

class label

Network 2023, 3 57

Table 3. Cont.

Category Ref. Description Data and Features Algorithm Modus Operandi

[45]

Looks for an
optimal CNN

architecture and
detects network

intrusions

Network traffic
flow features

Supervised:
RNN, CNN

Collect traffic flows from backhaul and core
network links; transform feature vectors into

images; select an optimal CNN architecture using
RNN; train the resulting CNN model; use the
model trained to classify network traffic flows

[47] Classifies jamming
attacks

Node state
information

Supervised:
fully-connected
neural network,

SVM

Collect traffic; extract features; train a neural
network to classify samples as either normal or
corresponding to a particular class of jamming;

feed the samples classified as normal to an SVM;
train the SVM to classify the samples as either
normal or malicious; use the model trained to

identify and classify jammers

[74]
Detects and

classifies jamming
attacks

Subcarrier spacing,
symbol time,

subcarrier length,
cyclic prefix

length, average
received power,

threshold, average
signal power,
average noise

power, and SNR

Supervised:
linear

regression,
fully-connected
neural network,
k-NN, decision

tree, random
forest, naive

Bayes

Extract features from the signals; train a model to
detect and/or classify samples as either normal or

corresponding to a particular class of jamming;
use the model trained to identify and

classify jammers

One potential application of AI/ML in 5G is improving channel state information
(CSI) estimation procedure. For example, studies [28,76] suggest to reduce the pilot training
and feedback overhead in an orthogonal frequency-division multiplexing (OFDM) system
by training an AI/ML model to calculate CSI in the downlink (DL) based on the past
uplink (UL) measurements. The reasoning behind the idea is that since DL and UL signals
are propagated in the same environment, the former can be estimated with some level of
accuracy given the latter. Alternatively, AI/ML can be used to reduce dimensionality of
the CSI matrices and therefore decrease the transmission overhead as it is proposed in [77].
In [57], AI/ML is used for estimating UL channels for massive MIMO systems with mixed
analog-to-digital converters (ADCs).

AI/ML is also proposed to be deployed for automatic modulation classification (AMC).
This allows transceivers to use the channel conditions to select the modulation coding
scheme (MCS) without the need for a feedback channel between the transmitter and the
receiver. For example, study [59] aims to develop a robust AMC algorithm with the help of
a fully-connected neural network. Input features used for the prediction are extracted from
the received signal and they include amplitude variance, maximum value of the power
spectral density (PSD) of the normalised centred-instantaneous amplitude, in-band spectral
variation and deviation from unit circle, and higher order statistics including cumulants
and estimated signal-to-noise (SNR) values. In [31], the deep learning approach is used to
extract features from symbol sequences automatically. Similarly, study [78] employs a deep
learning architecture, namely AlexNet [120], to process the signal samples and retrieve the
MCS used. In [32], another data-driven model for automatic modulation classification is
proposed. The data input is either the received signal represented in I/Q format which
includes two components: in-phase and quadrature or the averaged fast Fourier transform
(FFT) magnitude information.

Another interesting application of AI/ML in mobile networking is related to channel
coding. For example, study [79] interprets the entire end-to-end communication system
as an autoencoder which learns robust representation of the messages transmitted with
respect to the channel distortions allowing for its recovery with a small probability of
error. The study also proposes using radio transformer network (RTN) which is a modified
attention-based spatial transformer applied in computer vision [121]. Further studies [61,80]
use AI/ML for the signal decoding. To generate training samples, the authors of both
studies pick an information vector from codebook set randomly and then perform channel

Network 2023, 3 58

encoding, apply the binary phase shift keying (BPSK) mapping and simulate channel noise
in order to obtain the received vector. After that, the received signal acts as the input to
the neural network whereas the decoded signal as the output. Study [60] uses RL to find
effective decoding strategies for binary linear codes. The study focuses on bit-flipping
(BF) decoding which is based on constructing such a metric that allows the decoder to
rank the bits based on their reliability depending on the code constraints given. As a rule,
BF uses the hard-decision output and iteratively looks for the bit that, after flipping it,
would maximally reduce the number of currently violated parity-check (PC) equations.
The decoding method proposed is mapped to an MDP and it is solved with Q-learning.
In [81], a decoding iterative neural network based architecture for linear codes is proposed.
It concatenates the CNN trained with a belief propagation (BP) decoder and iterates
between them. A block of uniformly distributed bits is encoded to a binary codeword
through a linear channel encoder. The codeword is then mapped to a symbol vector through
the BPSK modulation which in turn is passed through a channel with additive Gaussian
noise. A BP decoder is then used to decode the transmitted information bit vector from the
received vector to estimate transmit symbols. A CNN is trained to estimate the channel
noise. The procedure is iterative: the new version of the received vector is constructed
using the noise estimated with the CNN and fed back to the BP decoder and another round
of BP decoding is performed.

AI/ML can also be employed for beamforming. For example, study [64] aims to
improve the initial access (IA) procedure with the help of machine learning. As a rule,
the IA includes two main components: beam sweeping during which the received signal
strength (RSS) is measured for each beam, and beam selection which essentially is picking
an optimal beam for the transmitter-receiver pair given. Usually the beam sweeping
procedure takes much longer time than the beam selection, and therefore the total IA time
can be improved significantly by reducing the beam sweep time via utilising fewer beams.
The study attempts to solve this problem with deep learning. In particular, it proposes
to pick a small subset of the beams available and measure RSS only for the beams in this
subset. After that, the best beam overall is selected based only on these few RSS values
measured with the help of an AI/ML model. Study [63] proposes to train an AI/ML model
to find the best beam based on uplink training pilots collected at several neighbouring BSs,
whereas the AI/ML-driven beam selection framework proposed in [34] uses the data from
the Global Navigation Satellite System (GNSS), lidars and cameras.

Employing AI/ML models can also allow for more energy-efficient power allocation.
Despite there are several existing optimization methods for solving the power allocation
problem such as weighted minimum mean squared error (WMMSE) algorithm, using
neural networks allows for learning solution approximations which may be beneficial at
the inference stage as it requires less computing resources [68,71]. Furthermore, study [37]
proposes an interesting AI/ML-based power allocation scheme which calculates the optimal
power allocation policies based on the UE positions. In [67], a data-driven algorithm
for dynamic BS sleeping control is proposed. The problem is formulated as an MDP and
it is solved with an RL approach. Each state is traffic belief calculated with the help of
a interrupted Poisson process (IPP) [122] using the Baum–Welch algorithm [123], each
action is either sleep or not, the agent is awarded for each served request and penalised
for each queued, retransmitted and failed one. In [82], an unmanned aerial vehicle (UAV)
aided cellular framework against jamming is proposed. The study focuses on the scenario
in which a jammer is located close to the current serving BS of the user and sends jamming
signals to prevent the BS from receiving messages from the user. This scheme enables
an UAV to optimise its relay power to help the cellular system to resist jamming without
knowing the cellular topology, the message generation model, the server computation
model, and the jamming model. The UAV chooses its relay power in order to maximise
the utility function which depends on the bit error rate (BER) of the user message received
by the serving BS, the BER of the weaker message signal received by UAV or the relay BS,
and the relay cost.

Network 2023, 3 59

Another potential AI/ML application in 5G is dynamic resource allocation to radio
access network (RAN) slices. The studies devoted to this problem can be divided into two
main categories. The studies in the first category use the supervised learning approach
to adjust the resource distribution by predicting the usage of each RAN slice [86,118].
The alternative approach involves formulating the resource allocation problem as a Markov
decision process (MDP) and solving it with a reinforcement learning algorithm [96–98,100].
The former approach would most likely be easier to execute assuming a labeled dataset is
available. However, the resulting prediction model would not be able to take into account
the effect of the resource allocation decisions on the network environment. The RL approach
is therefore probably more suited for such a dynamically complicated task even though the
model training in this case requires implementing a simulation software and shaping an
efficient reward function as mentioned in Section 3.

AI/ML can also be a good alternative for intelligent scheduling. For instance, study [39]
formulates the resource allocation problem in cellular long term evolution (LTE) com-
munications in unlicensed spectrum using licensed assisted access LTE (LTE-LAA) as
a non-cooperative game. The players in this game are the small BSs (SBSs) which learn
autonomously which unlicensed channels to use. The framework proposed by the authors
solves this game problem using policy-based reinforcement learning with the LSTM-based
model as the policy function. The solution allows the SBSs to learn each channel access
probability taking into account future environmental changes caused by LTE-LAA traffic
loads and additional WLAN transmissions. The authors in [117] propose a scheduler
to infer the free slots in a multiple frequency time division multiple access (MF-TDMA)
network to avoid congestion and high packet loss. Study [72] focuses on the problem of
scheduling high volume flexible time (HVFT) application traffic in future computer net-
works. A common property of HVFT applications is that the mobile network operator must
serve a large volume of traffic during the day but has significant flexibility in scheduling
this traffic, i.e., these applications can tolerate delays on the order of a few hours up-to
a day. The problem is formulated as an MDP and it is solved with DDPG.

In addition, AI/ML can also be a promising feature for routing optimization. For exam-
ple, a framework for smart wireless network management is proposed in [83]. In particular,
the study focuses on the scenario when a user moves in an area with multiple access-points
(APs), and only associates with one AP at a time. APs can monitor the received signal
strength indicator (RSSI) of uplink user traffic data. The target is to find an optimal access
policy for the user while maximising the user’s throughput. The experiments in the study
are conducted using a real-time software-defined networking (SDN) based heterogeneous
wireless network testbed [124]. In [73], a framework for online routing in optical transport
networks (OTNs) is proposed. The authors consider the scenario in which an agent op-
erates over a logical topology composed of reconfigurable optical add-drop multiplexer
(ROADM) nodes and some predefined lightpaths connecting them. The role of the agent is
to route incoming traffic demands through particular sequences of lightpaths. The problem
is modelled as an MDP and it is solved with TRPO.

Furthermore, cognitive radio capabilities empowered by machine learning allow
for performing spectrum awareness and spectrum sharing. For example, in study [9],
an AI/ML model at an environmental sensing capability (ESC) station detects citizens
broadband radio service (CBRS) as an incumbent user. If such service is not observed in the
channel under consideration, the ESC allows a BS to communicate to UEs. Otherwise, the BS
cannot use this channel and it is reconfigured to vacate this channel to avoid interference
with transmissions of the incumbent user.

Finally, security of mobile networks can be enhanced significantly by employing state-
of-the-art AI/ML models for anomaly detection [41,45]. The resulting intrusion detection
systems (IDSs) can be used to classify the vectors of features extracted from network traffic
flows as either benign or malicious. In the RAN domain, the main security application of
AI/ML is jamming detection [47,74]. In this case, an AI/ML model is trained to distinguish
between the signals transmitted by normal devices and the one broadcast by the jammer.

Network 2023, 3 60

The input features may include the location of the device sending the signal, SNR value,
traffic volume, frequency of transmissions and several others.

5. Attacks

In this section, we summarise both white-box and black-box attack algorithms against
several AI/ML models summarised in the previous section, namely k-NN, decision tree
ensembles and deep neural networks.

5.1. Attacks against k-NN

In the most straight-forward white-box attack scenario against a k-NN model with k
equal to one and Euclidean distance being the distance metric, in order to transform a new
unlabeled sample in such a way that it is misclassified as a given target class, it is sufficient
for an adversary to select a sample from the target class, and move the new sample towards
the target sample along the straight line joining them. Assuming that all data samples are
distinct, as the amount of perturbation increases, the perturbed sample would eventually
find itself with the target sample as its nearest neighbour [125]. In the case, the target class
is not given, i.e., the adversary aims to transform the unlabeled sample in such a way that
it is misclassified, no matter which class the perturbed sample belongs to. As mentioned
above, such a straight-forward attack is white-box as the adversary would require to know
both the training dataset and the distance metric. This attack vector acts as the basis for
a naive attack proposed in [126].

When k = 1 this strategy is able to easily find an optimal adversarial example. How-
ever, it is unclear how to do this efficiently for bigger values of k. There is no guarantee of
an optimal solution when using the algorithm proposed above for each set of k training
samples. Furthermore, it is extremely inefficient and the solution complexity increases
exponentially with k. To resolve these issues, study [126] proposes the following attack
algorithm. First, the nearest neighbour x̂ from any class ŷ other than y is found. This
sample is added to an empty set S. After that, out of all samples with class ŷ, the nearest
sample to the mean of S is found and added to S. This step is repeated until |S| =

⌈
k
2

⌉
.

Finally, x is moved towards the mean of S until the classifier’s prediction differs from y. It
is worth noticing that the attack is non-targeted, however it can be transformed into the
targeted one by selecting x̂ as the nearest to x which has the given target class.

Authors in [126] also propose a gradient-based attack. First, a target label ŷ is selected
as the class which minimises the distance from an original sample x to the mean of all
samples of some class y′ 6= y, where y is the class label of x. After that, m samples from
the same class ŷ that are closest to x are picked. Next, x is moved further from the samples
with the original class y and closer to the ones with the target class ŷ using a gradient-
based optimization algorithm. In other words, to craft such an adversarial perturbation δ,
the following optimization problem should be solved:

min
δ

m

∑
i=1

ωiσ(||x̄i − (x + δ)|| − η)

subject to ||δ|| ≤ ε,

(1)

where x̄1, . . . , x̄m are the m training samples selected by the algorithm, ωi = 1 if the label
of x̄i is ŷ, otherwise ωi = −1, σ is a sigmoid σ(z) = 1/(1 + e−αz) in which “steepness” of
the function is controlled with the help of hyperparameter α, η is the average distance
between a sample in the training dataset and its k-th nearest neighbour, and ε is the maximal
perturbation size. This attack is non-targeted, but it can be transformed to the targeted one
by picking a certain target class ŷ.

Network 2023, 3 61

Another gradient-based attack against k-NN is proposed in [127]. As in the previous
case, it starts with generating a subset of m guide samples X̄ = {x̄1, . . . , x̄m}. The first half
of these samples is generated in the same manner as in the previous attack case:

{x̄1, . . . , x̄m/2} = arg min
X′

∑
x′∈X′

||x′ − x||

subject to ∀x′ ∈ X′, f (x′) = y′, y′ 6= y.
(2)

The second half is generated as follows:

{x̄m/2+1, . . . , x̄m} = arg min
X′

∑
x′∈X′

||x′ − x||

subject to ∀x′ ∈ X′, f (x′) = y.
(3)

Once the guide samples have been found, the following optimization problem is
supposed to be solved by the adversary in order to generate an adversarial perturbation δ:

min
δ

m

∑
i=1

max
{

ωi

(
||x̄i − (x + δ)|| − η2

)
+ ∆, 0

}
+ c||δ||2, (4)

where ∆ a small constant greater than zero, e.g., 1× 10−5, c is a balancing constant, and other
notations are the same as in (1). To find c a binary search is used: in case of the successful
attack, c is increased and, in the opposite case, c is decreased. The attack is executed
multiple times: one for each training sample nearest to x whose class is different from y.

Study [128] proposes an adversarial example attack against k-NN algorithm via
solving the following optimization problem with regards to λ:

max
λ≥0

{
−1

2
λT AATλ− λTb

}
, (5)

where matrix A = {ai} and vector b = {bi}. If f (x̄i) = y, ai = x̂ − x̄i and bi =
||x−x̄i ||2−||x−x̂||2

2 , otherwise they are equal to zeros. The adversarial perturbation can then
be crafted as δ = ATλ. This optimization problem can be solved via a greedy coordinate
ascent algorithm. The solving time can be decreased by applying a screening rule to remove
variables in each such problem.

A region-based attack against a k-NN classifier is proposed in [129]. The attack is based
on (s, m)-decomposition which is a partition of the training samples into convex polyhedra
P1, . . . , Ps. Each of these polyhedras can be defined by m linear constraints. If there is
such an (s, m)-decomposition exists for a classifier f that f (x) is constant ∀x̄ ∈ Pi ∀i, then
classifier f is (s, m)-decomposable. Since k-NN is (s, m)-decomposable, an adversarial
example for x can be found by first determining all polyhedra Pi with the corresponding
class label ŷi such that f (x) 6= ŷi. After that, the following minimization problem is
supposed to be solved by the adversary:

min
i: f (x) 6=ŷi

min
x̂∈Pi
||x− x̂||, (6)

where Pi is described by m linear constraints and the norm objective is convex. Thus, each
inner minimization problem in (6) can be solved separately via solving a convex program.
Solving the inner problem results in candidates x̂i ∈ Pi ∀i. Taking the outer minimum over
i with f (x) 6= ŷi leads to the optimal adversarial example arg minx̂i ||x− x̂i||. When k = 1,
this is efficiently solvable, but, unfortunately, for k > 1, this attack does not scale well.
The attack approach proposed is similar to the one proposed in [128].

In [130], an adversarial example attack against k-NN classifiers based on higher-order
Voronoi diagrams is proposed. Assuming L(k)

i is a subset of k samples from the training

dataset X, order-k Voronoi cell associated with L(k)
i includes the points from that are closer

Network 2023, 3 62

to L(k)
i than any other k points of X. Voronoi facet is a boundary of an order-k Voronoi cell.

In the algorithm, finding the set of facets that comprise an unvisited cell can be carried
out by finding bisectors which are active with respect to this cell. A bisector between two
samples is a set of points that are equidistant from those samples. A bisector is active with
respect to a cell if it includes a facet of this cell. It is also worth noticing that the distance
between x and a facet can be calculated by solving (5).

All the attacks described in this section assume the adversary has perfect knowledge
of the input sample and its label. However, it is hard to classify the attacks described in
this section as either white-box or black-box ones as k-NN algorithm does not really have a
model as a new unlabeled sample is compared to all the samples in the training dataset,
i.e., essentially the “model” consists of all the training samples. On the ond hand, since
the attacks presented assume the adversary has knowledge of the dataset, the attacks are
rather white-box. On the other hand, if the adversary manages to obtain a substitute of the
training dataset or its subset, the attack becomes applicable to a black-box scenario.

5.2. Attacks against Tree Ensembles

The framework proposed in [129] can also be applied to tree-based classifiers since
any decision tree is (L, D)-decomposable where D is the tree depth and L is the number of
the tree leaves. If a classifier is an ensemble of T trees, then it is (LT , DT)-decomposable
assuming that each tree in the ensemble has depth D and L leaves. Therefore, the region-
based attack is based on solving optimization problem (6). In [131], a linear attack against
a single decision tree is proposed. The main idea of the attack algorithm is to determine
such a box for each leaf node that any example in this box is labelled according to this leaf.
The node i’s box can be described as the Cartesian product Bi = (li

1, ri
1]× . . .× (li

d, ri
d] of d

intervals on the real line. Here d is the dimension of the samples. By definition, the box
of the root node is defined as (−∞,+∞)× . . .× (−∞,+∞). Boxes of an internal node i
children are calculated by splitting one of the box’s intervals. If p and q are the i-th node’s
child on the left and on the right, respectively, their boxes Bp = (lp

1 , rp
1]× . . .× (lp

d , rp
d] and

Bq = (lq
1 , rq

1]× . . .× (lq
d, rq

d] can be found as follows:

(lp
t , rp

t] =

{
(li

t, ri
t], if t 6= ti,

(li
t, min{ri

t, ηi}], if t = ti

(lq
t , rq

t] =

{
(li

t, ri
t], if t 6= ti,

(max{li
t, ηi}, ri

t], if t = ti.

(7)

Once the boxes for internal nodes have been computed, the boxes for leaf nodes can
also be obtained using (7). Once the box for each leaf node has been computed, the minimal
perturbation which changes a new unlabeled sample x to move towards a leaf node i can
be found as follows:

δ(x, Bi) =


0, if x̃ ∈ (li

t, ri
t],

x̃− ri
t, if x̃ > ri

t,
li
t − x̃, if x̃ < li

t.

(8)

After that, the minimal perturbation is supposed to be computed as δ̃ = mini:vi 6=y ||δ(x, Bi||.
Here vi is the label of leaf node i. Such a perturbation can be found by testing boxes Bi for all
the leaves. After that, the minimal perturbation is selected. This algorithm is linear-time and
it allows for exact verification of a single decision tree robustness. Unfortunately, finding an
exact optimal adversarial perturbation for an ensemble of trees requires exponential time
and it is not scalable when the size of the ensemble and the depth of the trees grow [132].

In [133], a simple attack algorithm against a decision tree classifier is proposed. It
follows the procedure described in the previous section. In particular, to find an adversarial
sample, given a sample and a tree, an adversary simply searches for leaves with a class
label that is different from the class of the unperturbed sample in the neighbourhood of the

Network 2023, 3 63

leaf corresponding to the decision tree’s original prediction. After that, the path from the
original leaf to the adversarial leaf is determined. Next, the sample is perturbed according
to the conditions on this path in order to force the decision tree to misclassify the sample as
the one belonging to the adversarial class.

The shortest path based attack algorithm against a tree-based ensemble is proposed
in [134]. The algorithm also focuses on attacking a binary tree-based classifier. Without loss
of generality it assumes that an adversary attempts to flip the label for a new sample
x labelled by the ensemble as 1. The shortest path in the algorithm is defined as the
one requiring the minimum number of changes over features, i.e., minimising ||x − x̃||
to change the decision of a classification tree. The search for the shortest path starts by
finding all internal nodes of tree fi of the ensemble for which fi(x) > 0. After that, all
the paths from each node n of the tree to leaf −1 are found excluding the paths which
include other node n′ 6= n. The shortest path Pi is selected from the paths needed to be
modified to flip the label of x. This algorithm essentially manipulates a vote casted by
an individual decision tree via a local solution. For a tree ensemble, more steps are needed
to find the features of x which are supposed to be modified. For this reason, a weight is
assigned to each selected feature in the shortest path. The first feature at a parent node is
assumed to be the most influential over a decision whereas impacts of other features in the
shortest path are significantly smaller. It is worth noting that there may be multiple shortest
paths with the same length. To avoid the situation when the same feature is overweighted
because of this, only one shortest path is selected randomly. Once an optimal feature xk has
been found, the corresponding features in the shortest path are supposed to be removed
according to the following rules: if length of Pi = 1, delete Pi; if length of Pi > 1 and xk ∈ Pij,
delete xk from Pij if length of Pi > 1 and xk 6∈ Pij, delete Pij, where Pij is the j-th path in
the shortest path Pi in case there are several paths of the same length. In the black-box
settings, i.e., when the attacker does not know the original model parameters, the search
for adversarial examples can be carried out for a substitute set of trees.

In [135], an iterative leaf tuple attack approach is proposed. The algorithm starts with
a sample x̃ which is already adversarial, i.e., f (x̃) 6= y. At each step, a new sample x̃′

which has the minimum distance to x is selected within a small neighborhood around x̃.
The algorithm stops when x̃′ does not provide a smaller perturbation than x̃. The algorithm
uses the following notations. C(x) = (i(1)(x), . . . , i(K)(x)) denotes the index tuple of K
prediction leaves from input x. As previously, Bi = (li

1, ri
1] × . . . × (li

d, ri
d] is the box of

boundaries around the i-th node, such that each sample inside this box falls into this
node. B(C(x)) =

⋂
i∈C(x) Bi =

⋂
i∈C(x)(li

1, ri
1]× . . .× ⋂i∈C(x)(li

d, ri
d] denotes the Cartesian

product of the intersection of K such bounding boxes in the ensemble. If x̃ ∈ B(C̃) is the
sample which minimizes the distance between C̃ and x the indexes of trees that bound x̃
are denoted as Tbound(C̃) = {t| OnEdge(x̃, BC̃(t)

)∀t ∈ {1, . . . , K}}, where OnEdge(x, B) is
equal to 1 if x corresponds to the right or the left bound of B for at least one dimension.
The attack proposed is white-box as the adversary is required to have perfect knowledge of
all the trees in the ensemble.

Study [136] proposes a simple black-box cube attack against an ensemble of boosted
trees. The attack algorithm proposed aims to craft an adversarial perturbation δ : ||δ|| ≤ ε
against binary tree-based classifier f (x), i.e., label y = 1 if f (x) > 0 and y = −1 if f (x) ≤ 0.
Thus, an unlabeled sample x with label y is classified correctly if y f (x) > 0. Projecting
a perturbed sample x̃ + δ onto ball B(x, ε) means that if x̃ + δ is outside of that ball it is
moved to the closest point inside the ball.

5.3. White-Box Attacks against Neural Networks

The last but not the least group of AI/ML algorithms against which adversarial
example attacks are common consists of neural network based models. It is worth noticing
that the vast majority of the research in the domain of adversarial machine learning focuses
on attacking deep learning algorithms [19,20,137,138]. For this reason, we divide those into

Network 2023, 3 64

three parts: white-box, score-based and decision-based attacks. In this subsection, only
white-box attack algorithms are presented.

In distinction to the mentioned above algorithms which are discrete and non-differentiable,
a deep neural network most of the time has a differentiable loss function and uses a gradient-
based optimizer during the training. This enables gradient-based adversarial example
generation by modifying an input sample in the direction of the loss function gradient [137].
In case an adversary aims to transform a new unlabeled sample in such a way that it
belongs to a given target class, the gradient step is computed in the direction of the negative
gradient with respect to the target class [138]. The adversarial perturbation δ can therefore
be crafted as follows:

δ = −ε sign(∇x J(x, ŷ)), (9)

where ε is the perturbation size, J is the network loss function, x is the new sample, and ŷ is
the target class. The adversarial example x̃ as previously is calculated as x̃ = x + δ. In case,
the adversary aims to modify the new sample in such a way that its class is simply different
from the real one, the perturbation can be crafted as follows:

δ = ε sign(∇x J(x, y)), (10)

where y is the label of the original input sample x. In any case, the adversary would require
full access to the model parameters and the loss function to calculate the gradient∇x J(x, ŷ)
to carry out these white-box attacks.

Another gradient-based attack named basic iterative method (BIM) is introduced
in [138]. It extends the one-shot fast gradient sign method (FGSM) described above by
applying it more than one time with some step size below ε. After each step, the resulting
value is clipped to guarantee that it is in an ε-neighbourhood of the original input. A pro-
jected gradient descent (PGD) attack against neural network classifiers based on the BIM
algorithm is proposed in [139]. It starts from a random perturbation in the ε-ball around
a sample x. After that, a gradient step is taken in the direction of greatest loss. If neces-
sary, the resulting perturbation is projected into the ball to satisfy the budget restrictions.
Study [140] proposes momentum iterative methods (MIMs) to improve BIM and PGD
algorithms mentioned above. This method accumulates a velocity vector in the gradient
direction of the loss function found at each algorithm iteration. This allows the gradient
descent algorithm to avoid poor local minimums or maximums which in theory should
lead to more efficient adversarial perturbation being generated.

In [19], an adversarial perturbation for a neural network is generated by solving the
following problem with the help of limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) nonlinear gradient-based numerical optimization algorithm:

min
δ

c||δ||+ J(x + δ, ŷ)

subject to x + δ is feasible,
(11)

where ŷ is the attack target class label and line search is used to find the minimum constant
c > 0. The line search approach first finds a descent direction along which the objective
function is reduced and then computes a step size that determines how far c should move
along that direction.

Study [141] proposes an adversarial example attack targeting internal representations
of the samples. In particular, it focuses on solving the following optimization problem:

min
δ
||φk(x + δ)− φk(x̂)||

subject to ||δ|| < ε,
(12)

where x̂ is the target sample, φk is the mapping from x to its internal representation at the
k-th layer and ε is as previously the maximum perturbation size. This problem can also

Network 2023, 3 65

be solved with the help of the L-BFGS algorithm for each k with the loss function J being
equal to ||φk(x + δ)− φk(x̂)||.

In [142], an algorithm to compute adversarial examples based on an iterative lin-
earization of the classifier is proposed. The algorithm generates minimal perturbations
that are sufficient to change classification labels. Specifically, at each iteration, classifier f
is linearized around the current point xi and the minimal perturbation of the linearized
classifier is computed as

arg min
δi
||δi||

subject to f (xi) +∇ f (xi)δi = 0
(13)

Once the perturbation δi at iteration i of the algorithm has been computed, xi+1 is
updated as xi + δi. The algorithm stops when xi+1 changes the label f (x) returned by the
classifier for sample x.

A non-targeted attack which attempts to perform gradient descent to decrease the
probability f (x)y of the original class y = f (x) is proposed in [143]. Assuming that the
number of classes is K, the descent step size α is determined as follows. When f (x̃)y is larger
than 1/K, which is the case if f (x̃) = y, then α = f (x̃)y − 1/K. Once f (x̃)y approaches
or falls below 1/K, α = η||x||||∇ f (x̃)y||, where the hyperparameter η defines the level of
aggressiveness with which the gradient descent tries to minimise the probability of class y.

Study [20] crafts adversarial samples via Jacobian-based saliency map attack (JSMA)
algorithm. The approach proposed constructs an adversarial saliency map by evaluating
forward derivatives of the network. The purpose of this map is to identify the set of
input features which the adversary has to perturb in order to achieve its goal. If the
adversary wants to perturb a sample x in such way that it is assigned to a target class
ŷ 6= y, the probability of the target class ŷ returned by f , i.e., f (x)ŷ, should be increased,
At the same time, the probabilities f (x)k of all other classes k 6= ŷ must be decreased.
The misclassification goal is achieved when ŷ = arg maxk f (x)k. This can be accomplished
by the adversary via increasing features of an input sample x using the following saliency
map S(x, ŷ):

S(x, ŷ) =

0 if
∂ f (x)ŷ

∂xi
< 0 or ∑k 6=ŷ

∂ f (x)k
∂xi

> 0
∂ f (x)ŷ

∂xi

∣∣∣∑k 6=ŷ
∂ f (x)k

∂xi

∣∣∣ otherwise,
(14)

where i is the input feature. Alternatively, the adversary may try to decrease some of the
input features to achieve the misclassification required.

In [144], a set of white-box attacks against neural networks is proposed. The Carlini
and Wagner (C&W) attack approach is similar to [19]. It is based on solving the following
optimization problem:

min
w
||δ(w)||+ cF(x + δ(w)) (15)

where w is a new variable such that once δ has been expressed in the form of a function
of this new variable w, perturbed sample x + δ is always feasible, and F can be one of the
following functions:

Network 2023, 3 66

F(x) = −J(x) + 1

F(x) = (max
k 6=ŷ

(f (x)k − f (x)ŷ))
+

F(x) = log(1 + exp max
k 6=ŷ

(f (x)k − f (x)ŷ))− log 2

F(x) = (0.5− f (x)ŷ)
+

F(x) = − log(2 f (x)ŷ − 2)

F(x) = (max
k 6=ŷ

(z(x)k − z(x)ŷ))
+

F(x) = log(1 + exp max
k 6=ŷ

(z(x)k − z(x)ŷ))− log 2

(16)

where J is the loss function of the network f given the correct classification and z is the logit,
i.e., the unnormalized raw probability prediction of the model for each class. Constant c
can be found via binary search.

Study [145] employs the approach similar to [144] by utilising the following loss function:

F(x) = max{max
k 6=ŷ

(z(x))k − (z(x))ŷ,−K}, (17)

where K is a hyperparameter which guarantees a constant gap between maxk 6=ŷ(z(x))k and
(z(x))ŷ. The optimization problem is also modified by adding a regularisation parameter β:

min
δ

g(x) + β|δ|1

subject to x + δ is feasible,
(18)

where g(x) = ||δ||2 + cF(x + δ). To craft an adversarial perturbation an element-wise
projected shrinkage thresholding function is defined as follows:

(Sβ(z))i =


min{zi − β, 1} if zi − xi

xi if |zi − xi| ≤ β

max{zi + β, 0} if zi − xi < −β

(19)

Study [146] applies a recurrent neural network (RNN) with a two-step training process
to generate adversarial examples targeting a keyword spotting (KWS) system. In particular,
the framework proposed utilises long-short term memory (LSTM) neural network [50].
It is assumed that an adversary has perfect knowledge of the training dataset and the
target model. First, for each input sample x from the dataset, the adversary generates
an adversarial example x̃ using the BIM algorithm [138]. Each resulting perturbation
δ(x) = x̃ − x is used to pre-train the LSTM model gθ with weights θ by minimising the
following loss function:

L1(θ) = ∑
x
||gθ(x)− δ(x)|| (20)

Once the network has been pre-trained, it is directly optimised against the KWS
network by minimising the following loss function:

L2(θ) = ∑
x
||gθ(x)||+

+ c(max
k 6=ŷ

z(x + gθ(x))k − z(x + gθ(x))ŷ + R)+,
(21)

where z is the logit score returned by the KWS, c > 0 is a regularisation parameter and
R ≥ 0 is a constant which controls the confidence score of the target label ŷ.

Network 2023, 3 67

In [147], an algorithm for crafting universal input-agnostic adversarial perturbations is
proposed. The algorithm seeks a universal perturbation δ, such that ||δ|| ≤ ε, while fooling
at least percentage α of data points in X = {x1, . . . , xm}, i.e.,:

1
m

m

∑
i=1

I{ f (xi + δ) 6= f (xi)} ≥ α (22)

The algorithm proposed gradually builds the universal perturbation by iterating over
the data points in X. At each such iteration, the minimal perturbation ∆δi that sends
the current perturbed point xi + δ to the classifier’s decision boundary is computed and
aggregated into a universal perturbation δ. If δ does not fool data point xi, the algorithm
seeks for an extra perturbation ∆δi with minimal norm that allows to fool data point xi by
solving the following optimization problem:

min
∆δi
||∆δi||

subject to f (xi + δ + ∆δi) 6= f (xi)
(23)

To ensure that the constraint ||δ|| ≤ ε is satisfied, the updated universal perturbation
is further projected on the ball of radius ε and centred at 0.

It is worth noticing that all the attacks presented by this point generate adversar-
ial examples for AI/ML models deployed for classification tasks. In fact, by definition,
an adversarial example is specialised input created with the purpose of confusing a model,
resulting in the misclassification of a given input. Concerning adversarial learning in regres-
sion settings, there are no natural margins as in the case of classification tasks, and, therefore,
it is hindered with difficulties to define the adversarial attacks, its success, and evalua-
tion metrics. However, many of the attack algorithms surveyed are still applicable for
attacking regression models. For example, in [148], FGSM and BIM attacks are successfully
performed against a deep learning model deployed for time series regression. Since both of
these methods introduce such a perturbation that moves an input sample in the direction
of the gradients to maximise the loss value, the difference between the original and the
adversarial example predictions will increase.

Study [149] a simple method for generating adversarial attacks for regression tasks
derived from the algebraic properties of the Jacobian of the network. The attack problem is
formulated as follows:

max
δ
|| f (x + δ)− y||

subject to ||S−1/2δ|| ≤ ε,
(24)

where S a weighting matrix typically corresponding to the covariance matrix of the inputs.
The authors perform a linearization of f based on the first-order Taylor expansion with
Jacobian matrix J(x) calculated at point x and then solve the resulting optimization problem
for standard norm values. For example, in the case of the Euclidean norm, the optimal
perturbation can be computed by performing a singular value decomposition (SVD) of
J(x)S1/2.

5.4. Score-Based Attacks against Neural Networks

In this subsection, we survey attacks that can be carried out in the black-box settings,
i.e., the target model can remain unknown to the adversary. However, it is required
that the adversary has an ability to query an input sample to the target classifier which
returns a vector of scores, each of which is essentially a probability that the input belongs
to a certain class. Two such black-box score-based attacks against neural networks are
proposed in [150]. Both of the attacks focus on convolutional neural network based models
and aim to modify input images in such a way that they are misclassified by the models.
The first attack simply modifies the value of one randomly selected pixel (ĩ, j̃) of an input

Network 2023, 3 68

image x = {xijk} normalised in such a way that lijk ≤ xijk ≤ uijk where lijk < 0 and uijk > 0
∀i, j, k as follows:

x̃ijk(ĩ, j̃) =

{
xijk if i 6= ĩ or j 6= j̃,
p× sign(xijk) otherwise,

(25)

where k represents the colour channel index and p is the perturbation factor.
One shortcoming of this algorithm is that when building an adversarial image, the per-

turbation applied by the adversary to a single pixel is often quite large. Hence, in the
adversarial image, there might exist such a pixel coordinate value of which lies outside
the valid range [l, u]. The search procedure is therefore required to be redesigned in order
to ensure that the adversarial image generated still belongs to the original image space.
For this purpose, a local-search procedure is proposed that aims to minimise the probability
zy(x) assigned by the neural network model that an input image x belongs to class y.

Study [151] proposes a gradient-free optimization method for finding an adversarial
perturbation. This method approximates gradients by estimating finite differences calcu-
lated in random directions. The method allows for crafting adversarial perturbations in case
the directions the gradients point to are not useful or the model itself is non-differentiable.

In [152], a black-box attack based on a genetic algorithm is proposed. In order to
estimate each population members, the following fitness function F(x) is introduced:

F(x) = log f (x)ŷ − log ∑
k 6=ŷ

f (x)k, (26)

where f (x)k is the k-th class score returned by the neural network f for input sample x.
A simple method for the construction of adversarial samples in black-box settings

is proposed in [153]. The attack aims to decrease the confidence scores f (x + δ)y for the
class label predicted by the target classifier f without the perturbation. For this purpose,
the algorithm randomly samples a direction q from a set Q of search directions. Set Q can
be the standard or the discrete cosine basis.

An extension of the SimBA method [153] for black-box UAP generation is proposed
in [154]. It combines the SimBA method with white-box UAP attack [147]. As previously,
the attack aims to decrease the confidence scores f (x + δ)y for the labels predicted by
the target classifier f without the UAP of any sample x ∈ X = {x1, . . . , xm} with label
y ∈ Y = {y1, . . . , ym}. For this purpose, the algorithm randomly samples a direction q from
a set Q of search directions. Set Q can be the standard or the discrete cosine basis.

5.5. Decision-Based Attacks against Neural Networks

In this subsection, we summarise practical adversarial example generation attacks
that can be carried out by an adversary in fully black-box settings, i.e., when the adversary
does not have access to the AI/ML model deployed. In addition, we assume that the target
model output includes only hard labels, i.e., no score values can be derived. Assuming
the adversary has access to samples from the training dataset, the most straight-forward
approach is to train a substitute model and then use one of the aforementioned white-box
algorithms to craft a perturbation. Such an attack approach is based on the transferability
property of adversarial examples which states that the perturbation crafted to fool a specific
model can also fool another model with high probability. In [155], this attack approach is
employed. The target model in this case is used by the adversary to provide labels for the
training samples. Even though the adversary does not need to have full knowledge of the
target model, it must at least have some partial knowledge of the model input and expected
output. The adversary also should have access to a small set of training data samples that
can act as an initial set for training the substitute model. The algorithm efficiency can be
improved via periodical step size selection and reservoir sampling [133].

Study [156] proposes another attack approach which does not involve training a sub-
stitute model. The attack starts from an adversarial point x̃ calculated for an input sample
x and tries to keep it in the adversarial region while reducing the distance to x by adjusting

Network 2023, 3 69

the step size using a trust region method. The proposal distribution P may significantly
affect the efficiency of the algorithm. This distribution defines random directions the
algorithm explores at each iteration. The optimal proposal distribution depends on the
target neural network. The following is the algorithm procedure in general. In the t-th
step a perturbation δt is drawn for an adversarial sample x̃t−1 from such a maximum
entropy distribution that the following constraints are satisfied: x̃t−1 + δt is a feasible sam-
ple, ||δt|| = α||x̃ − x̃t−1||, and ||x̃ − x̃t−1|| − ||x̃ − (x̃t−1 + δt)|| = β||x̃, x̃t−1||. In practice,
the first two constraints are satisfied by sampling from a Gaussian distribution and then
rescaling and clipping the sample accordingly. After that, the sample is projected on the ball
with the centre being equal to the original adversarial sample x̃ such that the third and the
first constraints hold. The resulting perturbation is denoted as the orthogonal perturbation.
A half of such orthogonal perturbations is expected to still be adversarial. If the percentage
of adversarial samples is less than half, the length of the perturbation is reduced, otherwise,
if more than half of perturbations are adversarial, the length is increased. Similarly, if the
success rate is too small the step size is reduced, if it is too large, the size is increased.

Although the boundary attack can find adversarial examples with distortion compa-
rable to white-box attacks, it suffers from exponential search time and lacks convergence
guarantees. More query-efficient algorithm for attacking a classifier f by generating an
adversarial perturbation for a given sample x with label y is proposed in [157]. Instead of
searching for an adversarial example, the approach proposed searches such a direction θ
that minimises the distortion F(θ) which in case of an non-targeted attack can be obtained
as follows:

F(θ) = arg min
λ>0

(f (x + λ
θ

||θ|| 6= y)) (27)

The adversarial example can be found as x̃ = x + F(θ̃) θ̃
||θ̃|| , where θ̃ = arg minθ F(θ).

In [158], another black-box attack based on estimating gradient direction at the decision
boundary based solely on access to model decisions is proposed. It is also essentially
an advanced version of the boundary attack described earlier. At each iteration of the
algorithm, the following three steps are carried out: estimation of the gradient direction,
step-size search via geometric progression, and boundary search via a binary search.

Study [159] proposes zeroth order optimization (ZOO) attacks against a black-box
classifier. The attack approach is based on C&W attack [144], similarly it uses the following
loss function:

F(x) = max{max
k 6=ŷ

(z(x))k − (z(x))ŷ,−K}, (28)

where z(x) K is a hyperparameter that guarantees a constant gap between maxk 6=ŷ(z(x))k

and (z(x))ŷ. The gradient gi =
∂F(x)

∂xi
is estimated as follows:

gi =
F(x + hei)− F(x− hei)

2h
, (29)

where h is a small constant and ei is a standard basis vector with only the i-th component

as 1. Similarly, Hessian hi =
∂2F(x)

∂x2
ii

can be estimated as follows:

hi =
F(x + hei)− 2F(x) + F(x− hei)

h2 . (30)

In [160], adversarial examples are generated in black-box settings with the help of
a geometric framework under the restriction that only a small number of queries is allowed.
The resulting GeoDA attack approach is based on the fact that the mean curvature of
the decision boundaries in the neighbourhood of an input sample is quite low for many
frequently used deep learning models [161]. As a result, it can be locally approximated by
a hyperplane passing through a boundary point b close to data sample x, with a normal

Network 2023, 3 70

vector w. In this case, an adversarial perturbation δ can be derived by solving the following
optimization problem:

min
δ
||δ||

subject to wT(x + δ)− wTb = 0
(31)

Assuming x̃ is a boundary point, value of w can be derived by querying the target
classifier f Nt times using samples x̃ + ηi where i = 1, . . . , Nt. After that, w can be estimated
as follows:

w =
1

Nt
∑Nt

i=1 ρiηi

|| 1
Nt

∑Nt
i=1 ρiηi||

, (32)

where ρi = 1 if f (x̃ + ηi) 6= f (x̃) and ρi = −1 otherwise.
Study [162] attacks a black-box classifier in a query-limited partial-information setting.

The former means that the adversary has a limited number of queries to the classifier,
and the latter means the adversary has access only to a list of k returned labels sorted
according to their probabilities predicted. The attack approach is based on estimating the
gradient with natural estimation strategies (NES). The authors introduce the following
function to estimate the score of a sample:

S(x) =
1
n

n

∑
i=1

R(x + µui), (33)

where n is a number of samples, σ is a search variance, ui is a random perturbation, and func-
tion R(x) = k− rank(ŷ|x). There are several studies that propose to use GANs [105] to
generate adversarial perturbations. For example, study [163] focuses on bypassing a ma-
chine learning based malware detection model by training a GAN. The target model f (x)
classifies each sample as either benign y or malicious ŷ. The GAN’s generator network Gθg

with parameters θg transforms an input sample from the malicious class into its adversarial
version, whereas the substitute discriminator Dθd with parameters θd is used to fit the
target model and at the same time it provides gradient information to train the generator.
By utilising the transitivity of the adversarial samples, the resulting framework constructs
a substitute model that can simulate the target model and generates adversarial samples
to bypass detection engines. Training the generator network pushes the substitute detec-
tor to misclassify adversarial samples. Since the substitute detector tries to fit the target
model, the training of the generator further fools that model. The loss functions for the
discriminator and the generator can, respectively, be calculated as:

Ld = −Ex: f (x)=y log(1− Dθd(x))−
− Ex: f (x)=ŷ log Dθd(x)

(34)

and
Lg = Ex∈X̂ log Dθd(x), (35)

where X̂ is the actual malware dataset, i.e., the samples that actually belong to the target
class ŷ, which may be different from the ones classified as ŷ by the target model.

Slightly different adversarial example generation approach that also uses GAN is
proposed in [164]. In that study, the generator network Gθg takes the original instance x as
its input and generates a perturbation Gθg(x). The resulting sample Gθg(x) is sent to the
discriminator Dθd which is used to distinguish the generated data and the original instance
x. Assuming that the target classifier f is known to the adversary, its loss for the perturbed
sample L f (x + Gθg(x), ŷ) can be determined. This loss is essentially either the distance
between the prediction and the target class ŷ in case of a targeted attack or the opposite of
the distance between the prediction and the ground truth class in case of an non-targeted
attack. The GAN’s generator is trained by minimising the following loss function:

Network 2023, 3 71

Lg = Ex∈X L f (x + Gθg(x), ŷ)+

+ α(Ex∈X log Dθd(x + Gθg(x))+

+ Ex∈X log(1− Dθd(x + Gθg(x))))+

+ βEx∈X(||Gθg(x)|| − c)+,

(36)

where x is sampled from X, i.e., the set of the samples which belong to the original class y,
c denotes a user-specified bound. Similarly, the discriminator is trained to minimise:

Ld = −Ex∈X log Dθd(x + Gθg(x))−
− Ex∈X log(1− Dθd(x + Gθg(x)))

(37)

In case, the target model is unknown to the adversary, the study proposes to build
a distilled [165] network F based on the output of the target model f by minimising the
cross-entropy H between the distilled and target model outputs, i.e.

L f = Ex H(F(x), f (x)) (38)

Finally, several studies formulate an adversarial example generation problem as
a Markov decision process which consists of three following components: a set of ad-
versarial samples as an environment state space, adversarial sample modifications as an
intelligent agent action space and a reward function that is calculated based on whether or
not the resulting samples have been correctly classified by the target model. The agent aims
to discover a policy that maximises a cumulative future reward signal received, which in
case of the decision-based adversarial machine learning means to learn how to transform an
adversarial sample in such a way that the target model classifies the sample as a legitimate
one. In order to solve the resulting problem, an RL approach is employed. For example,
study [166] demonstrates viability of RL approach by attacking machine-learning-based
anti-malware engines. In the framework proposed, the attacker learns to find an optimal
sequence of functionality-preserving malware code modifications to evade the supervised
detector. The RL algorithm employed to search for adversarial examples is DQN [53].
Similarly, study [167] uses DQN to effectively generate adversarial traffic flows to deceive
an intrusion detection model by automatically adding perturbations to flow samples. As in
the previous example, the attacker looks for such modifications to the sample, which does
neither change its original function nor break the sample format. It is worth noticing that
other RL algorithms can be employed for the task as well, e.g., since DQN does not support
continuous action spaces, DDPG [109] or PPO [114] can be used.

In addition to such complicated attacks, the target model can be tested against simple
perturbations generated by adding a noise signal distributed in a certain way to the original
input sample. This noise signal can for example be sampled from a uniform or a Gaussian
distribution. Another popular choice for the noise signal, especially in case of the target
model being an image classifier, is salt-and-pepper noise which presents itself as sparsely
occurring white and black pixels. In order to find the minimal size of the adversarial
perturbation generated with one of the noise signals mentioned, a line-search algorithm is
used. Alternatively, one can iterate over all the pixels perturbed, resetting them to the ones
from the original image if the perturbed image still stays adversarial as proposed in [168].

In the rest of this subsection, we summarise black-box hard-label attack algorithms
which look for universal perturbations which fool the target model on all or almost all
potential input samples X = {x1, . . . , xm}. An example of such an approach [147] has
already been discussed in the previous section. In this part of the report, we focus on
algorithms for crafting universal adversarial perturbations in black-box settings. One such
attack algorithm is proposed in [169]. The attack approach is similar to the RGF attack
introduced in [157], i.e., instead of searching for an adversarial example, the approach
proposed searches such a direction θ that minimises the distortion F(θ) which is either:

Network 2023, 3 72

F(θ) = ||(arg min
λ>0

f (x1 + λ
θ

||θ|| 6= y1), . . . ,

arg min
λ>0

f (xm + λ
θ

||θ|| 6= ym)||
(39)

or

F(θ) = arg min
λ>0

1
m

m

∑
i=1

I{ f (xi + λ
θ

||θ||) 6= f (xi)} ≥ α, (40)

where y1, . . . , ym are the correct class labels of the samples x1, . . . , xm and α is the amount
of samples that are supposed to be misclassified. The resulting algorithm is quite similar to
the one described in [157].

Two algorithms for UAP generation are proposed in [170]. Both of them are based
on training a substitute neural network using data samples available and then generating
perturbations for this substitute model. After that, the attack relies on the transferability
property of adversarial attacks. Once perturbations are generated for the data samples
given, a universal perturbation is constructed using either employing principal component
analysis (PCA) or via training a variational autoencoder (VAE). In the former case, per-
turbations generated are stacked into a matrix, and PCA is used to obtain the principal
component that has the largest variance. The resulting vector is then scaled in order to
satisfy the perturbation size constraints. In the latter case, a VAE is trained using the per-
turbations generated with the data samples available. After that, the mean of the resulting
encodings in the latent space is calculated and decoded into a mean perturbation, which
is also supposed to be scaled in order to be contained inside of the perturbation limits.
Similarly, study [171] uses SVD to decompose the matrix constructed from the normalised
perturbations generated for data samples given and then use the first component as the
universal perturbation.

6. Fuzzing Frameworks

There are several open-source frameworks available to test an AI/ML against ex-
isting adversarial example generation attack algorithms. These frameworks offer robust
implementations of several standardised, state-of-the-art adversarial attacks, defence and
detection schemes, robustness certifications, metrics, and formal verifications. As it was
mentioned in the introduction, crafting adversarial examples using one of such frameworks
as a rule requires specifying a target model that takes an input and makes a prediction,
a criterion that defines what an adversarial perturbation is, a distance measure of the pertur-
bation size, and an attack algorithm that takes the input and its label as well as the model,
the adversarial criterion and the distance measure to generate an adversarial perturbation.
All the frameworks we managed to find are implemented in Python which is the most
popular programming language for developing AI/ML applications. As with most of the
Python libraries, one of the aforementioned adversarial frameworks can be easily installed
via pip which is a standard package installer for Python. Most of the frameworks found are
able to interface with most popular AI/ML libraries such as PyTorch, Keras, TensorFlow,
Theano and several others. Furthermore, many frameworks also provide a straight-forward
way to add support for other AI/ML libraries.

Study [172] describes Cleverhans which is a Python library that provides standard
adversarial example generation technology and reference implementations for adversarial
training, which can be used to develop more robust AI/ML models and provide standard
model performance benchmarks for confrontation settings. The target model can be ei-
ther a Keras Sequential or a raw TensorFlow model. A custom target model can also be
implemented by inheriting from the certain model class which includes the minimum
amount of properties and methods the custom target model should implement. The attacks
implemented include L-BFGS attack [19], FGSM attack [137], C&W attack [144], Elastic-
Net attack [145], BIM attack [138], PGD attack [139], MIM attack [140], JSMA attack [20],
DeepFool attack [142], fast feature attack [141], and SPSA attack [151]. As one can notice,
all of the attacks implemented are white-box adversarial example generation based attacks

Network 2023, 3 73

against neural networks. In addition to the attack implementations, the framework also
implements adversarial training which is essentially adding adversarial examples to the
training data to allow the target model to generalise more efficiently [137]. The target
model is then suggested to be tested using the dataset that includes both the legitimate and
adversarial samples. The resulting accuracy value can be used as a metric to benchmark
the target model robustness. There are however no metrics implemented to benchmark the
attack algorithms themselves.

Adversarial Robustness Toolbox (ART) is another Python library which aims to defend
AI/ML models against adversarial threats [173]. In addition to the support of Keras and
Tensorflow, ART contains a functional API enabling the integration of models from various
ML libraries such as Pytorch, MXNet, Sklearn, XGBoost, LightGBM, CatBoost, and GPy.
Combining several classifier models into an ensemble is also supported. In order to test
black-box attacks the most basic classifier properties and methods should be implemented
using the corresponding abstract class provided. In addition, there are specific interface
implementations that should be employed when implementing a custom neural network
or a decision tree classifier. In addition to the attack algorithms implemented in Clever-
hans, the attack list in ART includes UAP attack [147], NewtonFool attack [143], spatial
transformation attack [174], ZOO attacks [159], boundary attack [156], SimBA attack [153],
GeoDA attack [160], adversarial patch [175], decision tree attack [133], high confidence
low uncertainty (HCLU) attack [176] and HopSkipJump attack [158]. The spatial temporal
attack aims to generate an adversarial sample via performing a combination of one rotation
and one translation of the input image. The HCLU attack focuses on such adversarial
perturbations that are classified with confidence above 95% and with the uncertainty level
being lower than when classifying the original unperturbed sample. The adversarial patch
is a sample crafted in such a way that pictures of a natural scene into which this sample
is inserted are misclassified. The rest of the attacks were covered in two previous sec-
tions of this report. As one can notice, in addition to the well-studied white-box attacks,
the framework includes implementations for multiple black-box attack approaches. There
is also support for decision tree classifiers including an implementation of the simple attack
proposed in [133]. As in the previous case, ART allows one to perform adversarial training.
It also provides several transformation methods that can be used for hardening an image
classifier: spatial smoothing [177], JPEG compression [178], Gaussian augmentation [179]
and several others. Other model hardening techniques include feature squeezing [177],
label smoothing [180] and thermometer encoding [181]. ART also includes a module which
provides runtime detection methods for adversarial examples. Finally, ART provides sev-
eral metrics which allow researchers to evaluate the classifier robustness against various
attack algorithms. The metric list includes: the average sensitivity of the model’s logits
with respect to changes in the inputs [182], the average sensitivity of the target model’s loss
function with respect to changes in the inputs [183] and the average minimal perturbation
which is required to get an input misclassified [142]. The sensitivity metrics however are
not directly related to adversarial example attacks. There is also a decision-tree-specific
metric based on clique method [131].

Study [184] introduces Foolbox which is another Python toolbox which allows one to
benchmark the robustness of AI/ML models. It also supports the most popular AI/ML
libraries Keras and Tensorflow as well as Pytorch, Theano and MXNet. Additionally,
Foolbox allows one to combine the predictions of one model with the gradient of another.
This makes it possible to attack non-differentiable models using gradient-based attacks
and allows transfer-based attacks described in [155]. The attack list includes multiple
white-box attacks all of which have already been implemented in ART [173]. Speaking
of the black-box attacks, there are implementations of the single pixel and local search at-
tacks [150], GenAttack [152], pointwise attack [168] and already mentioned boundary [156]
and HopSkipJump [158] attacks. There are also functions for generating straight-forward
perturbations via adding a uniform, Gaussian, or salt-and-pepper noise signal. When
performing the attack in the framework, there is a possibility to define a criterion under

Network 2023, 3 74

which a sample is considered an adversarial. The list of such criteria include targeted and
non-targeted misclassification, top-k misclassification, original class probability being be-
low a given threshold, target class probability being above a given threshold. Furthermore,
custom adversarial criteria can be defined and employed.

In [185], the design, implementation, and evaluation of DeepSec are presented. DeepSec
focuses on the analysis of adversarial attacks and defenses for deep learning models, and it
is implemented using Pytorch. The framework considers only white-box attack scenarios,
where the adversary has full knowledge of the model under attack but is not aware of
defenses that might be deployed. The attack list includes the most popular white-box
algorithms such as L-BFGS [19], FGSM [137], C&W [144], ElasticNet [145], BIM [138],
PGD [139], MIM [140], JSMA [20], DeepFool [142], and UAP [147]. The only attack im-
plemented in DeepSec that has not been mentioned by this point is OptMargin attack
proposed in [186]. This attack is essentially C&W attack applied to classifier ensembles.
The defenses implemented in DeepSec include adversarial training [19,187], gradient mask-
ing and regularization [159,188,189], input transformation [190–192] and region-based
classification [193]. In addition, several adversarial example detection methods are men-
tioned in the study [177,194,195], but those do not appear to have been yet implemented in
DeepSec. It is also worth mentioning that several attacks and defense implementations in
DeepSec are reported to be incorrect with the results being flawed and misleading [196].
Finally, DeepSec offers vast variety of attack utility metrics that can be classified into four
categories: misclassification, imperceptibility, robustness and computation cost. Misclassifi-
cation metrics include average confidence of the original class, average confidence of the
target adversarial class and misclassification ratio. Imperceptibility metrics are as a rule
employed for adversarial examples in computer vision tasks and they include average
norm distortion, average structural similarity, perturbation structural sensitivity, and per-
turbation sensitivity distance. Robustness metrics in DeepSec include robustness to image
compression, robustness to Gaussian blur and noise tolerance. The last metric, computa-
tion cost, is simply average runtime required by the adversary to generate a successful
adversarial example using a certain algorithm.

Another Pytorch-based toolbox for adversarial robustness research called Advertorch
is introduced in in [197]. Similarly to DeepSec, it focuses solely on generating adversarial
examples for deep neural networks. The attack list consists mostly of popular white-
box algorithms: L-BFGS [19], FGSM [137], C&W [144], BIM [138], PGD [139], MIM [140],
JSMA [20], as well as fast feature [141] and spatial transformation [198] attacks. The last
attack in this list has not yet been mentioned in the report, but it is essentially C&W
attack against an image classifier with an adversarial example generated by modifying
an original image with a per-pixel displacement field and applying bilinear interpolation to
the resulting image in order to guarantee that the pixel coordinates lie on the integer grid.
Advertorch also implements backward pass differentiable approximation (BPDA) wrapper
proposed in [199]. This attack technique allows one to carry out gradient-based attacks
against models which have non-differentiable or gradient-obfuscating components. It
basically replaces a non-differentiable layer of a target neural network with a differentiable
approximation when performing the backward pass during the gradient estimation in order
to generate an adversarial example by one of the aforementioned white-box gradient-based
attack algorithms. Black-box attack methods implemented in Advertorch only include
single pixel and local search algorithms [150]. The list of defences is limited to a few
preprocessing techniques such as JPEG compression [178] as well as feature squeezing and
smoothing [177]. No attack utility metrics are mentioned in [197].

Advbox, which is another toolbox for generating adversarial examples against deep
learning models, is proposed in [200]. It supports all the major deep learning libraries
including PaddlePaddle, PyTorch, MxNet, and, as usual, Keras and TensorFlow. Advbox
users can also conduct black-box attacks on model files generated by Caffe2, CNTK, MAT-
LAB and Chainer platforms. The attack list is however limited and includes only a few
of the most popular white-box algorithms. The algorithm implementations are based on

Network 2023, 3 75

Foolbox [184], and as in the original framework, Advbox allows users to test a target model
against perturbations generated by adding a uniform, Gaussian, salt-and-pepper and other
noise signals. The defence algorithms include feature squeezing and smoothing [177], Gaus-
sian augmentation [179], adversarial training [139] and thermometer encoding [181]. As in
the previous case, no information on any attack utility metrics is provided in the study.

Table 4 summarises the adversarial example generation frameworks described in this
section. It is worth mentioning that there are no algorithms for generating universal
adversarial perturbations in black-box settings implemented in any of the aforementioned
frameworks. Speaking of the white-box attack algorithms, implementations for the majority
of them can be found in each framework specified. Furthermore, we are interested in
generating adversarial examples not only for neural networks, but also other AI/ML
models such as k-NN and decision trees. However, none of the frameworks surveyed
has support for k-NN, whereas attacks against decision trees are only mentioned in ART,
although in almost all of the frameworks a custom model can be implemented using the
base model class.

Table 4. Frameworks for adversarial example generation.

Module Component Cleverhans ART Foolbox DeepSec Advertorch Advbox

Target model

Tensorflow or Pytorch X X X X X X

Sklearn, XGBoost, LightGBM or CatBoost X

Custom model X X X X

Whitebox attacks

Attacks against k-NN or k-means

Attacks against decision trees X

Attacks against neural networks X X X X X X

Scorebased attacks

Single pixel [150] X X

Local search [150] X X

GenAttack [152] X

SimBA attack [153] X

Decisionbased attacks

Substitute model attack [155] X

Boundary attack [156] X X

HopSkipJump attack [158] X X

ZOO attack [159] X

GeoDA attack [160] X

NES attack [162] X

Pointwise attack [168] X

Attack utility metrics

Minimal perturbation size X

Misclassification rate X

Adv. class confidence X

True class confidence X

Adversarial example robustness X

Imperceptibility X

Computation cost X

Defences

Adversarial training [19,137,187] X X X X

Preprocessing [177,178,180,181,191,192] X X X X

Postprocessing [193,201] X X

Model transformation [189] X X

Adversarial example detection [177,194,195] X

Network 2023, 3 76

7. Adversarial ML in 5G

In this section, we describe how an adversary may try to attack AI/ML-based network
components described above. In the channel estimation cases [28,76], the adversary can aim
crafting such a perturbation that would maximise the error between the real DL CSI matrix
and the one predicted by the target model, whereas in the case of the framework described
in [58], the adversary would try to maximise the difference between the transmitted symbols
and the output of the target model. In all of these attack scenarios, the adversary would be
required to have access to a dataset in order to train a substitute model [133]. The attack
approaches in which it is required to query the target model with intelligently crafted
samples would be hard to carry out since the outputs of the target models mentioned appear
to be used internally by the BS for efficient use of frequency bands and energy by performing
various techniques, such as water-filling, appropriate precoding and beamforming [76].
Another option would be to craft a universal adversarial perturbation (UAP) [147].

Study [202] proposes an adversarial example generation attack against the autoencoder
based framework for CSI feedback described in [77]. In particular, the attack is performed
against the neural network which acts as the decoder. The adversary aims to maximise the
error between the real CSI matrix and the one predicted by the decoder model. The attack
is white-box, i.e., the adversary is required to know the target decoder network. Moreover,
in the attack scheme described, the adversary somehow has access to the input codeword
which is essentially the DL CSI matrix encoded at the UE. The former problem can be
mitigated via training a substitute autoencoder model [133]: since the target model is
unsupervised, the adversary would only need to get access to a dataset of DL CSI matrices.
The latter would require the adversary to be able to eavesdrop the signal that contains the
CSI matrix encoded and then jam this signal in such an intelligent way that a necessary
perturbation is added to the decoder input. Crafting a UAP would also be possible. As in
the previous case, the attacks that rely on querying the target model’s public API do not
look applicable in this scenario, as the output of the decoder is not returned to the UE, but it
is used internally by the BS.

Attacks against AI/ML-based modulation recognition models is probably the most
well-studied category of the attacks against wireless communication systems based on
adversarial example generation [170,203–205]. In a real world scenario, the adversary
would have access to neither the exact input of the receiver nor the modulation type
selected by the target model. It would also be fair to assume that the adversary does not
know the exact channel between the adversary and the receiver, but several realisations
of that channel are available to the adversary [170,203]. It can also be assumed that the
information available to the adversary includes an arbitrary dataset of the received signals
with their corresponding modulation types. In such settings, the adversary will be able
to first train a substitute model [133] and craft adversarial perturbations using one of the
white-box attack methods described in details in [170,203,205]. After that, a universal
perturbation can be generated.

To attack intelligent channel decoding frameworks, the adversary can try to generate
a perturbation that causes decoding errors at the receiver [171,204]. In white-box settings,
this perturbation can be carried out, e.g., by employing FGSM and then projecting the
resulting optimal perturbation on the ball with the centre at the original sample and the
radius equal to the power budget available to the attacker [171]. In the black-box settings,
the attack can be carried out by training a substitute model using the dataset generated for
a similar task since again there is no possibility to query the target model with various test
samples. Alternatively, a UAP can then be crafted as it is proposed in [171].

In the case of AI/ML-driven beamforming, the adversary may search for either a per-
turbation that causes any misclassification at the receiver’s classifier or such a perturbation
such that it not only causes a misclassification at the receiver’s classifier, but also tries to
change the beam to one of the worst beams. In [206], such adversarial perturbations are
crafted in white-box settings with the FGSM algorithm. In black-box settings, the adversary
would again most likely train a substitute model or search for a universal perturbation

Network 2023, 3 77

since querying the target model does not appear to be a feasible option due to the nature
of the attack. An adversarial example generation attack which targets the deep learning
model introduced in [63] is demonstrated in [207]. The adversary aims to maximise the
error between the real achievable rate and the one predicted by the model. The attack im-
plemented in [207] is white-box. Furthermore, the study assumes the adversary has perfect
knowledge of the input feature vector for which the prediction is made. In other words,
the adversary most likely needs to have access to the aforementioned cloud processing
unit during the inference stage to be able to perform this attack. In black-box settings,
a substitute model should be trained by the adversary and then used during the inference
to craft an input-agnostic adversarial perturbation.

In order to attack the power allocation model proposed in [71], the adversary can try to
jam the channels between the BS and the UEs in order to make the neural network at the BS
output a non-optimal power allocation vector. In [71], this attack is performed in white-box
settings using FGSM algorithm. In a realistic use case scenario, the adversary would first
need to train a substitute model and then search for a universal perturbation during the
attack. In order to attack the power allocation system described in [37], the adversary
perturbs the input that is fed to the target model by employing one of the GNSS spoofing
techniques [208]. The objective of the attacker is to compute the adversarial perturbation
of UEs positions in the direction of the gradient to increase the loss function such that the
power allocation system outputs non-optimal power allocation vector. In [209], such an
attack is implemented in white-box settings using FGSM and PGD algorithms. In black-box
settings, a substitute model is suggested to be trained. In this use case, the UE positions
are assumed to be known to the adversary. Otherwise, an input-agnostic adversarial
perturbation can be crafted as it was done in the previous scenarios.

The adversary may also attempt to attack the network slicing models proposed
in [96–98,100] by generating such requests that would force the target RL model to make
incorrect resource distribution decisions. Study [210] proposes such an attack against the
RL-based resource allocation model presented in [98] in black-box settings. In particular,
the adversary aims to determine resources to be specified by fake requests for the most
efficient flooding attack. If these fake requests are selected and network resources are
allocated to them, fewer resources will be left for real requests from legitimate users. The at-
tack is based on Q-learning algorithm with each state being the number of available PRBs,
the action being equal to the number of PRBs assigned for each fake request, and the reward
being calculated as the number of served fake requests. It is assumed in the study that the
adversary may sense the spectrum in order to detect available PRBs. It is also assumed
that the adversary has information whether the request sent has been served or not. Other
black-box algorithms also appear to be applicable in this use case scenario: the adversary
may query the target model by sending fake requests with various requirements in order
to find an optimal solution.

In [9], the adversary aims to compromise the integrity of the target AI/ML model
deployed for intelligent spectrum sharing during the sensing periods to force the ESC into
making wrong transmit decisions. In particular, the adversary attempts to fool the ESC
to allow the BS to transmit when an incumbent user is present, and vice versa, to fool
the ESC to stop the BS transmissions even though there are no CBRS users. The attack
proposed is black-box: the adversary trains a substitute model by monitoring both CBRS
radar signals and whether the BS transmits to its UEs. The former acts as the input to the
substitute model, whereas the latter is used to provide ground truth labels for the model.
However, the adversary is still required to know the input to the ESC and the channel
between the adversary and the ESC for crafting correct perturbations. As previously,
algorithms for crafting an input-agnostic perturbation can be employed in order to resolve
the aforementioned issues.

An adversarial example generation based attack can also be carried out to craft adver-
sarial network traffic flows that would deceive the detection models proposed in [41,45].
For example, study [167] attempts to craft such a perturbation to a botnet related traffic

Network 2023, 3 78

flow that it is classified as a legitimate one. To achieve this goal in black-box settings, DQN
algorithm for crafting adversarial perturbations is employed, as it allows the adversary to
operate in the scenario when its feature space is different from the one employed by the
target model, as the latter is assumed to be unknown to the attacker. In theory, however, any
black-box algorithm that queries the target model with intelligently crafted input samples
can be used in this use case, since both the input sample and the model output can be
derived by the attacker assuming any malicious flow will be blocked by the IDS. In the
case of jamming attack detection, the adversary can try to manipulate the signal parame-
ters in order to make the target model misclassify it as a legitimate UE. Under the same
assumption that the target model output, i.e., whether the device is classified as normal
or malicious, is known to the adversary, any of the black-box adversarial perturbation
generation algorithms described previously in the study can be used. All the attack use
cases found are summarised in Table 5.

Table 5. Adversarial example generation attacks against 5G components.

Cat. Attack Target Motivation Access Data and Capabilities

AMC Black-box [170,203];
white-box [204,205]

Supervised:
CNN [31,78],
LSTM [32],

fully-connected
neural

network [59]

Targeted modulation
misclassification; any

misclassification
independent of the

target label

Broadcast signal
over the air

Black-box: some channels
between the attacker and the
receiver, ability to retrieve the
modulation type predicted by
the target classifier; white-box:

the same as in the black-box
attack plus the target model,

the exact input at the receiver,
the channel between the attacker

and the receiver

Channel coding Black-box [171,204];
white-box [204]

Unsupervised:
fully-connected

autoencoder
[171,204]; RL:

policy
gradients [204]

Any error in decoding
the message transmitted

Broadcast signal
over the air

Black-box: distribution of
channel realisations between the
attacker and the receiver, the set

of all possible messages;
white-box: the same as in the

black-box attack plus the
target model

Beamforming White-box [206]

Supervised:
fully-connected

neural
network [64]

Any misclassification;
targeted

misclassification to
select one of the worst

beams

Broadcast signal
over the air

RSS values over the subset of
beams selected, the target model,

sensing the target
model predictions

White-box [207]

Supervised:
fully-connected

neural
network [63]

Maximise the error
between the real

achievable rate and the
target model output

Perturb the
model input at

the cloud

The combined feature vector of
omni-received sequences
collected from all the BSs,

the target model

Channel
estimation White-box [202]

Unsupervised:
CNN

autoencoder

Maximise the error
between the real CSI
matrix and the target

model output

Broadcast signal
over the air

The target decoder model,
the channel between the attacker
and the BS, the codeword (the

CSI in the latent space) returned
by the encoder

Power allocation

Black-box,
white-box [209]

Supervised:
fully-connected

neural
network [37]

Make the sum of the
target model outputs
greater than the total

power available to
the BS

Spoof GNSS UE
positions

Black-box: UE positions, sensing
the target model outputs;

white-box: the same as in the
black-box attack plus the

target model

White-box [71]

Supervised:
fully-connected

neural
network [71]

Minimise the maximum
achievable rate of

the UEs

Broadcast over
the air

The target model, having perfect
knowledge of the channels

between the BS and UEs

Black-box [211] Reinforcement:
DQN [70,85]

Minimise the achievable
sum-rate of all the

transmitters

Broadcast over
the air

SNR levels at different channels,
the sum-rate returned by the
target model once an action is
carried out by the adversary

Network 2023, 3 79

Table 5. Cont.

Cat. Attack Target Motivation Access Data and Capabilities

Scheduling Black-box [9]

Supervised:
fully-connected

neural
network [9]

Any misclassification
independent of the

target label

Broadcast signal
over the air

The exact input to the target
model, the channel between the
ESC and the adversary, sensing
whether the UEs transmit or not

Slicing

Black-box [9]

Supervised:
fully-connected

neural
network [9]

Targeted
misclassification: fool

the target model to
classify the adversary’s

signal as a
authenticated one

Broadcast signal
over the air

UE signals, the target
model decisions

Black-box [210] Reinforcement:
DQN [98]

Maximise the number of
fake requests served

Transmit over
the network

The number of available PRBs,
obtaining the number of the fake

requests served

Black-box [212] Reinforcement:
DQN [98]

Minimise the number of
legitimate

requests served

Transmit over
the network

The number of available PRBs,
sensing whether the legitimate
UE requests have been served

or not

Security Black-box [167]
Supervised:

CNN,
RNN [41,45]

Targeted
misclassification: fool

the target model to
classify each malicious
flow as a legitimate one

Transmit over
the network

Botnet flows, allowed flow
perturbations that do not brake

flow format, capability to
determine whether the flow is

classified as malicious or
legitimate one

Localization Black-box,
white-box [213]

Supervised:
CNN+RNN [84]

Maximise the error
between the real travel

time and the target
model output

Spoof UE
GPS locations

Black-box: GPS trajectory points,
output of the target model;

white-box: the same as in the
black-box attack plus the
parameters and gradient

information of the target model

8. Discussion

In this section, we discuss the main points of our survey devoted to attacking the next
generation mobile networks with adversarial examples and outline existing challenges
in this research area. Since an AI/ML model is only as good as the data used for its
training, obtaining a high quality dataset is an essential part of the research process in case
of both training target AI/ML models as well as attacking these models with adversarial
examples. Unfortunately, acquiring such a dataset can be a challenging task as mobile
operators and network providers rarely share any real network data due to obvious privacy
and security reasons. In the case a group of researchers conducts a study in cooperation
with a mobile network operator and as a result manages to get access to such a dataset, it
will still most likely not become available for others [72]. For this reason, the majority of
the publicly available datasets related to mobile networking are synthetic. For example,
RadioML dataset [29] used by many researchers for machine learning based modulation
recognition [30] contains modulated real voice and text data with radio channel effects
being simulated by employing various robust models including time varying multi-path
fading of the channel impulse response, random walk drifting of carrier frequency oscillator
and sample time clocks, and additive Gaussian white noise. Generating data using network
simulators allows a researcher to obtain more realistic data. However, this may be time
consuming as the researcher has to get familiar with the process of writing simulation
scripts to generate and collect the data required. Moreover, many advanced network
simulators are not openly available or may be extremely expensive to acquire which also
hinders the research process. Finally, as mentioned in Section 2, the data collected using
real equipment allows researchers to carry out somewhat realistic experiments, however,
such an approach is rarely scalable in the lab environment: the scenario is often limited to
very few transmitters and receivers [74]. We therefore can conclude that generating realistic

Network 2023, 3 80

datasets for training AI/ML models which can potentially be deployed in mobile networks
would accelerate the research process in this domain tremendously.

Concerning the AI/ML algorithms used in the mobile networking domain, as it has
already been mentioned in Section 3, the vast majority of those rely on deep learning which
has gained increasing popularity in recent years due to its supremacy in terms of accuracy
when trained with huge amounts of data [8]. As a result, mobile networking researchers are
also beginning to recognize the power and importance of deep learning, and are exploring
its potential to solve various optimization and resource allocation problems. It is also worth
noticing that the major part of the deep learning models proposed to be deployed in the next
generation wireless networks is trained in a supervised way due to its supreme convergence
speed and high accuracy compared to unsupervised and reinforcement learning approaches.
Speaking of the deep learning architectures, the most of the models used are comprised of
fully-connected layers which have few trainable parameters which allows them to learn
faster compared to other structures. Fully-connected layers are often used even in the case
of time-series data although using recurrent neural networks would probably allow for
lower error and higher accuracy values [61]. In many AI/ML applications in the RAN
domain, channel state matrices act as the input to the target models [28]. These matrices can
often be interpreted as images with height and width being equal to the number of antennas
and the number of OFDM subcarriers, respectively, whereas the real and imaginary part of
the signal can be interpreted as the colour channels. Since convolutional layers are usually
employed in image related problems, CNNs are frequently used in studies which focus
on the analysis of channel state matrices. Although the attention mechanism provides
state-of-the-art accuracy results in certain time-series processing tasks, the neural networks
which rely on this technique, such as transformers, are rarely employed by mobile network
researchers. Therefore, implementing and testing these deep learning architectures for
solving various problems in the mobile network domain can be considered as one of the
potential future research directions.

In Section 4, we have provided an extensive review of machine learning driven
frameworks found in recent scientific papers. As one can notice, AI/ML is often pro-
posed to be deployed in mobile networks for various channel estimation related problems.
The traditional way to learn the transmission channels is to have the receiver perform the
measurements and send those back to the transmitter. Alternatively, an AI/ML model can
be trained to achieve this task by using only a part of the channel state matrix which allows
to reduce the feedback transmission overhead [28,64]. Another category of AI/ML research
focuses on substituting conventional algorithms used for mobile networking with machine
learning ones aiming to reduce the processing time. The models that follow this approach
are trained using the datasets in which the output labels are calculated using the corre-
sponding conventional algorithm which might be computationally expensive to use in real
time [68]. During the inference, the resulting AI/ML models trained allow for an accurate
and time-efficient estimation of the optimal solution without occupying large amounts of
computing resources. Finally, supreme predictive capabilities of state-of-the-art AI/ML
models allow for efficient dynamic resource allocation in the mobile networking domain.
For example, AI/ML can be employed to predict resource block usage in network slicing
problems [86], estimate the probability of a certain content being requested in order to im-
plement a proactive caching scheme [87], and discover energy-efficient power management
strategies by analysing historical traffic data patterns [95]. It is however worth noticing
that there are still not many studies in the 5G domain which employ the reinforcement
learning approach for achieving the task given despite the recent progress in this field of
study. As mentioned in Section 3, this can be partially explained by the fact that training an
RL agent in a real world environment is often not feasible while implementing a simulation
software may require some additional resources. Thus, developing a simulation framework
which can be used for implementing and training RL agents in realistic network use case
scenarios would benefit both mobile networking researchers as well as service providers
interested in this topic.

Network 2023, 3 81

Speaking of the adversarial examples, as it is mentioned in Section 5, the vast ma-
jority of the research articles in this domain focuses on attacking deep neural networks.
In white-box settings, an adversarial example for such a model can be generated by either
modifying an input sample in the direction of the gradient of the loss function [137] or
solving a nonlinear optimization problem with the objective function being equal to the
weighted sum of the adversarial perturbation norm and the target model loss calculated for
the perturbed sample [19]. In black-box settings, the attack as a rule involves querying the
target model’s public API and using the resulting outputs to estimate the gradient direction
at the decision boundary. Alternatively, the adversary may try to learn a substitute for
the target model using a synthetic dataset labelled by observing the target model output.
Other adversarial perturbation crafting algorithms rely on applying generative adversarial
networks and even deep reinforcement learning. Speaking of the other AI/ML models
such as k-nearest neighbours and decision trees, finding an adversarial example is a quite
straight-forward procedure when the number of the neighbours and the tree depth are
small. However, the procedure complexity grows exponentially with the increase of the
aforementioned hyperparameters. For this reason, various heuristics are proposed in order
to generate an adversarial example in a reasonable amount of time. Despite the variety of
existing white-box and black-box algorithms for crafting adversarial examples, unless there
is a serious flaw in the 5G network component security, the adversary should be able to
neither have access to the exact inputs of the target model, due to the different channel
and interference conditions, nor obtain the output label, since it is most of the time used
internally by the model and it is not available to any other wireless node outside of the net-
work. For this reason, the adversary has the best chance to fool the target model by crafting
a universal input-agnostic adversarial perturbation. Thus, developing novel algorithms for
calculating universal adversarial examples is of great interest nowadays [170].

In Section 6, we have overviewed several frameworks which allow one to evaluate
various adversarial example generation algorithms against state-of-the-art AI/ML models.
These frameworks offer implementations of both white-box and black-box techniques
as well as multiple defence and detection schemes. Some of the frameworks found also
provide implementations of various attack utility and classifier robustness metrics. All
the frameworks discussed are implemented in Python, they are open-source and they can
be easily downloaded, installed and used by mobile networking researchers. In addition,
most of the frameworks overviewed are able to interface with most popular deep learning
libraries such as TensorFlow and PyTorch. Unfortunately, none of the frameworks surveyed
has support for k-nearest neighbours algorithms, whereas attacks against decision trees are
mentioned in only one of the frameworks. However, many frameworks provide a straight-
forward way to add support for classifiers implemented in AI/ML libraries. It is also worth
mentioning that there are no algorithms for generating universal adversarial perturbations
in black-box settings implemented in any of the aforementioned frameworks. As mentioned
above, input-agnostic adversarial examples can be employed when the information about
neither the user inputs to the model nor the resulting outputs is available to the attacker,
and, therefore, they pose the most realistic threat to AI/ML-driven components of the
future generation mobile networks.

Finally, concerning the attacks against mobile network components, there are still not
so many studies devoted to this research topic despite the number is growing as AI/ML
becomes widely adopted in mobile communication systems and as a result novel attack
approaches are being constantly developed. There are multiple research papers which
focus on the problems of attacking AI/ML-assisted automatic modulation recognition [170],
intelligent beamforming [206] and power allocation [71] frameworks. However, the adver-
sarial example generation algorithms tested in those studies are limited to straightforward
FGSM, the attack using a substitute model and some universal adversarial perturbation
generation techniques with the help of PCA and VAE. Furthermore, the datasets used in
those studies are somewhat synthetic which further reduces the quality of the research
work. Therefore, one potential future research direction is extending results obtained in

Network 2023, 3 82

these use case scenarios by employing various white-box and black-box attack algorithms
using more realistic simulation environments. Another direction is implementing and
evaluating adversarial examples in the use cases for which this attack vector has not yet
been studied to the best of our knowledge. These include attacks against channel esti-
mation [28], channel decoding [61,80] and jamming detection [74] models. Furthermore,
the recent progress in developing sample efficient RL methods makes this machine learning
approach an attractive option for service providers to use for efficient and reliable network
resource allocation. For this reason, the number of RL-driven frameworks is expected to
grow significantly in the future. Thus, developing attack algorithms which target AI/ML
models trained with the help of the reinforcement learning approach is also of the great
importance in this field of study.

9. Conclusions

As mentioned in the introduction, the purpose of this survey is to provide detailed
introduction and references for each of the issues related to the problem of generating
adversarial examples against AI/ML systems which might be present in future 5G networks.
First, datasets used for training and evaluating AI/ML models in mobile networks are
overviewed and various supervised, unsupervised and reinforcement learning algorithms
are briefly summarised. Next, multiple AI/ML applications in the next-generation mobile
networks found in recent scientific papers are described. After that, we survey existing
white-box and black-box adversarial example generation based attack algorithms and list
several frameworks which employ these algorithms for fuzzing state-of-the-art AI/ML
models. Finally, several adversarial example generation attacks against mobile network
applications are presented.

In order to assess vulnerability of AI/ML models to adversarial examples, the minimal
perturbation value which causes a misclassification, is supposed to be estimated. Unfor-
tunately, finding the global minimum is close to impossible in any practical settings, and,
therefore, heuristic attacks are often employed to find a suitable approximation. The mini-
mal perturbation value found by testing the target model against various attack algorithms
can help mobile operators to evaluate how sensitive the target model outputs to changes in
its inputs. Such approach cannot guarantee protection of the model against novel attack
techniques. However, it reduces the number of ways the adversary can perform attacks
which makes it easier to protect the target model via runtime detection and rejection.

We currently employ this research approach in order to evaluate the efficiency of the
adversarial examples when applied to various AI/ML-based 5G components and frame-
works. For this purpose, we select several attack scenarios against AI/ML components
of 5G networks from the ones presented in this survey. Next, we generate data and train
multiple target models with the help of the datasets and various AI/ML algorithms men-
tioned in this study. After that, we evaluate multiple white-box and black-box attacks
implemented for the aforementioned use cases based on deterioration of the objective
functions optimised by the target models. The results of the experiments conducted are
expected to be published in the near future.

Author Contributions: Writing—original draft preparation, M.Z. and D.Z.; writing—review and
editing, M.Z. and P.M.; supervision, T.H. All authors have read and agreed to the published version
of the manuscript.

Funding: The research did not receive specific funding but was performed as a part of the employ-
ment of the authors in Magister Solutions Ltd., Jyväskylä, Finland. The APC is also expected to be
funded by Magister Solutions Ltd.

Conflicts of Interest: The authors declare no conflict of interest.

Network 2023, 3 83

References
1. ITU-R M.2410-0; Minimum Requirements Related to Technical Performance for IMT2020 Radio Interface(s). ITU: Geneva,

Switzerland, 2017.
2. Marcus, M.J. 5G and “IMT for 2020 and beyond” [Spectrum Policy and Regulatory Issues]. IEEE Wirel. Commun. 2015, 22, 2–3.

[CrossRef]
3. Elijah, O.; Leow, C.Y.; Rahman, T.A.; Nunoo, S.; Iliya, S.Z. A Comprehensive Survey of Pilot Contamination in Massive

MIMO—5G System. IEEE Commun. Surv. Tutor. 2016, 18, 905–923. [CrossRef]
4. Song, M.; Shan, H.; Yang, H.H.; Quek, T.Q.S. Joint Optimization of Fractional Frequency Reuse and Cell Clustering for Dynamic

TDD Small Cell Networks. IEEE Trans. Wirel. Commun. 2021, 21, 398–412 . [CrossRef]
5. TR37.817, G; Study on Enhancement for Data Collection for NR and EN-DC. 3GPP: Sophia Antipolis, France, 2021.
6. Jahangiri, A.; Rakha, H.A. Applying Machine Learning Techniques to Transportation Mode Recognition Using Mobile Phone

Sensor Data. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2406–2417. [CrossRef]
7. Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018,

32, 96–101. [CrossRef]
8. Haidine, A.; Salmam, F.Z.; Aqqal, A.; Dahbi, A. Artificial intelligence and machine learning in 5G and beyond: A survey and

perspectives. In Moving Broadband Mobile Communications Forward: Intelligent Technologies for 5G and Beyond; IntechOpen: London,
UK, 2021; p. 47.

9. Sagduyu, Y.E.; Erpek, T.; Shi, Y. Adversarial Machine Learning for 5G Communications Security. arXiv 2021, arXiv:2101.02656.
10. GSMA. FS.30—Security Manual; GSMA: London, UK, 2021.
11. GSMA. FS.31—Baseline Security Controls; GSMA: London, UK, 2020.
12. GSMA. IR.77 InterOperator IP Backbone Security Req. For Service and Inter-Operator IP Backbone Providers; GSMA: London, UK, 2019.
13. GSMA. FF.21 Fraud Manual; GSMA: London, UK, 2021.
14. Steinhardt, J.; Koh, P.W.; Liang, P. Certified Defenses for Data Poisoning Attacks. arXiv 2017, arXiv:1706.03691.
15. Gu, T.; Liu, K.; Dolan-Gavitt, B.; Garg, S. BadNets: Evaluating Backdooring Attacks on Deep Neural Networks. IEEE Access 2019,

7, 47230–47244. [CrossRef]
16. Schwarzmann, S.; Marquezan, C.C.; Trivisonno, R.; Nakajima, S.; Zinner, T. Accuracy vs. Cost Trade-off for Machine Learning

Based QoE Estimation in 5G Networks. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications
(ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [CrossRef]

17. Masri, A.; Veijalainen, T.; Martikainen, H.; Mwanje, S.; Ali-Tolppa, J.; Kajó, M. Machine-Learning-Based Predictive Handover. In
Proceedings of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 17–21
March 2021; pp. 648–652.

18. Minovski, D.; Ogren, N.; Ahlund, C.; Mitra, K. Throughput Prediction using Machine Learning in LTE and 5G Networks. IEEE
Trans. Mob. Comput. 2021. [CrossRef]

19. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
arXiv 2014 arXiv:1312.6199.

20. Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The Limitations of Deep Learning in Adversarial
Settings. arXiv 2015, arXiv:1511.07528.

21. TS33.501, G; Security Architecture and Procedures for 5G System. 3GPP: Sophia Antipolis, France, 2020.
22. Zhang, C.; Patras, P.; Haddadi, H. Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Commun. Surv. Tutor.

2019, 21, 2224–2287. [CrossRef]
23. Cheng, X.; Fang, L.; Hong, X.; Yang, L. Exploiting Mobile Big Data: Sources, Features, and Applications. IEEE Netw. 2017,

31, 72–79. [CrossRef]
24. Mehlführer, C.; Ikuno, J.C.; Simko, M.; Schwarz, S.; Wrulich, M.; Rupp, M. The Vienna LTE simulators—Enabling reproducibility

in wireless communications research. EURASIP J. Adv. Signal Process. 2011, 2011, 29. [CrossRef]
25. Palattella, M.R.; Watteyne, T.; Wang, Q.; Muraoka, K.; Accettura, N.; Dujovne, D.; Grieco, L.A.; Engel, T. On-the-Fly Bandwidth

Reservation for 6TiSCH Wireless Industrial Networks. IEEE Sensors J. 2016, 16, 550–560. [CrossRef]
26. Varga, A.; Hornig, R. An overview of the OMNeT++ simulation environment. In Proceedings of the 1st International

Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Marseille, France,
3–7 March 2008; pp. 1–10.

27. Alkhateeb, A. DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications. arXiv 2019,
arXiv:1902.06435.

28. Alrabeiah, M.; Alkhateeb, A. Deep learning for TDD and FDD massive MIMO: Mapping channels in space and frequency. In Pro-
ceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 1465–1470.

29. O’Shea, T.; West, N. Radio Machine Learning Dataset Generation with GNU Radio. In Proceedings of the GNU Radio Conference,
Boulder, CO, USA, 12–16 September 2016.

30. O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional radio modulation recognition networks. In Proceedings of the International
Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2–5 September 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 213–226.

http://doi.org/10.1109/MWC.2015.7224717
http://dx.doi.org/10.1109/COMST.2015.2504379
http://dx.doi.org/10.1109/TWC.2021.3096383
http://dx.doi.org/10.1109/TITS.2015.2405759
http://dx.doi.org/10.1109/MNET.2018.1700202
http://dx.doi.org/10.1109/ACCESS.2019.2909068
http://dx.doi.org/10.1109/ICC40277.2020.9148685
http://dx.doi.org/10.1109/TMC.2021.3099397
http://dx.doi.org/10.1109/COMST.2019.2904897
http://dx.doi.org/10.1109/MNET.2017.1500295NM
http://dx.doi.org/10.1186/1687-6180-2011-29
http://dx.doi.org/10.1109/JSEN.2015.2480886

Network 2023, 3 84

31. Meng, F.; Chen, P.; Wu, L.; Wang, X. Automatic Modulation Classification: A Deep Learning Enabled Approach. IEEE Trans. Veh.
Technol. 2018, 67, 10760–10772. [CrossRef]

32. Rajendran, S.; Meert, W.; Giustiniano, D.; Lenders, V.; Pollin, S. Deep Learning Models for Wireless Signal Classification with Distributed
Low-Cost Spectrum Sensors. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 433–445. [CrossRef]

33. Klautau, A.; Batista, P.; González-Prelcic, N.; Wang, Y.; Heath, R.W. 5G MIMO Data for Machine Learning: Application to
Beam-Selection Using Deep Learning. In Proceedings of the 2018 Information Theory and Applications Workshop (ITA), San
Diego, CA, USA, 11–16 February 2018; pp. 1–9. [CrossRef]

34. Ruseckas, J.; Molis, G.; Bogucka, H. MIMO beam selection in 5G using neural networks. Int. J. Electron. Telecommun. 2021,
67, 693–698.

35. Twomey, N.; Diethe, T.; Kull, M.; Song, H.; Camplani, M.; Hannuna, S.; Fafoutis, X.; Zhu, N.; Woznowski, P.; Flach, P.; et al. The
SPHERE Challenge: Activity Recognition with Multimodal Sensor Data. arXiv 2016, arXiv:1603.00797.

36. Kozlowski, M.; McConville, R.; Santos-Rodriguez, R.; Piechocki, R. Energy Efficiency in Reinforcement Learning for Wireless
Sensor Networks. arXiv 2018, arXiv:1812.02538.

37. Sanguinetti, L.; Zappone, A.; Debbah, M. Deep Learning Power Allocation in Massive MIMO. arXiv 2019, arXiv:1812.03640.
38. Balazinska, M.; Castro, P. CRAWDAD Dataset Ibm/Watson (v. 2003-02-19). 2003. Available online: https://crawdad.org/ibm/

watson/20030219 (accessed on 11 April 2022).
39. Challita, U.; Dong, L.; Saad, W. Proactive Resource Management for LTE in Unlicensed Spectrum: A Deep Learning Perspective.

IEEE Trans. Wirel. Commun. 2018, 17, 4674–4689. [CrossRef]
40. Garciá, S.; Grill, M.; Stiborek, J.; Zunino, A. An empirical comparison of botnet detection methods. Comput. Secur. 2014,

45, 100–123. [CrossRef]
41. Fernández Maimó, L.; Perales Gómez, A.L.; Garcia Clemente, F.J.; Gil Pérez, M.; Martínez Pérez, G. A Self-Adaptive Deep Learning-Based

System for Anomaly Detection in 5G Networks. IEEE Access 2018, 6, 7700–7712. [CrossRef]
42. Kolias, C.; Kambourakis, G.; Stavrou, A.; Gritzalis, S. Intrusion detection in 802.11 networks: Empirical evaluation of threats and

a public dataset. IEEE Commun. Surv. Tutor. 2016, 18, 184–208. [CrossRef]
43. Rezvy, S.; Luo, Y.; Petridis, M.; Lasebae, A.; Zebin, T. An efficient deep learning model for intrusion classification and prediction

in 5G and IoT networks. In Proceedings of the 2019 53rd Annual Conference on Information Sciences and Systems (CISS),
Baltimore, MD, USA, 20–22 March 2019; pp. 1–6. [CrossRef]

44. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

45. Lam, J.; Abbas, R. Machine Learning based Anomaly Detection for 5G Networks. arXiv 2020, arXiv:2003.03474.
46. Almomani, I.; Al-Kasasbeh, B.; Al-Akhras, M. WSN-DS: A dataset for intrusion detection systems in wireless sensor networks.

J. Sensors 2016, 2016, 4731953. [CrossRef]
47. Hachimi, M.; Kaddoum, G.; Gagnon, G.; Illy, P. Multi-stage Jamming Attacks Detection using Deep Learning Combined with

Kernelized Support Vector Machine in 5G Cloud Radio Access Networks. In Proceedings of the 2020 International Symposium
on Networks, Computers and Communications (ISNCC), Montreal, QC, Canada, 20–22 October 2020; pp. 1–5. [CrossRef]

48. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in
Neural Information Processing Systems, Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe,
Nevada, 3–6 December 2012; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY,
USA, 2012; Volume 25.

49. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International
Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1310–1318.

50. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
51. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder

Approaches. arXiv 2014, arXiv:1409.1259.
52. Jaeger, H.; Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science

2004, 304, 78–80. [CrossRef] [PubMed]
53. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
54. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
55. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
56. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
57. Gao, S.; Dong, P.; Pan, Z.; Li, G.Y. Deep Learning Based Channel Estimation for Massive MIMO with Mixed-Resolution ADCs.

IEEE Commun. Lett. 2019, 23, 1989–1993. [CrossRef]
58. Ye, H.; Li, G.Y.; Juang, B.H. Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wirel.

Commun. Lett. 2018, 7, 114–117. [CrossRef]
59. Jagannath, J.; Polosky, N.; O’Connor, D.; Theagarajan, L.N.; Sheaffer, B.; Foulke, S.; Varshney, P.K. Artificial Neural Network

Based Automatic Modulation Classification over a Software Defined Radio Testbed. In Proceedings of the 2018 IEEE International
Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [CrossRef]

http://dx.doi.org/10.1109/TVT.2018.2868698
http://dx.doi.org/10.1109/TCCN.2018.2835460
http://dx.doi.org/10.1109/ITA.2018.8503086
https://crawdad.org/ibm/watson/20030219
https://crawdad.org/ibm/watson/20030219
http://dx.doi.org/10.1109/TWC.2018.2829773
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1109/ACCESS.2018.2803446
http://dx.doi.org/10.1109/COMST.2015.2402161
http://dx.doi.org/10.1109/CISS.2019.8693059
http://dx.doi.org/10.1155/2016/4731953
http://dx.doi.org/10.1109/ISNCC49221.2020.9297290
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1126/science.1091277
http://www.ncbi.nlm.nih.gov/pubmed/15064413
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1109/LCOMM.2019.2936393
http://dx.doi.org/10.1109/LWC.2017.2757490
http://dx.doi.org/10.1109/ICC.2018.8422346

Network 2023, 3 85

60. Carpi, F.; Hager, C.; Martalo, M.; Raheli, R.; Pfister, H.D. Reinforcement Learning for Channel Coding: Learned Bit-Flipping
Decoding. In Proceedings of the 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
Monticello, IL, USA, 24–27 September 2019. [CrossRef]

61. Lyu, W.; Zhang, Z.; Jiao, C.; Qin, K.; Zhang, H. Performance Evaluation of Channel Decoding with Deep Neural Networks.
In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018;
pp. 1–6. [CrossRef]

62. Goutay, M.; Aoudia, F.A.; Hoydis, J. Deep Reinforcement Learning Autoencoder with Noisy Feedback. arXiv 2019,
arXiv1810.05419.

63. Alkhateeb, A.; Alex, S.; Varkey, P.; Li, Y.; Qu, Q.; Tujkovic, D. Deep Learning Coordinated Beamforming for Highly-Mobile
Millimeter Wave Systems. IEEE Access 2018, 6, 37328–37348. [CrossRef]

64. Cousik, T.S.; Shah, V.K.; Erpek, T.; Sagduyu, Y.E.; Reed, J.H. Deep Learning for Fast and Reliable Initial Access in AI-Driven 6G
mmWave Networks. arXiv 2021, arXiv:2101.01847.

65. Qi, C.; Wang, Y.; Li, G.Y. Deep Learning for Beam Training in Millimeter Wave Massive MIMO Systems. IEEE Trans. Wirel.
Commun. 2020, 1. [CrossRef]

66. Ye, J.; Zhang, Y.J.A. DRAG: Deep Reinforcement Learning Based Base Station Activation in Heterogeneous Networks. arXiv 2018,
arXiv:1809.02159.

67. Liu, J.; Krishnamachari, B.; Zhou, S.; Niu, Z. DeepNap: Data-Driven Base Station Sleeping Operations Through Deep Reinforce-
ment Learning. IEEE Internet Things J. 2018, 5, 4273–4282. [CrossRef]

68. Sun, H.; Chen, X.; Shi, Q.; Hong, M.; Fu, X.; Sidiropoulos, N.D. Learning to Optimize: Training Deep Neural Networks for
Interference Management. IEEE Trans. Signal Process. 2018, 66, 5438–5453. [CrossRef]

69. Matthiesen, B.; Zappone, A.; Jorswieck, E.A.; Debbah, M. Deep learning for optimal energy-efficient power control in wireless
interference networks. arXiv 2018, arXiv:1812.06920.

70. Nasir, Y.S.; Guo, D. Multi-Agent Deep Reinforcement Learning for Dynamic Power Allocation in Wireless Networks. IEEE J. Sel.
Areas Commun. 2019, 37, 2239–2250. [CrossRef]

71. Kim, B.; Shi, Y.; Sagduyu, Y.E.; Erpek, T.; Ulukus, S. Adversarial Attacks against Deep Learning Based Power Control in Wireless
Communications. arXiv 2021, arXiv:2109.08139.

72. Chinchali, S.; Hu, P.; Chu, T.; Sharma, M.; Bansal, M.; Misra, R.; Pavone, M.; Katti, S. Cellular Network Traffic Scheduling with
Deep Reinforcement Learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans,
LA, USA, 2–7 February 2018; Volume 32.

73. Suarez-Varela, J.; Mestres, A.; Yu, J.; Kuang, L.; Feng, H.; Cabellos-Aparicio, A.; Barlet-Ros, P. Routing in optical transport
networks with deep reinforcement learning. J. Opt. Commun. Netw. 2019, 11, 547–558. [CrossRef]

74. Pawlak, J.; Li, Y.; Price, J.; Wright, M.; Al Shamaileh, K.; Niyaz, Q.; Devabhaktuni, V. A Machine Learning Approach for Detecting
and Classifying Jamming Attacks Against OFDM-based UAVs. In Proceedings of the 3rd ACM Workshop on Wireless Security
and Machine Learning, Abu Dhabi, United Arab Emirates, 2 July 2021; pp. 1–6.

75. Soltani, M.; Pourahmadi, V.; Mirzaei, A.; Sheikhzadeh, H. Deep Learning-Based Channel Estimation. arXiv 2019, arXiv1810.05893.
76. Safari, M.S.; Pourahmadi, V.; Sodagari, S. Deep UL2DL: Data-Driven Channel Knowledge Transfer From Uplink to Downlink.

IEEE Open J. Veh. Technol. 2020, 1, 29–44. [CrossRef]
77. Wen, C.K.; Shih, W.T.; Jin, S. Deep Learning for Massive MIMO CSI Feedback. IEEE Wirel. Commun. Lett. 2018, 7, 748–751.

[CrossRef]
78. Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Yao, Y.D. Modulation classification using convolutional Neural Network based deep

learning model. In Proceedings of the 2017 26th Wireless and Optical Communication Conference (WOCC), Newark, NJ, USA,
7–8 April 2017; pp. 1–5. [CrossRef]

79. O’Shea, T.; Hoydis, J. An Introduction to Deep Learning for the Physical Layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575.
[CrossRef]

80. Yashashwi, K.; Anand, D.; Pillai, S.R.B.; Chaporkar, P.; Ganesh, K. MIST: A Novel Training Strategy for Low-latency Scalable
Neural Net Decoders. arXiv 2019, arXiv:1905.08990.

81. Liang, F.; Shen, C.; Wu, F. An Iterative BP-CNN Architecture for Channel Decoding. IEEE J. Sel. Top. Signal Process. 2018,
12, 144–159. [CrossRef]

82. Lu, X.; Xiao, L.; Dai, C.; Dai, H. UAV-Aided Cellular Communications with Deep Reinforcement Learning Against Jamming.
IEEE Wirel. Commun. 2020, 27, 48–53. [CrossRef]

83. Cao, G.; Lu, Z.; Wen, X.; Lei, T.; Hu, Z. AIF: An Artificial Intelligence Framework for Smart Wireless Network Management. IEEE
Commun. Lett. 2018, 22, 400–403. [CrossRef]

84. Wang, D.; Zhang, J.; Cao, W.; Li, J.; Zheng, Y. When will you arrive? estimating travel time based on deep neural networks. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

85. Lu, Z.; Gursoy, M.C. Dynamic Channel Access and Power Control via Deep Reinforcement Learning. In Proceedings of the 2019
IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [CrossRef]

86. Guo, Q.; Gu, R.; Wang, Z.; Zhao, T.; Ji, Y.; Kong, J.; Gour, R.; Jue, J.P. Proactive Dynamic Network Slicing with Deep Learning
Based Short-Term Traffic Prediction for 5G Transport Network. In Proceedings of the 2019 Optical Fiber Communications
Conference and Exhibition (OFC), San Diego, CA, USA, 7–9 March 2019; pp. 1–3.

http://dx.doi.org/10.1109/allerton.2019.8919799
http://dx.doi.org/10.1109/ICC.2018.8422289
http://dx.doi.org/10.1109/ACCESS.2018.2850226
http://dx.doi.org/10.1109/TWC.2020.3024279
http://dx.doi.org/10.1109/JIOT.2018.2846694
http://dx.doi.org/10.1109/TSP.2018.2866382
http://dx.doi.org/10.1109/JSAC.2019.2933973
http://dx.doi.org/10.1364/JOCN.11.000547
http://dx.doi.org/10.1109/OJVT.2019.2962631
http://dx.doi.org/10.1109/LWC.2018.2818160
http://dx.doi.org/10.1109/WOCC.2017.7929000
http://dx.doi.org/10.1109/TCCN.2017.2758370
http://dx.doi.org/10.1109/JSTSP.2018.2794062
http://dx.doi.org/10.1109/MWC.001.1900207
http://dx.doi.org/10.1109/LCOMM.2017.2776917
http://dx.doi.org/10.1109/VTCFall.2019.8891391

Network 2023, 3 86

87. Chen, M.; Saad, W.; Yin, C.; Debbah, M. Echo State Networks for Proactive Caching in Cloud-Based Radio Access Networks With
Mobile Users. IEEE Trans. Wirel. Commun. 2017, 16, 3520–3535. [CrossRef]

88. Wang, Y.; Narasimha, M.; Heath, R.W. MmWave Beam Prediction with Situational Awareness: A Machine Learning Approach. In
Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
Kalamata, Greece, 25–28 June 2018; pp. 1–5. [CrossRef]

89. Lei, F.; Dai, Q.; Cai, J.; Zhao, H.; Liu, X.; Liu, Y. A Proactive Caching Strategy Based on Deep Learning in EPC of 5G. In Advances
in Brain Inspired Cognitive Systems, Proceedings of the 9th International Conference, BICS 2018, Xi’an, China, 7–8 July 2018; Lecture
Notes in Computer Science; Ren, J., Hussain, A., Zheng, J., Liu, C., Luo, B., Zhao, H., Zhao, X., Eds.; Springer: Berlin/Heidelberg,
Germany, 2018; Volume 10989, pp. 738–747. [CrossRef]

90. Maksymyuk, T.; Gazda, J.; Yaremko, O.; Nevinskiy, D. Deep Learning Based Massive MIMO Beamforming for 5G Mobile
Network. In Proceedings of the 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences
on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), Lviv, Ukraine, 20–21 September 2018;
pp. 241–244. [CrossRef]

91. Balevi, E.; Andrews, J.G. Deep Learning-Based Channel Estimation for High-Dimensional Signals. arXiv 2019, arXiv:1904.09346.
92. He, H.; Wen, C.K.; Jin, S.; Li, G.Y. Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems.

IEEE Wirel. Commun. Lett. 2018, 7, 852–855. [CrossRef]
93. Xiao, Z.; Gao, B.; Liu, S.; Xiao, L. Learning Based Power Control for mmWave Massive MIMO against Jamming. In Proceedings

of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018;
pp. 1–6. [CrossRef]

94. Sadeghi, A.; Sheikholeslami, F.; Giannakis, G.B. Optimal and Scalable Caching for 5G Using Reinforcement Learning of
Space-Time Popularities. IEEE J. Sel. Top. Signal Process. 2018, 12, 180–190. [CrossRef]

95. Peng, B.; Seco-Granados, G.; Steinmetz, E.; Fröhle, M.; Wymeersch, H. Decentralized Scheduling for Cooperative Localization
With Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2019, 68, 4295–4305. [CrossRef]

96. Li, R.; Zhao, Z.; Sun, Q.; I, C.L.; Yang, C.; Chen, X.; Zhao, M.; Zhang, H. Deep Reinforcement Learning for Resource Management
in Network Slicing. IEEE Access 2018, 6, 74429–74441. [CrossRef]

97. Nassar, A.; Yilmaz, Y. Deep Reinforcement Learning for Adaptive Network Slicing in 5G for Intelligent Vehicular Systems and
Smart Cities. arXiv 2020, arXiv:2010.09916.

98. Shi, Y.; Sagduyu, Y.E.; Erpek, T. Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing.
In Proceedings of the 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD), Pisa, Italy, 14–16 September 2020; pp. 1–6. [CrossRef]

99. Stampa, G.; Arias, M.; Sanchez-Charles, D.; Muntes-Mulero, V.; Cabellos, A. A Deep-Reinforcement Learning Approach for
Software-Defined Networking Routing Optimization. arXiv 2017, arXiv:1709.07080.

100. Liu, Y.; Ding, J.; Liu, X. Resource Allocation Method for Network Slicing Using Constrained Reinforcement Learning. In
Proceedings of the 2021 IFIP Networking Conference (IFIP Networking), Espoo, Finland, 21–24 June 2021; pp. 1–3. [CrossRef]

101. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep Image Prior. Int. J. Comput. Vis. 2020, 128, 1867–1888. [CrossRef]
102. Metzler, C.A.; Mousavi, A.; Baraniuk, R.G. Learned D-AMP: Principled Neural Network based Compressive Image Recovery.

arXiv 2017, arXiv:1704.06625.
103. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image

Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef]
104. Hinton, G.E. A practical guide to training restricted Boltzmann machines. In Neural Networks: Tricks of the Trade; Springer:

Berlin/Heidelberg, Germany, 2012; pp. 599–619.
105. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Networks. arXiv 2014, arXiv:1406.2661.
106. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784.
107. Bellman, R. Dynamic Programming; Dover Publications: Mineola, NY, USA, 1957.
108. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
109. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2019, arXiv:1509.02971.
110. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv 2018,

arXiv:1802.09477.
111. Rummery, G.A.; Niranjan, M. On-Line Q-Learning Using Connectionist Systems; Citeseer: London, UK, 1994; Volume 37.
112. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for

Deep Reinforcement Learning. arXiv 2016, arXiv:1602.01783.
113. Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.I.; Abbeel, P. Trust Region Policy Optimization. arXiv 2017, arXiv:1502.05477.
114. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,

arXiv:1707.06347.
115. Khani, M.; Alizadeh, M.; Hoydis, J.; Fleming, P. Adaptive Neural Signal Detection for Massive MIMO. arXiv 2019,

arXiv:1906.04610.

http://dx.doi.org/10.1109/TWC.2017.2683482
http://dx.doi.org/10.1109/SPAWC.2018.8445969
http://dx.doi.org/10.1007/978-3-030-00563-4_72
http://dx.doi.org/10.1109/IDAACS-SWS.2018.8525802
http://dx.doi.org/10.1109/LWC.2018.2832128
http://dx.doi.org/10.1109/GLOCOM.2018.8647173
http://dx.doi.org/10.1109/JSTSP.2017.2787979
http://dx.doi.org/10.1109/TVT.2019.2913695
http://dx.doi.org/10.1109/ACCESS.2018.2881964
http://dx.doi.org/10.1109/CAMAD50429.2020.9209299
http://dx.doi.org/10.23919/IFIPNetworking52078.2021.9472202
http://dx.doi.org/10.1007/s11263-020-01303-4
http://dx.doi.org/10.1109/TIP.2017.2662206
http://dx.doi.org/10.1007/BF00992698

Network 2023, 3 87

116. Gao, G.; Dong, C.; Niu, K. Sparsely Connected Neural Network for Massive MIMO Detection. In Proceedings of the 2018 IEEE
4th International Conference on Computer and Communications (ICCC), Hangzhou, China, 30 July–2 August 2018; pp. 397–402.
[CrossRef]

117. Mennes, R.; Camelo, M.; Claeys, M.; Latré, S. A neural-network-based MF-TDMA MAC scheduler for collaborative wireless
networks. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain,
15–18 April 2018; pp. 1–6. [CrossRef]

118. Gutterman, C.; Grinshpun, E.; Sharma, S.; Zussman, G. RAN Resource Usage Prediction for a 5G Slice Broker. In Proceedings
of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Catania, Italy, 2–5 July 2019;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 231–240. [CrossRef]

119. Pang, H.; Liu, J.; Fan, X.; Sun, L. Toward smart and cooperative edge caching for 5G networks: A deep learning based approach.
In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada,
4–6 June 2018; pp. 1–6.

120. Krizhevsky, A. One weird trick for parallelizing convolutional neural networks. arXiv 2014, arXiv:1404.5997.
121. Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial Transformer Networks. arXiv 2016, arXiv:1506.02025.
122. Fischer, W.; Meier-Hellstern, K. The Markov-modulated Poisson process (MMPP) cookbook. Perform. Eval. 1993, 18, 149–171.

[CrossRef]
123. Baum, L.E.; Petrie, T.; Soules, G.; Weiss, N. A Maximization Technique Occurring in the Statistical Analysis of Probabilistic

Functions of Markov Chains. Ann. Math. Stat. 1970, 41, 164–171. [CrossRef]
124. Cao, G.; Lu, Z.; Lei, T.; Wen, X.; Wang, L.; Yang, Y. Demo: SDNbased seamless handover in WLAN and 3GPP cellular

with CAPWAN. In Proceedings of the 13th International Symposium on Wireless Communication Systems, Poznań, Poland,
20–23 September 2016; pp. 1–3.

125. Amsaleg, L.; Bailey, J.; Barbe, D.; Erfani, S.; Houle, M.E.; Nguyen, V.; Radovanović, M. The vulnerability of learning to adversarial
perturbation increases with intrinsic dimensionality. In Proceedings of the 2017 IEEE Workshop on Information Forensics and
Security (WIFS), Rennes, France, 4–7 December 2017; pp. 1–6. [CrossRef]

126. Sitawarin, C.; Wagner, D. On the Robustness of Deep K-Nearest Neighbors. arXiv 2019, arXiv:1903.08333.
127. Sitawarin, C.; Wagner, D. Minimum-Norm Adversarial Examples on KNN and KNN based Models. In Proceedings of the 2020

IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 21 May 2020; pp. 34–40.
128. Wang, L.; Liu, X.; Yi, J.; Zhou, Z.H.; Hsieh, C.J. Evaluating the Robustness of Nearest Neighbor Classifiers: A Primal-Dual

Perspective. arXiv 2019, arXiv:1906.03972.
129. Yang, Y.Y.; Rashtchian, C.; Wang, Y.; Chaudhuri, K. Robustness for Non-Parametric Classification: A Generic Attack and Defense.

arXiv 2020, arXiv:1906.03310.
130. Sitawarin, C.; Kornaropoulos, E.M.; Song, D.; Wagner, D. Adversarial Examples for k-Nearest Neighbor Classifiers Based on

Higher-Order Voronoi Diagrams. arXiv 2021, arXiv:2011.09719.
131. Chen, H.; Zhang, H.; Si, S.; Li, Y.; Boning, D.; Hsieh, C.J. Robustness Verification of Tree-based Models. arXiv 2019,

arXiv:1906.03849.
132. Kantchelian, A.; Tygar, J.D.; Joseph, A.D. Evasion and Hardening of Tree Ensemble Classifiers. arXiv 2016, arXiv:1509.07892.
133. Papernot, N.; McDaniel, P.; Goodfellow, I. Transferability in Machine Learning: From Phenomena to Black-Box Attacks using

Adversarial Samples. arXiv 2016, arXiv:1605.07277.
134. Zhang, F.; Wang, Y.; Liu, S.; Wang, H. Decision-based evasion attacks on tree ensemble classifiers. World Wide Web 2020,

23, 2957–2977. [CrossRef]
135. Zhang, C.; Zhang, H.; Hsieh, C.J. An Efficient Adversarial Attack for Tree Ensembles. arXiv 2020, arXiv:2010.11598.
136. Andriushchenko, M.; Hein, M. Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks. arXiv 2019,

arXiv:1906.03526.
137. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2015, arXiv:1412.6572.
138. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial examples in the physical world. arXiv 2017, arXiv:1607.02533.
139. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks.

arXiv 2019, arXiv:1706.06083.
140. Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting Adversarial Attacks with Momentum. In Proceedings of the 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9185–9193.
[CrossRef]

141. Sabour, S.; Cao, Y.; Faghri, F.; Fleet, D.J. Adversarial Manipulation of Deep Representations. arXiv 2016, arXiv:1511.05122.
142. Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. DeepFool: A simple and accurate method to fool deep neural networks. arXiv

2016, arXiv:1511.04599.
143. Jang, U.; Wu, X.; Jha, S. Objective metrics and gradient descent algorithms for adversarial examples in machine learning. In

Proceedings of the 33rd Annual Computer Security Applications Conference, Orlando, FL, USA, 4–8 December 2017; pp. 262–277.
144. Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. arXiv 2017, arXiv:1608.04644.
145. Chen, P.Y.; Sharma, Y.; Zhang, H.; Yi, J.; Hsieh, C.J. EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples.

arXiv 2018, arXiv:1709.04114.

http://dx.doi.org/10.1109/CompComm.2018.8780959
http://dx.doi.org/10.1109/WCNC.2018.8377044
http://dx.doi.org/10.1145/3323679.3326521
http://dx.doi.org/10.1016/0166-5316(93)90035-S
http://dx.doi.org/10.1214/aoms/1177697196
http://dx.doi.org/10.1109/WIFS.2017.8267651
http://dx.doi.org/10.1007/s11280-020-00813-y
http://dx.doi.org/10.1109/CVPR.2018.00957

Network 2023, 3 88

146. Chang, K.H.; Huang, P.H.; Yu, H.; Jin, Y.; Wang, T.C. Audio Adversarial Examples Generation with Recurrent Neural Networks.
In Proceedings of the 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 13–16 January
2020; pp. 488–493. [CrossRef]

147. Moosavi-Dezfooli, S.M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations. arXiv 2017, arXiv:1610.08401.
148. Mode, G.; Hoque, K. Adversarial Examples in Deep Learning for Multivariate Time Series Regression. arXiv 2020,

arXiv:2009.11911.
149. Gupta, K.; Pesquet, J.C.; Pesquet-Popescu, B.; Kaakai, F.; Malliaros, F. An Adversarial Attacker for Neural Networks in Regression

Problems. In Proceedings of the IJCAI Workshop on Artificial Intelligence Safety (AI Safety), Macau, China, 10–16 August 2021.
150. Narodytska, N.; Kasiviswanathan, S.P. Simple Black-Box Adversarial Perturbations for Deep Networks. arXiv 2016,

arXiv:1612.06299.
151. Uesato, J.; O’Donoghue, B.; van den Oord, A.; Kohli, P. Adversarial Risk and the Dangers of Evaluating Against Weak Attacks.

arXiv 2018, arXiv:1802.05666.
152. Alzantot, M.; Sharma, Y.; Chakraborty, S.; Zhang, H.; Hsieh, C.J.; Srivastava, M.B. Genattack: Practical black-box attacks with

gradient-free optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, Prague, Czech Republic,
13–17 July 2019; pp. 1111–1119.

153. Guo, C.; Gardner, J.; You, Y.; Wilson, A.G.; Weinberger, K. Simple black-box adversarial attacks. In Proceedings of the International
Conference on Machine Learning, Taipei, Taiwan, 2–4 December 2019; pp. 2484–2493.

154. Koga, K.; Takemoto, K. Simple black-box universal adversarial attacks on medical image classification based on deep neural
networks. arXiv 2021, arXiv:2108.04979.

155. Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik, Z.B.; Swami, A. Practical Black-Box Attacks against Machine Learning.
arXiv 2017, arXiv:1602.02697.

156. Brendel, W.; Rauber, J.; Bethge, M. Decision-based adversarial attacks: Reliable attacks against black-box machine learning
models. arXiv 2017, arXiv:1712.04248.

157. Cheng, M.; Le, T.; Chen, P.Y.; Yi, J.; Zhang, H.; Hsieh, C.J. Query-efficient hard-label black-box attack: An optimization-based
approach. arXiv 2018, arXiv:1807.04457.

158. Chen, J.; Jordan, M.I.; Wainwright, M.J. Hopskipjumpattack: A query-efficient decision-based attack. In Proceedings of the 2020
IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 1277–1294.

159. Chen, P.Y.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.J. Zoo: Zeroth order optimization based black-box attacks to deep neural
networks without training substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
Dallas, TX, USA, 3 November 2017; pp. 15–26.

160. Rahmati, A.; Moosavi-Dezfooli, S.M.; Frossard, P.; Dai, H. Geoda: A geometric framework for black-box adversarial attacks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 8446–8455.

161. Fawzi, A.; Moosavi-Dezfooli, S.M.; Frossard, P. Robustness of classifiers: From adversarial to random noise. Adv. Neural Inf.
Process. Syst. 2016, 29, 1632–1640.

162. Ilyas, A.; Engstrom, L.; Athalye, A.; Lin, J. Black-box adversarial attacks with limited queries and information. In Proceedings of
the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2137–2146.

163. Hu, W.; Tan, Y. Generating adversarial malware examples for black-box attacks based on GAN. arXiv 2017, arXiv:1702.05983.
164. Xiao, C.; Li, B.; Zhu, J.Y.; He, W.; Liu, M.; Song, D. Generating adversarial examples with adversarial networks. arXiv 2018,

arXiv:1801.02610.
165. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network (2015). arXiv 2015, arXiv:1503.02531.
166. Anderson, H.S.; Kharkar, A.; Filar, B.; Roth, P. Evading machine learning malware detection. In Proceedings of the Black Hat

2017, Las Vegas, NV, USA, 22–27 July 2017.
167. Wu, D.; Fang, B.; Wang, J.; Liu, Q.; Cui, X. Evading Machine Learning Botnet Detection Models via Deep Reinforcement Learning.

In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May
2019; pp. 1–6. [CrossRef]

168. Schott, L.; Rauber, J.; Bethge, M.; Brendel, W. Towards the first adversarially robust neural network model on MNIST. In
Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

169. Hogan, T.A.; Kailkhura, B. Universal decision-based black-box perturbations: Breaking security-through-obscurity defenses.
arXiv 2018, arXiv:1811.03733.

170. Kim, B.; Sagduyu, Y.E.; Davaslioglu, K.; Erpek, T.; Ulukus, S. Channel-Aware Adversarial Attacks Against Deep Learning-Based
Wireless Signal Classifiers. arXiv 2021, arXiv:2005.05321.

171. Sadeghi, M.; Larsson, E.G. Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems. arXiv 2019,
arXiv:1902.08391.

172. Papernot, N.; Faghri, F.; Carlini, N.; Goodfellow, I.; Feinman, R.; Kurakin, A.; Xie, C.; Sharma, Y.; Brown, T.; Roy, A.; et al.
Technical report on the cleverhans v2. 1.0 adversarial examples library. arXiv 2016, arXiv:1610.00768.

173. Nicolae, M.I.; Sinn, M.; Tran, M.N.; Buesser, B.; Rawat, A.; Wistuba, M.; Zantedeschi, V.; Baracaldo, N.; Chen, B.; Ludwig, H.; et al.
Adversarial Robustness Toolbox v1.0.0. arXiv 2019, arXiv:1807.01069.

http://dx.doi.org/10.1109/ASP-DAC47756.2020.9045597
http://dx.doi.org/10.1109/ICC.2019.8761337

Network 2023, 3 89

174. Engstrom, L.; Tran, B.; Tsipras, D.; Schmidt, L.; Madry, A. Exploring the landscape of spatial robustness. In Proceedings of the
International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 1802–1811.

175. Brown, T.B.; Mané, D.; Roy, A.; Abadi, M.; Gilmer, J. Adversarial patch. arXiv 2017, arXiv:1712.09665.
176. Grosse, K.; Pfaff, D.; Smith, M.T.; Backes, M. The limitations of model uncertainty in adversarial settings. arXiv 2018,

arXiv:1812.02606.
177. Xu, W.; Evans, D.; Qi, Y. Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. In Proceedings of the

2018 Network and Distributed System Security Symposium, San Diego, CA, USA, 18–21 February 2018. [CrossRef]
178. Dziugaite, G.K.; Ghahramani, Z.; Roy, D.M. A study of the effect of jpg compression on adversarial images. arXiv 2016,

arXiv:1608.00853.
179. Zantedeschi, V.; Nicolae, M.I.; Rawat, A., Efficient Defenses Against Adversarial Attacks. In Proceedings of the 10th ACM

Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017; Association for Computing Machinery:
New York, NY, USA, 2017; pp. 39–49.

180. Warde-Farley, D.; Goodfellow, I. 11 adversarial perturbations of deep neural networks. Perturbations Optim. Stat. 2016, 311, 5.
181. Buckman, J.; Roy, A.; Raffel, C.; Goodfellow, I. Thermometer encoding: One hot way to resist adversarial examples. In Proceedings

of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
182. Weng, T.W.; Zhang, H.; Chen, P.Y.; Yi, J.; Su, D.; Gao, Y.; Hsieh, C.J.; Daniel, L. Evaluating the robustness of neural networks:

An extreme value theory approach. arXiv 2018, arXiv:1801.10578.
183. Arpit, D.; Jastrzebski, S.; Ballas, N.; Krueger, D.; Bengio, E.; Kanwal, M.S.; Maharaj, T.; Fischer, A.; Courville, A.; Bengio, Y.; et al.

A closer look at memorization in deep networks. In Proceedings of the International Conference on Machine Learning, Sydney,
Australia, 6–11 August 2017; pp. 233–242.

184. Rauber, J.; Brendel, W.; Bethge, M. Foolbox: A Python toolbox to benchmark the robustness of machine learning models. arXiv
2018, arXiv:1707.04131.

185. Ling, X.; Ji, S.; Zou, J.; Wang, J.; Wu, C.; Li, B.; Wang, T. DEEPSEC: A Uniform Platform for Security Analysis of Deep Learning
Model. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019;
pp. 673–690. [CrossRef]

186. He, W.; Li, B.; Song, D. Decision boundary analysis of adversarial examples. In Proceedings of the International Conference on
Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

187. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial machine learning at scale. arXiv 2016, arXiv:1611.01236.
188. Ross, A.; Doshi-Velez, F. Improving the adversarial robustness and interpretability of deep neural networks by regularizing their

input gradients. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018;
Volume 32.

189. Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; Swami, A. Distillation as a defense to adversarial perturbations against deep neural
networks. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 582–597.

190. Xie, C.; Wang, J.; Zhang, Z.; Ren, Z.; Yuille, A. Mitigating adversarial effects through randomization. arXiv 2017, arXiv:1711.01991.
191. Song, Y.; Kim, T.; Nowozin, S.; Ermon, S.; Kushman, N. Pixeldefend: Leveraging generative models to understand and defend

against adversarial examples. arXiv 2017, arXiv:1710.10766.
192. Guo, C.; Rana, M.; Cisse, M.; van der Maaten, L. Countering Adversarial Images using Input Transformations. arXiv 2018,

arXiv:1711.00117.
193. Cao, X.; Gong, N.Z. Mitigating evasion attacks to deep neural networks via region-based classification. In Proceedings of the

33rd Annual Computer Security Applications Conference, Orlando, FL, USA, 4–8 December 2017; pp. 278–287.
194. Ma, X.; Li, B.; Wang, Y.; Erfani, S.M.; Wijewickrema, S.; Schoenebeck, G.; Song, D.; Houle, M.E.; Bailey, J. Characterizing

adversarial subspaces using local intrinsic dimensionality. arXiv 2018, arXiv:1801.02613.
195. Meng, D.; Chen, H. MagNet: A Two-Pronged Defense against Adversarial Examples. arXiv 2017, arXiv:1705.09064.
196. Carlini, N. A critique of the deepsec platform for security analysis of deep learning models. arXiv 2019, arXiv:1905.07112.
197. Ding, G.W.; Wang, L.; Jin, X. advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch. arXiv 2019, arXiv:1902.07623.
198. Xiao, C.; Zhu, J.Y.; Li, B.; He, W.; Liu, M.; Song, D. Spatially transformed adversarial examples. arXiv 2018, arXiv:1801.02612.
199. Athalye, A.; Carlini, N.; Wagner, D. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial

examples. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 274–283.
200. Goodman, D.; Xin, H.; Yang, W.; Yuesheng, W.; Junfeng, X.; Huan, Z. Advbox: A toolbox to generate adversarial examples that

fool neural networks. arXiv 2020, arXiv:2001.05574.
201. Tramèr, F.; Zhang, F.; Juels, A.; Reiter, M.K.; Ristenpart, T. Stealing Machine Learning Models via Prediction APIs. arXiv 2016,

arXiv:1609.02943.
202. Liu, Q.; Guo, J.; Wen, C.K.; Jin, S. Adversarial attack on DL-based massive MIMO CSI feedback. J. Commun. Netw. 2020,

22, 230–235. [CrossRef]
203. Kim, B.; Sagduyu, Y.E.; Davaslioglu, K.; Erpek, T.; Ulukus, S. Over-the-Air Adversarial Attacks on Deep Learning Based

Modulation Classifier over Wireless Channels. arXiv 2020, arXiv:2002.02400.
204. Usama, M.; Mitra, R.N.; Ilahi, I.; Qadir, J.; Marina, M.K. Examining Machine Learning for 5G and Beyond through an Adversarial

Lens. arXiv 2020, arXiv:2009.02473.

http://dx.doi.org/10.14722/ndss.2018.23198
http://dx.doi.org/10.1109/SP.2019.00023
http://dx.doi.org/10.1109/JCN.2020.000016

Network 2023, 3 90

205. Kim, B.; Sagduyu, Y.E.; Erpek, T.; Davaslioglu, K.; Ulukus, S. Adversarial Attacks with Multiple Antennas Against Deep
Learning-Based Modulation Classifiers. arXiv 2020, arXiv:2007.16204.

206. Kim, B.; Sagduyu, Y.E.; Erpek, T.; Ulukus, S. Adversarial Attacks on Deep Learning Based mmWave Beam Prediction in 5G and
Beyond. arXiv 2021, arXiv:2103.13989.

207. Catak, E.; Catak, F.O.; Moldsvor, A. Adversarial Machine Learning Security Problems for 6G: MmWave Beam Prediction Use-Case.
arXiv 2021, arXiv:2103.07268.

208. Psiaki, M.L.; Humphreys, T.E. GNSS Spoofing and Detection. Proc. IEEE 2016, 104, 1258–1270. [CrossRef]
209. Manoj, B.R.; Sadeghi, M.; Larsson, E.G. Adversarial Attacks on Deep Learning Based Power Allocation in a Massive MIMO

Network. arXiv 2021, arXiv:2101.12090.
210. Shi, Y.; Sagduyu, Y.E. Adversarial Machine Learning for Flooding Attacks on 5G Radio Access Network Slicing. arXiv 2021,

arXiv:2101.08724.
211. Wang, F.; Gursoy, M.C.; Velipasalar, S. Adversarial Reinforcement Learning in Dynamic Channel Access and Power Control.

arXiv 2021, arXiv:2105.05817.
212. Shi, Y.; Sagduyu, Y.E.; Erpek, T.; Gursoy, M.C. How to Attack and Defend 5G Radio Access Network Slicing with Reinforcement

Learning. arXiv 2021, arXiv:2101.05768.
213. Qiu, J.; Du, L.; Chen, Y.; Tian, Z.; Du, X.; Guizani, M. Artificial Intelligence Security in 5G Networks: Adversarial Examples for

Estimating a Travel Time Task. IEEE Veh. Technol. Mag. 2020, 15, 95–100. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JPROC.2016.2526658
http://dx.doi.org/10.1109/MVT.2020.3002487

	Introduction
	Big Data in 5G
	Algorithms
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	AI/ML in 5G
	Attacks
	Attacks against k-NN
	Attacks against Tree Ensembles
	White-Box Attacks against Neural Networks
	Score-Based Attacks against Neural Networks
	Decision-Based Attacks against Neural Networks

	Fuzzing Frameworks
	Adversarial ML in 5G
	Discussion
	Conclusions
	References

