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Energy Efficient Resource Allocation for Wireless
Powered UAV Wireless Communication System

with Short Packet
Jin Xie, Zheng Chang, Senior Member, IEEE, Xijuan Guo, and Timo Hämäläinen, Senior Member, IEEE

Abstract—The unmanned aerial vehicle (UAV), which is promi-
nent in its flexibility and low cost, is considered to be fully utilized
in the future wireless communication system to provide flexible
services and improve connectivities. In this paper, we investigate
the resource allocation problem in a wireless powered UAV
communication system. In this considered system, The UAV acts
as hybrid access point (HAP), which can first perform wireless
power transfer in the downlink and charge the Internet of Thing
(IoT) user devices (UDs). The UDs can use the harvested energy
to deliver the data to the UAV. In the uplink, we explicitly consider
short packet communication (SPC) as the transmission feature,
which adopts finite block-length codewords and suffers from
rate degradation. With the objective to maximize system energy
efficiency, we jointly optimize the position and transmit power
of the UAV, and transmission time of each UD. To address the
formulated non-convex problem, we develop efficient algorithms
to find sub-optimal solutions. Extensive simulations are conducted
to verify the effectiveness of the proposed scheme.

Index Terms—Energy Efficiency, Internet of Things, UAV,
Short Packet Communication, URLLC.

I. INTRODUCTION

A. Background

INTERNET of Things (IoT) is a considered as a promising
paradigm attempting to extend human-to-human commu-

nication to human-to-thing and thing-to-thing communication
[1]. The extensive application scenarios of IoT include smart
grid, smart home, smart transportation, and smart medical care,
etc [2]. However, there are many challenges on realizing and
deploying the IoT system [3], one of which is the energy
supply problem of massive user devices (UDs) [4]. Most
traditional IoT UDs use energy-constrained batteries as the
main source. However, when deploying massive UDs over a
large area, regular replacement of batteries for IoT devices
may be very inconvenient and expensive.

Recently, energy harvesting (EH) technology has been pro-
posed to effectively extend the battery life for IoT devices [5].
Among all kinds of EH technologies, utilizing the wireless
power transfer (WPT) to provide energy for mobile devices
has received significant interests [6]. Meanwhile, to provide
ubiquitous connectivity and support the development of IoT,
unmanned aerial vehicle (UAV) is considered as an important
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network entity in the future wireless communications system,
and the research of UAV-assisted communication system has
attracted more and more attentions from the industry and
academia [7]. Compared with traditional terrestrial cellular
infrastructure, UAVs can be flexibly deployed on demand to
alleviate heavy data loads in hotspots and extend the network
connectivity [8] [9]. Due to its flexible nature, UAV can also
act as a hybrid access point (HAP) that not only performs
as the transceiver for information delivery, but also can be
used as the WPT source to transmit energy to the UDs [10].
The resulted wireless powered UAV network can effectively
improve energy utilization and communication reliability for
the IoT system.

Meanwhile, due to the stringent latency requirement and
data feature, the transmissions among IoT devices are usually
dominated by the short-packet communication (SPC). While
there are some previous works using infinite block-length
codeword to analyze the transmission performance among IoT
devices, it is not accurate. In fact, as the IoT system usually
consists of low power devices, the explicit consideration of
packet length has a significant impact on the design of IoT
network. Therefore, recent works show that the analysis of
SPC can adopt finite block-length codewords for data delivery
and uses a small number of symbols in one transmission frame.
Specifically, the maximum achievable data rate of SPC is
actually smaller than Shannon capacity, while the packet error
rate is higher than long-packet communication. This is due
to the fact that when the packet length is short, the wireless
channel distortions and noise have a stronger impact on the
transmitted signal. As such, the traditional analysis of com-
munication system which assumes infinite-length packets and
adopts Shannon capacity as the performance metric can not be
directly applied to to evaluate the wireless communications in
IoT system. Therefore, it is of profound significance to study
the effect of SPC and packet length in the context of design
of IoT system [11].

B. Related work

The UAVs can be sent to fly over a large scale area for data
collection and delivery, which is able to reduce the power
consumption of the deployed sensors and thereby prolongs
the lifetime of IoT. In [12], taking into account the energy
consumption of UAV propulsion, the efficient communication
of UAV can be realized through trajectory optimization. In
[13], the authors investigate a energy trade-off between the
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UAV and its served ground terminal via trajectory design.
The authors of [14] propose a cooperative UAV sense-and-
send protocol and solve a joint subchannel allocation and
UAV speed optimization problem. In [15], an optimization
scheme is proposed to maximize the energy efficiency of a
UAV-assisted mobile edge computing system, where the UAV
trajectory design and resource allocation are jointly studied.

Recently, utilizing the WPT to boost the development of IoT
are becoming more and more important for prolonging the bat-
tery life and developing a sustainable wireless communications
system. WPT presents a new paradigm that harvests energy
from environmental electromagnetic sources [16]. The authors
of [17] provide a method for predicting the power transfer
efficiency of WPT in a Multi-input Multi-output (MIMO)
WPT system with arbitrary UD positions and attitudes of
antenna arrays. In [18], a new type of wireless powered
communication network (WPCN) system supported by UAV is
studied. The UAV trajectory and resource allocation are jointly
optimized to maximize throughput performance subject to the
condition of speed constraint and users’ maximum energy
consumption.

The researches on the SPC are mainly to deal with latency
and reliability investigations in the context of data transmission
considering lower power IoT devices [19] [20]. Unlike long-
packet transmissions in traditional wireless networks, Shannon
capacity performance metrics can no longer be applied to SPC
[21], which means that thorough study on the performance of
SPC is needed. An approximation expression of the maximum
encoding rate under the AWGN channel and the probability of
a finite packet error is derived in [22]. A collaborative relay
protocol which reduces the error rate of SPC is presented in
[23], and an approximation of the system error rate is provided
in [24]. In [25], the authors consider a wireless powered
IoT system, and jointly optimize the transmission time and
packet error rate of each user to maximize the throughput
and minimize the transmission time in the context of SPC.
The application scenarios of dynamic spectrum acquisition and
local licensing of SPC in smart grid are analyzed in [26].
Considering to maximize the system confidentiality capacity,
the authors jointly optimize the number of bandwidth units
and power allocation in [27]. Taking into account of SPC, the
authors of [28] mainly study the resource allocation scheme
to maximize the achievable effective energy efficiency (EE)
for uplink Non-Orthogonal Multiple Access (NOMA)-based
massive machine type communications. There are some works
dedicating on the investigation of UAV SPC system. In [29],
the authors introduce UAV relay to optimize UAV position and
block-length while meeting the minimum delay requirements.
The authors investigate the average error rate of SPC and the
effective throughput in a ultra-reliable and low-latency UAV
communications system [30].

C. Main Contributions

In this work, we consider using UAV as HAP for both
downlink WPT and uplink data transmission. For the data
transmission, SPC is employed. With the objective to max-
imize the energy efficiency of system, we jointly optimize
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Fig. 1: System model.

the UAV position, transmission time and transmit power. The
major contributions of this article are as follows:

• Considering the downlink WPT and uplink SPC, we first
define the system’s energy efficiency (EE) which consists
of system throughput and energy consumption. Based on
the expression of system EE, the problem is formulated
to optimize the location of UAV, transmit power of
UAV and transmission times(block/packet length) so as
to maximize the EE.

• Nonetheless, due to the fact that the formulated problem
is a fractional mixed integer programming problem with
a non-convex structure, addressing such a problem and
getting the optimal solution requires high computational
complexity. Thus, we propose to transform it to convex
optimization problems by decoupling several constraints
and address them iteratively.

• By using convex optimization scheme, we are able to
solution of each subproblems and then we can develop
an efficient iterative algorithm to find the solution of the
original one. The proof of convergence and complexity
analysis of the proposed algorithm is presented. Extensive
simulations are conducted to demonstrate the effective-
ness of the presented scheme.

D. Organization

The reminder of this paper is organized as follows. The
system model is depicted in Section II. In Section III, we
present the problem formulation and analysis. The proposed
solution is given in section IV. In Section V, performance
evaluation is conducted. Section VI summarizes this work.

II. SYSTEM MODEL

We consider a scenario in which the UAV works as a HAP
providing WPT in the downlink to the UDs and collecting
data via upkink SPC from them in the wireless-powered IoT
Network (WPIN), as shown in Fig. 1. The UAV has multiple
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Fig. 2: Transmission process.

transmitting antennas and we denote the K single-antenna UD
as UD1,UD2,···,UDK . We denote hk as the downlink channel
coefficient between the UAV and UDk.

In Fig. 2, the transmission process is presented. The UAV
performs the WPT in the first phrase, and then the UDs use
the collected energy to send short packets to the UAV based
on TDMA policy, which be viewed as the uplink wireless
information transfer (WIT) phase. We denote τ0=n0Tc as the
downlink energy transmission time, and τk = nkTc as the
uplink transmission time for UD k.

We assume that the horizontal position of the UAV is q =
[x, y]T , and the height H of the UAV is fixed. The position of
UDk is uk = [xk,, yk]

T . The distance between the UAV and
UDk is

dk =

√
∥q− uk∥2 +H2. (1)

1) Downlink WPT: The signal received at UD can be
expressed as

ak =

√
pk
dα
hks0 + υk, (2)

where pk is the transmit power of the UAV to UDk. Here
we consider a Nakagami-m quasi-static channel model where
the channel gain is constant in the transmission block, from
varies from one block to another block. So h2k ∼ Γ(m, 1/m),
and υk is the noise. X ∼ Γ(m, 1/m) is a normalized
gamma distributed random variable with shape factor m and
probability density function (PDF) fX(x) = mm

Γ(m)x
m−1e−mx.

Γ(m) is the Gamma function. We denote Tc as the symbol
period of both downlink and uplink signals. 0 < η < 1
is the energy conversion efficiency, n0 is the packet length
(the number of transmitted symbols), and κ is the combined
influence of other factors such as the carrier frequency, height
and gain of the antenna. Then we have the received energy of
UDk

Ek =
ηpk
κdk

αh
2
kτ0. (3)

2) uplink WIT: The transmit power of the UDk in the
uplink is

pUk =
Ek
τk

=
ηn0pk
κnkdαk

h2k, (4)

where nk is the uplink packet length (the number of transmit-
ted symbols) and τk = nkTc (1 ≤ k ≤ K) is the uplink signal
transmission duration of UDk.

We denote sk as the uplink signal from UDk to UAV. The
received signal bk at UAV from UDk can be expressed as

bk=

√
pUk
dαk

gksk + νk, (5)

where gk is the uplink channel coefficient between the UAV
and g2k ∼ Γ(m, 1/m). νk is the noise at the UAV with zero
mean and power σ2. The instantaneous signal-to-noise ratio
(SNR) of the uplink signal from UDk to the UAV is

γk =
ηn0pk

κnkd2αk σ2
h2kg

2
k. (6)

In this work, we consider a SPC with finite block-lenghth for
uplink transmission. Then, for a given packet error rate εk
and a given packet length nk, the transmission rate in bits
per channel use (BPCU) of the UDk can be approximately
expressed as

Rk ≈ ln (1 + γk)−Q−1 (εk)

√
Vk
nk
, (7)

where Q−1(x) is the inverse function of Q(x) =∫∞
x

1√
2π

exp(− t2

2 )dt, and Vk is the channel dispersion, i.e.,

Vk = 1− 1/(1 + γk)
2. (8)

In the WIT phase, the throughput of UDk can be expressed
as Tk = Rk(1− εk)τk. The total throughput of the system is
T(q,n,p) =

∑K
k=1 Tk and the total energy consumption is

E = τ0 ∥p∥ , (9)

where p = [p1, p2, ..., pK ]T . We define the total EE in
BPCU/Joule as

EE (q,n,p) =

∑K
k=1 Tk
E

=

∑K
k=1 (1− εk)Rkτk

τ0 ∥p∥

=

∑K
k=1 (1− εk)

(
nk ln (1 + γk)−Q−1 (εk)

√
nkVk

)
n0 ∥p∥

(10)

III. PROBLEM FORMULATION AND ANALYSIS

In this section, we present the EE maximization problem by
optimizing position and transmit power of the UAV and the
transmission time of each UD. Then an efficient algorithm is
proposed to solve the problem. The complexity and conver-
gence of the algorithm are analyzed accordingly.

A. Problem Formulation

Our main objective is to jointly optimize the position of
the UAV, the transmission time of each UD, and the transmit

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3218314

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

power of the UAV so as to maximize the EE. Then, the
problem can be formulated as follows,

(P1) : max
q,n,p

EE (q,n,p) (11a)

s.t. xmin,k ≤ x ≤ xmax,k, 1 ≤ k ≤ K, (11b)
ymin,k ≤ y ≤ ymax,k, 1 ≤ k ≤ K, (11c)∑K

k=0
nk ≤ N, (11d)

nk ∈ N, 0 ≤ k ≤ K, (11e)∑K

k=1
pk ≤ Pm, (11f)

0 < pk, 1 ≤ k ≤ K. (11g)

The optimal position for UAV deployment is constrained by
(11b) and (11c). N is the set of non-negative integers and (11d)
is the total data frame length constraint. (11e) means that the
number of symbols should be a non-negative integer. (11f) and
(11g) are transmit power constraints of the UAV.

B. Problem Analysis

As we can see, P1 is a mixed integer and fractional
programming problem with a non-convex structure. Therefore,
global optimal solution is hard to be obtained. In order to
address this problem, we first analyze the properties of the
constraints in the following lemma.

Lemma 1. The optimal n∗ should satisfy constraint (11d) with
equality, i.e.,

∑K
k=0 n

∗
k = N

Proof. Please refer to Appendix A.

we can relax some constraints. First, according to Lemma
1, (11d) can be converted to∑K

k=0
nk = N. (12)

Then, we relax the integer nk in (11e) to be a variable as

nk ≥ 0, 0 ≤ k ≤ K. (13)

Then, we can obtain

(P2) : max
q,n,p

EE (q,n,p) =

∑K
k=1 Tk
E

s.t. (11b)(11c)(12)(13)(11f)(11g)

While (P2) is still a non-convex problem, we try to decouple
(P2) into three sub-problems as follows,

(P2− b) : max
q

EE(q) s.t. (11b)(11c)

(P2− b) : max
n

EE(n) s.t. (12)(13)

and

(P2− c) : max
p

EE(p) s.t. (11f)(11g)

where (P2 − a) is an optimization problem of q for the
given variables n and p, (P2−b) is an optimization problem
of n for the given variables q and p, and (P2 − c) is an
optimization problem of p for the given variables q and n.

Then, we iteratively solve (P2− a), (P2− b) and (P2− c)
as follows.

In the first iteration, we solve (P2−a) and obtain the local
optimal q as q(1) by adopting the initial n,p. Then we solve
the problem (P2 − b) to obtain the local optimal n as n(1)

by adopting q = q(1) and the initial p. Finally, we solve the
problem (P2 − c) to obtain the local optimal p as p(1) by
adopting q = q(1) and n=n(1).

In the i-th(i > 1) iteration, we solve (P2−a) and update q
as qi by adopting n = n(i−1) and p = p(i−1). Then we solve
the problem (P2−b) and update n as n(i) by adopting q = qi

and p = p(i−1). Finally, we solve the problem (P2− c) and
update p as p(i) by adopting q = qi and n=n(i). The iterative
algorithm terminates until EE (q,n,p) convergence.

In the next part, we first present the algorithms to address
(P2−a), (P2−b) and (P2−c) respectively. Then we provide
the convergence proof and complexity analysis of the proposed
algorithm. Finally, we propose an integer conversion to update
the solution of the (P2) to meet the integer constraint (11e).

IV. PROPOSED SOLUTION

A. Solution of (P2− a)

Given fixed n and p, we can see that addressing (P2− a)
is equivalent to solving (P2− a), which is

(P2− aa) : max
q

T(q,n,p) =
∑K
k=1 Tk

=
∑K
k=1 τk (1− εk)

(
ln (1 + γk)−Q−1 (εk)

√
Vk
nk

)
s.t. (11b)(11c)

In order to better present the position optimization for the UAV
and for the notation of simplicity, we can denote the SNR as

γk =
Ξk(

∥q− uk∥2 +H2
)α , (14)

where Ξk =
ηn0pkh

2
kg

2
k

κnkσ2 . For given n and p, T(q,n,p) is
not a concave function with respect to q. We convert it to a
concave function with respect to q by Taylor expansion, and
then the approximate convex problem is solved until the local
optimal solution converges. Let q0 denote the initial value
of q, and qj represents the optimized q in the j-th(j ≥ 1)
iteration. Then, in the j-th iteration, the Taylor expansion of
the objective function at qj can be expressed as

T(q,n,p) ≥∑K

k=1
τk (1− εk)

 ln (1 + γk,j−1)− Q−1(εk)√
nk

√
Vk,j−1

+Ak,j−1

(
∥q− uk∥2 − ∥qj−1 − uk∥2

) 
∆
= Tlb (q,n,p;qj−1) (15)

where γk,j−1 = Ξk/
(
∥qj−1 − uk∥2 +H2

)α
, Vk,j−1 = 1 −

1/(1 + γk,j−1)
2, and

Ak,j−1=
αΞk√

1− (1+γk,j−1)
2
(1+γk,j−1)

2
(
∥qj−1 − uk∥2 +H2

)α+1 .

(16)
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Next, we optimize q to maximize the lower bound func-
tion Tlb (q,n,p;qj−1) of T(q,n,p), forming the following
optimization problem

(P2− ab) : max
q

Tlb (q,n,p;qj−1)

s.t. (11b)(11c)

Tlb (q,n,p;qj−1) is a concave function about q. The con-
straints (11b) and (11c) are an affine set. (P2− ab) is easily
proved to be a convex problem. We can get its optimal solution
according to the following theorem. Then we can easily obtain
the optimal q†.

Theorem 1. q† is the optimal solution for problem (P2-ab),
where q† is the root of (17).

Proof. According to the KKT condition, the optimal solution
needs to satisfy

∂Tlb (q,n,p;qj−1)

∂q
=
∑K

k=1
2τk (εk − 1)Ak,j−1 (q− uk)

= 0 (17)

B. Solution of (P2− b)

In this part, we provide a (locally) optimal solution of (P2−
b). (P2− b) can be expressed as

(P2− b) : max
n

EE(q,n,p) =

∑K
k=1 Tk
E

=

∑K
k=1 (1− εk)(nk ln (1 + γk)−Q−1 (εk)

√
nkVk)

n0 ∥p∥

=

∑K
k=1 (1− εk)(ck(n)−Q−1 (εk)wk(n))

n0 ∥p∥
s.t. (12)(13)

where ck(n) = nk ln (1 + γk) ,wk(n) =
√
nkVk , Vk = 1 −

1/(1 + γk)
2 , n = [n0, n1, ..., nK ]T ,

γk = Θk
n0
nk
, (18)

where Θk =
ηpkh

2
kg

2
k

κσ2d2αk
. We first analyze the concavity of ck(n)

and ωk(n) respectively in the following lemma.

Lemma 2. Both ck(n) and ωk(n) are concave with respect
to (w.r.t.) n.

Proof. Similar proof can be found in [25], [31], we omit it
here.

The objective function has a fractional form and we first
analyze the feature its molecular.

mf(q,n,p)=
∑K

k=1
(1− εk)(ck(n)−Q−1 (εk)ωk(n)).

(19)
According to Lemma 2, we can conclude that∑K
k=1 (1− εk)ck(n) is a concave function w.r.t. n and∑K
k=1 −(1− εk)Q

−1 (εk)ωk(n) is a convex function w.r.t.
n. Therefore, for given q,p, mf(q,n,p) is a non-concave
function w.r.t. n, which leads to (P2−b) being a non-convex

problem. It is difficult to obtain a global optimal solution.
We transform mf(q,n,p) into a concave function about n
through the first-order Taylor expansion, and then solve the
approximate convex problem.

First, we denote n0 as the initial value of n. nj =
[nj,0, nj,1, ..., nj,K ]T (j ≥ 1) represents the optimized n in
the j-th iteration. In the j-th iteration, the first-order Taylor
series expansion of ωk(n) around nj can be expressed as

ωk(n) = ωk(nj−1)+∇ (wk(nj−1)) (n− nj−1)

+
1

2
(n− nj−1)

T∇2 (ωk(nf )) (n− nj−1)

≤ ωk(nj−1)+∇ (ωk(nj−1)) (n− nj−1)
∆
= ωk(n;nj−1), (20)

where nf is a point between n and nj−1, ∇2 (ωk(nf ))
is the Hessian matrix of ωk(n) at n=nf and since
ωk(n) is a concave function ∇2 (ωk(nf )) ≤ 0, and
∇ (ωk(ni−1)) is the gradient of ωk(n) at n=nj−1, i.e.,
∇ (ωk(ni−1))=

∂ωk(n)
∂n |n=nj−1

= [∇ωk,0,∇ωk,1, .,∇ωk,K ]T .
Substituting (20) into (19) we can obtain the lower bound of
mf(q,n,p) as

mf(q,n,p) ≥
∑K

k=1
(1− εk)ck(n)

+
∑K

k=1
Q−1 (εk)(εk − 1)ωk(n;nj−1)

∆
= mf lb(q,n,p;nj−1) (21)

where ck(n) is a concave function w.r.t. n and ωk(n;ni−1)
is a linear function w.r.t. n. Thus, the lower bound
mf lb(q,n,p;nj−1) is concave w.r.t. n. We can obtain the
lower bound of EE(q,n,p) as

EE(q,n,p)=
mf(q,n,p)

n0 ∥p∥
≥ mf lb(q,n,p;nj−1)

n0 ∥p∥
∆
= EElb(q,n,p;nj−1) (22)

Next, we optimize n to maximize the lower bound
EElb(q,n,p;nj−1) instead of directly maximizing
EE(q,n,p). The lower bound maximization problem
can be formulated as

(P2− ba) : max
n

EElb(q,n,p;nj−1) s.t. (12)(13)

(P2− ba) is a fractional optimization problem, which can
be converted into a linear form. We denote e†b as the global
optimal solution of (P2 − ba) and n† as the global optimal
solution of (P2− ba).

e†b = max
n†

EElb(q,n
†,p;nj−1)

=
mf lb(q,n

†,p;nj−1)

n†0 ∥p∥
(23)

Lemma 3. For mf(q,n,p;nj−1) ≥ 0 and ebn0 ∥p∥ > 0, eb
can reach its optimum value if and only if

max
n

mf(q,n,p;nj−1)− ebn0 ∥p∥ = 0 (24)

Proof. The proof is according to the Theorem 1 in [32], so
we omit it here.
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(P2− ba) can be equivalently transformed into

(P2− bb) : max
n

Ω(q,n,p;nj−1) s.t. (12)(13)

where

Ω(q,n,p;ni−1) = mf(q,n,p;ni−1)− ebn0 ∥p∥ (25)

We can conclude that Ω(q,n,p;ni−1) is a concave function
w.r.t. n and both (12) and (13) are affine sets w.r.t. n. Thus,
(P2−bb) is a convex optimization problem. According to the
following theorem, we can obtain the optimal solution.

Theorem 2. The optimal solution n† of (P2 − bb) is given
by

nk
† =


N∑K

k=1

Θk

γ
†
k

+1
, k = 0

Θkn
†
0

γ†
k

, 1 ≤ k ≤ K
(26)

where γ†k = −1

W(−e
−Q−1(εk)∇ωk,k−

λ
†
b

1−εk
−1

)

− 1, W(·) is the

Lamber W-Function [33], and λ†b is the root of the following
equation (in terms of λb)

∑K

k=1
θk(εk − 1)W(−e−Q

−1(εk)∇ωk,k−
λb

1−εk
−1

)

+
∑K

k=1
Q−1 (εk)∇ωk,0(εk − 1)− eb ∥p∥ − λb = 0 (27)

Proof. Please refer to Appendix B.

C. Solution of (P2− c)

In this part, we provide a (locally) optimal solution of (P2−
c). (P2− c) can be expressed as

(P2− c) :max
p

EE(q,n,p) =

∑K
k=1 Tk
E

=

∑K
k=1 (1− εk)(nk ln (1 + γk)−Q−1 (εk)

√
nkVk)

n0 ∥p∥

=

∑K
k=1 (1− εk)(nkrk(p)−Q−1 (εk)

√
nktk(p))

n0 ∥p∥
s.t. (11f)(11g)

where rk(p) = ln (1 + γk), tk(p) =
√
Vk, Vk = 1 −

1/(1 + γk)
2, p = [p1, p2, ..., pK ]T , and

γk = Υkpk, (28)

where Υk =
ηn0h

2
kg

2
k

κnkσ2d2αk
. We first analyze the concavities of

rk(p) and tk(p) respectively in the following lemma.

Lemma 4. Both rk(p) and tk(p) are concave w.r.t. p.

Proof. Please refer to Appendix C.

We will analyze the concavity of the objective function.

mf(q,n,p)=∑K

k=1
(1− εk)(nkrk(p)−Q−1 (εk)

√
nktk(p)) (29)

According to Lemma 4, we can see that∑K
k=1 (1− εk)nkrk(p) is a concave function w.r.t. p and

∑K
k=1 −(1− εk)Q

−1 (εk)
√
nktk(p) is a convex function

w.r.t. p. For given q and n, mf(q,n,p) is a non-concave
function w.r.t. p, which leads to (P2− c) being a non-convex
problem. It is difficult to obtain a global optimal solution.
We first transform mf(q,n,p) into a concave function
through the first-order Taylor expansion, and then solve the
approximate convex problem until the local optimal solution
converges.

First, we denote p0 as the initial value of p. pj =
[pj,1, pj,2, ..., pj,K ]T (j ≥ 1) represents the optimized p in the
j-th iteration. In the j-th iteration, the first-order Taylor series
expansion of tk(p) around pj can be expressed as

tk(p) = tk(pj−1)+∇ (tk(pj−1)) (p− pj−)

+
1

2
(p− pj−1)

T∇2 (tk(pf )) (p− pj−1)

≤ tk(pj−1)+∇ (tk(pj−1)) (p− pj−1)
∆
= tk(p;pj−1)

(30)

where pf is a point between p and pj−1, ∇2 (tk(pf )) is the
Hessian matrix of tk(p) at p=pf and since tk(p) is a concave
function ∇2 (tk(nf )) ≤ 0, and ∇ (tk(pj−1)) is the gradient
of tk(p) at p=pj−1, i.e., ∇ (tk(pj−1))=

∂tk(p)
∂p |p=pj−1

=

[∇tk,1,∇tk,2, .,∇tk,K ]T .
Substituting (30) into (29), we can obtain the lower bound

of mf(q,n,p) as

mf(q,n,p) ≥
∑K

k=1
(1− εk)nkrk(p)

+
∑K

k=1
Q−1 (εk) (εk − 1)

√
nktk(p;pj−1)

∆
= mf lb(q,n,p;pj−1) (31)

where ck(p) is a concave function w.r.t. p and tk(p;pj−1)
is a linear function w.r.t. p. Thus, the lower bound
mf lb(q,n,p;pj−1) is concave w.r.t. p. We can obtain the
lower bound of EE(q,n,p) as

EE(q,n,p)=
mf(q,n,p)

n0 ∥p∥
≥ mf lb(q,n,p;pi−1)

n0 ∥p∥
num

den

∆
= EElb(q,n,p;pi−1) (32)

Next, we can optimize p to maximize the lower
bound EElb(q,n,p;pi−1) instead of directly maximizing
EE(q,n,p). The lower bound maximization problem can be
formulated as

(P2− ca) : max
p

EElb(q,n,p;pj−1) s.t. (11f)(11g)

(P2 − ca) is a fractional optimization problem, which is
converted into a linear form according to the nature of frac-
tional programming. We denote e†c as the global optimization
value of (P2− ca) and p† as the global optimization solution
of (P2− ca).

e†c = max
p†

EElb(q,n,p
†;pi−1)

=
mf lb(q,n,p

†;pj−1)

n0 ∥p∥
(33)
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Lemma 5. For mf(q,n,p†;pi−1) and ecn0 ∥p∥ > 0, ec can
reach its optimal value if and only if

max
p

mf(q,n,p;pi−1)− ecnk ∥p∥ = 0 (34)

Proof. The proof is according to the one of Theorem 1 in [32],
so we omit it here.

(P2− ca) can be equivalently transformed into

(P2− cb) : max
p

Ω(q,n,p;pi−1) s.t. (11f)(11g)

where

Ω(q,n,p;pi−1) = mf(q,n,p;pi−1)− ecn0 ∥p∥ (35)

We can conclude that Ω(q,n,p;pi−1) is a concave function
w.r.t. p and both constraint (11f) and constraint (11g) are
affine sets w.r.t. p. Thus, (P2− cb) is a convex optimization
problem. We adopt Lagrangian duality to solve (P2−cb).The
Lagrangian function of (P2− cb) is

L(q,n,p;pi−1) =
∑K

k=1
nk(1− εk)rk(p)

+
∑K

k=1
Q−1 (εk)

√
nk(εk − 1)tk(p;pi−1)

− ecn0 ∥p∥ − λc(
∑K

k=1
pk − Pm) (36)

where λc is the dual variable. According to the KKT condition,
we can obtain

L(q,n,p;ni−1)

∂pk
= (1− εk)(

nkΥk
1 + γk

−Q−1 (εk)
√
nk∇tk,k)

− ecn0 − λc = 0 (37)

λc(
∑K

k=1
pk − Pm) = 0 (38)

where λc is updated by the gradient method, as shown in (39)

λj+1
c =

[
λjc +∆λc(

∑K

k=1
pk − Pm)

]+
(39)

where ∆λc is sufficiently small to ensure the convergence step
size, and j represents the number of iterations. Substituting
(38) into (37), we can obtain the optimal transmission power
as

p†k =
(1− εk)nk

(1− εk)Q−1 (εk)
√
nk∇tk,k + ecn0 + λjc

− 1

Υk
(40)

It can be found that the optimal transmission power is
related to packet error εk, transmission time nk, noise and the
channel effect Υk. After getting the dual variable λc, pk should
be updated and the procedure continue until convergence. The
overall algorithm for resource allocation for EE maximization
is shown in Algorithm 1.

D. Convergence and Complexity Analysis

1) Proof of Convergence:

Algorithm 1 Resource Allocation for EE Maximization

1: Initialize q = q(0),n = n(0),p = p(0), i = 1
2: repeat
3: Set q = q(i−1),n = n(i−1),p = p(i−1), j = 0,
4: repeat
5: Given qj , calculate qj+1 based on (17), and j =

j + 1,
6: until q converge,
7: q(i) = qj∗, j = 0,
8: repeat
9: Given nj , calculate nj+1 based on (26), and j =

j + 1,
10: Calculate eb based on (24),
11: until eb and n converge,
12: n(i) = nj∗, j = 0,
13: repeat
14: Given pj , calculate pj+1 based on (39)(40), and j =

j + 1,
15: Calculate eb based on (34),
16: until ec and p converge,
17: p(i) = pj∗, i = i+ 1,
18: until

∣∣EE(qi,ni,pi)− EE(qi−1,ni−1,pi−1)
∣∣ converges.

2) Proof of Convergence: In this part we analyze the
convergence of the proposed algorithm. In the algorithm 1, we
can see that there are three inner loops from step 4 to step 6,
from step 8 to step 11 and from step 13 to step 16, and an outer
loop from step 2 to step 18. We first prove the convergence of
the inner loop from step 4 to step 6. For consistency, according
to (22) we make

EE (q,n,p) =
T (q,n,p)

τ0 ∥p∥
≥ Tlb (q,n,p;qj−1)

τ0 ∥p∥
∆
= EElb (q,n,p;qj−1) . (41)

We can recall that qj+1 is the optimal solution of (P2 − a)
in the (j + 1)-th iteration. Then, we have

EElb(qj+1,n
i,pi;qj) = max

q
EElb(q,n

i,pi;qj)

≥ EElb(qj ,n
i,pi;qj) (42)

According to (41), we can obtain

EElb
(
qj ,n

i,pi;qj
)
= EE

(
qj ,n

i,pi
)
≥ EElb

(
qj ,n

i,pi;qj−1

)
(43)

Then according to (42) and (43), we can obtain

EElb
(
qj+1,n

i,pi;qj
)
≥ EElb

(
qj ,n

i,pi;qj−1

)
(44)

The inequality (44) guarantees the convergence of the inner
loop step 4 to step 6, and in the same way we can also obtain
the inequality

EElb
(
qi,nj+1,p

i;nj
)
≥ EElb

(
qi,nj ,p

i;nj−1

)
(45)

EElb
(
qi,ni,pj+1;pj

)
≥ EElb

(
qi,ni,pj ;pj−1

)
(46)

(45) and (46) guarantee the inner loops from step 8 to step
11 and step 13 to step 16 to converge, respectively.
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Next, we prove the convergence of the outer loop from step
2 to step 18. We have

EE
(
qi+1,ni+1,pi+1

)
= EE (qj∗,nj∗,pj∗)

≥ EElb (qj∗,nj∗,pj∗;qj∗−1) ≥ EElb (q1,nj∗,pj∗;q0)

≥ EElb (q0,nj∗,pj∗;q0) = EE (q0,nj∗,pj∗)

= EE
(
qi,nj∗,pj∗

)
≥ EElb

(
qi,nj∗,pj∗;nj∗−1

)
≥ EElb

(
qi,n1,pj∗;n0

)
≥ EElb

(
qi,n0,pj∗;n0

)
= EE

(
qi,n0,pj∗

)
= EE

(
qi,ni,pj∗

)
≥ EElb

(
qi,ni,pj∗;pj∗−1

)
≥ EElb

(
qi,ni,p1;p0

)
≥ EElb

(
qi,ni,p0;p0

)
= EE

(
qi,ni,p0

)
= EE

(
qi,ni,pi

)
(47)

To this end, we can see that the proposed resource allocation
algorithm has guaranteed convergence.

3) Complexity Analysis: The proposed algorithm includes
an inner loop and an outer loop. The UAV position and block
length optimization in the inner loop use Newton’s method
to solve nonlinear equations. Let ℓq and ℓn denote the error
gap between the initial value and the exact value of the
optimized variable respectively. The computational complexity
of solving the nonlinear equations are O (∥ℓq∥) and O (∥ℓn∥)
[34], respectively, where ∥·∥ doenotes Euclidean norm. Ii and
Io denote the number of iterations of the inner and outer loops
respectively, where Ii is composed of the number of UAV
position optimization iterations Iqi , the number of block length
allocation iterations Ini and the number of power optimization
iterations Ipi ,i.e., Ii = Iqi + Ini + Ipi . The total computational
complexity is O (Io (I

q
i ∥lq∥+ Ini ∥ln∥+ Ipi )), which shows

the proposed Algorithm 1 can reach the local optimum in
polynomial time.

E. Integer Conversion

We denote (q†,n†,p†) as the outcome of the proposed
algorithm, where n† may violate the integer constraint of the
original problem (P1). Therefore, n† needs to be converted
to an optimal integer n∗ and re-calculate q∗ and p∗. In the
following, we focus on the integer conversion.

We propose a heuristic algorithm to convert n† to n∗. n† is
composed of an integer part ik and a fractional part fk, i.e.,
n†k=ik + fk, where ik is rounded down to n†k, i.e., ik=

⌊
n†k

⌋
and fk is the fractional part of n†k. i.e. fk=n

†
k−
⌊
n†k

⌋
. A large

fractional part means a better chance that optimal solution
n∗ is ik + 1. We sort fk in descending order and save its
corresponding k, and then update n∗k according to the saved
k order. Therefore, the heuristic integer solution is

n∗k =

 ik + 1, 0 ≤ k <
K∑
k=0

fk

ik, otherwise

(48)

V. PERFORMANCE EVALUATIONS

In this section, the performance of the proposed algorithm is
evaluated through extensive simulations. The parameters used
in simulations are given in Table I unless otherwise stated.

TABLE I: Simulation parameters.

Parameter Settings
Shape factor m 3
Transmission bandwidth 1MHz
Path loss exponent α 3
Energy conversion efficiency η 0.5
Combined influence of other factors κ 103

Noise power at the UAV σ2 −110dBm/Hz
Decoding error probability εk 10−5

Symbol period of both downlink and uplink signals Tc 3µs
UAV flight altitude H 10m
Maximum transmission power of the UAV Pm 30dBm
Transmit power of the UAV to UDk pk 5dBm

Most of the transmission parameters are from previous works,
e.g., [25] [24], [34]–[37],and based on the 3GPP standard in
[36]. We assume that κ = 103 [37], which is equivalent to 30
dB average signal power attenuation at a reference distance
of 1 m. The UDs are located within a 30m × 40m area.
We choose this network size because the transmission of RF
energy is generally several meters to tens of meters. Moreover,
the UAV can collect information of UDs in a small range with
reduced the energy consumption and improved information
reliability. Thus, this system setting is able to show the features
of the proposed scheme more clearly.

In Fig. 3, 20 UDs are randomly located. Fig. 3a shows
system EE v.s. position of the UAV. As we can see, the position
of the UAV has a great impact on the system EE, and the
optimal design of UAV position is needed to optimize the
system performance. The highest point in the figure should be
the corresponding UAV position from EE optimization point
of view. Fig. 3b describes the specific distribution of UDs and
the optimal deployment position of UAV.

In Fig. 4, we evaluate the impact of the decoding error
probability on EE, and compare the proposed scheme with the
exhaustive method and equal block-length allocation method.
We find that the proposed resource allocation algorithm can
achieve similar performance as the exhaustive method, and
can significantly improve the efficiency compared with the
equal-block-length allocation scheme. In addition, we can also
see that EE increases with decoding error probability, which
is due to the large impact of the decoding error rate on the
transmission rate. In addition, we can also find in Fig. 5 that
The effective energy throughput EE increases with the increase
of the block-length. This is because the ratio of the block-
length in the WPT phase n0 to the block-length in the WIT
phase nk has a great impact on EE. A larger total block-length
N can make n0 and nk get better so as the throughput. Thus,
we can see that in order to ensure the performance of the
communication system, the studies of reliability and EE are
required.

Fig. 6 compares the proposed scheme with other opti-
mization methods. "OBP" scheme means we only optimize
the block-length and position, while use a fixed transmission
power. "OPP" means we optimize the transmission power
and position, while use a fixed block-length. "BP" means we
optimize the transmission power and block-length. In this case,
we assume that the 3 UDs are with fixed position and the flying
height of the UAV is 10m. We can see that EE increases with
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(a) EE versus the position of UAV
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(b) Optimal position of UAV

Fig. 3: Impact of the position of UAV
εk = 1× 10−5, nk = 100, pk = 5dBm,H = 10m.

the increase of the decoding error probability, which confirms
our previous observations. Compared with the above three
schemes, we can observe that the proposed algorithm has the
best EE performance, which evidence the necessity of the joint
optimization.

Fig. 7 shows the impact of different numbers of UDs on the
convergence performance. From this figure, we can see that
the EE increases rapidly first and converges in a fast speed,
which verifies the proposed algorithm has good feasibility and
convergence performance. At the same time, we can see that
EE decreases with the increase of the number of UDs. This is
due to the increase of the number of UDs requires a limited
block-length to be allocated to more UDs in order to ensure the
quality of communications. Thus, the block-length resources
owned by a single UD become less, which results in a decrease
of EE.

The performance of achievable EE versus the transmit
power of the UAV pk is shown in Fig. 8. We can see that
an optimal value is existed for the transmit power of the UAV.
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Fig. 4: EE versus the decoding error probability:
K = 2, N = 300, pk = 9dBm, H = 10m, 1 ≤ k ≤ K.
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Fig. 5: EE versus the block-length:
K = 3, ε = 1× 10−5, pk = 5dBm, H = 10m, 1 ≤ k ≤ K.

When pk < 7dBm, EE increases with the increase of pk.
However, when pk > 7dBm, EE decreases with the increasing
pk. This is due to greater power will impose greater penalty
on EE. Therefore, in order to obtain better EE performance,
the transmit power should be optimized.

In Fig. 9, we observe the impact of different number of
UDs on EE and compare the proposed algorithm with the
Greedy algorithm and an equal resource allocation algorithm.
The greedy algorithm is based on the proposed position and
block-length allocation algorithm, while allocates as much
transmission power as possible to the UD with the largest
channel gain. The equal resource allocation algorithm is based
on the proposed position optimization algorithm, and the
block-length and power are equally allocated to UDs. We find
that the proposed algorithm is better than the greedy algorithm,
and the advantage is more obvious in the scenario with a larger
number of UDs. Compared with the equal resource allocation
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Fig. 6: The impact of different optimization algorithms on
EE: N = 400, H = 10m,K = 3, Pm = 30dBm.

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
i

0

500

1000

1500

2000

2500

E
E

(B
P

C
U

/J
ou

le
)

K=2
K=4
K=8

Fig. 7: EE versus the number of iterations:
N = 800, ε = 1× 10−5, pk = 5dBm, dk = 10m.

algorithm, the proposed algorithm can improve the EE as well.
Generally, EE decreases with the increase of the number of
UDs. This may due to the fact that as the number of UDs
increases, a larger amount of energy is consumed.

In Fig. 10, we plot the impact of integer conversion on
EE under the condition of different number of user devices
and different block lengths. Simulation experiments show that
integer conversion does cause a certain performance loss in
EE, but the loss is small and within an acceptable range.
The loss caused by integer conversion to EE has no obvious
relationship with the number of user equipment and block
length, and there is a certain chance.

VI. CONCLUSION

In this paper, energy efficient resource allocation problem is
investigated in a wireless powered UAV wireless communica-
tion system. In order to maximize EE of the considered system,
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Fig. 8: EE versus the number of iterations:
K = 5, ε = 1× 10−5, dk = 12m, 1 ≤ k ≤ K.
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Fig. 9: EE versus the number of UDs: N = 1000, ε =
1× 10−5, dk = 12m, 1 ≤ k ≤ K,Pm = 50dBm.

we jointly optimize the position of the UAV, transmit power
of the UAV and transmission time of each UD. To address
the formulated non-convex problem, an efficient algorithms
are presented to find sub-optimal solutions. We have also
proved the convergence and analyze the complexity of the
presented algorithm. The performance evaluations demonstrate
the effectiveness of the proposed scheme. In the future, we
will further explore the IoT communication system with mul-
tiple UAVs. The multi-UAV network requires certain level of
coordination and the energy efficiency of the system should
be further investigated as the system with more UAVs can
increase the energy cost. In this context, joint optimization of
UAVs’ trajectory and resource allocation is needed to improve
the energy efficiency performance of the UAV-assisted IoT
and realize the ultra-reliable and low-latency communications
among massive IoT devices.
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Fig. 10: Integer conversion to EE performance versus the
number of UDs: N = 1000, dk = 12m, 1 ≤ k ≤ K.

APPENDIX A

In this appendix, we prove the equality by the inverse
method. Suppose the optimal solution of n is n∗, and∑K
k=0 n

∗
k < N . In order to facilitate the analysis of the block

length resource optimization problem, we rewrite (10) as:

EE (q,n,p) =∑K
k=1 (1− εk)nk

(
ln (1 + γk)−Q−1 (εk)

√
Vk
nk

)
n0 ∥p∥

=
1

∥p∥
×

∑K

k=1

(1− εk)

(
ln (1 + Θkψk)−Q−1 (εk)

√
1− 1

(1+Θkψk)
2

nk

)
ψk

(49)

where γk and Vk are given by (6) and (8) respectively, ψk =
n0

nk
, ψ = [ψ1, ψ2, · · · , ψk]T and Θk =

ηpkh
2
kg

2
k

κσ2d2αk
. According

to (49), we can conclude that solving the optimal n∗ for the
block-length resource optimization problem is equivalent to
solving the optimal ψ∗

k while maximizing n∗k. According to
the previous assumption n∗ is known, then ψ∗ is known. We
can derive ∑K

k=0
n∗
k
= n∗0

(
1 +

∑K

k=1

1

ψ∗
k

)
(50)

n∗0 =

∑K
k=0 n

∗
k

1 +
∑K
k=1

1
ψ∗
k

(51)

n∗k =

∑K
k=0 n

∗
k

ψ∗
k

(
1 +

∑K
k=1

1
ψ∗
k

) . (52)

According to (52), under the condition that ψ∗ remains
unchanged, when

∑K
k=0 n

∗
k

is the largest, it is equal to N ,
and n∗k is the largest. Based on this, it can be judged that our

assumption is wrong.
∑K
k=0 nk

∗ = N is a necessary condition
for finding the optimal n∗. The conclusion is also confirmed
by subsequent experiments in Fig. 5.

APPENDIX B

In this part, we adopt Lagrangian duality to solve (P2−ba).
The Lagrangian function of (P2− ba) is

L(q,n,p;ni−1) =
∑K

k=1
(1− εk)ck(n)

+
∑K

k=1
Q−1 (εk)(εk − 1)ωk(n;ni−1)

− ebn0 ∥p∥ − λb(
∑K

k=0
nk −N) (53)

where λb is the dual variable. According to the KKT condition,
we can obtain

L(q,n,p;ni−1)

∂nk
= (1− εk)(ln (1 + γk) + (εk − 1)(

γk
1 + γk

+Q−1 (εk)∇ωk,k)− λb = 0 (54)

L(q,n,p;ni−1)

∂n0
=
∑K

k=1
(1− εk)θk

1

1 + γk

+
∑K

k=1
Q−1 (εk) (εk − 1)∇ωk,0 − eb ∥p∥ − λb = 0 (55)

λb(
∑K

k=0
nk −N) = 0 (56)

where L(q,n,p;ni−1)
∂nk

is a monotonically increasing function.
According to (56), it can be concluded that there is an unique
λb for a given γk. we can derive the γk satisfying (54) as

γk =
−1

W(−e−Q
−1(εk)∇ωk,k−

λb
1−εk

−1
)
− 1 (57)

By substituting (57) into (55), we obtain (27). Then we can
obtain the optimal λb, i.e., λ†b by calculating the root of (27)
in terms of λb. If there are multiple solutions of λb in (27), it
will lead to multiple solutions to the convex problem, which
is obviously contradictory. Substituting λ†b into (54) we can
obtain the optimal γk, i.e.,γ†k. The optimal solution n† needs
to satisfy the condition (12). Then we substitute γ†k into (12)
and (18) to find the optimal solution together as (26).

APPENDIX C

We calculate the second-order partial derivative of rk(p)
w.r.t. p, and obtain its Hessian matrix as

HMrk =


−Υ2

1

(1+γ1)
2 0 · · · 0

0
−Υ2

2

(1+γ2)
2 0 0

...
...

. . .
...

0 0 0
−Υ2

k

(1+γk)
2


It can be seen that all the eigenvalues of HMrk are negative,
and HMrk is a negative definite matrix. It can be concluded
that rk(p) is concave function w.r.t. p.
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Next, we prove that tk(p) is a concave function w.r.t. p.
Similarly, we calculate the second-order partial derivative of
Vk w.r.t. p, and obtain its Hessian matrix as

HMV k =


−6Υ2

1

(1+γ1)
4 0 · · · 0

0
−6Υ2

2

(1+γ2)
4 0 0

...
...

. . .
...

0 0 0
−6Υ2

k

(1+γk)
4


It can be seen that all the eigenvalues of HMV k are negative,
and HMV k is a negative definite matrix. It can be concluded
that Vk is concave w.r.t. p. Meanwhile,

√
x is a concave

function w.r.t. x and is a non-decreasing function .According
to the concave-preserving property of the composite function
[38], we can conclude that tk(p) =

√
Vk is a concave function

of p.
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