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Jacobian of solutions to the conductivity equation in limited
view

Mikko Salo, Hjgrdis Schliiter

December 4, 2022

Abstract

The aim of hybrid inverse problems such as Acousto-Electric Tomegraphy or Cur-
rent Density Imaging is the reconstruction of the electrical eonductivity in a domain
that can only be accessed from its exterior. In thesinversionyprocedure, the solu-
tions to the conductivity equation play a central role. In particular, it is important
that the Jacobian of the solutions is non-vanishing. In the present paper we address
a two-dimensional limited view setting, where only. a part of the boundary of the
domain can be controlled by a non-zero Dirichlet condition; while on the remaining
boundary there is a zero Dirichlet condition. " Forthis setting, we propose sufficient
conditions on the boundary functions gorthat the Jacobian of the corresponding solu-
tions is non-vanishing. In that regard we allow for discontinuous boundary functions,
which requires the use of solutions in weightedsSobolev spaces. We implement the
procedure of reconstructing a conductivity from power density data numerically and
investigate how this limited view settingraffects the Jacobian and the quality of the
reconstructions.

Keywords— acousto-electric tomography, current density imaging, hybrid inverse problems, cou-
pled physics imaging, non-vanishing Jacobian, conductivity equation

1 Introduction Y

In certain imaging applications itris important to know whether solutions u; and ug to the con-
ductivity equation

—div(eVu;) =0 in €,

u; = g; on 0f),

satisfy the following non=vanishing Jacobian condition:
det[Vuy(z) Vue(x)] #0, for z € Q. (1)

Here 2 C R? is a bounded Lipschitz domain and o € L*°(Q,R?*2) is an anisotropic conduc-
tivity: This question arises in Acousto-Electric Tomography that aims at reconstructing the un-
known interior/conductivity o from internal data composed of power density measurements [ZW04;
Amm+08)s, Similar questions appear in other imaging methods including Current Density Imaging
[WS12; Ball3} |Li+21] and Magnetic Resonance Electric Impedance Tomography [SKWO05; |SW11]
that aim’at reconstructing the conductivity from current density measurements. These questions
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are relevant in any dimension n > 2, but in this article, we will restrict our attention only on the
two-dimensional case.

The reconstruction procedure in Acousto-Electric Tomography is characterized by two steps:
First reconstructing interior power density data H;; = oVu;-Vu; from combined information from
boundary measurements and perturbations by acoustic waves, and secondly reconstructing o from
the power density matrix H € R?*2. The non-vanishing Jacobian condition (1] is essential for the
second step in the reconstruction procedure, as it requires inverting the matrix H.

The question whether one can find conditions on the boundary functions g; .and g so that
the non-vanishing Jacobian condition is satisfied dates back to Radé in the 1920s. For the
constant coefficient case 0 = Iy an answer to this question is formulated in the Radé-Kneser-
Choquet theorem [Rad26; Kne26; |Cho45|. This result was generalized to non<constant eoefficients
in [Ale86; |Ale87; [AM94}; |ANO1; BMNOL; |AN15|. For instance, [BMNO1| require thathg = (g1, g2)
is a C'! diffeomorphism and maps 9 onto the boundary of a convex domain for the ¢ondition
to hold. A discussion of results of this type is given in [AC18] (see alsofAIb22] forrécent work on
random boundary data).

In this paper, we address the same question in a limited view sétting that is characterized by
a non-empty closed part of the boundary, I' C 02, which we can control, while on the rest of the
boundary the potentials u; and us are vanishing:

—div(cVu;) =0 in Q,
Ui = fi o1n F7 (2)
u; =0 on JQ\L.

The Rado6-Kneser-Choquet type results mentioned ([above canfiof be applied directly in limited
view, as g = (u1,uz2)|gq is not injective. However, we show that the arguments for proving such
results can be adapted to the limited view Setting, and wesformulate sufficient conditions under
which the corresponding Jacobian is non-vanishing.»We also allow the boundary functions to be
discontinuous (e.g. piecewise smooth), which seems natuzal in this setting and requires the use of
weighted Sobolev spaces. For H'/2? héundary funetions having bounded variation the result is a
consequence of [AM94, Theorem 2.7], while the result for discontinuous boundary functions is new.
We illustrate by numerical simulations how these conditions can be used to reconstruct an isotropic
conductivity from power density'data. For the mumerical simulations an analytic reconstruction
approach is used [MB12b)].

2 Main results N

We will consider thé eenductivity.equation —div(ecVu) = 0 in , where the conductivity matrix o
is symmetric and satisfiesifor some A, A > 0 the ellipticity condition

MEPE o™ (2)g6, < A€ for ae. z € Q and all £ € R™. (3)

The first resultrstates. that the presence of an interior critical point for a nonconstant solution u
forces oscillations in its boundary data. The result is known for H'/? boundary data, see [AC18,
Proposition 6.7], but we give an extension to the case where the boundary data can be slightly
worse thatefT/2 (e.gd piecewise smooth). Boundary data in H® with s < 1/2 may be discontinuous,
and for such functions, we can use a quasicontinuous representative to talk about their pointwise
values [AH96, Chapter 6]. The notation H!(Q,d'~2%) for weighted spaces is explained in Section
Bl

Proposition 2.1 Let Q C R? be a simply connected bounded Lipschitz domain and let o € C%%(Q)
satisfy . There is € > 0 with the following property: if f € H*(0Q) where |s — 1/2| < & and if
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u € HY(,d*=2%) is a nonconstant solution of

—div(eVu) =0 in Q,
u=f on 09,

and if Vu(xg) = 0 for some xg € Q, then there are x1,x2, T3, x4 € O that are in counterclockwise
order along 02 such that

u(zy) > u(zo), ulwe) <ul(zo), u(zs)>u(ze), w(ra) < u(zo)

Proof. We follow the argument in [AC18, Proposition 6.7]. By [Sch90, Theorenr2.3.3]ithe interior
regularity of u is C;%(€2). As g is a critical point of u it follows from [AC18; Proposition’6.6] that
in a neighborhood U of xg the level set {x € U : u(x) = u(zo)} is made of mu+ 1 arcs intersecting
with equal angles at xz( for some m > 1. We note that by [AC18|, Proposition 65 (i)] the set
{z €U : u(z) > u(xo)} is made of m + 1 connected components that /we deriote by Ut:

m+1

{z €U : uz) >ulz)} = U Ut.
=1

Furthermore, by the same proposition it follows that these€onnected components alternate with
the corresponding connected components U, of the set {z € U : u(@&) < u(zo)}. We now consider
the corresponding sets over the whole domain €. The compenents of {u(z) > u(xy)} are denoted
by Qj and
. —4 +&
{x € Q : u(z) > u(xg)} = U Q7.
j€d

Similarly, the components of {u(z) < u(zo)} are denoted by €2, and

{z € u(e) <ulwo)} = | J -
keK
Now pick indices j1,ja € J such that U;" C Q;rl and Uy C th It follows from theorem that
the weak maximum principle holds, for H'(£2,d%2%) solutions (in order to apply theorem it
is required that s satisfies |s — 1/2fs<'e for a suitable ¢ > 0). Therefore if u(x) > u(xp) holds in
the interior of the domains le and Q;'Q, then one must have u(x1) > u(zo) and u(zs) > u(zg) for
some T € 89; and x3 € 89;-"2. %ce u(z) = u(xg) for z € 89: N, we must have z; € 9Q ﬂﬁjt
and x3 € 0N ﬂﬁ;;. By construgtion there exist indices l,12 € [1,..,m + 1] so that Uy, is located
between U;" and U;™ and Uj, ds located to the other side of Uy. We now pick indices k1, ks € K
such that U;~ C Q “and U, @& . By the weak maximum principle (theorem there then
exist points zo € 0200, Jand z4 € 02N QY such that u(z2) < u(zo) and u(zs) < u(zo) yielding
the desired statement. ]

Let v : [0,4,.—R? be a/C"* curve (we do not require that y(0) = (¢)). We say that ~ is regular
if 4(t) # 0 for allt €[0,¢]. For a regular curve, we may write a polar coordinate representation

for the tangent vector -(t) as ‘
(0) = r()e?

where 7 (t) = |(¢)| and ¢(¢) are continuous functions in [0, ¢]. The function
arg(y(t)) == o(t)
is well defined modulo a constant in 27Z. We define

arg(3(0)) - arg(3(0))
2w

Ind(%) :=
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If v is closed, i.e. v(0) = v(¢), then Ind(¥) is the winding number of the curve 4(t) (also called
the rotation index of (t)), which is an integer. If v is not closed but arg(¥(¢)) is monotone (i.e.
nondecreasing or nonincreasing), we may still interpret Ind(%) as the winding number of 4(t); and
this is then a real number.

We now give sufficient conditions on a pair of boundary data vanishing outside an are I' such
that the corresponding solutions wuy, ug satisfy det[Vuy(x) Vug(z)] # 0 everywhere in . “Condition
(a) below is related to the case where u;|sq are continuous and condition (b) allows discontinuous
boundary data. Note that part (a) can be seen as a consequence of [AM94] Theorem 2.7], while
for part (b) Proposition is needed.

Theorem 2.2 Let QO C R? be a bounded simply connected domain with Cleboundary. curve n -
[0,27] = 99, and let o € CO*(Q;R?*?) satisfy [@3). Let T = n([0,4]) be afclosed aréyin 0. Let
f1, fo € CH(T') be linearly independent, and assume that u; is the unique solution of

~
—div(eVu;) =0 in Q,

U; = f’L on Fa (4)
u; =0 on OQ\T.
Assume that the curve v : [0,€] — R%, y(t) = (f1(n(t)), f2(n(t))). is regular, arg(¥(t)) is monotone,
and that one of the following holds:
(a) uiloq are continuous, and [Ind(¥)| < 1; or
(b) uiloq are continuous at 1n(0), and |Ind(¥)| < 1/2:
Then det[Vu (z) Vuz(x)] # 0 for all z € Q.

Proof.  Assume that (a) or (b) holds, but one has det[Vui(xg) Vua(zo)] = 0 for some zo € Q.
Then there is a vector @ = (o, az) € R?\ {0} such that the function

U = Qpthy + QoUo

satisfies Vu(zo) = 0. Note that if u is a constant, then by the boundary condition one has u = 0
and hence fi and fo would be linearly dependent. Thus, we may assume that u is nonconstant.
Note that u;|aq are piecewise C! and hence they are also in H*(9Q) for any s < 1/2. This implies
that u; € H'(Q,d'~2%) by Théorem [3.5h, Then by Proposition there exist distinct points
x1, T2, X3, T4 € 0F) that are in counterclockwise order along 92 such that

N
w(zy) > ul®o), m(z)<u(zo), wu(xs)>u(zo), u(rs) <ul(xp).

Consider the function gt [0;4] — Rgiven by
g9(t) := u(n(t)) = a-~(t). ()
Extend g by zero'to [0, 2m).\Writing x; = n(t;) where t; € [0, 27), we have
g(t)>afzo), g(t2) <ulzo), g(ts) >u(xo), g(ta) < ulxo). (6)

We may assumé that #1 <ty < t3 < t4 (possibly after a cyclic permutation of the indices and after
changing g'to =g)-

We now asgume that (a) holds, and want to derive a contradiction with @ The function g is
C1' on [0, £] and its derivative satisfies

g'(t) =a-(t). (7)

Since.arg(%(t)) is monotone and [Ind(§(t))| < 1, it follows that ¢’(¢) either has at most two zeros
in [0, 7], or has three zeros two of which are at t = 0 and ¢ = ¢. Note that if the argument is not
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strictly monotone, we make the interpretation that some of these zeros of g’ could be intervals.
We also note that by and monotonicity of arg(¥(t)), ¢’ changes sign after each of these zeros.
Now suppose that u(z¢) > 0. Using the assumption that u|sq is continuous, we have ¢(0) = 05 and
then @ implies that ¢’ is positive somewhere in (0,t;), negative somewhere in (¢, t3), positive
somewhere in (tq,t3), and negative somewhere in (t3,£). On the other hand, if u(zg) (< 0, we
use the fact that g(¢) = 0 to obtain similarly that ¢’ is negative somewhere in, (t1,ts), positive
somewhere in (t2,t3), negative somewhere in (¢3,t4), and positive somewhere in (t4, £). In both
cases ¢’ has at least three zeros in (0, ). Moreover, before the first such zero, after theylast zero,
and between each subsequent pair of these zeros there are points where ¢’ is nonzero. This is a
contradiction.

Assume that (b) holds. One has the formula (7)) for ¢’(¢) on [0, ¢]. Since arg(5/(¢)) issmonotone
and [Ind(¥(¢))] < 1/2, ¢'(t) either has at most one zero (that could be an interval) in¢[0, 4], or has
two zeros (that could be intervals) which are at ¢ = 0 and ¢t = ¢. By the assumption that u;|sn
is continuous at ¢ = 0 it follows that g(0) = 0, while there may be afdiscontinuity at ¢ = £. If
one has u(zo) > 0, it follows from () that ¢ is positive somewhere in(0, ¢4, negative somewhere
in (t1,12), and positive somewhere in (t2,t3). On the other hand ifwu(zg) < 0,4rom (6)) one sees
that ¢4 € (0,¢] and hence ¢’ is negative somewhere in (t1,%2), positive somewhere in (t2,t3), and
negative somewhere in (¢3,t4). In both cases ¢’ has at least two zeros in (0, £),and before, between,
and after these zeros there are points where ¢’ is nonzero. This is & contradiction. |

Remark 2.3 In the setting of theorem let T = n([0,4]) and B¢ = n([0,¢%)) with ¢4 < ¢.
Boundary functions fi, fo € CY(T) that satisfy the assumptions and condition (a) in theorem
can also be used to generate boundary functions f, fsh € €1(T'?) whose zero extensions are
discontinuous. Define f{ as 4

F @) = fin(OWxdea) (1):

This yields solutions ul that satisfy det[Vu{(@)NVud(x)] £0. This allows for boundary functions
that are not captured in condition (b) in theorem as in this case it is possible that 1/2 <

|Ind(y%)], where v (1) = (f{(n(t)), 5 (a(2)))-

Proof. Assume that one has det[Vud(xo) Vusg(zo)] = 0 for some 2o € Q. Then there is a
vector @ = (a1, az) € R?\ {0} such that the function

u? = aluf + agug

satisfies Vu?(zg) = 0. As u?|sq is piecewise C! it follows by the analysis in the proof of theorem
that there exist distinct pointswgy, z24xs3, z4 € 0 that are in counterclockwise order along 92
such that

ul(zy) udro), wl(zg) < ul(zo), ul(zs) > ul(xg), ul(xs) < ud(zo).
We then consider thefunetion g : [0,¢] — R,
g (t) == u(n(t)) = (@ (£))x[0,e4) (1)

where y(t) = (fim(t)sf2(n(t)) for t € [0,] as before. We extend g¢ by zero to [0,27). Writing
xj = n(t;) whereg t; [0,2m), we have

g s u(z0), g% (t2) <ul(zo), g(ts) > ul(m), g% (ts) < u(xo). (8)
Furthermore, we consider the function g : [0,¢] — R for the same vector &:
g(t) = ().

Sincelarg(y(t)) is monotone and [Ind(§)| < 1, it follows that ¢'(¢) has at most two zeros in
(0, ), or three zeros two of which are at ¢ = 0 and ¢ = ¢. (Again these zeros could be intervals.)
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Since u;|an are continuous, we have f;(7(0)) = f;(n(¢)) = 0 and thus ¢g(0) = ¢g(¢) = 0. Suppose
that ¢'(t) has exactly two zeros in (0,¢). Then since ¢’ must change sign after each zero, there
exist two intervals (0,¢;) and (¢;,£) so that either

g(t) >0 forte (0,t;) and g(t) <0 forte (¢,7),
or
g(t) <0 forte(0,t;) and g(t) >0 forte (t,%).

On the other hand if ¢'(¢) has at most one zero, or three zeros two of which are at{t’'= 0'and ¢t = ¢,
then either
g(t) >0 forte (0,£) or g(t)<0 forte(0,0).

The behavior of g translates to g¢, as g is the restriction of g to the interval [0, ¢¢] with ¢¢ < ¢. Tt
follows that there are at most two intervals for which ¢¢ is nonnegative and nonpositive respectively,
and additionally (g¢)’ must change sign after each of its zeros. This i§ in contradiction with
as no matter if u?(xg) > 0 or u¥(w) < 0 it is not possible for g? to have two points for which
g%(t) > u(zwo) and two points for which g4(t) < u(xo) in alternatingforder. |

Remark 2.4 For boundary functions f1 and fo that satisfy one of the conditions in theorem
it is determined by the order of the functions whether det[Vuq ()N us(z)] is positive or negative
for all x € Q.

Remark 2.5 Let Q be a C domain and f1, fo € CH°AR), then u; € C on Q away from the
endpoints of I' [GT01, Corollary 8.36]. Due to the limitedwiew setting det[Vuy(x) Vua(z)] is zero
for x € OQ\ I'. Therefore e
in£Z det[Vus (x) Vug(x)] = 0.
re
Proof. We decompose Vu,; into two parts with contribution from the unit outward normal v

and the tangent vector w = Jv with J = {(1) _01} :

Vu; =(Mu; - 1w (Vu, - w)w.

As uilgponr = 0 by the boundamy value problem it follows that there is no contribution in
w-direction. Therefore both Vuilag\r and Vuz|spo\r are parallel to the unit normal v so that
det[vul‘ag\r VU2|BQ\F] =0. |

N
3 Dirichlet problem in weighted spaces

Let © C R™ be a bounded open set with Lipschitz boundary, and consider the operator
Lu = —9;(c7%0u) + cu
where 07% ¢ € E2(Q), 07% = 0% and (¢7*) is uniformly elliptic in the sense that for some A\, A > 0,
MEP < 07%(2)€6, < A€ for ae. z € Q and all £ € R™. (9)
We wish to consider the Dirichlet problem
Lu=0in Q, u= fon 0

insuitable weighted Sobolev spaces. For general references on weighted Sobolev spaces see |Tri78|
Chapter 3] and [Kuf80]. The following theory in the L? setting is mostly in [Kuf80], but for
completeness and possible later use for discontinuous boundary functions we also discuss the LP
theory following [Kim08] but with slightly different notation. The results for p # 2 are not used
in the other sections of this article.

Page 6 of 28
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Definition 3.1 Let Q) C R" be a bounded open set with Lipschitz boundary. Let 1 < p < oo and
a € R, and let d(z) = dist(z, Q). Consider the norms

[ull Lo (0,a0) = [ud®/P|| 1o (s

lullwrr@,a0) = [[ullr@,ae) + [IVUllLe@,d0)-

Let WP (€, d™) be the space of allu € LY () with |[ullw1.s(q,4e) < 00. We also define WP (Qd%)

loc

as the closure of C°() in WLP(Q,d®).

The spaces WP(Q,d*) and W, P (€, d*) are Banach spaces, and they are equabwhen a < —1
or a > p— 1 (see [Kuf80, Proposition 9.10]). For a > —1 the set C>°(€Q2) is dense in W.1-P(Q, d%)
(see |[Kuf80, Remark 7.2]). The trace space of W1P(Q,d*) can then be identified with a Sobolev
space on 0f) as follows.

For 1 <p<ooand0< s<1,let W*P(9Q) be the standard Sobolév spaceomdf) defined via
a partition of unity, C' boundary flattening transformations, and corresponding spaces on R™ 1.
Part (a) of the following trace theorem is given in [Kim08, Theorem2:13] (see |T¥i78, Section 3.6.1]
for the case of C*° domains), and part (b) follows from [Kim08, Lemma 24, Remark 2.15 and
Proposition 2.3] and Lemma below.

Theorem 3.2 Let Q C R™ be a bounded Lipschitz domain, det 1 <.p <00, and let —1 < a < p—1.

(a) The trace operator T : C*(Q) — C(0Q), Tu = u|as@rextends as @ bounded surjective operator
T WhP(Q,d™) AW 5 @R).
Moreover, T has a bounded right inverse.F : Wl_HTa’p(aﬁ) — WHP(Q,d%).
(b) The space Wy'P (2, d*) satisfies
WP (2, d*)mdu e WIB(Q, dY) : Tu =0}
={u.c LP(Qd"7P) : Vue LP(Q,d")}.

The three norms || - ||lwr.s(@ue), |- [|2r(.da8) + IV - [|Lr(@.d0), and ||V - || Lr(q,a) are equiv-
alent norms on W,y (Q,d®).

The following Hardy inequality is given in [Kuf80, Section 9.1]. However, for later purposes
we need to make sure that thé consfant has a controlled dependence on @ and hence we repeat the
proof.

Lemma 3.3 Let Q‘GAR"™ be avbounded Lipschitz domain, 1 < p < 0o, and o € R, a # p — 1.
There are C,C7 > 0 onlyrdepending on ,n,p such that

1
dle/p)=t <ccvP (14—~
H U’HLP(Q) = 1 + |Oé—p+1|

) [ e
for any u W, 28, d%).

Proof. <We begin with the case of R} = {z,, > 0}. Let v € C°(R"}). We integrate by parts over
R? and use the Holder inequality to obtain

xa7p+1 P
/mg_pupdx = /an —— | uPdr = —7/mgfpﬂfa/pup*lxg/panudm
a—p+1 a—p+1

p (a/p)—1,11P—1]|,.a/p
S 0 .
- |a_p+1|||$n UHLP ||1'n nu”Liﬂ
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This implies that for any u € C°(R ), one has

l2f™ o < L— R

a—p+1]
Similarly, if U = {(z’,2z,) € R" : [2'| <7, x,, > h(2')} where r > 0 and h : {[2'| L7} - R
is a Lipschitz function, and if w € C°°(U) vanishes near {z,, = h(z’)} and {x, = oo}, the,same
argument gives that

a — p a
(2 — R(2") P oy < mll(zn — h(z")*/POpul| Loy (10)

Now if © is a bounded Lipschitz domain, then 02 can be covered by finitely many balls
By, ..., By such that for each j, after a rigid motion one has B; N Q = {xyp > h;j(z")} N Q where
h; is a Lipschitz function, and d(z) in B; N is comparable to x, — h;(a/)r(see [Kuf80, Corollary
4.8]). There is also an open set By with By C €2 so that Q is covered/by Bys.=,Bx. Moreover,
B; and h; only depend on € and not on p and a.

Let u € C°(2). We can now apply in B;NQ for j =1,..4,N_to obtain that

CO&/P
APy oig.ngy < C—Lt— || d*7PN .
| ullLr(B,n0) < o —p11 | ull e (o)

In By, where d(z) is comparable to 1, we can apply a Poincaré inequality as in [Kuf80|, Section
9.1] and use the above estimates on B; N2 to get

1P | o () < COY Nlull oy < COF BV ooy + 1l o (Bor(30...08)

o 1
< CCl /p (1 + m) ||da/va||LP(Q).

The result follows by adding these inequalities and usingythat C°(Q) is dense in W, *(Q,d*). W

The next result, which follows from [Kim08, Theorem 3.7], states the solvability of the Dirichlet
problem in weighted Sobolev spaces when the Dirichlet data is in WP (0Q).

Theorem 3.4 Let Q C R™ be a bounded Cidomain, let 1 <p<oo, and let 0 < s < 1. Assume
that o7* and c are Lipschitz coftinuousin Q with (o7%) satisfying @, and assume that ¢ > 0.
Given any f € W*P(9Q), there\is a unique solution u € WP (Q, dP1=)=1) of the problem

N
Lu=01inQ, ulsga="1.

One has the estimate
Wil r 0,0 --1) < Cl fllwsra0)
with C' independent ofif.

For p = 2 We obtain a similar result in weighted L? spaces H'(Q,d®) := W12(Q,d*) under
weaker conditions, but assuming that s is close to 1/2.

Theorem 3.5 det ) C R™be a bounded Lipschitz domain. Assume that 0% ¢ € L>®(Q) with
(09%) satisfying (9) and ¢ > 0 a.c. in Q. There is € > 0 such that whenever |s — 1/2| < e, then for
any fl€ H*(0Q) there is a unique solution u € H(Q,d ~2%) of the problem

Lu=01inQ, wulgg=1f.

One has the estimate
1wl 71 (,a1-2¢) < Cll fll s (00
with C independent of f.

Page 8 of 28
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Proof. Note that |s —1/2| < e implies |1 — 2s| < 2e. If € is chosen small enough, the result
follows by combining |[Kuf80, Theorem 14.4] and the trace theorem (Theorem above. |

The next result gives a weak maximum principle for solutions in H!(Q,d*) when |c/fis suf-
ficiently small. This smallness condition is analogous to the condition that s is close to 1/2 in
Theorem [3.5

Theorem 3.6 Let Q@ C R" be a bounded Lipschitz domain. Let o7% c € L>(Q) be‘such that ()
holds and ¢ > 0 a.e. in Q. There is € > 0 such that if |o| < e and u € HY(Q,d*) $olves

—ak(ajkaju) +cu=01inN
in the sense of distributions, and if Tu < C a.e. on 082, then u < C in Q. Similarly, if Tu > C
a.e. on 052, then u > C in Q.

The proof uses the following simple result where we write uy = max{+us0F

Lemma 3.7 Let Q C R" be a bounded open set and o € R. If u € HY, d®), theh uy € H(Q,d%)
and the weak derivatives satisfy

0 elsewheres

Dyus — {@u in {xu > 0},

If Q has Lipschitz boundary and —1 < a < 1, we also hate T (uy) = (Tu)+.

Proof. If u € H'(Q,d*), then it is standard that ugf € H. (Q)and that d;uy satisfies the for-
mula above locally in Q. It follows directly that us € H' (Q,da’. The formula T(uy) = (Tu)+
holds for v € C*(€), and it continues to hold for v € H(2,d®) by density. [ |

Proof of Theorem 3.6, We will prove that if Tu <0.a.e. on 01, then u < 0 a.e. in Q (the other
statements follow easily from this). This will be done by testing the equation against d*v where
v =u4. Let u € H'(Q,d*) and v € C2(R)y.and define the bilinear form

B(u,v) = Z(ajkﬁju, Ok (d*v)) + (cu, d%v)
jik
where the inner products are in LZ(Q)s Using the Leibniz rule gives
B(u,v) = Z [(ajkdamaju,daﬂ@kv) 4 (67%d*?0u, a(Bd)d™/ > v) 4 (cd®/?u,d/*v)| . (11)
Jik N
Now |Vd| < 1. Using Theorem (b), the identity continues to hold for all u € H*(Q,d®)
and v € H}(2,d*) by density:

Finally, let u be a solution with Tu < 0 a.e. on 9. Then B(u,v) = 0 for all v € H}(, d%),
and T'(uy) = 0 by Lemma3.7 Thus we may choose v = uy, which implies that

0= B(u,us) = Bluy,uy) - Blu_,us),

By Lemma any,product 0°u, d7u_ vanishes a.e. in Q for |3|,|y| < 1. This implies that
B(u—,uy) =0, which yields B(u4,us) = 0. We now use with v = v = u,, the assumption
@ for o7* [ and#he dssumption that ¢ > 0 to obtain that

Nd™/2Vu, | < Aol [d°/2Vuy | 4/, .
Using the Hardy inequality from Lemma [3.3] we obtain that

A a o
20 P < 5 laloCp (14 L ) 12T P

la —1]

If'e is small enough and || < ¢, then the constant on the right is < 1/2. It follows that Vuy =0,
which implies that uy = 0 using that Tus = 0. ]
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4 Reconstruction procedure

This section lists the reconstruction procedure for an isotropic conductivity o from a 2 x 2¢power
density matrix H based on [MB12b|. One can extend this procedure for anisotropic conduetivities
by adding another step following the approach of [MB12a]. For simplicity, we limit oarselves to
the isotropic case. Throughout this section we assume that the boundary functions f! and f2 were
chosen in accordance with theorem so that the corresponding solutions u; and g entering H
satisfy the non-vanishing Jacobian constraint and are ordered so that det[Vu{ Vus] > 0.

The procedure is characterized by two steps. In the first step we reconstruct the angle # that
enables us to determine the functionals S; = \/oVu; from the entries of H;; =@Vu;+Vu;. In the
second step, we reconstruct o from the functionals S;.

4.1 Reconstruction of 6

We consider the power density matrix H and the matrix S composed of the functionals S; and Ss:
S = [S1 S2]. By definition, H is symmetric and by the Jacobianfconstraint and the lower bound on
o it follows that H is positive definite: For any = = (21, 22) #0y2” Ha.=@ |21 Vu; + J:QVUQ\Z >0
(since Vu; and Vus are nonzero and linearly independent by the Jacobian constraint).

In order to split the functionals S; from the entrieséof the power density data H;j;, S is or-
thonormalized into a SO(2)-valued matrix R: R = STXs Byidefinition, R is orthogonal and has
determinant one and the transfer matrix T is determined by the data. The question is, which
matrices T satisfy the equality R = ST under the ¢onditions on R. This question has no unique
answer, so several choices of T are possiblejifor instance T/ = H 2 or obtaining T by Gram-
Schmidt orthonormalization. As R is a rotation matrix, it'is parameterized by the angle function
0 as follows:

R(0) = {

From this definition, we see that once T and. S are known, the function 6 can be computed by

cosf. —sinb
sin 6"\ cos6 |’

0 = arg(Ry),

where R; denotes the first column of R. " The orthonormalization technique and thus the choice of
T influences the angle §. Our choice of T and the corresponding interpretation of 6 is discussed
in subsection 43l ~

Defining T = (T};)1<4,j<2 and T=1= (Tij)lgi,jgg, and letting

Vij = V(T2)TY + V(Ti2)T*,
then 6 is determined by the following equation [MB12bl Eq. (65)]:
Vo =F, (12)

with 1
F = §(V12 — V21 - jVIOgD),

—1
J = {(1) 0 }, anddD = (Hy1Hop — H122)%. Once 6 is known at at least one point on the boundary
one can integrate F along curves originating from that point to obtain € throughout the whole
domain. »Alternatively, when assuming that 6 is known along the whole boundary one can apply
the divergenee operator to (12) and solve the following Poisson equation with Dirichlet boundary
condition:

{AQ:V~F in €, (13)

0 = Oirue on 0f.

10
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In our implementation, we use the second option and discuss in subsection [.3|knowledge of 6 along
the boundary.

4.2 Reconstruction of ¢

Reconstruction of o is based on [MB12b| Eq. (68)]
Viogo = G, (14)
with

G = cos(20)K + sin(20)K,

K=UVi1—V22) + JU(V12 — V21) and U= [(1) _OJ-\

Similarly as for 6 one need to solve a gradient equation to obtain o and has thepossibility of either
integrating along curves or solving a Poisson equation, assuming knowledge of ¢ in one point or
along the whole boundary respectively. We assume knowledge of analong the whole boundary and
solve the following Poisson equation with Dirichlet conditions
Alog(o) =V -G inqQ, (15)

log(o) = log(otrue )aon, O
L

4.3 Choice of the transfer matrix:T and knewledge of 6

For our implementation, we use Gram-Schmidt erthonermalization to obtain the transfer matrix
T:

H 1121 ) 0 .
—H12H1_1§D_1 HEID_l
By the Jacobian constraint, it follows,that Hy; > 0 so that T is well-defined. As a direct conse-
quence of using Gram-Schmidt erthonormalization the first column of R simplifies to:

T =

\Y
Ry=1181 + 11282 = SIS

Therefore, the angle 6 simply/defines the angle between Vu; and the z;-axis. Hence,
0 = arg(Vuq). (16)

In addition, following thisidefinition for T the vector fields Vi; can be written explicitly in terms
of H:

V1, = Vg Hy?, Vig =0,
Hyy Hyo Hlél (17)
Vo = ——+ — Vo =V1 —= .
= D v (H11> ’ = v o8 < D

Knowledge of 6lat the boundary is essential for the reconstruction procedure. By this definition of
T knowledge©f 0 is directly related to knowledge of the gradient Vu; and the current oVuy, as
both vector fields have the same direction. We decompose oVu; into two parts with contribution
from the unit outward normal v and the tangent vector w = Jv:

oVuy = (cVuy - v)v + (0 Vug - w)w.

11
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As along the whole boundary u; and o are known, the contribution from oVu; -w is known as well.
Furthermore, along the part of the boundary OQ\I" we have additional information as u; vanishes.
Therefore, the only contribution is from the unit outward normal v, so that on this part of the
boundary oVu; has either the direction of v, —v or the zero vector. However, in order to have fuill
information of # along the boundary one needs knowledge about the Neumann data oVuy - v.

5 Numerical Examples

The MATLAB and PYTHON code to generate the numerical examples’ ean be nfound on
GITLAB: https://lab.compute.dtu.dk/hjsc/jacobian-of-solutions-to-the-conductivitycequation-in-
limited-view.gitl

Our aim is to illustrate numerically how two boundary conditions €an be_selécted so that the
non-vanishing Jacobian condition for corresponding solutions is satisfied in accordance with
theorem And we choose the order of the corresponding solutions so that det[Vu; Vus] > 0.
Furthermore, we show numerically how this can be used to reconstruet the conductivity from
power density data. For that purpose, we implemented the recomstruction procedure in section []
in PYTHON and used FENICS [LMW12] to solve the PDEs. We use a fine mesh to generate our
power density data and a coarser mesh to address the reconstruetion problem. We use Nyata =
79281 nodes in the high-resolution case, while for the coarser meshhywe consider a resolution of
Nyecon = 50845 nodes. For both meshes, we use P; elements.»We consider the domain €2 to be the
unit disk: Q@ = B(0,1). Furthermore, we consider two testicases, for an isotropic conductivity o
defined by: Y

W) 0 < (21)%+ (z2)? <0.82,
1 0.8% < (z1)* + (z2)* <1,
2 (a;l - %)2 +(@32)2 < 0.3%
2 (11)”+ (@2t 1)° <012
2
I

2 2
17(:!31)2+(0v2)2
Ocase 1(%1,%2) = 1+e

Ocase 2(1‘1,332) = (ml_%)Q—’_ (mQ—%)Q §0.127

otherwise.

for (x1,z2) € Q. Figure [1] illustrates the ¢onductivities. To investigate influence of the size of the
boundary of control, T, we €onsider three different sizes that are outlined in figure [2}

We demonstrate that the Jacobian constraint is satisfied for a choice of continuous and discon-
tinuous boundary conditionsyin accordance with theorem The functions (f{, f§) below yield
continuous boundary functions that satisfy condition (a) in theorem From the right part in
figure [5| we see that arg(3€)is strictly increasing and thus monotone and ¢ satisfies |Ind(§¢)| = 1.
As Ind(¥¢) denotes the winding number of 4 it can also be observed visually from the left part of
figure [f] that itsswinding number is 1.

(cos(8t) — 1,sin(8t)) for Dyman = {t € [0, 2]}
(/T (@), f5 (n#))) = { (cos(2t) — 1,sin(2t))  for Pmedium = {t € [0, 7]}
(cos (%) —1,sin (%)) for T'arge = {t € [O, %”] } .

The corresponding functions u$|sn extended by zero along the whole boundary are illustrated in
figure [3]

The functions (f{, &) below yield discontinuous boundary functions that satisfy condition (b)
in theorem From the right part in figure [5| we see that arg(4?) is strictly increasing and thus
monotone and 4¢ satisfies ’Ind(ﬁd)| = 1/2. As we interpret Ind(¥?) as the winding number of 4%
it can‘also be observed visually from the left part of figure [5| that its winding number is 1/2.

12
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2.0 2.0

1.6 . 1.6

1.2 1.2

0.8 . 0:8

0.4 0.4
Case 1 Case2

Figure 1: The conductivities o used for the reconstruction procedure.

Hium .

"_Fme

Figure 2: Different sizes of ['ised for the reconstruction procedure.

N

(cos(4t) — 1,sin(5t))  for Tyman = {t € [0, %]}
(F () F5@D)) = { (cos (1) = Lsin (¥))  for Pedium = {t € [0,7]}
(cos (£) —1,sin (2)) for Niarge = {t € [0, F]}.
The corresponding functions u?|@g extended by zero along the whole boundary are illustrated
in figure
We compute the corresponding solutions u; and us and the three power densities Hy1, H12 and
Hyy. It is not straightforward to compute the solutions numerically for discontinuous boundary
conditions;, therefores the procedure is discussed in section [5.1] The solutions u; and uy are then
illustrated in figure[6l From table[I] we see that the Jacobian condition is satisfied for all cases, as
the determinant of H is positive. However, for a small boundary of control the values of the deter-
minant are very small, so for I'y,an the minimum values are of order 1074, To investigate where
the small .values of det(H) concentrate, we illustrate the expression log(det(H)) for continuous
and discontinuous boundary conditions in figure [7} The expression log(det(H)) will give us more
nuances of the small values than the determinant itself. From the figure, it is evident that the small
values concentrate close to the boundary that we cannot control. Furthermore, the figure shows

13
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1. .
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Bl | ‘—Ul“aﬂ _U2’69‘7
0 % T 37” 27
1r : ‘ .
0 %/
1L )
oL ‘ ‘ )
0 % T 37” 27

l\.’)bl—\©b—\
>] <
—7

~

Figure 3: The continuous boundary functions u{|pn and u$§|sn used for the reconstruction
procedure for I'ymail, I'medium and I'arge (top to bottom).

IS
0
-1+ —u1]a0 =—=us|o0
9 ‘ ‘

0 g T 37” 21
(1) Q
_20 E T 3—” 2T

2 2

0 \
1l ]
9 1

0 g 37” 21

t

Figure 4: The'discontiniious boundary functions u{|gq and ud|sq used for the reconstruc-
tion procedure for Fymaity. I'medium and arge (top to bottom).

that for discontinuous boundary conditions there appear larger values of log(det(H)) than for the
continuous case, but these are mainly concentrated around the discontinuity. For the continuous
boundary ¢onditions, the maximal values are smaller, but they are more evenly distributed along
the boundary of control. As the Jacobian condition is satisfied, we can use the reconstruction
procedure outlined in section [ to reconstruct the two conductivities ocase 1 and oease 2. For the
reconstruction procedure, we use knowledge of the true angle  that can be computed by knowledge

14
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—e(t) ==7a(t)| —arg(7(t)) ==arg(Ya(t))|
5
=0
-5
0 . . P .
-5 0 5 0 16 3 16 1
t

fi(n(t))

Figure 5: Illustration that the functions in [3| and 4| respectively satisfy Ele conditions in
theorem The left part illustrates the winding number Iad(y) of the curves 7.(t) =
(D) (1), (f$)' () and ~aq(t) = ((f1)(t), ((f$)'(t)), while the right part'shows the behavior
of their arguments.

of the true gradient Vu;.

L

5.1 Solving the conductivity equation numerically with discontinuous
boundary functions u|sq

It is a challenge numerically to use FENICS.to compute the solutions with discontinuous boundary
conditions as the solutions are only in H!(Q, d*=2%) and not in H'(). Using Lagrange basis
functions one can define a H'-function space,ibut this does not allow for discontinuities. To allow
for discontinuities one has the possibility to define a function space using discontinuous Galerkin
basis functions between the nodes, but in this way one loses interior regularity as well. Both
possibilities are not optimal as dn our case we only have a discontinuity at the boundary, while
away from the boundary the function behaves like an H'-function. For that purpose, we consider
the functions w; = u; — u?, WeI‘M? € H'(Q,d'=2%) solves the Laplace equation with boundary
conditions:
Au? =0 in Q,

O—f onT (18)

u) =0  on IOQ\T.

Now w' solves thé following boundary value problem:

19
w; =0 on 0f). (19)

{—div(ani) =div(eVud) in Q,
As we consider conductivities o that are one on and in a neighborhood of the boundary, the right
hand gide div(gVa?) vanishes in a neighborhood where the discontinuity appears. Using these
choices, of o thus ensure that the discontinuity is covered so that the right hand side satisfies
div(eVud). € H~'(Q) implying that w; is a solution in H'(£2). We solve the boundary value
problem semi-analytically for v? in MATLAB using the Fourier transform. This gives us the
exact solution at each node apart from the Gibbs phenomenon happening at the discontinuity.
Afterwards we solve the boundary value problem for w; in PYTHON using FENICS and
compute the solution u; as desired. In this way, we obtain the correct solution u; at each node,

15
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Discontinuous u1|gg  Continuous ug |50

Discontinuous ug|gg  Continuous us|sn

Flarge Fmedium Fsmall

Figure 6: The solutions d ug induced by the discontinuous and continuous boundary
conditions for o as ase varying boundaries of control I'arge; I'medium and I'span.

oothing between the nodes around the discontinuity, as we assign u;
> Lagrange basis functions.

true angle 0 as the argument of Vuy as highlighted in equation . Using the
oundary condition for the boundary value problem we reconstruct 6 by solving
numerically. This is repeated for the two conductivities as in figure [T} all different
of control as in figure [2] and the continuous and discontinuous boundary conditions as

in and [l The relative errors are shown in table[I] and table [2|

16
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Figure 7: The expression log(det(H)) for varying sizes of I', when using continuous and
discontinuous boundary conditions. Large negative walues (blue regions) correspond to

values of det(H) close to zero.
L

Table 1: Relative L? errors when using the continfious boundary conditions (u$|sq) and
the discontinuous boundary conditions (ué|ge).

1—‘large 1—‘medium I‘srnall
ullool udfog ug| o0 ul|og ug| o0 ul o
. case 1 [ 1-107% 3210%[8.-10719 1.107[8-107™ 8.107™4
Min det(H) oo || 110 3-1056 | 91010 2.10-% | 8-10-14 7.10-1
Rel. I2 error 0 S25€ 1] 1.62%.  0.74% 1.19%  6.90% - -
case 2 || 1.67% “ 0.75% 1.20% 7.11% - -
Rel. L2 error o case 1 15.7% 15.6% 40.1% 39.9% 56.5% 56.3%
case 24| 15:0%, 15.0% | 40.0%  39.9% | 56.9% 56.4%

Tables2: Relative/L? errors of (cos(26),sin(26)) for Tgman-

H Continuous BC Discontinuous BC

(3.47%, 3.61%)  (5.34%, 5.44%)
(3.58%, 3.56%)  (5.40%, 5.38%)

case 1
case 2

Even though the errors range up to 7% the reconstructions with control over Darge O I'medium
can barely be distinguished visually from the true . The only difference appears through minor
artifacts alongshe part of the boundary that cannot be controlled. For that purpose in these
cases, we only focus on the true expressions for . These are illustrated for I'iarge in figure |§| and
for I’ eqiumpin’ figure @ From the figures we see that the discontinuities of uf are reflected in 6
as well, which follows directly from the definition of #. Furthermore, 6 differs for the two cases
of\o: As the circular feature in o¢.s 1 has a smooth edge its contours can barely be seen in the
expression for §. However, as there appear piecewise constant features in o¢ase o the edges are

17
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Figure 8: True 6 for the different boundary condi rent conductivities and

having control over Iy ge.
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Case 1 Case 2
Figure 9: f different boundary conditions and different conductivities and
having co over/ I' nedium-

n the expression for 6 as well.

oices of the boundary conditions and I', the true angle 6 changes values from —7 to
t Q. This is here the case for both continuous and discontinuous boundary conditions
has the size of I'yyan. This behavior causes a curve of transitions. Along this curve the
transitions through all values from —n to 7, instead of leaving a discontinuity, which

18
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would adhere to the periodic nature of the codomain. This is illustrated in the left part of figure
[[0] and a periodic color map is used to highlight the transition curve. A similar phenomenon was
observed and addressed in [JKS22] and we use the same approach to address this issue. By the
discussion in section the direction of Vu; corresponds to the direction of the unit normal v,
its opposite —v, or the zero vector along the boundary OQ\lsman- If we investigate 6 along the
boundary in the right part of ﬁgure we see that along ON\gman 6 is a linear increasing function,
as it corresponds to the angle between v and the x;-axis. The only deviations happen.for ¢ € [0} i
which is the boundary of control I'yyay. By this behavior of 6 along 9Q\I'sman there happens-a
jump from 7 to —m at £ = w. An additional jump is induced by the boundary condition: Fer the
continuous boundary condition there happens a jump at ¢t = % and for the discontinuous boundary
condition there happens a jump at ¢ = 7. The smoothed discontinuities are asproblem when using
the true angle 6 as a boundary condition in , therefore we define a modified version § to be
used as a boundary condition. As # only appears as an input to the cosine and sine-functions in
the reconstruction formula in , we can add and subtract multiples of 27 without changing the
reconstruction. Therefore, we subtract 27 in the interval between the discontinuities to extend 6 to
a more continuous function along the boundary. For continuous bodndary conditions ¢ is defined

seon  JO°(t) =21 te [ﬂ,ﬂ] >
o(0) = {Qc(t) otherivise. (20)

And for the discontinuous boundary condition:

F(t) = {Hd(t) — 21 APER T (1)

04(t) othérwise: ¥

These functions are illustrated in the right{part of figure[I0] and used as a boundary condition
when solving the boundary value problem .

For these reconstructions 6 it does no longer make sense to compare them to the true angles, so
instead we compare the reconstructed cos(26) to the true expression in figure as this is the way
0 appears in the reconstruction formula for o (L5} The reconstruction errors are shown in table
From the figure, we see that there appeamartifacts along the whole boundary OQ\Iypan. This
is because this part of the boundary is difficult te control from the small boundary I'sya; so that
the Jacobian constraint almost is violated close to this part of the boundary. This is in accordance
with remark as the Jacobianfeonstraint is violated on this part of the boundary. This is seen
from figure [7} as the values of det(H) are very small close to the boundary OQ\I'sman. And from
table [1] we see the small values-are of order 10~ 4. These artifacts were not as visible for IMarge and
I'medium, as the smallest values o?ﬁet(H) were larger than 3-107% and 9 - 1071 respectively.

5.3 Reconstruction of &

Using the reconstructions of § we compute o by solving the boundary value problem . The
reconstructions of g using the continuous boundary conditions are shown in figure[I3] As seen from
the relative @rrors in table [1| there is no significant difference in the quality of the reconstruction
when using thecontinuous,or discontinuous boundary conditions. It is therefore impossible to
distinguish the reconstructions visually, so we only show the reconstructions using the continuous
boundary conditions. From the figure we see that the quality of the reconstructions is highly
affected by the size of the boundary of control I': The larger the boundary of control the better
the reconstruction. We note that since the minimum values of the determinant of H are close to
machine precision for I'gyan, as can be seen from the first to rows in the numerical results for this
size of I' are not very reliable. We still include this example to show the limitations of the method.
We see from figure |'1:5| that for I'iarge the features in the reconstructions are still visible in almost
the same intensity as for the true o, only the shape of the circular feature in ocage 1 is changed
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Figure 10: True expression for 6 assigned tora smooth function space and using continuous
and discontinuous boundary conditions. We consider the conductivity ocase 1 and have
control over I'gyan. The left ppart shows 6 along the boundary together with modified

versions 0 defined in and .
N

in the direction of OQ\I'ange. With decreasing size of I' the intensity of the features is decreasing
as well, so that for Fg,4 the features have intensity close to 1 like the background of the true o.
Also in a large neighborhood of the boundary 9Q\T', the reconstruction has intensity close to 0,
so that for I'gyan the.reconstruetion is dominated by intensity 0. When comparing performance
for the two differéent conductivities o we see that the reconstructions for the piecewise constant
conductivity o.4se 2 look almost better than for the smooth oc,ge 1, as the piecewise constant edges
of the three features'in o..4e 2 are clearly visible in the reconstructions. This is due to the fact, that
these edges are clearly visible in the data (see ﬁgure and in 6 (see the right parts of ﬁgureand
ﬁgure@respectively). For ggase 1 the shape of the feature is deformed a little bit towards OQ\T', as
the feature has a smooth edge. However, this difference in quality is not evident from the relative
errors/in table m Another take away from the reconstructions is that as ocase 2 is composed of
features that are closer and further away from the boundary of control as the feature in o¢ase 1, We
camssee that there is a difference in the intensity of the three features. This is especially evident for
I hedium, SO that the feature closest to I'yeqium has intensity 1.8, which is almost the same intensity
as the true ocase 2. On the other hand, the feature furthest away from I'yeqium has intensity 1,
which is the same as the background intensity of the true ocage 2-
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5.4 Reconstruction of ¢ from noisy data

We perturb thefentries of the power density matrix H at each node with random noise:
=~ « €ij
H;j =Hjj + ———Hj;
‘ Y100 [legs e
where @'is’ the noise level and e;; are entries in the matrix E that are normally distributed
ei; ~ N(0,1)4, We use numpy.random.randn to generate the elements e;; and fix the seed
numpy. random.seed(50). After generating H, we make sure that it is symmetric by comput-
ing %(H +H7T). Furthermore, for the reconstruction procedure it is essential that H is positive
definite so that we use a small positive lower bound L for the eigenvalues of H. This approach
cam,be seen as a regularization method. We note that by remark the Jacobian constraint is
violated on OQ\T', therefore we would assume very small values of det(H) close to this part of the
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boundary. However, in the approach of using a lower bound for the eigenvalues we might discard
some of these values. Therefore, we choose the lower bound as small as possible in order to'get a
reasonable reconstruction that is not dominated by noise on these small values.

After these modifications on symmetry and positive definiteness, we use H for reconstructing
Ocase 2 for three different noise levels: @ = 1, a = 5 and o = 10. The results are shown in Figure [14]
where we compare performance when using continuous and discontinuous boundary cenditions.
The lower bounds L used for reconstruction are documented in Table [3] and the relative errorssof
o are shown in the same table. The reconstructions are all of similar quality when looking at the
relative errors and how well the values at the red features matches with the true'ec. However, for
the discontinuous boundary condition the increasing noise level results in an artifact around the
discontinuity. To account for this one needs to use significantly larger lower bounds foriincreasing
noise level. In contrast, there is a gradual rise in the lower bound for increasing noise level when
using continuous boundary conditions. The high lower bound in the case of discontinuous boundary
conditions induces a light belt close to Q\I'. This belt appears, as informationvin‘this region is
discarded by the lower bound.

Table 3: Relajive L? errors on ogase 2 in presence of noise. To~obtain a positive definite
noisy matrix H, different lower bounds L for the eigenvalues of H are used. The boundary
of control is I' pedium-

Continous BC Discontinuous BC
L ‘ Relative error o L Relative error o
1% Noise || 1076 40.7% 1070 38.9%
5% Noise || 107° 41.4% 10-3 41.7%
10% Noise || 1072 40.6% 21072 38.4%
N
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ure 13: Reconstructions of o as in test case 1 in the left column and as in test case 2 in
column for varying sizes of I'. The discontinuous boundary conditions are used.
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6 Conclusions

In this work, we have derived sufficient conditions on two boundary functions so that thie cor-
responding solutions to the conductivity equation satisfy a non-vanishing Jacobian constraint in
limited view. This approach allows for boundary functions that have discontinuities. This\is rele-
vant for Acousto-Electric Tomography and Current Density Imaging both in limited view and.in
full view settings, as the conditions and thus the use of discontinuous boundary functions apply
for both settings.

We illustrated how these conditions could be used for numerical examples‘of reconstructing
the conductivity from power density data in limited view following the appreach of [MB12b|. It
was evident from the numerical examples how the non-vanishing Jacobian constraint, was almost
violated close to the boundary that could not be controlled. This follows from the zero Dirichlet
condition on this part of the boundary: Here the two corresponding solutions have both the direc-
tion of the unit normal so that the non-vanishing Jacobian constraint’ cannot be satisfied on this
part of the boundary. Nevertheless, without noise it was possible tosobtain decent reconstructions
of the conductivity when the support of the boundary of control was at, leastchalf the size of the
full boundary. For smaller boundaries of control the numerical results get unreliable due to small
values of the Jacobian. Therefore in general it is almost impossible to add even small levels of noise
while maintaining positive definiteness of the measurementnatrix. Tosaccount for this, we used
a small positive lower bound for the eigenvalues of the measurement,matrix. This worked well in
the numerical experiments even for high noise levels. However, in this approach especially values
close to the part of the boundary that cannot be contrelledrare affected by the lower bound. When
the lower bound is high this might be in contradiction with the agsumption that values should be
small in this region. This is especially a problem when /using discontinuous boundary conditions
as the lower bound needs to be chosen large/when the noise level is high.

We mention that the proposed conditions, inrorder to obtain solutions satisfying the non-
vanishing Jacobian constraint are not optimal. Especially for the case of discontinuous boundary
functions there is a possibility that (b) can bewrelaxed, as we are aware of functions that are
more general than allowed here as indicated intRemark

Acknowledgements

The authors would like to express=their sincere gratitude to our Nuutti Hyvonen for suggesting
how to solve the boundary value problem @ numerically with discontinuous boundary conditions,
and for providing the MATLAB ‘code to solve the boundary value problem semi-analytically
as discussed in section M.Swas partly supported by the Academy of Finland (Centre of
Excellence in Inverse Modelling and Iinaging, grant 284715) and by the European Research Council
under Horizon 2020 (ERC ‘CoG 770924).

25



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-103640.R2

References

[AC18

[AH96)

[AIb22]

[Ale86]

[Ale87]

[AMO4]

[Amm+08]

[ANO1]

[AN15]

[Ball3]

[BMNO]

Giovanni Alberti and Yves Capdeboscq. Lectures on elliptic methods for hy-
brid inverse problems. Societe Mathematique De France, 2018.

David R. Adams and Lars Inge Hedberg. Function spaces and potentiab.the-
ory. Volume 314. Grundlehren der mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences]. Springer-Verlag, Berling, 1996,
pages xii+366. 1SBN: 3-540-57060-8. DOI: [10. 1007 /978-3=662-03282-4.
URL: https://doi.org/10.1007/978-3-662-03282-4.

Giovanni S. Alberti. Non-zero constraints in elliptic PDE with random bound-
ary values and applications to hybrid inverse problems. 20225D01% 10.48550/
ARXIV.2205.00994. URL: https://arxiv.org/abs/2205.00994.

Giovanni Alessandrini. “An identification problem. for an_elliptic equation
in two variables”. In: Ann. Mat. Pura Appl. (4) 145(1986), pages 265-295.
I1SSN: 0003-4622. DOI: 10.1007/BF01790543. URL: https://doi-org.proxy.
findit.cvt.dk/10.1007/BF01790543.

Giovanni Alessandrini. “Critical points, of solutions of elliptic equations in
two variables”. In: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14.2 (1987),
229-256 (1988). 1SsN: 0391-173X. URL: http://www.numdam.org/item?id=
ASNSP_ 1987 4 14 2 229 0. ’

G. Alessandrini and R. Magnanini. “Elliptic equations in divergence form,
geometric critical points of solutions, and Stekloff eigenfunctions”. In: STAM
J. Math. Anal. 25.5 (1994), pages 1259=1268. 1sSN: 0036-1410. pOI: 10.1137/
S00361410932490804{URL:https://doi-org.proxy.findit.cvt.dk/10.
1137/50036141093249080:

H. Ammari et aloElectrical impedance tomography by elastic deformation”.
In: STAM J. Appl. Maith. 68.6 (2008), pages 1557-1573. 1SSN: 0036-1399. DOI:
10.1137/070686408.

Giovanni Alessandrini and Vincenzo Nesi. “Univalent o-harmonic mappings”.
In: Arch. Rationrf}/[ech. Anal. 158.2 (2001), pages 155-171. 1SsSN: 0003-9527.
DOI: [10. 1007 /PL00004242. URL: https://doi-org.proxy.findit.cvt.
dk/10:1007 /PL0O0004242.

G. Alessandrini and V. Nesi. “Quantitative estimates on jacobians for hybrid
inverse problems”. eng. In: Bulletin of the South Ural State University, Series:
Mathematiecal Modelling, Programming and Computer Software 8.3 (2015),
pages 25—44. 1ssN: 23080256, 20710216. DOT: [10.14529/mmp150302.

Gaillagme Bal. “Hybrid inverse problems and internal functionals”. In: In-
verse jproblems and applications: inside out. II. Volume 60. Math. Sci. Res.
Inst. Publ. Cambridge Univ. Press, Cambridge, 2013, pages 325—368.

Patricia Bauman, Antonella Marini, and Vincenzo Nesi. “Univalent solutions
of an elliptic system of partial differential equations arising in homogeniza-
tion”. In: Indiana Univ. Math. J. 50.2 (2001), pages 747-757. 1SSN: 0022-2518.
DOI:/10.1512/iumj.2001.50.1832. URL: https://doi-org.proxy.findit.
cvt.dk/10.1512/iumj.2001.50.1832.

26

Page 26 of 28


https://doi.org/10.1007/978-3-662-03282-4
https://doi.org/10.1007/978-3-662-03282-4
https://doi.org/10.48550/ARXIV.2205.00994
https://doi.org/10.48550/ARXIV.2205.00994
https://arxiv.org/abs/2205.00994
https://doi.org/10.1007/BF01790543
https://doi-org.proxy.findit.cvt.dk/10.1007/BF01790543
https://doi-org.proxy.findit.cvt.dk/10.1007/BF01790543
http://www.numdam.org/item?id=ASNSP_1987_4_14_2_229_0
http://www.numdam.org/item?id=ASNSP_1987_4_14_2_229_0
https://doi.org/10.1137/S0036141093249080
https://doi.org/10.1137/S0036141093249080
https://doi-org.proxy.findit.cvt.dk/10.1137/S0036141093249080
https://doi-org.proxy.findit.cvt.dk/10.1137/S0036141093249080
https://doi.org/10.1137/070686408
https://doi.org/10.1007/PL00004242
https://doi-org.proxy.findit.cvt.dk/10.1007/PL00004242
https://doi-org.proxy.findit.cvt.dk/10.1007/PL00004242
https://doi.org/10.14529/mmp150302
https://doi.org/10.1512/iumj.2001.50.1832
https://doi-org.proxy.findit.cvt.dk/10.1512/iumj.2001.50.1832
https://doi-org.proxy.findit.cvt.dk/10.1512/iumj.2001.50.1832

Page 27 of 28 AUTHOR SUBMITTED MANUSCRIPT - IP-103640.R2

[Cho45] Gustave Choquet. “Sur un type de transformation analytique généralisant la
représentation conforme et définie au moyen de fonctions harmoniques™. In:
Bull. Sci. Math. 69 (1945), pages 156-165.

9 [GTO1] David Gilbarg and Neil S. Trudinger. Flliptic Partial Differential Equations

oNOYTULT D WN =

1(1) of Second Order. Classics in Mathematics. U.S. Government Printing Office,
12 2001. 1SBN: 9783540411604. URL: https://books . google . dk /books?id=
13 e01GTf4cmhwC.

14 [JKS22] Bjgrn Jensen, Kim Knudsen, and Hjgrdis Schliiter. Conductivity reconstruc-
15 tion from power density data in limited view. 2022. DOI: [10»48550/ARXIV.
1? 2202.12370. URL: https://arxiv.org/abs/2202.12370.

18 [Kim08| Doyoon Kim. “Elliptic equations with nonzero boundarysconditions in weighted
19 Sobolev spaces”. In: J. Math. Anal. Appl. 337.2 (2008)s pages 1465-1479.
20 ISSN: 0022-247X. DOI: 110.1016/j . jmaa.2007 .04 . 048:

;; [Kne26] Hellmuth Kneser. “Losung der Aufgabe 417. In: Jahiesbericht der Deutschen
23 Mathematiker- Vereinigung 35 (1926), pages 123-124.

24 [Kuf80] Alois Kufner. Weighted Sobolev spaces. Volume 31 Teubner-Texte zur Math-
25 ematik [Teubner Texts in Mathematics|.(With German, French and Russian
;? summaries. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1980, page 151.
28 [Li+21] Wei Li et al. “An acousto-electric! inverse source problem”. In: SIAM J.
29 Imaging Sci. 14.4 (2021), pages 1601-1616. DO1: |10.1137/21M1406568. URL:
30 https://doi.org/10.1137/21M1406568!

g; [LMW12]  Anders Logg, Kent-Andre Mardaly and Garth Wells. Automated solution of
33 differential equations by the finite element method: The FEniCS book. Vol-
34 ume 84. Springer Sciencerds, Business Media, 2012.

35 [MB12a] Frangois Monard and Guillaume Bal. “Inverse anisotropic diffusion from
g? power density measurements in, two dimensions”. In: Inverse Problems 28
38 (July 2012).

39 [MB12b] Frangois Monard and Guillaume Bal. “Inverse diffusion problems with re-
40 dundant internal information”. In: Inverse Problems and Imaging 6.2 (2012),
41 pages 289-313.

42

43 [Rad26] Tibor Radé. “Aufgabe 41”. In: Jahresbericht der Deutschen Mathematiker-
44 Vereimigung 35:(1926), page 49.

45 [Sch90] Friedmar “Sehulz, Regularity Theory for Quasilinear Elliptic Systems and
2? Moange—Ampére Equations in Two Dimensions. Springer Berlin Heidelberg,
48 1990.

49 [SKWO05] Jin KeunSeo, Ohin Kwon, and Eung Je Woo. “Magnetic resonance electrical
50 impedance tomography (MREIT): conductivity and current density imag-
51 ing”. In: Journal of Physics: Conference Series 12 (January 2005), pages 140—
gg 155.Do1:[10.1088/1742-6596/12/1/014. URL: https://doi.org/10.1088/
54 1742-6596/12/1/014.

55 [SW11] Jin Keun Seo and Eung Je Woo. “Magnetic resonance electrical impedance
56 tomography (MREIT)”. In: SIAM Rev. 53.1 (2011), pages 40-68. 1SSN: 0036-
57 1445. por: [10.1137/080742932. URL: https://doi-org.proxy.findit.
gg cvt.dk/10.1137/080742932.

60

27


https://books.google.dk/books?id=eoiGTf4cmhwC
https://books.google.dk/books?id=eoiGTf4cmhwC
https://doi.org/10.48550/ARXIV.2202.12370
https://doi.org/10.48550/ARXIV.2202.12370
https://arxiv.org/abs/2202.12370
https://doi.org/10.1016/j.jmaa.2007.04.048
https://doi.org/10.1137/21M1406568
https://doi.org/10.1137/21M1406568
https://doi.org/10.1088/1742-6596/12/1/014
https://doi.org/10.1088/1742-6596/12/1/014
https://doi.org/10.1088/1742-6596/12/1/014
https://doi.org/10.1137/080742932
https://doi-org.proxy.findit.cvt.dk/10.1137/080742932
https://doi-org.proxy.findit.cvt.dk/10.1137/080742932

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-103640.R2

[Tri78] H. Triebel. Interpolation theory, function spaces, differential operators. VEB
Deutscher Verlag der Wissenschaften, Berlin, 1978, page 528.
[WS12] Thomas Widlak and Otmar Scherzer. “Hybrid tomography for conductivity

imaging”. In: Inverse Problems 28.8 (2012), pages 084008, 28. 1ssN: 0266-
5611. DoI: [10.1088/0266-5611/28/8/084008. URL: https://doitorg/10.
1088/0266-5611/28/8/084008.

[ZW04] Hao Zhang and Lihong V. Wang. “Acousto-electric tomography?. In: Photons
Plus Ultrasound: Imaging and Sensing. Volume 5320. SPIE, 2004, pages 145—
149. Do1:110.1117/12.532610.

Department of Mathematics and Statistics, University of Jyviskyla, Finland
E-mail address: mikko.j.salo@jyu.fi

~
E-mail address: hjordis.a.schluter@jyu.fi

28

Page 28 of 28


https://doi.org/10.1088/0266-5611/28/8/084008
https://doi.org/10.1088/0266-5611/28/8/084008
https://doi.org/10.1088/0266-5611/28/8/084008
https://doi.org/10.1117/12.532610

