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ABSTRACT

RANTALAINEN, T., K. KOIVUNEN, E. PORTEGIJS, T. RANTANEN, L. PALMBERG, L. KARAVIRTA, and S. CHASTIN. Is Com-

plexity of Daily Activity Associated with Physical Function and Life-Space Mobility among Older Adults? Med. Sci. Sports Exerc.,

Vol. 54, No. 7, pp. 1210-1217, 2022. Purpose: Information about mobility and physical function may be encoded in the complexity of daily ac-

tivity pattern. Therefore, daily activity pattern complexity metrics could provide novel insight into the relationship between daily activity be-

havior and health. The purpose of the present study was to examine the association between the complexity of daily activity behavior and the

mobility and physical function among community-dwelling older adults 75, 80, and 85 yr of age.Methods: A total of 309 participants wore

accelerometers concurrently on the thigh and the trunk for at least three consecutive days. Five activity states (lying, sitting, standing, walking,

or activity other than walking) were defined in three different temporal grains (5 s, 1 min, and 5 min), and Lempel–Ziv complexity was eval-

uated.We assessed complexity of daily activity behavior using the life-space mobility and physical function with distance in preferred pace

6-min walk and the Short Physical Performance Battery.Results:Weak positive associations were observed between the complexity of daily

activity and the mobility and physical function at the finest temporal grains in both sexes (Spearman rho = 0.19 to 0.27, P < 0.05). No signif-

icant associations were observed in the coarsest temporal grain in either sex.Conclusions: Lempel–Ziv estimates of daily activity complexity

with a fine temporal grain seem to be associated with community-dwelling older adults’ physical function. The coarsest 5-min temporal grain

may have smoothed out physiologically meaningful short activity bouts. Because complexity encodes information related to timing, intensity,

and patterning of behavior, complexity of activity could be an informative indicator of future physical function and mobility. Key Words:

WEARABLE, ACTIGRAPHY, HABITUAL, AMBULATORY
Mobility (ambulatory and transportation) (1,2) and
physical activity (3) decline with age. It is thought
that this age-associated decline in mobility (2) is
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at least partially driven by the age-associated decline in phys-
ical function (4–6). Mobility and physical activity are rather
inextricably linked because getting from point A to B requires
at least some ambulation. This link between mobility and
physical activity has been leveraged in gerontological research
by designing research tools to quantifymobility. One such tool
probes the extent of the geographical area that a particular in-
dividual covers in going through their daily activities and the
frequency of travel (life-space assessment) (7). Life-space as-
sessment has subsequently been shown to be associated with
physical activity in that those with larger life space also had
more physical activity (8), and this association has been fur-
ther corroborated by prospective findings, where a decreasing
physical activity was associated with a diminishing life space
among community-dwelling older adults (9). Moreover, mobil-
ity is strongly linkedwith quality of life and has strong prognos-
tic value for disability and survival among older adults (2).

In addition to higher physical function, a larger life-space
mobility may also mean a greater richness and freedom of
movement, which might be reflected in the temporal pattern
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of different activities (10). It has been suggested that the struc-
tures of movement patterns include information that may not
be captured with traditional measures of activity (11). More
complex patterns in physiological or behavioral time series
may characterize system’s integrity and better ability to adapt
flexibly to internal and external perturbations (12). At the
functional level, this may be observed, for example, as capa-
bility for altering motor behavior to adapt to different task de-
mands (13) and, consequently, larger life space.

However, mobility patterns are challenging to quantify be-
cause of the multidimensional nature of daily activity behav-
ior. Mobility patterning may be influenced by, for example,
the activity type, intensity, duration, and frequency (14). Rec-
ognizing activities based on body-worn sensors is not a trivial
task, and age-related decrease in vigor of movements (15,16)
can further increase the difficulty of activity classification
(15). Furthermore, the number and placement of wearable sen-
sors affects the precision of recognizing activity classes (17).
These challenges have been tackled with concurrent trunk and
thigh-worn accelerometers, which enables robust classification
of postures throughout the day (13,18), while still retaining a
reasonable participant burden (13,17). Posture assessments
may be particularly informative in daily activity behavior con-
taining a large volume of stationary behavior where the dis-
tinction between sitting and standing may be of interest (19).

Having captured the daily activity behavior, the pattern
needs to be quantified and described numerically from the re-
corded activity states (e.g., lying, sitting, standing, and ambu-
lation) to enable statistical analyses (10). A new approach to
describe patterns of daily activity behavior assessed with con-
currently worn devices is to use complexity metrics (such as
Lempel–Ziv complexity [20]), which could add value to activity
volume quantifications. Complexity metrics enable encoding
information regarding activity patterning without requiring
a known underlying structure of the patterning. Indeed,
Paraschiv-Ionescu and colleagues (10) have explored the use
of complexity metrics as a way to quantify daily activity be-
havior without considering the volume of physical activity,
and they found that people with chronic pain and fear of fall-
ing can be discriminated from nonaffected referents based on
daily activity complexity assessed with prolonged acceler-
ometry samples (14). Moreover, the same group has reported
that changes in balance and physical function were associated
with daily activity complexity after a 4-wk exercise interven-
tion in 60–70 yr old, whereas no such associations were ob-
served based on volume of physical activity indicated by
conventional activity minute-based metrics (21). Recently,
Rector and colleagues (22) reported that greater complexity
of daily activity behavior was associated with lower frailty
index scores and higher ADL function among geriatric inpa-
tients 65 yr or older. However, daily activity behavior com-
plexity remains sparingly explored, and it is currently unclear
whether it is associated with mobility or physical function
among older community-dwelling adults.

As alluded to above, it has been recognized that metrics in-
dicating patterning of daily activity in addition to quantifying
ACTIVITY COMPLEXITY AND FUNCTIONAL ABILITY
volume of activity (e.g., minutes per day spent in moderate
to vigorous activity) could be useful (11,23,24) particularly
among older populations (11). As body-worn sensor technology
is becoming more prevalent, they could be used to continually
track and monitor changes in mobility and physical function
in older adult population and, hence, enable the detection or
prediction of adverse and deleterious decline. Metrics based
on pattern analysis have already been demonstrated as more
sensitive than volume of activity to changes in clinical and
functional characteristics (10,14,21,25,26). Physical task fati-
gability, for example, seems to be more sensitively indicated
by fragmentation of daily activity behavior pattern compared
with activity minutes (25,26). Moreover, it is thought that it
suffices to break a continuous bout of sedentary behavior with
a brief bout of low-intensity activity to gain positive health effects
(27). Such brief bouts may not register in the activity minutes
but would increase the complexity of daily activity behavior
because of the changes between activity states (e.g., an activity
to rest transition) (10,14,20).

Building on such findings, we hypothesize that daily activity
behavior pattern complexity could capture meaningful character-
istics of daily activity and thus warrants further exploration.
Therefore, the purpose of the present study was to explore
the association between the complexity of daily activity be-
havior pattern and the mobility and physical function among
community-dwelling older adults 75, 80, or 85 yr of age. We
hypothesized that a positive association exists between the
complexity of habitual activity pattern and the mobility and
physical function.
METHODS

This was a cross-sectional cohort study of community-
dwelling 75-, 80-, and 85-yr-old men and women living in
the city of Jyväskylä, Central Finland region. The participants
were visited at their homes by a trained research assistant who
attached an accelerometer on the trunk and on the thigh to be
worn for at least 7 d before attending a testing session at the
University of Jyväskylä, Finland. The protocol (28) and a de-
tailed recruitment flow chart have been published (29), but
pertinent details are provided in the present article as well.

Participants. The sample for the present study forms a
part of the “Active aging—resilience and external support as
modifiers of the disablement outcome” (AGNES) cohort study
(28). In brief, all 75- to 85-yr-old individuals living in Jyväs-
kylä, Finland, in 2017 and 2018 were identified from the pop-
ulation register and invited to take part in the AGNES cohort
study with a letter and a subsequent phone call. The inclusion
criteria were age based on year of birth, living independently
in the recruitment area, and consent to take part. Exclusion
criteria were unwillingness to participate or inability to com-
municate. A total of 309 participants with concurrent thigh- and
trunk-worn accelerometerwear for at least three consecutive days
were included in the present study (Fig. 1).

The study was conducted in agreement with the Helsinki
declaration, informed written consent was obtained from all
Medicine & Science in Sports & Exercise® 1211



FIGURE 1—Flow chart of the study recruitment.
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participants, and Central Finland Health Care District pro-
vided an ethical statement of the study (August 23, 2017).

Protocol.As described in the AGNES cohort protocol (28),
the participants were asked to wear two triaxial accelerometers
(both sampling continuously at 100 Hz, 14-bit ±16g, eMotion
Faros 180, Bittium Corporation, Oulu, Finland, and 13-bit
±16g, UKK RM42, UKK Terveyspalvelut Oy, Tampere,
Finland) for 7 to 10 d before attending a laboratory gait assess-
ment at the University of Jyväskylä, Finland, campus. The
participants were visited at their home by the study staff, and
the accelerometers were taped on the participant’s body using
a rectangular patch of transparent adhesive film. A wound
patch was folded and placed underneath the accelerometer to
minimize skin irritation during wear. The eMotion Faros 180
sensor could only record for 4 d continuously and was swapped
on the third to fifth wear day by the study staff at the partici-
pant’s home. The two records were concatenated to provide
more than 4 d of continuouswear. The eMotion Faros 180 sensor
1212 Official Journal of the American College of Sports Medicine
was attached on the sternum or diagonally on the left side of
the chest under the breast if sternum was uncomfortable for
the participant. The UKK RM42 sensor was attached on the
anterior aspect of the mid-thigh of the jumping leg (or kicking
leg or the side of the dominant arm, if the participant was un-
able to identify their jumping or kicking leg).

The laboratory testing session included measuring height
with a stadiometer to the nearest 0.5 cm and body mass with
an electronic scale to the nearest tenth of a kilogram. The ses-
sion gait assessment included a modified 6-min continuous
walking test up and down a 20-m track in a corridor. The mod-
ification compared with the typical instruction of requesting to
walk as far as you can was to request to walk at the preferred
pace (28). The distance covered in the 6-min walking test is re-
ported as an indicator of physical function.

The home visit included a testing session. Life-space mobil-
ity (University of Alabama at Birmingham Study of Aging
Life-Space Assessment [7]) was assessed and is reported as a
mobility outcome (scores from 0 to 120). Cognitive ability
was assessed using the Mini-Mental State Examination (30)
and is reported as a descriptive characteristic (scores from 0
to 30). Lower extremity physical function was assessed with
the Short Physical Performance Battery (31) and is reported
as an indicator of lower extremity physical function (scores
from 0 to 12). Higher scores indicate better performance on
all the above assessments conducted at the participant’s home.

Numerical analysis and posture and activity state
estimation algorithm. The triaxial accelerations recorded
by the two concurrently worn accelerometers were processed
identically; the resultant acceleration was first calculated for
each sampling instant, and the mean amplitude deviation (MAD)
(32) based on the resultant was subsequently calculated for
nonoverlapping 5-s epochs. The mean values of the x, y, and z
accelerations were also noted for the same epochs, and the
5-s epochs were assigned the real-time time stamp of the first
data point included into a given epoch.

The device records were aligned temporally, and the posture
of each 5-s epoch was subsequently estimated as follows (for
further details and for algorithm validity, see Appendix 1, Sup-
plemental Digital Content 1, http://links.lww.com/MSS/C536):

• lying if both devices indicated angle >π/4
• sitting if thigh indicate angle >π/4 and trunk indicated ≤π/4
• upright if both devices indicated angle ≤π/4

The π/4 (=45°) threshold was adopted from Vähä-Ypyä
et al. (33). Moreover, upright posture was separated to stand-
ing, walking, and activity other than walking based on signal
intensities. The upright epochs, which had MAD values be-
tween 0.035g to 0.6g and 0.035g to 1.2g for the trunk-worn
and the thigh-worn devices, respectively, were assigned to
walking (lower than the bottom cutoff on either device re-
mained in standing), and epochs with MAD values >0.6g or
1.2g for the trunk- and the thigh-worn devices, respectively,
were assigned into activity other thanwalking (i.e., higher than
the cutoff on either device or on both). These categorizations
http://www.acsm-msse.org
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resulted in five possible activity states (lying, sitting, standing,
walking, or activity other than walking) for each 5-s epoch.
The activity state and the time stamps corresponding to the
first sample of the given epoch were saved to a file. Only
epochs that had concurrent recorded data from both acceler-
ometers were saved. Activity state files with two coarser time
grains were created as well, one with nonoverlapping 1-min
epochs (the mode of the 12 consecutive 5-s epochs used for
a given minute) and another with nonoverlapping 5-min
epochs (using the mode of 60 consecutive 5-s epochs).

Daily activity behavior pattern complexity estimation.
The activity state files were explored to identify a continuous re-
cording of at least three consecutive midnight to midnight, and
the longest such epoch was chosen for complexity estimation
(Fig. 2). Cilibrasi and Vitanyi (34) have shown that Kolmogorov
complexity can be estimated as the ratio of uncompressed and
lossless compressed signals. However, Kolmogorov complex-
ity is incomputable and hence they used the ratio of Lempel–
Ziv compressed signal to uncompressed signal as an indicator
of complexity. Their approach was adopted and estimated by
compressing the data using a standard file compression package
FIGURE 2—Two samples of the signals used for Lempel–Ziv daily activity beh
bottom 5 in terms of daily activity behavior pattern complexity. (Right panel ) A
plexity. Two accelerometers were worn concurrently (thigh, chest), and posture (l
overlapping epochs. Upright activities were categorized as upright, walking, or a
five possible physical behavior states for each of the 5-s nonoverlapping epochs. L
ratio of the “deflate” compression algorithm compressed byte length to the uncom
to 80 h. This corresponds to the battery of the chest-worn device running out and
The wear periods were concatenated for complexity analyses.

ACTIVITY COMPLEXITY AND FUNCTIONAL ABILITY
(java.util.zip package) and by calculating how much the size of
the data could be deflated compared with the original file size
(Appendix 2, Supplemental Digital Content 1, http://links.
lww.com/MSS/C536). The resulting deflation ratio is a metric
of the daily activity behavior pattern Lempel–Ziv complexity
(34) and is reported as the outcome. A high deflation ratio indi-
cates a less complex pattern. The same complexity estimation
was repeated thrice for each participant, once per temporal
grain, i.e., for the 5-s, 1-min, and 5-min epochs.

Statistical analysis. The AGNES study sample size was
based on statistical sensitivity analysis and designed to enable
detecting linear regression with at least 5% of the variation ex-
plained after accounting for 10 covariates. All individuals with
any valid data from the AGNES study were included in the
present examination. The number of individuals considered
for each statistical test was decided independently from the
other tests, which resulted in the number of participants in-
cluded in a particular test to vary between tests. That is, miss-
ing a result in one test did not lead into excluding the partici-
pant from another test. The number of participants considered
for a particular test is given in the Tables 1 and 2.
avior pattern complexity estimation. (Left panel ) A participant from the
participant from the top 5 in terms of daily activity behavior pattern com-
ying, sitting, upright) was deduced based on sensor orientations in 5-s non-
ctivity other than walking based on theMAD of the epoch. This resulted in
empel–Ziv daily activity behavior pattern complexity was calculated as the
pressed byte length. Note the gap in the data sets between at around the 70
being replaced by a charged device to enable more than 3 d of monitoring.

Medicine & Science in Sports & Exercise® 1213
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TABLE 1. Descriptive characteristics, cognitive, and functional performance indicators by sex.

Men, N
Men,

Mean ± SD Women, N
Women,

Mean ± SD

Age (yr) 130 78.2 ± 3.4 179 78.2 ± 3.4
Height (cm) 130 173 ± 7 179 158 ± 5
Body mass (kg) 130 79.2 ± 11.6 179 69.8 ± 12.6
10 m walk (s) 130 8.09 ± 2.83 179 8.23 ± 2.12
MMSE (score) 130 27.2 ± 2.5 179 27.6 ± 2.5
SPPB (score) 130 10.5 ± 2 179 10.3 ± 1.9
6-min walk distance (m) 123 444 ± 82 173 415 ± 74
Life-space mobility (score) 130 79.9 ± 18.3 179 69.6 ± 17.3

N, number of participants; MMSE, Mini-Mental State Examination; SPPB, Short Physical
Performance Battery.
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The average and dispersion characteristics of the sample
were computed and are reported as mean followed by SD in
parentheses. Some variables were not normally distributed, and
transformations did not result in normalization of distribution.
Therefore, nonparametric statistical methods were chosen.
Deflate ratios were compared between sexes (male and fe-
male) and age-groups (75, 80, and 85 yr) using robust
ANOVA (raov from the “Rfit” package). Post hoc tests of de-
flate ratios between sex and age-groups were evaluated using
two-sample Wilcoxon rank sum tests (wilcox.test from the
“stat” package) where appropriate. The association between
daily activity behavior pattern complexity and mobility and
physical function was estimated using Spearman rank correla-
tion, and the analyses were stratified by sex. Moreover, to ex-
amine whether daily activity behavior pattern complexity
measures were associated with mobility and physical function
independent of age, sex, and average daily physical activity,
linear regression models were run as sensitivity analyses. Be-
fore entering the data to the model, logarithm transformation
was applied to all variables to normalize the data. In the linear
regression models, the associations between the complexity of
activity behavior pattern and the mobility and physical function
were adjusted first for age and sex. After that, daily average ac-
celeration volume (g) obtained from the eMotion Faros 180
sensor was added in the model. Significance level was set at
P ≤ 0.05. Statistical analyses were conducted using R (64-bit,
version 3.6.3, https://www.r-project.org/) and SPSS version 26.
TABLE 2. Complexity (deflate ratio) of daily activity behavior pattern analyzed with three dif-
ferent temporal coarseness scales (nonoverlapping 5-s epochs, 1-min epochs, and 5-min
epochs) by age-group and sex.

Coarseness
Scale Age-Group Men, N

Men,
Mean ± SD Women, N

Women,
Mean ± SD

Deflate ratio 5 s
75 69 0.0489 ± 0.0106 95 0.0515 ± 0.0101
80 40 0.0491 ± 0.0109 53 0.0502 ± 0.0101
85 21 0.0442 ± 0.0115 31 0.0468 ± 0.0096

Deflate ratio 1 min
75 69 0.0982 ± 0.0145 95 0.0946 ± 0.0135
80 40 0.0970 ± 0.0155 53 0.0940 ± 0.0146
85 21 0.0912 ± 0.0157 31 0.090 ± 0.0145

Deflate ratio 5 min
75 69 0.163 ± 0.022 95 0.155 ± 0.02
80 40 0.161 ± 0.021 53 0.159 ± 0.021
85 21 0.158 ± 0.021 31 0.154 ± 0.018

Statistical comparisons given in text.
N, number of participants.

1214 Official Journal of the American College of Sports Medicine
RESULTS

Descriptive characteristics and physical function indicators
of the sample are given in Table 1. Participant numbers for
the various characteristics measured in the present study var-
ied from 123 men and 173 women (6-min walking test) to
130 men and 179 women (the full included sample).

Daily activity behavior pattern complexity analyzed in the
three temporal grains divided by age-group and sex is given in
Table 2. A significant age effect was indicated by the robust
ANOVA testing for the 5-s and 1-min temporal grains
(F = 3.48 to 5.17, P = 0.006 to 0.032) but not for the 5 min
grain (F = 0.88, P = 0.42). None of the temporal grains indi-
cated a significant sex effect (F = 1.65 to 3.85, P = 0.051 to
0.20) or age–sex interaction (F = 0.002 to 0.87, P = 0.42 to
1.00). Post hoc testing between age-groups indicated no dif-
ference between the 75- and the 80-yr-old groups, but the
85-yr-old group had 5% to 9% lower behavior complexity
compared with both younger age-groups in the two finest tem-
poral grains (P = 0.002 to 0.040).

Age-groups were pooled for correlation analyses, and the
correlation matrix between daily activity behavior pattern
complexity with the three temporal grains and mobility and
physical function indicators by sex is given in Table 3. The
finest temporal grain (5 s) showed weak positive associations
between complexity and mobility and physical function indi-
cators in both men and women; however, with the coarser
grains, the weak positive associations were only observed in
men in the 1-min grain and in neither sex with the coarsest
grain (5 min).

We explored the linear regression analyses as sensitivity
analyses because of the significant age effect observed in
complexity. Also, it was a priori well established that an
age dependence exists in physical function and mobility.
The observed associations remained evident after adjusting
for age and sex. However, after adjustment of daily average
acceleration volume the potential associations between com-
plexity and outcomes of physical function or mobility vanished
(see Supplemental Tables 1–4, Supplemental Digital Content 2,
http://links.lww.com/MSS/C537).

DISCUSSION

The primary finding of the present study was that a weak
positive association was observed between mobility, indicators
TABLE 3. Spearman rank correlation coefficients between complexity (deflate ratio) of daily
activity behavior pattern analyzed with three different temporal coarseness scales (nonover-
lapping 5-s epochs, 1-min epochs, and 5-min epochs) and mobility and physical perfor-
mance by sex.

Deflate Ratio 5 s Deflate Ratio 1 min Deflate Ratio 5 min

Variable Men Women Men Women Men Women

SPPB 0.20* 0.18* 0.13 0.06 0.02 −0.13
6-min walk 0.31*** 0.20** 0.19* 0.08 0.12 −0.06
Life-space assessment 0.27** 0.22** 0.23** 0.14 0.13 0.06

*P ≤ 0.05.
**P < 0.01.
***P < 0.001.
SPPB, Short Physical Performance Battery.

http://www.acsm-msse.org

https://www.r-project.org/
http://links.lww.com/MSS/C537
http://www.acsm-msse.org


A
PPLIED

SC
IEN

C
ES
of physical function, and daily activity behavior pattern com-
plexity assessed with the two finer temporal grains. Although
the associations were categorized as weak in terms of statistical
significance, the strengths of the associations are comparable
with those observed, e.g., between volume of daily physical
activity and life space (8) or physical function (35). These
findings are, generally speaking, in agreement with previous
research related to the association between the complexity of
activity behavior pattern and the physical function and mobil-
ity assessment. Previous research has indicated that more
complexity and larger life space are positively associated with
physical function (8,9,14,21). Only a fine temporal grain of 1 s
(10,14,21) has been used previously. The 1-s grain is finer
than the finest grain of 5 s used in the present study. We ex-
tended the analysis to coarser grains and found that only grains
up to 1 min in duration were associated with indicators of mo-
bility and physical function. The finer temporal grains would
capture phenomena with a relatively high temporal precision,
including brief bouts of ambulation, whereas the coarser
grains would only register more prolonged bouts of behavior
effectively averaging out any brief intermissions. Considering
the fragmented nature of daily activity behavior found among
older individuals (25,26), and the potential of brief breaks in
sedentary behavior to have positive health effects (27), we
postulate that the finer temporal grains may have better prag-
matic utility compared with the coarser grains.

Positive associations between life-space assessment and
daily activity behavior pattern complexity were observed at
the two finest temporal grains. The finding is concordant with
the theoretical concept we argued in the introduction. That is,
one would expect mobility and behavior complexity to be
linked because larger mobility indicates farther travel from
home compared with smaller mobility (7). Travel, in turn, ne-
cessitates ambulation (9) and capacity to alter motor behavior
to adapt to different task demands (13), which will be reflected
in the richness of activity states. Therefore, more travel targets
are likely to be observed as higher complexity compared with
fewer travel targets. Moreover an age-group effect was ob-
served in daily activity behavior pattern complexity, which is
in concordance with the effect of aging on physical function
and performance (2). The loss of complexity not only in phys-
iological but also in behavioral time series has been suggested
to be a potential indicator of lower physical resilience (12,22),
a topic that warrants further investigation. Sensitivity analyses
indicated that daily activity behavior pattern complexity was
no longer an independent predictor of life space or physical
function when total volume of activity was included as a co-
variate. Engaging with additional changes in activity states
likely mandates an increased volume of activity in the present
study cohort compared with fewer activity state changes. Nev-
ertheless, we hypothesize that there are outcomes not tested in
the present study that could be predicted by daily activity be-
havior pattern complexity independent of activity volume,
e.g., on the findings reported by Zhang et al. (21).

Overall, the findings are congruent with the literature re-
lated to previous research into daily behavior complexity.
ACTIVITY COMPLEXITY AND FUNCTIONAL ABILITY
Paraschiv-Ionescu and colleagues (14) have reported a lower
level of complexity among those with higher level of fear of
falling than those with a lower level of fear of falling. How-
ever, whether complexity measures provide added value to
the conventional activity metrics requires more investigation.
Zhang et al. (21) reported subtle behavior change indicated
by complexity measures but not captured by total activity vol-
ume (e.g., step count) in association to an exercise intervention
with 60- to 70-yr-old participants. However, the sensitivity
analyses of the present study showed that the associations of
complexity measures with life space or physical function mea-
sures were explained by the daily average acceleration, which
indicates total activity volume. Complexity estimates at all
three coarseness grains were positively associated with the to-
tal average acceleration in the present study (see Supplemental
Tables, Supplemental Digital Content 2, http://links.lww.com/
MSS/C537), which likely explains the lack of explanatory
power for complexity after inserting the daily average acceler-
ation into the model. Considering both the present and the
findings reported by Zhang and colleagues (21), we claim that
the role of complexity in addition to total activity volume in
describing daily activity behavior pattern remains ambiguous.
It remains plausible that daily activity behavior pattern could,
for example, provide meaningful information regarding cogni-
tive processes associated with planning the day (36,37) or be
indicative of impending functional decline.

Regarding the temporal grain exploration, prior art by Zhang
and colleagues (21) implemented temporal grain exploration
by smoothing their 1-s state vector before undertaking com-
plexity assessments. They showed that both the complexity
estimates based on unfiltered and the smoothed states were
sensitive to a 4-wk home-based exercise intervention but that
the smoothed estimates seemed to be preferable over the unfil-
tered ones (21). The present research extended the previous
work by using a 5-s epoch and by also exploring much coarser
temporal grains as well. We found that the finest 5-s grain was
best associated with the explored variables, and interpreted in
accordance with the literature, it seems that it may be reason-
able to use such a fine temporal grain for behavior complexity
assessments. Most of the aforementioned studies have used
Lempel–Ziv complexity, which is simple to implement and
has been demonstrated to be associated with various prag-
matic outcomes: fear of falling (14), chronic pain (10), exer-
cise intervention (21), and mobility and physical function in
the present study. Taken together, we postulate that Lempel–
Ziv complexity provides a reasonable marker of daily activity
behavior pattern complexity and that a fine temporal grain be-
tween 1 and 5 s is likely a reasonable choice.

Shiroma and colleagues (11) have highlighted that further
potential for extracting meaningful insight into daily activity
behavior pattern based on prolonged accelerometry records
exists among older individuals. The complexity evaluation ap-
proach introduced by Paraschiv-Ionescu and colleagues (10)
and adopted in the present study could be particularly power-
ful in providing continuous monitoring of mobility and daily
activity behavior pattern in older adult population as body-worn
Medicine & Science in Sports & Exercise® 1215
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devices are becoming more readily available. This could en-
able the early detection or prediction of potential deleterious
decline in mobility and physical function. This approach is
particularly suited to older adults and highly sedentary popula-
tions as their daily activity behavior pattern is dominated by
bouts of sedentary behavior and the complexity metrics are re-
flective of change in activity states. A closely related concept,
activity fragmentation, has been suggested and shown to have
pragmatic utility (25,26). The difference between complexity
analysis and fragmentation analysis is the inclusion of recur-
rence and intensity in the complexity consideration. That is,
fragmentation analysis uses only two states (active/inactive)
and does not consider the temporal patterning of the states
(26), whereas complexity has multiple states (five in the pres-
ent study) and does consider the temporal patterning of states.
The Pearson correlation coefficient between fragmentation
and 1-min temporal grain was r = 0.17 to 0.29 for men and
women, respectively, in the present data set (data not shown;
fragmentation results reported by Palmberg et al. [25] and a
1-min epoch was used for the fragmentation analyses). It re-
mains to be explored whether complexity adds valuable in-
sight over that provided by fragmentation.

It needs to be pointed out that approaches other than Lempel–
Ziv complexity have been tested in the literature. Raichlen and
colleagues (38) assumed that daily activity behavior pattern
has fractal characteristics and subsequently assessed fractal
complexity using detrended fluctuation analysis (38). Rector
and colleagues (22) used multiscale entropy slope as an indi-
cator of behavior complexity. For completeness’ sake, we
tested both detrended fluctuation analysis and multiscale en-
tropy slope on the 5-s epoch data, and the results are provided
in Supplemental Table 5 (Supplemental Digital Content 2,
http://links.lww.com/MSS/C537). Detrended fluctuation anal-
ysis considers a markedly longer time scale than any of the
coarseness scales used in the present study (38). By contrast,
multiscale entropy slope works on time scales similar to those
tested in the present study but captures different characteristics
of the signal compared with Lempel–Ziv complexity (22). The
various metrics of complexity describe different aspects of the
recorded signal, and we would therefore not recommend one
over the others as a one size fits all indicator of daily activity
behavior pattern complexity.

When interpreting the findings, it should be kept in mind
that the cross-sectional study design does not allow establish-
ing causality. Moreover, only three temporal grains for com-
plexity estimation were explored and different coarseness
1216 Official Journal of the American College of Sports Medicine
scales could plausibly indicate different aspects of physical be-
havior. In addition, daily activity behavior states were based
on accelerometry signal and limited to only five categories,
which may hide meaningful nuance from the underlying phys-
iological state. Hence, it might be worth applying complexity
analysis to raw accelerometry signals or, for example, on 1-s
epoch intensity summaries. The delimitations were applied
to limit the computational expense of the analyses to a feasible
duration. As a result, a large analysis parameter space remains
unexplored. Furthermore, the findings may not generalize to a
population with a more diverse ethnic composition and/or to
younger age-groups. In addition, we were unable to explore
potential age-related systematic bias caused by age-related de-
cline in movement velocities (15). Aside from the limitations
and delimitations, the strengths of the study included the pop-
ulation representative sampling, the exploration of multiple
temporal coarseness scales, and the assessment of daily activ-
ity behavior pattern in the habitual environment.
CONCLUSIONS

In conclusion, the presented simple-to-compute complexity
metric presents a potentially informative assessment of daily ac-
tivity behavior pattern. Lempel–Ziv complexity with a fine tem-
poral coarseness seems to provide a reasonable marker of daily
activity behavior pattern complexity among community-dwelling
older adults.
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