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ABSTRACT

The subject of this work i1s the formulation and applica-
tion of & geometrical collective model with comparison to
experiment and with other models dealing with low energy nu-
clear structure. This model, called the EPM(= Extended
Phonon-Projection Model) avoids the use of an extensive dia-
gonalization basis in the deformednucleus region by cleverly
choosing a three dimensional model space with capability of
producing the gross features encountered 1in moving from
spherical vibrator nuclei to almost rigid rotors of deformed
shapes.

The use of deformed oriented states calls for angular
momentum projection to restore the broken angular momentum
conservation 1n the oriented wavefunctions. After having
achieved, in this way, a suitable set of basis states, one
obtains the excitation energles by diagonalizing a
phenomenological effective boson expansion Hamiltonian 1in
this basis. The diagonalization reproduces the basic feature
of the earlier projection model of Lipas et al. , namely the
Sakai-Sheline scheme concerning the development of a har-
monic wibrator spectrum +to a band structure characterized
rotor spectrum. The energy spectrum obtained in this way 1s,
however, quite different from the earlier PM(=Projection Mo-
del of Lipas et al.).

The E2 transition probabilities have U(S)-characterized
selection rules in the limit of small deformations and the
Alaga behaviour for large oriented deformations. A distinct
feature of the EPM i1s the violent behaviour of many bran-—
ching ratios at certain deformations.

Application of the EPM is carried out in the Sm, Gd, Er,
and Yb regions where also a comparison with the earlier PM
and IBA-1 results is performed.The comparis shows that the
4- and S-parameter EPM fits are comparable to or better than
the 6-parameter IBA-1 fits and produce a systematic parame-

ter behaviour. In contrast to other geometrical models, the
] ow energy transitions are characterized by weak
B —to —ground transitions and guite strong Y —-to-ground tran-
sitions like the IBA. Also a comparison with the

CSM(=Coherent State Model of R&duti® et al.) is performed
showing a strong similarity between these models in both
spectroscopic energies and B(E2) behaviour.



[ .PRELIMINARIES

1.Introduction

The complications 1in treating the nuclear many—-body prob-
lem have led to the various models and approximation schemes
and their truncations. As a basic microscopic background one
generally considers the mean-field theory of the shell model
upon which one then builds the remaining correlations of
the valence nucleons. For certain areas in the chart of nuc-—
lides the shell model approach is impossible in spite of the
vast variety of possible truncation schemes available. Al
this is true also for the even—even 1isotopes which are the
topic of this work. Because of the above-mentioned intracta-
bility of +the shell model for many even—even nuclei, and
inspired by the structure of their experimental spectra, a
new kind of approach was developed. In this approach the
experimental ly suggested correlated motion of the nucleons
inside the nucleus was phenomenologically described by the

collective degrees of freedom of the nuclear system. This
approach, based on the theory of classical mechanics, gave
birth to a wide class of nuclear collective models. Nowa-—
days, the name “geometrical models' has been attributed to
them to distinguish them from the recently developed
“algebraic collective models”.

In all collective models the most important collective
degrees of freedom are the quadrupole and octupole vibra-
tions, rotations of statically deformed nuclear shapes and

various density oscillations in the neutron and proton de-
grees of freedom called giant resonances. The most important
geometric models to descrike the quadrupole vibrations and
(simultaneous) rotations are the vibrator model (or the 1i-
quid drop model for spherical equilibrium shapes) and the
various rotor models (liquid drop models for deformed equi-
librium shapes) like the rotation-vibration model for axial-
ly symmetric and the Dauvvdouv model for triaxial deformed nu-
clei. All these collective models restrict the shapes of the
nuclei to special small ranges of the quadrupole surface
coordinates and thus can not be applied to transitional nuc-
lei and nuclei for which the coexistence of wvarious shapes
occur. This lack was cured by the Gneuss-Greiner model which

also i1ntroduced the concept of collective potential energy
surface +to describe the development of nuclear shapes from
vibrators to almost rigid rotors via the transitional re-
gion.

The Gneuss—Greiner model /Gn7l1/ was one of the first mo-
dels to describe the interaction between the quasibands (ac-

==



cording to the Sakai scheme) called the ground, g and Y
band. Also other collective models were developed for this
purpose, like the extension of the variable moment—of-iner-—
tia model /Da70/ the hvbridisation of the particle (or gua-
siparticle) degrees of freedom to the collective motion of
the core of the nucleus /Ra83b/, the algebraic approach of
the IBA /Ar8l/ and the treatment of an effective Hamil-
tonian within a restricted collective space generated by
elementary excitations of a projected coherent state /Li76;
Ra83a; RaB84; Su83a; Su8da/.

Among the abouve models the most popular 1s nowadays the
IBA model, mostly becauce 1t offers simple and compact
expressions for energies 1n certain limiting situations.
These situations are called dynamic symmetries and can be
used as a tool in categorizing nuclei having different low
energy spectral(in this respect it has the same properties as
the Gneuss—Greiner model). An other way to avoid the computa-
tional efforts of using (in the deformed region) a large
diagonalization basis is to choose a deformed basis and then
perform a projection to restore the broken rotational

invarilance. This 1s the line of approach chosen in the pro-
jection model and in the CSM (=Coherent State Model of Ridu-
t4 et al. /RaB83a/). These two models provide a simple way to

describe three interacting (quasi)bands within a phonon pic-
ture.

In this work I speak about an EPM{=Extended (Phonon) Pro-
jection Model),which 1s an extension of the model of Lipas
et al. /Li1748/ . Like other geometrical approaches 1t also
glives an 1ntuitive grasp of the problem in terms of the con-
cepts of classical mechanics, but 1t differs a bit from the
famous Bohr— Mottelson approach /Bo?5/. Of course, the effe-
ctive Hamiltonian used in theories of this kind lacks a mi-
croscopic background (which is achieved, to some extent 1n
the IBA through the formalizm of IBA-2) although, in princi-
ple, one could calculate the coefficients of the boson Hami-
ltonian microscopically by using boson expansion theories,

or phenomenologically by using collective potential energy
surfaces.

In spite of the lack of a deeper insight into the micros-
copic foundations of nuclear structure, phenomenological

models of this kind serve as a tool 1n producing 1deas and a
systematic description of i1sotopic chains that can be va-
luable material when striving for a deeper-reaching nuclear
structure theories 1in the future.



].2.General Theory of Projection

The development of the theory of projection started 1in
the late fifties inspired by the Hartree—Fock calculations
for deformed nuclei. It is known that the quantum wvaria-
tional principle for the HF wavefunctions,

(I.1.1) <801 N - E 10> =0 ,

where the ®'s are single Slater determinants, leads to
various symmetry violations both in the resulting HF Hamil-
tonian h and in the resulting wave functions /Ei176/. The

same 1s true also for other nuclear theories of wvariational
nature, like the HFB, the CHFB etc. /Ri80/. Symmetry viola-
tions also occur in theories of non—-variational nature, for
example 1n the CSM /Ri80/ and 1in the projection model. In
these theories one imposes the symmetry violation by hand as
a starting point of the theory for example in the form of
symmetry violating trial functions. In variational theories
the symmetry of the trial functions and the 1iteration pro-
cess itself determine the degree of symmetry breaking.

The symmetries that are mostly violated are the transla-
tional i1nvariance (conservation of linear momentum), rota-
tional invariance (conservation of angular momentum) and ro-—
tational invariance in 1sospace (particle number
concervation). Because the above symmetry—imposed conserva-
tion laws are a fact of nature, the need of symmetry re-
storation arises in theories, which try to carry a tidy mi-
croscopic appeal. A way to achieve this restoration is the
gquantum mechanical projection.

In variatinal theories an average conservation of quanti-
ties can be attained by using constrained variation. For
example the requirement of average conservation of angular
momentum in the HF theory can be guaranteed by the con-
strained variation (@ is the Lagrange multiplier)

"N ~

(1.1.2) 801 H -E -T J 10> =0

requiring wave functions @w for which

N
— X

(1.1.3) O - 1 T 0,2 > = J(I+D

but which are not eigenfunctions of the total angular momen-
tum J.

-3=



The projection of trial wave functions from the original
Hilbert space to a more restricted Hilbert space can be per-—
formed 1n variational theories as a projection after wvaria-
tion or before variation /Ei76/ and /Ri80/. The question of
superiority of the two methods does not arise in non-— varia-
tional models like projection model. The recipe for the con-
struction of the projection operators which project out wa-
vefunctions containing the symmetries implied by symmetry
groups of the Hamiltonian of the system 1s very simple
/Ei76/: if |$¢ > is a given non-invariant state under a cer-
tain symmetry operation, then an invariant state [w> may
be constructed from 1t according to

(I.1.4) fw> = SdQF(Q)U(Q)I®> = PU|®> )

where the weight function f(Q) has to be chosen according
to a variational principle, ie. by minimization of the expe-
ctation value <wliHIw> of the energy. The operator U(Q)
1s the unitary operator which performs the symmetry opera-
tion and Q denotes the parameters of the symmetry opera-
tion.

The practical ways of determining the weight function are
many, and in the projection model one uses the results of a
classical paper published by Peierls and Yoccoz 1in 1957
/Pe57/. In this paper the spurious centre—-of-mass oscilla-
tion, represented by the HF-type shell model wave functions
was attacked by projection procedure vielding a formally cor-
rect expression for the total energy of the system and tran-
slationally invariant wave functions. In the variation adia-
batic trial wave functions(wave functions independend of the
angular speed W of the system) were used. However, the lack
of Galilean invariance yielded a quantitatively wrong ex-—
pression for the kinetic energy, but this was corrected by
Peierls and Thouless /Peb62/ who used non-adiabatic trial

functions in the variation of f(Q). The so called genera-
tor—coordinate method uses a still wider class of trial fun-
ctions /@néé/. In /Pe57/ +the restoration of rotation

invariance led to the expression

*
- 1, 4 ‘N
(I.1.5) ' J MK > = (2J+1)/81 NJKS;dQDMK(Q)U(Q)l& K>

J
where Q now refers to the Euler angles and the DM ()
are the Wigner D-functions or rigid rotor eigenfunctions.
The state J]x K> 1s often referred to as the intrinsic
state because of the lack of good angular momentum. The N
are normalization constants and o includes all additional
quantum numbers.

Because the projection methods do not quarantee the
orthogonality of the projected states, an orthogonalization
i1s usually performed, as in ref. /Li76/. Projection may also

~4-



lead to ouvercompleteness, From eqg.(l1.1.5) one sees that the
projection operator PJK (Which 1s a true projector only
when M=K) can be written as

J *
(I.1.6) PMK = (2J+1)/8ﬂltSdQDgK(Q)U(Q)

In Dirac’s notation it reads /Co71/, /Ho72/

J
([fod ) PMK = 2 le I M XX o« JKI

=



II.Basic Concepts of the Projection Model

II.1 The Qriented Svystem

The term oriented system 1s used here instead of the term
intrinsic system to distinguish the BMM freely rotating true
intrinsic system (see appendix B) from the system used 1in
the PM. Below 1t is shown that the model Hamiltonian of the
PM corresponds to a system which behaves like BMM 1intrinsic
system that 1s forced to small vibrations around the labora-
tory axes with the 1intrinsic =z axlis coinciding on the

average with the lab. z axis.
The model Hamiltonian H of the PM reads /Ha70/

e

. 2 \ b
(I1.1.1) H, = %BOZ Sl %Coz.ldmi “’Jico(oko—,%b)
m m #0
It may be noted that Hg in eq. (II.1.1) is an isotropic one
(the same mass and stiffness parameter for every magnetic
gquantum number m) and that 1t is not a S0(3) scalar (note
that it is expressed in laboratory coordinates &, ). So the

non—-scalarity makes Ho only a means of generating a suil-
table set of basis functions. The anisotropic model has been
dicussed in /Ho72/. The procedure followed in appendix B

leads to the following second quantized form FA, of H, :

—

(11.1.2) o = i L b s & B = dlE # o) # &= s
m

where

(I71.1.27) o = ﬁoﬂCO/Zhw .

and bf,b create and destroy uswal S5-dimension HO quanta.
To diagonalize the Hamiltonian (II.1.2) a canonical tran-
sformation

(I1.1.3) I



is needed. Expressed in terms of these “deformed phonons’ H
now reads

m

and the condition

(11.1.6) 80> = 0

~J
gives as the “deformed ground state’ [|0> a socalled co-
herent phonon state (unnormalized)

=t T
(II1.1.7) 10> = exp(dbo)|0> .

The state (II.1.7) is the ground state of the oriented sy-
stem, and 1in analogy with the BM intrinsic R and ¥ state
(see appendix B), the oriented R state is BJ'O> (K=0) and
the oriented ¥ state is g% 0> (K=2). It may be noted that
because Hy; 1is not an SO0(3) scalar but only an S0(2) scalar
(axial symmetry), the orien&ed ground, R and Y states are
eigenstates of L; but not L (see appendix B). Furthermore,
the oriented states do not have good spherical phonon number
as 1s seen from eg.(IIl.1.7).

Let us see the meaning of the system represented by H, in
terms of the BM 1intrinsic system described in appendix B.
The kinetic energy part is the same as i1n the BM model,
(B9), and the potential term can be cast in the form

V, =3¢ 2l 11C0<o<0‘/50)L =

m¥*Q
=tc 2 la,l - Cofoths ¥ Lhyfhe

™m

Transforming to the body-fixed system (appendix A2) one gets
5 [ A7 x 1 = _
\/o %-Co\&o+10\;}+1C0(7’0

- Copol D) + 3, (D5 () * D2 ()]

-7=-



Using the relations (A1.9),(A1.10), (Al1.8) and the explicit
expressions for spherical harmonics, one get after some
manipulations

/ P b B ] a
s ? \/({%lX’aD)al)ﬁo> = %_‘—o(ao’/’v0> 5 Loki/30a0+al)

“%.CO(BO[(BLOS7%~W)@0+ ﬁs’.nlﬁa031x»all y

where (x,B,¥) are the Euler angles. Because the «,, are
parametres of small oscillations, then R and Yy are small.

Exploiting this one gets

~ 2
VO—_%‘V(Q’ﬁOISOIal>:'§co(3o'ﬁo>*Cb(ﬁogd+ét)

(IT.1.9 . N I
i copo(a;r\Ee al) = %_co(ao-/ao) +coal-\J1 Glal

where © is the polar angle measured from the z axis. So one
may picture the Hamiltonian Hg of the oriented system as

(IT.1.10) Heo = H

o = Hgy + V() = H. . (aj,a,) + T ___ + V(o)

1 ot

where

(I1.1.11)  H, . (ag,a,) = %Bo(45 + 2a3) + 4Colag = o) + Coar

3
(11.1.12) T o = 24 (3,,8,)
k=1

(I1.1.13) V() = - \372'8%,4,

The imtrinsic Hamiltonian (II.1.11) is the Bohr-Mottelson
Hamiltonian of (B.8) with C,y=Cy » and contains two degrees
of freedom. The part Tyer *V(8) 1ncludes the rest of the de-
grees of freedem, namely the three Euler angles. It may ke

-

-



noted that in V(8) the restoring force is harmonic.

The usefulness of the oriented system lies 1in the fact
that the same boson operators are used in the oriented wave
functions as in the laboratory Hamiltonian and the transi-
tion, operators; also the solution of the eigenvalue problem
for H 1is easy.

I1I1.2.The Laboratory Hamiltonian

N

The Hamiltonian Ho of the oriented system is used only as
a means of generating a suitable set of basis states for the
calculations. The energy spectrum of a nucleus is a result
of the diagonalization of a rotationally invariant labora-
tory Hamiltonian H. In the framework adopted in the PM there
1s no way of deriving the laboratory Hamiltonian from first
principles of a microscopic theory of the nucleus. So the PM
1s a phenomenological <classical collective model where
through a suitable parametrization of the theory one gets a
set of constants to be determined experimentally.

The starting point of the determination of H are the re-
strictions imposed on it by the rotational and time reversal
invariance and hermiticity. The purpose in this Extended
Projection Model (=EPM) 1s to write down the most general
boson (expansion) Hamiltonian satisfying the above require-
ments (here the word “expansion’ is used without trying to
make a connection to the underlying fermion system /Ri80/).
This expansion 1s not a phonon— number conserving one as for
example 1in the IBA, where connection to the underlying fer-—
mion number i1s made through a number—conserving phenomenolo-
gical Hamiltonian /la81/. In this respect the EPM resembles



the model of Gneuss and Greiner /Gn7l1/ , where this kind of
Hamiltonian 1s used to give insight into nuclear collective

potential energy surfaces. There 1s, however, also a big
difference: in the Hamiltonian used by Gneuss and Greiner
there was kinetic energy terms only to the Jlowest order,

while they had potential energy terms up to the sixth order.
In the EPM the expansion 1s made in the second—quantized bo-
son operators b, and by instead of the collective gquadrupole
coordinates o«,used by Gneuss and Greiner. This means that
the expansion 1s symmetric in kinetic and potential energy
in contrast to the great asymmetry in the Hamiltonian used
by G&(G (see the discussion 1n connection with the section
(0 Y 4P A

The most obvious lowest-order Hermitian scalar quantity
which can _be formed_out of the b'’s and b’s is the number
operator N (g' and b both are tensor operators)

(11.2.1) N = b*b - b = (-1
m -m

This was the only term used in the earlier version of the
PM /L176/, Wwhere +the deviations from the pure gquadrupole
choron 1imit (the U(5) 1imit in algebraic language) stemmed
merely from the finiteness of the model space. There 1is also
another term of the second order and it is easy to form.
Using the abouve notation 1t reads (note hermiticity)

CI0.2:2D Ban = b-b + b*b .

and 1s seen to be number non-conserving.
There are two kinds of third-order terms, namely B,;, and
Biso «The term Baig is easy to form because the coupling order

in the terms is clearly immaterial. So 1t is
Cdled s fmles
the term B3 1s a bit trickier one. In principle 1t con-

tains 6 different terms, but exploiting the relations

5 = (te]l By = ehERl = TWTE
b'ef)e = -(6"8], ([s" e B = eh[BB] = [57B];
of-[B8), = 5-[6t8], = (6] 5 = (B8], 6" = b-[Bv ],

-10=-



ne notices that the coupling order and the mutual order of

and b are 1mmaterial. So one gets the compact expression
- 1t 1
(11.2.4) B,y = b6t )b + b - (56
Note that the number of terms in B,; is 1immaterial (should

be three because there are three ways of coupling the b’'s)
because 1t 1is multiplied by a phenomenological constant.

The fourth-order terms need a bit labour, but compact
expressions can be achieved on the basis of arguments on
uniqueness of the phonon states created on by bl “s. The term
840 1s agaln easy:

(11.2.5) Byg = Lt <+ BEbeb
This is so because there i1s only one state |N=4,J=0> (here
N 1s the number of phonons). Because the state Lb*b*gj 0>

1s unique, the term 831 can be written i1n the form

(11.2.6) By, = bbb+ B + bl bbb
The combination of two bT's and two b s gives three
linearly 1independent L=0 objects. These can be written 1in
the form
Ly _ o8 5 B} -
(11.2.7) BSS) = [bfef] -[BB]), . L=0,2,4

Actually, the recoupling of terms of the form §b+'b)(bt b)
gives Jlower—-order terms 1n addition to the normal-ordered
terms in (II.2.7).

It 1s convenient to note the relation /Ho72/

(11.2.8) X 4§:;[¢ - mL+n]BSE)

which tells that

-11-



L

4 _ 3T R (0) (2)
(11.2.9) 4853 = J - eN + 6By’ + 38320 .

So, instead of using the term 822 in our boson Hamiltonian,
one can replace 1t by the square of the angular momentum,
which has much simpier matrix elements between states of
good angular momentum. Now we are 1n a position to write
down the boson Hamiltonian up to fourth order:

€1d.2.10) H = cqN + c,Bag + c4Bay + cyByo *+ csByp +

(0 ( =2
CQB—')'\ o+ C'}B')_'L + C%Bl.%.) -+ CgJ

The number of terms in the Hamiltonian (II1.2.10) can be
reduced on wvarious grounds. This will be discussed in the
next chapter. It may be noted that if only the grourd state
band would be included in the description, already the Hami-
ltonian

(IT.2.11) H = N + gJ

gives all that the Hamiltonian (II.2.10) would give /Ho72/.
It 1s also clear that in our present model the efficiency in
reducing anharmonic terms of the Hamiltonian (II1.2.10) to a
few effective ones 1s less than 1n the former projection mo-

del because here the diagonalization mixes also R and v
states to the ground state band, whereas in the earlier mo-
del the ground state band was chosen to be pure through

Schmidt orthogonalization.

The earlier PM already gave good results also for wvery
detormed nuclei although only the harmonic Hamiltonian N was
used. This 1s due to the deformed projected basis states
which make the convergence of the boson expansion (II1.2.10)
faster in the deformed—-nucleus region /Ho70/.



II.3.Diagonalization of the Laboratory Hamiltonian

1_InN'sectiorw II.1 the oriented states Q> , 5§| 0> and
8, 10> were given. However, candidates for the physical
states must be eigenstates of the angular momentum In order
to achieve this, the theory of projection (section [.2) may
be exploited. A simple prescription for the projection 1is
given by the Peierls—-Yoccoz projection method. (A nice dis-
cussion of the angular momentum content of an oriented state
in the light of the uncertainty principle is given 1in re-

ference /L172/). Also a Peierls—-Thouless method for axially
symmetric nucleil could be used, but 1t 1s much more compli-
cated and unnecessary for the adiabatic limit. The formula

(I.1.5) of section .2 gives as a result

{ JN
Igo J> = NgO(J)PMO|O>
_ J t_ 4
0T 3.5 IBO J> = NBO(J)PMO(bO d) 10>
_ 3
Iro J> = Nro(J)PM2b1IO> .
which correspond to ground state, R and ¢ bands.

It may be noted that from one oriented s=state one
generates a whole band of states with angular momenta going
from a well defined minimum up to infinity. This 1s analo-
gous to the BMM where each intrinsic state gives a definite
band with infinitely many states. The notation 1s that of
section Il1.2 with N%w ,NBO and Ny, normalization constants
given 1n appendix D2. The non-orthogonality of +the basis
states i\go >, 1Bo I, | ¥o J)} implies two ways along

which to continue. The first way 1s to orthogonalize the ba-
sis by a Gram=Schmidt procedure and then to diagonalize the
laboratory Hamiltonian H 1n this orthogonal basis. This
leads to the ordinary eigenvalue problem. In the earlier
form of the PM the diagonalization part was left out and the
orthogonalization was performed in such a way that it yiel-

ded the correct way of evolution of the few low energy le-
wels from pure phonon states (spherical nuclei) to rotor
states (deformed nuclei). The correct way of evolution was

considered to be the Sakai scheme for quasibands /Li176/.

The second.way of dealing with the projected states is to
diagonalize H directly in this basis yielding a generatized
eigenvalue problem (diagonalization 1n a non-orthogonal

basis). The second way was chosen in the EPM because i1t is
more straight forward when standard library routines for
computer diagonalization of this kind are availlable (see se-
ction III.1). In appendix C are derived a few important
formulas concerning the calculation in Hilbert spaces with
non—orthogonal basis states. The basis for the diagonaliza-

tion 1s the formula (C.6) where the Oij and the FU will
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form 2x2 matrices for J=0 states (there exists no Yo 0>
state) and 3x3 matrices for other J states. Here 0:i) 13 now
the energy matrix for the laboratory Hamiltonian H to be
diagonalized. Writing this down explicitly one gets for J22

. o J R J J
Hoq — Hop —aRyp Hey —aRay
J J
(11.3.2) Hpog ~&R oy Hpp — Hpy —oRpy | = 0
HJ _ RJ J iU} J
7y O Hyp ~Ryp iy &
where
J ~N
Hij = <1_ JI H | Ig J>
(11.3.3) ’ i,J=9,,6,3’
J . 1l
Rij = <1O JIJO J>

As a result of the diagonalization one gets energy eligen-—
values and eigenvectors which are to be normalized according

to formula (C.10). To be ab]eJto carry all this out, one
needs to calculate the overlaps Rij and the energy matrix
elements H: . This requires some special tricks which are

discussed for the number operator N in reference /Ha70/. The
explicit form of PJK 1s not needed 1in these calculations and
the matrix elements of (Il 3.2) can be obtained by wusing
general properties of projection operators (see appendilx
A2) ., This 1s a common feature among theories where projec—
tion 1s used. J

As a result of the calculation of the R% and the H;,. one
gets ten different complicated integrals which must be cal-
culated numerically (see section III.2). These integrals are
tabulated in appendix Dl1. They are the building blocks of
the different energy matrix elements which are tabulated 1in
appendix D2. The appendix D2 do not contain derectly the ma-
trix elements of the different terms in Hamiltonian of eq.
(IT.2.10) but most of the terms are effective ones and
marked with primes. The reason for these “effective’ terms
1s that 1n subtracting from the original terms lower—-order
pieces of the Hamiltonian, one arrives at easier matrix ele-
ments, many of them even vanishing. This is completely legal
because 1t has only a renormalizing effect on the phenomeno-
logical coefficients C; . Also the matrix elements of the
terms Byp and B3y are not tabulated because their asymptotic
behaviour suggested that they could be left out of the ener-—
gy fits(i.e. asvmptotically their matrix elements become the
matrix elements of N and B,o, see the relations (II.5.11) ).

The computationally conuvenient effective ocperators are
defined as the following linear comblnations:

=l =



(I1.3.4)

o

. Y B T A D 2dT ey 5
B"l - ldl&ll*‘\l—;d %11+N 3 %1.1: i EBID_+1E{J.\-"N}

where d 1s the deformation/stiffnes parameter of equation
(I1.1.2"). Thus our effective Hamiltonian gets the form

(T o Ble SN HeFF = c;N + C;BLO + c;B;1 + c;B;O +
S o Can . o(2). .32
+ csBll + CéBll + cqJ i
where

¢y = cq - dB/They + 2d°/7 ¢y

ci = ¢y - d2/7'cy + d°/10%cy

(11.3.6) ¢y = —{8/7 dcy + 4d"/7icy

c; = —J§77jdc4 + da/S'c?

¢y = d°/100 ¢,

cp = 2d°/7 ¢4
and the terms B4, and By, have been left out. The form
(II.3.95) can be arrived at by inspection of the asymptotic

behaviour of the matrix elements of the different anharmonic
terms of the Hamiltonian (see section I1.5).
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II1.4.The Harmonic Limit of EPM

Analvtical expressions for the integrals Ip () .
i=1,...,10, +the overlaps Rf- and the energy matrix elements
Hfj can be derived in the limit of small and large deforma-
tion parameters. The small-d and large—-d limits of the Ij(J)

are tabulated 1n appendix E, and 1t 1s easy to specialize
these formulas for definite J and then use them to calculate

special Rﬁ- and Hi analytically. Of course there remains
the task of diagonalizing 2x2 or 3x3 matrices by hand ,which
1s not a very nice job to do. But doing all this one gets

hold of the analytical form of eigenvalues and eigenvectors
in the two limiting cases of the anharmonic vibrator nucleus
(small d) and the rotor nucleus (large d). This is useful in
checking the computer program for 1ts correctness and
accuracy and also gives some indications of the magnitude of
the effects caused by that part of the Hilbert space which
was left out of the model space. In this chapter we stick to
H=N.

As was mentioned above, the model space i1in the PM and the
EPM 1s very restricted and causes the spectrum of the number
operator to deviate from the pure phonon spectrum at non-

zero deformations (d>0). . At zero deformation , d=0, the
oriented Hamiltonian H of eq.(Il.1.1) becomes S0(3)
invariant and coincides with the laboratory Hamiltonian.

This, 1in turn, should indicate that the harmonic phonon spe-
ctrum 1s recouvered for the number operator as laboratory Ha-
miltonian. But this 1s not so obvious, because actual calcu-
lation for d>0 uses only three oriented states (see chapter
IT1.1) and this would suggest the existence of only the
phonon vacuum and the one-phonon state. So one must be care-
ful in extrapolating to zero deformations.

The fact that at small, non—zero d one gets part of the
U(S) phonon spectrum (one gets 3 states of each angular
momentum and these correspond to the three possible phonon

states with that angular momentum in the U(S) spectrum, see
fig. 26 on page 1CO0 ). This i1s understandable when one makes
an expansion of the projected states making use of

egs.(II.,1.7) and (II.3.1). So

J ¥
- db - J i)
lgg J M> = N?OPMOe °o|0> = N%oPMO(1+ db, +

pa 3
+ nd®t, o+ 1/60d7H, + L0100

It 1s easy to derive the relations (A2.14) which may be
used now to yield
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\GBO J M= Nokof[ D,l0> +d BJLQM\0> + Ld N

(I1.4.1) 22 ) 3 P T R ¥ S S
X<oo o)[b%*]m\o>+%wlm‘( ( )*

0 00/ 6 00
"{U[\oﬂoqjmlo> + }

Now one clearly sees that at finite d the projected
states are a superposition of ordinary U(S) phonon states
with different phonon numbers. In the same way one gets

¥ (11 \))x
o 4 MY = Nl 8,0kl 0> + daadsr (3 0 -2
1&111_) “
wHl Ve 0 O
[ L
b s

-JEU[MJLLM10> L

(11.4.2) L6t lod + 24N 20

L=024

Lo 3 1> =N =d Bolod + (1= 8) 50 b 1)

i

(1.3 0‘\11“1(0 0 O)M"iél)[gg}m\w +

2 L3

0 0 0)[b+[5+b+1,_]m\07 +}

evolution of the low end of the spec-—
one may concentrate on J=0 and J=2

g 1.L)

L }Loll(W -3d 2o+ (0 00

To understand the
trum to the U(S) limit,
states.

Noting - -that for the two-phonon state 1in the U(S) limit

(11.4.4) n=2 M > = 142 [B'E'] 10

one gets

S



lag 0 0 > = Nc}&{]0> + 1/410 dll n=2 00 > + ... ]
8o 0 0 > = Np [-dl0> +2/5'd(1-%d™)|n=2 0 0 > + ... ]
To be consistent in the power expansion and in calculating

the normalization constants N%o’ Nﬁo one has to use the re-—
lation

| h=3 J=0 0 > = 1/48 [b’fbﬂ2-b*ao>

and thus arrive at the result

lg, 0 0> = [1+ d(d‘*)]lm + d7/J10 (1+43d™/196 +
+(Td™ HYin=2 0 0 > + T

(I1.4.5) |gg 0 0> = —{5/7' (1+55d%/686 +&(d") ) 10> +

+ 277 (1-275d%/686 + d®) Hln=2 0 0> + FdD

Yo 0 0> does not exist

Now we come to_a critical point:the truncation. The basis
ﬂgo>, IBo > s i > is a small subset of the complete basis
where excitations of any deformed phonon number are inclu-
ded. By truncating the expansions (I1.4.5) after the first
two terms one gets a two-by—-two closed set of basis states ,
1.e. a one—to-one correspondence between a subspace of the

projected states and a subspace of the U(5) states. Strictly
speaking, when truncating the abouve expansions one i1s not
allowed to speak of U(S) states (because they are an
infinite series of projected states), but rather quasi WU(95)
states | > for which

d—0
(I1.4.6) | U(S) > —=——- > 1 Us) > i

because the last terms i1in (I1.4.5) can then be dropped. So

_— ~ QJL > ~
\0?5“ oo =[1+a(d] oY R \W}eci sG] 200

)
v

(I1.4.57)

s 55 i N
o 00> = V5 (1 256 47+ 0 )]15 Y +

3-8 0] oy
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Inverting this one gets

(0> :[W-%.A’%g(o}*]\%o@ “%WEOJIU’MOO>
(11.4.7) |100> \j [\‘1%05 +Od ]\03000> +
T2 a0 ] g0 0

The above results can also be obtained by diagonalization
in the small-d limit. Using the energy matrix representation
(I1.3.2), the expressions for the Rfj and the H (appen-—
dix D2) and the the small-d values for the 1ntegrals I )
(appendix E), one arrives at the secular equation

1) 2%
Toltt 35 d - G- +(ﬁh—%304

(IT.4.8)

ED o (490+215d )a? - (980+535d Da + 24% < g ,

which gives 1n addition to the normalized eigenvectors
(IT.4.7) (identification with the U(S5) limit i1s made on the
basis of corresponding eigenvalues) gives as the eigenvalues

(11.4.9) ®= 0 +O(d™) 3 «,= 2(1+10547/980) +O(d>)

From eqs.(11.4.5") and (11.4.9) one can see that when d
goes to =zero, the projected ground state goes over to the
U(S) vacuum and the lowest B state to a mixture of the U(S)
vacuum and the U(5) two phonon state of zero angular momen-—
tum. This mixture i1s given in this zero-d limit (strictly
speaking the limiting value is out of the model space) by

(I1.4.10) 18,0 0-> = -5/7 10> + 2 /7 |[n=2 00 > ,
wlith the vacuum component dominmating! Note, that according
to eq. (I1.4.7) in the zero—d limit the EPM as also the PM

ground state go to the pure U(5) vacuum
The process abouve can be performed also on J=2 states.
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This 1s more tedious because now we have a three

-byv—three
system and the U(3) three—-phonon states come into the play.
The expansion now reads ( see(ll.4.1,2,3) )

\0301‘,\"0 :Nq %J[r\f\ LMD —%i

Iln=L 21Mm> +

\]5 SZ/\II.U-W (o 0o/ [b Lo ] Jomloy + U(olq)}

L=0,2,4
ad
lyo 2 M7 ZNYO{MH LMY Y AT InTL M) ¢

21 u\2 L
432 Lalm(om)(lgl)[bwb*] Limlod+ (4}

1d
30 2 MY =Npel - nm1 2y -

FO-Ed = M)y -
1L

J lcl (1= %‘L;D{lbﬂ(o 00)Eb NS ] llM\O> rg(d’ )}

The

3-phonon states are now i1ntroduced by the use of formu-—
las /L166/

LA
(ar.a.t NOAMGIA ) =L+ sy L) 2

CONGON Tl AN G )0 m> =NOAGIAG) *
(IT.4.12)

(

A A A
XMK’A'}\\jquj)l_lg)’”*'q’lji‘j xj KJ

)

ra) g
where jE-J2j+1x|))(J')XJm> 15 an unnormalized
state with the intermediate coupling
(I11.4.14))) and the N(ANCj')Aj) are the corresponding norma-

lization constants. Use of the above formulas indicates that
(magnetic guantum numbers left out)

three—phonon
indicated (see

(IL.&-133 w‘5/1d)(0)> =fd7/8|(2)> =4J“5/”“](d)> = | n=3 L=2>
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where

(11.4.14)  1(L)> = [b+ bref) 10> = 122¢Lr22>

This 1s obuvious because the 3-phonon J=2 state 1s uniqgue.
Inserting (I1.4.13) in the expansions of the previous pa-
ge, calculating the norms and truncating one gets

l°2s LMy =1 wou ]th? r[\

—~— L C}L ~—
N1 awmy *wehi-T8 +o(d) ]|3 LMD

(11.4.15) \f”ol“’\> -3 0% ey ﬂlum> 4 1+H +

Oy TR NI TE i
lye 2™ =[1- 54 +O’(J*)] wl\\/\>+%[\—l—~f‘+
r oIy + -2 e TS

Inverting, one obtains

1AM = e{[% Fd o] ‘ao LMYy *[%%Iw“
+O(d ] p > My + (1= 5ol o (d )]‘yolM>}

= {3 J*
(11.4.16) 12 1™MY = Mi’bﬂ_‘%*@(iw\ggol\”o &
+[1+34% o(d) ]y, 1M>}
X g\f\‘w 5%4—[4—%&3 g(y)]% 2y iy [3-
+od N peamY + 11+ B+ 6] 1yr 2 m> |

Diagonalization would give as eigenuvectors the states
(IT.4.16) and as eigenvalues the one-, two- and three—-phonon
energlies. So calling the right sides of eq. (II.4.16) as
lg 2 M> ,lr 2M>, R 2 M> one recovers the Sakai scheme
that also underlied the earlier PM, ref. /Li76/ (see also
figure 2 on p. Fo ).

In fig. 1 there are plotted the overlaps for various
angular momentum values. [t may be seen, that when d approa-
ches zero, the value for the only J=0 overlap, <90|%> -
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goes to ~J5/?1, as could also be seen from eq. (I1.4.57).

For the other angular momenta all the overlaps go to wunity
when d goes to zero. This 1s readily seen for J=2 from eq.
(IT1.4.15). The asymptotic limit for the overlaps 1is dis-

cussed in section II.S.
In fig. 26 there is shown the relevant part of the U(S5)
spectrum with total set of quantum numbers and E2 transition

probabilities up to phonon number 4. This 1s an exact limit
which the EPM must approach when d decreases, so this is a
good check for the computer code. Another l1imit where the

code may be checked is the asymptotic limit discussed in se-
ction II.S.

So, the line of argument leading to the use of a very re-
stricted model space 1is that in this way one can transfer
some of the dymamics of the Hamiltonian to (deformed) wave
functions, thus allowing a pure harmonic Hamiltonian to
generate anharmonic and rotational spectra. This basis 1is
intimately comnected to the ellipsoidal form of the rotating
nucleus and so even after the truncation in the number of
the basis states, this basis is believed to describe rather
well nuclear low-spin structure. Enlarging the number of ba-
sis states will lead in the case of the harmonic laboratory
Hamiltonian closer to the harmonic spectrum, and the re-
storation of the anharmonic and rotational features in the
spectrum will then demand a laboratory Hamiltonian going
beyond the harmonic approximation.



II1.5., The Asymptotic Limit of the EPM

Let us do the same as in the previous chaptern (1.e. exa-
mine the structure of J=0 and J=2 states for H=N) now in the
case of a large deformation parameter referred to as the
asymptotic limit. First examine the case of J=0. Using
appendix E for the integrals and appendix D2 for the matrix
elements, one obtains the secular equation

d*-1-3d"* -« 2/3:d " +ad” (1-1/6-d°)
= 0
2/3:d” +ad” N(1-1/6+d7 ") &>~ Peury
[1-d7*+1/3d + O(d " Jo*+[-2d7+3-d" *+ F(d Do+
+ld¥-3d+5/3+ ™ ] = 0
Solving this, one gets the eigenenergies
2 -1 R =
(IT.5.1) oy = d'=d-1/2+(F(d™ ) 5 ay = d +d-1/2+F(d™")
and the corresponding eigenuvectors
. -1 -2
lo, > = 142 [1-37a-d7 "+ 0 ™™]] e, 0> -
: =1 _
12 -8 d v ga D] s, 00
(I11.5.2)
. -1 -
log> = 14214374497 + (d ]| g, 0> +
v 1 Zhsa a7+ o™ e, 0>
where |[0Op > is a state of angular momentum J=0 belonging to

the B band (E.>E{ground) ,M's dropped), and g stands for
the ground state band).
For J=2 one has the secular equation
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LR 5 1 1 L ) EV I SN N N
d-1+3 "« T T d(W‘ r 4‘) T 37 PR P
5 1 1 3 = 2 1
T "ok'_.l(\“ 6J1) Jd - L-ot T o
a1 [ PRV >

Tg T 3 o d =

Soluing this, one obtains the eigenenergies

o = d - d - 172 + F1/d)
(11.5.3) ay = d° + (F(1/d)
oy = 4%+ d - 1/2 + (F(1/d)

and the corresponding eigenvectors

1201+ o)l oy 2> - 142+ Gasa]l s, 2
(I1.5.4) |25 = [1+ ota/dd]lry 2>
N2+ @1rd)] oy 20 + 1421+ /] 18 2>

| 20>

l2f5>

From eg. (II1.5.4) one sees that in the asymptotic limit
the eilgenstate IJ,> begins to decouple from the other ei1-
genstates |Jp> and lJ?> and to have only one component, the
l¥o J> component. This 1s in contrast to the earlier PM,
where the ground state was chosen to be pure, 1e

(IT.5.3) ng >PM = IgO o 2

and the R and ¥ states had the Gram—-Schmidt form /L17&/
| >0 = Npki=lag I><gq JDIry I

L dpop = Npll-lgg I<ag Jl=lrg I><ro I8y P

There are also big differences in asymptotic energies be-
tween the PM and the EPM. From eq, (II.5.3) one sees that
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the asymptotic energy differences between states of the same
J but belonging to different bands are 1in the EPM (with
obvious notation)

B(J)pe= ET - EZ = 2d + O11/d)
(I1.5.7)  A(dyq=EY - EF=d + 1/2 + Ow/ad)
B D= EY —EY = d - 1/2 + O(1/d)

while in the PM the corresponding asymptotic differences are

/Livé/, fig.8

pP™M 3 2
A Do = 1+ O(L/dD)
(11.5.8) AT =1 (1/d%)

P™M

2
A(J)FY 0 + O(1/7d™) .

So the differences are really drastic and imply a greater
B/vy flexibility for the EPM when anharmonic terms in the
Hamiltonian are used. Here one sees clearly the effect of
diagonalization as the best means of creating an orthonormal
basis, the “optimal’ Gram-Schmidt basis. Here the diagonali-
zation Jlowers the ground state much more than the Schmidt
scheme used in the PM., The asymptotic behaviour of energies
in the EPM is shown in fig.2 .

Fig.l shows the overlaps as a function of d. As was men-
tioned in section II.4 , all the overlaps tend to unity when
d goes to zero, except the overlap <g, 0lg, 0> which be-
haves 1like

dwo_

(I1.5.9)  <go 018, 0> "= =45/7'[1-43d% 090+ Fah] .

In the asymptotic limit the behaviour, for example for the
J=0 and J=2 states, 1is

-1 - .y
~d7(1+1/6°d ) + T@d™hH

l

<gy Olpg 0O

Cgo 21Be 20 ~ =d” N 1-7/6"d"™ + (Td™H

(I11.5.10) <gq 2lrg 2> ~ 2 /3+:d™ > + (3(d™
~

<Bo 2l¥re 2> Jd™h
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Comparison with fig.4 of ref. /Li76/ indicates that the
overlaps there are wrong and the diminishing of the absolute
values of the overlaps < gOJ]BOJ> should occur as 1/d. The
other overlaps go much faster to zero, which 1ndicates the
decoupling of the y band from the others.

An 1nteresting thing 1s the behaviour of the matrix ele-
ments of the anharmonic terms of the Hamiltonian (II1.2.10).
This asymptotic behaviour leads to the i1dentification of the
effective Hamiltonian of eq. (I1.3.95). The rules (I1.3.4)
stem from the facts that asymptotically

<io|830“o>'\)_ /7 d<io|BL0“o>

CiglBayy lig >~ ={8/7 d<igl N | i

CiglByglio? ~ —{772 dCig 1By lig> ~ d il Byl iy
—— 2 ) V) -
(I1.5.11) CiglByqlig> ™ =772 d<ig 1B 4 lig> ™~ 2d7 <l N | jg>

) , .
CiglBanliy> ™ 1/10°d™ig 1B oo lig?

<ig1882) |5~ 2/7:d™ gl N [ jo> .

As 1s easy to see, the higher the order of +the anharmonic
term, the larger 1ts matrix elements. This 1s not, howeuver,
a proof of the i1mportance of the higher—-order terms 1n the
Hamiltonian because their asymptotic behaviour resembles
that of N and B.o . A discussion on these matters 1s further
pursued in section III.2.
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I1I1.6. E2 Transition Probabilities and Quadrupole Moments

To be able to discuss transition probabilities, one first
needs knowledge of the quantum mechanical operator, the
transition operator that i1s involuved. In the liquid drop pi-
cture the electric quadrupole operator is written as

(E2) =\ o2y ¥ gv = Ry

2m

when uniform density distribution

: 3
(IT.6.2) £o = 3Ze/ﬂﬂRo

is assumed. Assuming the quadrupole deformed shape (B.1l) of
the liquid drop, the integration of (II.6.1) over the volume
bounded by this surface vields /L16&/

) A~ o
T = 37eR)/an {am - 2;@1% Mox

A Nl)

(11.6.3)
p ]
X\ (2x+1) (207 +1)/4n (O 00

\ A3
3§X]1m} " C7(&1)

Sticking now to the lowest-order operator as in the earlier
PM and Atransforming the first—-quantized collective coor-
dinates «,, to second—- quantized boson operators according
to eq. (B.4), one obtains

(E2) _ %, 1T , —
(I1.6.4) Tm = e (b, + By d ’
where
= m 2
(11.6.5) by = (1) by 3 e = 3ZeR,/4n+ hw/2C
Here, as also 1in the earlier PM, the coefficient e® is

o=



used as an effective charge parameter and 1s obtained by fi-
xing the value of one transition probability, which is here
chosen to be the 2g-->0g transition.

The above transition operator can now be used to calcu-
Jate EZ2-transition probabilities defined in the standard way

/Shé3/ as

s -1 ’ (Ezy =
B(E2;vd-—>ud’) = (2J+1) | uJ Il T vy =

/ ) (£2) 2
(I1.6.6)  (2J7+1)/(2J+1)-<u J° 0| Toy | v I Mg > %
X (2 -Mg J My | J° 037 ,
where Myv = g,B,7r. In the same way the static quadrupole

moment 1s defined as

Here ¢ Il l] ) is a reduced matrix element. We can use M,
=0 if both J and J° are even or odd and My=2 if either of J
and J° is odd. Because the ground, R and Yy states are a
result of diagonalization in the basis  {gg,Bos¥0} + they
can be written as (except for the states |y J=odd> which
are of pure y character

/lg J> /&J(g,g) x (9B x (o, [l gg J>\

/ i
(11.6.8) [1p > = \aJ(ﬁ,g) « (8,8) o« (B, |1y I
i > o« (rvg) o {r,8) &J(r,}")) lre J7)
where the a,y, (M) , M, = g,y , are the components of
the wu:th eigenuvector in the basis {\go>,\ﬁo>,iyg>} for
each J. The above decomposition of states leads alsoc to the

following decomposition 1n egs.(II1.6.46&7):



() >
< d 0l Tou v I Me> = L e tv, e k) X

2
(II.6.9)
“kg IO TR i ame>
o

where K,ioé igo,ﬁo,yO} . The various basic transition ma-
trix elements <k  J" O1'THER i, J Mg can be calculated
following the lines of calculation of the matrix elements of
the Hamiltonian, examples are to be found 1in ref. /Ha70/.
All the matrix elements needed in eq. (I1.6.9) are tabulated

in appendix F.
Checking of the computer program and the derivation of

analytical expansions for the transition probabilities can
be performed in two different limits: the small-d and large-
d limit. These limits correspond in the language of the
classical theories to the spherical U(S) phonon limit, and
to the adiabatic rigid-rotor limit; these limits were alrea-
dy discussed in sections [I.4. and II.5S. in connection with
the energies. Figure 26 shows part of the U(S) phonon spec-—
trum with allowed transitions included. For a transition

operator of the form (II1.6.4) the transition probabilities
are easily calculated, because the matrix elements of opera-
tors b and b between spherical phonon states are propor-
tional to boson cfp coefficients /Shé3/.

The asymptotic limit 1s more interesting and connects to

the adiabatic rotor model. When d 1s very large, a small
angular wvelocity will be enough to attain a given angular
momentum J. This 1s easy to see from the semiclassical for-
mula for a rigid rotor
L
Je I+ = djwl , Wl=+

where % is the nuclear moment of inertia, which increases
with increasing deformation. So the low angular momentum

part of the nuclear spectrum 1s free from the effects of the
Coriolis interaction and thus the rotational motion does not
excite additional intrinsic degrees of freedom. (The non-
adiabaticity of the system sets in when systems with high
angular momenta or small deformations are considered. Then
additional features caused by Coriolis and centrifugal
interactions must be considered, for example in the form of
K mixing). This total separation of intrinsic and collective
rotatinal excitations 1s called the adiabatic limit, and 1t
is also realized in the case of the wobbling oriented system
of the EPM. This means spectroscopically a rotational pand
built on top of every intrinsic exitation. The deviation
from this law 1s customarily caracterized by an expansion 1n
powers of J(J+1), where the magnitude of the coefficient in
front of each term indicares the relative importance of this
term /Bo75/

The effect of adiabatic rotation 1s seen in the so—-called
Alaga rules /A155/, in which the geometry solely dictates
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the wvalues of certain branching ratios of transition proba-
bilities. Denoting by K the projection of J along the
intrinsic symmetry axis, one has

(I1.6.10) BlErj s kK —= k) _ (Wkra k' -k
BlEL; Jk — )"k ) (J K~ K

<
b |

which gives 1n the special case of the ground state band

BLEX; Jo = J'ey ) _ JOD_O\J'D)z
BIEL] Joy — I ) (yo 201J"0) :

Measuring ewverything with respect to the trans:i:tion 2g-->0g,
one gets a useful formula

i) El' \J \)70\ )(El' \) \\)] J J 2 \)’
(IT.86-11) ( e x> ) 'P) {sj —‘SQL\)"])K )
3

B(El;l%ﬁ()og\ © BRLEYILp—0p) 000

i

which can be compared with computer results (also the other
possible Alaga rules have been compared to computer
calculations). For the auadrupole moments one obtains 1in the
case of the ground state band

et 0 (g2 IV 9 2 9

elglo,d) - +4y LV

(11.6.12) ¥ = 1677 (29 +1) ( ( )
B(E—lslzﬁ‘?(}cﬁ) 00 0 J r

These can be compared with large—d numerical results,

A4n other way of checking the numerical results in the
large—d 1imit is by calculating analytical expansions for
the aboue transitions. The x-matrices of eqg. (Il.e.9) are
obtained from expiressions (I1.5.2) and (II.S5.4), and the
asymptotic expressions for the basic transition matrix ele-
ments are obtained by the use of appendices F and E. Here
are some results (in the units of BIEZ;2g-->0g) )
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B(E2;28-->0R) ~ 1 + 2/d + (3(1/d™) ,
B(E2;28-->0g) ~ 25/256'd™"[1 + & (1/d)] ,

Yo oasd®

B(E2;28-->2g) ~— 5,/56'd
B(E2;3r-->2g) ~v 25/56+.d 71 + 3/2d + (J(1/dD] ,
B(E2;3r-->28) ~ 25/56+-d"*[1 + 1/2d + O(1/dD 7],
[eQ(g,2)]% ~ -7 [t + (TC1/d®]
le@eg,2)]% ~ -g{m/7[1 + 1/d + (F(1/d™>

One more thing to be noted is the geometrical relation

(B.17), which seems to hold true also for the asymptotic li-
mit of the EPM (the same kind of relation for absolute wva-

lues comes out directly from Alaga rules). This has been
computer verified and is discussed in section III1.3. It is
worth noting that in the EPM eQ, 1s d-depended and different
for every band in order to fulfill eg. (B.17). This feature

is built in the model in contrast to the BMM, where the same
ey describes every band, unless new degrees of freedom are
introduced 1in the model by making the eQy s parameters to be
fixed by experimental data.
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IIT.1. Numerical Solution

Here a brief outline is given of the numerical methods
d in soluving the numerical problem. As was explailned 1in
tion [11.3, the projected states (II.3.1) yielded a
eralized eigenvalue problem of the Hamiltonian matrix and
corresponding secular equation is depicted in
(I 820, The calculation of the matrix elements of the
iltonian matrix HY and the overlap matrix R vields
ven different integrals, [;(J), tabulated in appendix D1.
Because the integrals are quite complicated, i.e. they
ome very small 1in the small-d limit (see the discussion
the beginning of appendix El) and quite large asymptoti-
ly and contain an exponential that increases at d>1 wvery
idly, ordinary 1integration techniques are not accurate
fast enough. Because fitting to experimental data calls
an optimization routine, the integrals need to be calcu-
ed several times during one computer run. Also, because
needs to handle many D functions during each 1ntegra-
n, a method that uses as few 1ntegration polints as pos-—
le 1s needed (this excludes the usual Simpsorian techni-
s and others like 1t). The solution to this problem is a
erical integration technigque that is tailor—-made to this
d of problem. These special integration technigues use
hogonal polynomials to expand the 1integrand 1inside the
egration 1nterwval. A suitable integration technique to
ry out the integrals [;(J) 1is the so-called Gauss-Le-
dre i1ntegration /AbéS, Scé8/. Here a 32-point Gauss—-Le-
dre procedure was used with 20 subintervals, and as a
sequence the i1ntegrals were written 1n the form

20 dL

' = 4 _-‘-}
I. 0,1 IL(J) 1/2OZ;Z:ZA5F-1(X“<) ;

k=1 j=1

e



1

(I11.1.2) 1) = SF;’u)dx ;
-1

(ITI.1.3) Al = (xj + 2k - 21)/20

and A; and x; are the Gauss-Legendre ordinates and abscissas
taken from /AbéS/.

The fastest and most accurate way of calculating the Wig-
ner D-functions contained 1in the integrals 1s by recursion
using Jacobi-polynomials /AbéS, Ba7?7/ according to formulas
(A1.19) and (Al1.20) of appendix Al. These D functions are
calculated at all the points (III.1.3) and tabulated 1in a
direct access file to be used during the computer run, thus
avoliding a continuous calculation of them.

After computing the integrals and thereby the different
matrix elements , the task of soluving the eigenvalue problem
remains. This is dealt with by a library routine that uses
canonical transformation techniques /Mo73/. As a result the
energy eilgenvalues and the (unnormalized) eigenvectors 1in
the projected-state basis {1goJ> sy R0 J> 4 Av¥o J)} are
obtained. The normalization of the eigenvectors according to
formula (C.10) yields the states {lg J> , |8 J> , |Ir J>§ and
the eigenamplitudes &J(i,j),i,je{g,ﬁ,r} connected by for-
mula (II.6.8) of section II.6.

During this mathematical process a physical question
arises concerning the 1identification of the spectroscopic
qQuasi bands /Sa82/ of real nuclei. One guiding tool is to
observe the behaviour, of the band structure produced by the
harmonic Hamiltonian N. This was done 1in the earlier PM by
choosing the order of orthogonalization in the Schmidt pro-
cedure in such a way as to yield the Sakai Scheme /Li176/.
Here the problem 1is more difficult to solve because of the
large mixing of the eigenamplitudes in certain regions of
the spectrum (this 1s especially true for the Hamiltonians
containing also anharmonic terms).

The ground state band 1s easy to handle by assuming 1t to
be always the yrast band, 1.e. 1ts states lying the lowest
in energy for each angular momentum This 1s justified be-
cause the EPM is tailor made for describing low=lying colle-
ctive excitations and thus 1t does not have any internal de-—
grees of freedom to describe band crossing and back-bending
phenomena, which are believed to be connected either to the
single-particle aspects (nucleon pair breaking /St72/) or to
shape transitions. To describe the coliective shape—-phase
transition in the framework of the EPM, one need a way of
introducing two deformation parameters into the calcuiations
and a mechanism of mixing the two bands described by these

two parameters. This 1s certainly outside the scope of this
model and so the above treatment of the g band 1s well foun-
ded.

The recognition of the gquasi-f and quasi-Yy bands 1is
much more difficult because of the large mixing of the pro-
jected states in those parts of nuclear spectra where their
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energles are close to each other. As a guideline one could
use the same arguments as in the earlier PM and obtain the

Sakai scheme in the small-d limit using the harmonic Hamil-
tonian. Then eq.(I1.4.16) would give an indication of the
recognition procedure. This, however, must also be consi-
stent with the large-d limit, eq.(II.S5.4). The procedure
which would appear natural 1is to assign to the ¢ band the
states having the Y component dominant, while <the re-
maining states would belong to the g band. In the actual

program a recognition method is used which is developed by
collecting data from diagonalizations of different (anhar-—
monic) Hamiltonians and thus the method is “experimentally’
discovered. It also yields the scheme described abouve in the
case of the harmonic Hamiltonian (this i1s very clearly seen
from the energies of fig.2). In addition to this eigenvec—
tor—-based recognition scheme, a scheme based on experimental
energies can be optionally used in actual fits. In this pro-
cedure the experimentally known order of the ground, R and
Y energies helps in the identification of the bands (this
is the scheme followed in most more extensive codes where a
legion of different states with the same J are produced).

After having completed the calculation of energies for a
chosen set of Hamiltonian coefficients C; of eq.(II.3.95)
there remains the problem of optimizing the parameters C;
Wwith respect to the existing spectroscopic data. There
exists a great many optimization methods dealing with multi
parameter surfaces /Ku73.Ja7?5/. The best of these proved to
be a library routine /IM8%9/ using a quasi-Newton method
/F172/. This code seems to be the most accurate in disco-
vering small inclinations of “ditches’ on the parameter sur-—
face and thus vields a result that reaches nearest to the
correct result. The other aspect, however, which must be
borne in mind here is that the calculation of the functional
to be minimized 1s less accurate at small deformation para-
meters, and thus the minimization 1s rendered more difficult
by the noise in the numerical values of the functional. The
functional to be minimized in the EPM 1is a weighted chi
squared function

Iy ; 4 - 2L
\OQ ) (E_H\(\Q'.B)_&UP}
= = <
(I11.1.4) Thiesh 2 X, :
Py
where «=(1,d),1=g,B,r and the sum includes all the states
that one wants to take into the fit. The curly parentheses
indicate functional dependence on several wvariables C;
(coefficients of the Hamiltonian expansion). The weighting

here assures the improvement of the fit at low energies at
the expense of higher energies, which is in accordance with
the philosofy of the model (in earlier davys this was also
due to the more inaccurate experimental energies in the hi-
gher—energy part of the level schemes).

The EZ2 transition probabilities ard static quadrupole
moments are calculated from the standard formulas (II1.6.6)
and (I1.6.7). The effective charge, e¥* ,appearing in the
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transition operator 1s determined by fixing the transition
probability B(E2;2g-->0g) to the corresponding experimental
value. The S0(3) Clebsch-Gordan (or 3j) coefficients
appearing 1in the explicit expressions for the basic matrix
elements (appendix F) are calculated from their explicit
formulas /Shé3,We78/.

The output of the program includes the fitted theoretical
energy spectrum as printout and as a drawn level scheme (see
figs. 27 to 31) In addition, the final values of the parame-
ters C’; are printed, and certain information is given con-
cerning the success of the fitting (number of functional

evaluations, numb. of significant digits and information on
the final gradient values at the minimum). Because the func-
tional evaluation takes some time, this first part of the

program 1s not very quick to perform. On the other hand the
transition probabilities and quadrupole moments are quickly
calculated and printed out after the minimization.

III.2. The Effective Hamiltonian and Its Spectrum

III.2.A The Effective Hamiltonian

The number of free parameters 1in the effective Hamil-
tonian (II.3.95) is seven and 1t includes all important terms
up to fourth order. The terms B,y and B3 were left out be-
cause their matrix elements behave asymptotically according
to eq. (II.5.11) , where the link <Byp > ™~ constant'<B.n ?

is valid already at such small values as d~2. This has been
found by numerical testing of real nuclei, namely the Gado-
linium isotopes 15971¥Gd /Ve83/. There the renormalization
character of the B,y term was proved by fitting each Gd iso-
tope twice, with term B:g 1included and excluded. Because
these Gd isotopes cover the range from spherical to well-de-—
formed nuclei, the omission of the B.ig term from further
fits 1is well founded (on the other hand, B,, remains

effective).



The exclusion of the terms B.4,B 4y and By leaves wus an

effective Hamiltonian with six parameters. Further i1nvesti-
gations of the importance of the various terms in the effec-
tive Hamiltonian can be performed by Jlooking at their

influence on the odd-J y-band states. Because the odd-J v\
states are decoupled from the rest of the spectrum (no dia-
gonalization needed for the odd-J states because only Y
states can have odd angular momenta) 1t is hard to influence
their spacing in the band. Calculation of the Hamiltonian
between the states Yo J=odd> reveals that the only terms
that gilve a non-— trivial (non-renormalizing) contribution are
N J7 and Blt . So by this criterion dropping the terms B
and Byg 1is Justl?led The term B({¥ seems to be more impor-
tant than thetemnB in two Wways. First, as mentioned above,
the effect of the term B on the odd-J members of the r
band is “trivial’ whereas the term B(ﬂ remains effective,
l1.e. brings in a J dependence to the odd-J band ener-
X ()

gies. Second, as can be seen from appendix 02, B.s has more
effective matrix elements than B“ﬂ . So the EPM would pre-
dict the phenomenological quadrupole—gquadrupole force to be
the dominant one at non—-zero deformations.

So, summing up , 1f one takes into account the numerical
tests, 1.e. the effects on odd-J Yy-band members and the ma-
gnitude of the matrix elements of the different terms 1in
actual fits, one 1s left with an effective Hamiltonian with
five parameters,

N A
(111.2.1) H g<2>' - e

afF = N+c 2BagtciBly +eg tcqd .

In the actual systematic fitting (see chapter IV) the tri-
vial term J'is also left out in order to cut down the number
of fitting parameters and to investigate the ability of the
other anharmonic terms to reproduce rotor spectra. Following
the notation used in the computer code one can express the
final form of the effective Hamiltonian used 1n systematic
fitting as

(111.2.2) H= cN + c By + Bl + cBl2)

The total Hamiltonian that 1s allowed in the fits by the
computer code ,however, reads

2 2

¢ - ” - % ’ (0)/ Q’L ‘,:7
\IlIc2‘3) H - C0N+C1B7_O+C1811 +C E30+C4811 +C B +C<’;J

and i1ncludes seuven parameters. This makes altogether eight
parameters with the deformation/softness parameter d which
describes the deformation of the projected basis states and
thus may be thought to hawve a connection with the i1ntrinsic
shape of the nucleus.



II1.2.B., The Effect of the Different Parameters

on_the Energy Spectrum

The effects of the parameters d,C ,C, and C, on the ener-
gy spectrum produced by the Hamiltonian (III.2.2) was inve-

stigated in /Ve83/. Here I give a short description of the
main effects on the band heads and on the internal structure
of +the bands. By the internal structure of a band I mean

here the spectroscopic moment of inertia gﬁqﬁdr which may
be determined from the energy differences within the bands.
The initial spectrum is chosen to have realistic parameter
values (from the Gd region) and the evolution of the spec-—
trum was observed as a function of the deviation of the
parameters from these initial values.

The 1increase in d causes the moment of inertia of the
band to increase which means pictorially +that the band
shrinks or contracts and all energy levels become closer to
each other. This is easy to understand the basis of the ri-
gid-rotor relation

(I111.2.4) dE) = Ejp - Ey = 2043074

This shrinking of the spectrum may be counter—acted by
increasing the other parameters linearly, 1.e. increasing
the overall scale of the Hamiltonian. This increase 1in the
moment of 1nertia with increasing d 1s quite natural 1f one
imagines a relation of d with the intrinsic shape of the ro-
tating nucleus (originally d described the shape of the
oriented system). Then the 1ncrease 1in means that the
nucleus 1s becoming more prolate which in turn means increa-
sing d. So the variation of d causes the spectrum to evolue
from a spherical (anharmonic) vibrator to an almost rigid
rotor. For small d one may also obtain ground-state band
spectra which resemble shell model two-valence—-particle spe-
ctra (with pairing included), other bands may look like wvi-
brational or rotational at the same time. Also vibrator- ro-
tator co—existence may occury The Y—-band head 1s practical-
ly independent of the magnitude of d and only a very small
effect on the relative R-r-band position is observed.
The parameter C, does not affect the R— and Y-band

moments of 1nertia, but affects quite strongly their rela-
tive positions, i.e. the difference between the locations of

1) see fig. 31 .
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their band heads. Also the parameter C, has the above
effects on the spectrum but to a somewhat lesser extent. The
look of the spectrum seems to depend only on the absolute

value of the parameter C, . It affects the relative g
and ¥ positions 1in the same way as C,but the increase in
1ts magnitude also makes increase and P decrease .

Figures 2-7 show the eigenspectrum of each term 1in the
Hamiltonian (III.2.3), exept the spectrum of J* which is

trivial. From the pictures it is easy to see that the only
terms tbat bring J dependence to odd-J y-band energies are
N and B “. Also one can see that the ground state band is

not affected by the fourth—-order terms Bi?, and Biﬁl ,which
has already been discussed in the case of the earlier PM 1in
ref. /Ha70/ . The, most 1interesting behaviour is carried by
the harmonic term N, whose =2igenspectrum 1s shown in fig.2.
This should be compared with the results of the earlier PM
represented in ref. /L176/, figures 5 and 8. As already dis-
cussed 1n section II.5, the diagonalization has a drastic
effect on the B and Y bands while the ground state band

remalins almost unchanged. The picture clearly tells that in
the small=-d 1Timit the Sakail scheme 1s recovered, whereas
asymptotically the rigid rotor spectrum will follow. As

already mentioned in section II.S. comparison of figs. 1 and
4 of /L176/ reveals a mistake in ref./Li76/, which, however,
1s only due to some error 1in drawing and does not affect the
code used in the earlier PM, /L183/. The fact that asympto-
tically

<golBO>‘\J1/d y
1.e. this overlap diminishes very slowly, causes some spe-

cial effects on asymptotic transition probabilities and qua-
drupole moments (see section III.3).
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II1.3 E2 Transitions and Quadrupole Moments 1n_ the EPM

The general features of tranmsition probabilities 1in the
EPM can very well be studied by using only the harmonic Ha-
miltonian. This facilitates comparison with the earlier PM
and the classical collective model of Bohr and Mottelson. So
in this chapter the number operator N is used as the labora-
tory Hamiltonian. The diagonalization introduces quite sur-
prising results for some measurable quantities, and this 1is
where the EPM differs from the other classical collective
theories. On the other hand, most of the results agree with
the earlier models and the usual vibrator and Alaga limits
are recovered (this was discussed already earlier 1n section

IT.6.).

Figs. 8-10 show some intraband tranmsitions for each of
the ground, R and e bands (the normalization
B(E2;2g-->0g)=1,V d, was used). The usual U(S) phonon and
Alaga limits are recovered and the continuous 1ncrease 1n

transition probability with increasing angular momentum 1is a
direct consequence of boson—-number non- conservation in the
theory. This 1s in contrast to the algebraic.approach of the
IBA, where boson—-number conservation and the use of only lo-
west—order bosons yield low—-energy spectra where the bands
terminate and produce diminishing transition probabilities
at the upper end of the band. The only non—-trivial thing 1in
figs., 8-10 are the “bumps’ in the curves around the deforma-
tions d=1-2. Fig.8 should be compared with figure 12 of
ref./Li76/ (almost the same)

The interband transition probabilities in figs. 11-13 are
much more interesting (the normalization is
B(E23;2g-->0g)=1). In the asymptotic limit all the interband
transitions go to zero which indicates the adiabatic separa-
tion of intrinsic and rotational motion and the evolution of
the projected states towards orthogonality (diminishing
overlaps). In the small-d limit the B(E2) values go to the
U(S) values of fig. 26 which indicates that the transition
probabilities B(E2;Jh——>J%) should go to zero in this limit
(phonon number selection rule). There are also non-trivial
bumps in these curves, especially in the curves B(E2;Jas——>J)

. . ! ¥
, each of which has a pronounced maximum between deforma-
tion 2 and 3. The curve for J=2 has also a local minimum
around d=1.5 (introducing thereby a local maximum near d=1).
This complex behaviour of some B(E2) s introduces also quite
complex branching ratios discussed somewhat later below.

Very interesting curves are depicted in fig. 14, namely
the 1interband B(E2) s from J=2 to J=0 (the same normaliza-
tion as above). The curves all go to zero in the small-d 1i-
mit because of the phonon number selection rules, and asyvmp-
totically they approach zero. In the middle region the
curves all have atleast one maximum and two of them also have
quite an unpredictible minimum of magnitude zero. The most

interesting thing about these transition probabilities is
that they provide the best way of making comparison (in the
region of rotor nuclei) between experimental B(E2)'s, clas-—
sical collective model predictions and the algebraic IBA
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predictions, because these B(E2) s are experimentally always

the best known. The comparison is most convenierntly done 1in
the figure below, in which the spectrum of a prolate (or
oblate , d<0 ) symmetric rotor 1s drawn with the abouve

B(E2) s included as given in the framework of the EPM, IBA
and BMM (the earlier PM gives the classical BMM results
/Li83a/). The experimental values seem to be mostly 1in
accordance with +the EPM and IBA results, as one can see 1n
chapter IV.

ground band g band ¥ band

Falgle L1

Spectrum of a symmetric rotor /Gn71/ with typical
B(E2) s from J=2 to J=0 indicated. The figures
in parentheses are the yield of the BMM,IBA /Li83b/
and EPM (with H=N). The normalization 1is <chosen
to be B{(E2;2g-->0g)=1. It should be kept in mind
that in the pure SU(3) limit of the IBA the 8 and

Y bands belong to an SU(3) representation different
from the ground band representation, and so the
transitions from B and ¥ bands to the ground state
band are strictly zero.
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In fig.III.1 one can see that both the IBA and the EPM have
a much weaker 2p-->0g transition than the 2y-->0g transi-—-
tion, the value for the 2Y-->0R +transition being i1inbet-
ween. This 1s quite the opposite to the description of the
Bohr-Mottelson type models where the g and ¥ exciltations
are equally strong and the transitions from the Y to the B
band are weak. Because the experimental results are i1in fa-
vour of the IBA description a great deal of argumentation is
pursued about the validity of the geometrical quasi-band
concept especially in the case of the g band /L183b; Wa8la;
Wa82a,b; Bo82; Ca80a,b; Ca83b/. The above behaviour 1s nice-
ly shown by the asymptotic B(E2) expressions at the end of
section II.6.

In figs 15-17 are shown some branching ratios which are
the best known experimentally. The same branching ratios are
also calculated for the earlier PM as a function of d in
figs. 14 and 15 of ref. /Li176/. As 1s easy to see from fig.
17, the branching ratios behave quite violently as a func-
tion of d which , of cource, 1s a consequence of the comp-—
lex behaviour of the B(E2)'s discussed above. When these EPM
results are compared with those of /Li76/ one notices that
the overall bahaviour of the branching ratios 1s more or
less the the same in both models, but in the EPM most of the
branchings have huge peaks (note the logarithmic scale) 1in
the middle .region d=1.0-3.5. This 1s due to the fact that
the B(E2) s go to zero at some specific values of the defor-
mation parameter. These peaks indicate that in certain re-—
gions of the fitting parameters (even when the anharmonic
terms are taken into account) the branching ratios range on
a short parameter interval from ~105 +to ~10! or from ~1 to
10-% thus serving as a very sensitive indicator of the qua-
ity of the energy fit (much more sensitive than in the ear-—
lier PM). N

~1he behaviour of the quadrupole moments in the EPM (for H
= N) is more or less the same as in the earlier PM and 1in
the BMM. The behaviour of the gquadrupole moment of the J=2
triplet is shown 1n fig. 18. There one can see that the be-
haviour of the quadrupole moments 1s quite smooth (the same
i1s true also for the other states of the bands). As pointed
out 1n section II.6, the BM relation (B.17) holds true for
asymptotic deformation parameters. By assuming the BM rela-
tion to hold exactly for large d, it is easy to get values
for the intrinsic quadrupole moment of the BMM, eQ,, by de-
manding the formula +to agree with the EPM results for the
J=2 states. After that one can check the deviation of the
rest of the EPM values, as a function of d, from the values
given by formula (B.17). The resulting intrinsic quadrupole
moments are different for each band and thus one obtains a
measure of the quadrupole shape of the nucleus in a consi-
stent manner (1t turned out that the intrinsic aquadrupole
moment of the B band is only a little greater than that of
ground band, but for the ¥y band the difference is about
30%. This is in agreement with the intuitive pictorial re-
presentation of these vibration modes /Co71b,p.151/). The
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study of the asymptotic limit of the EPM indicates that the
¥ band quadrupole moments behave exactly according to the
BM formula, but the ground and £ quadrupole moments seem to
converge very slowly to the BM values. This 1s ewvidently due
to the slow l/d-convergence of the overlap <gg | Bg > which

causes here the adiabaticity to set in very slowly, One
thing to be noticed i1s that for all these geometry-based mo-
dels the quadrupole moment of the 3y state 1s always zero
and that Q(2y)2-Q(28) , In BMM this follows from the
fact that

Q < 3k? - Jeu+1) .

It is to be noted that the Q(3Y)=0 property is not due to
the wvanishing of a 3j symbol, but i1s a more general feature
of collective models, because it is true also for the IBA
model (at least in the SU{(3) limit).

IIT1.4.Collective Potential Energy Surfaces in the EPM

Collective potential energy surfaces (=CPES) have been
used by many authors (for example /Gné69,70a,7l; Ku74/) to
visualize the nuclear intrinsic shape and to get hold of the
systematics of different nuclear spectra, i.e. the harmonic
and anharmonic vibrators, symmetric and triaxial rotors
/Da58,60 3 Ei17S/ , y-soft (or Yy-unstable) nuclei /Gn70b,
He7?7/ and nuclel with shape coexitence. It 1is remarkable
that these special limits can also be realized as analyti-
cally solvable dynamical symmetries in the IBA model. In the
CPES approach the potential energy of the nucleus (in
intrinsic coordinates) 1s expressed as a function of the
collective coordinates, which are here chosen to be the
amel 1tudes of small vibrations, ay ,defined 1n eqgs.(B.1) and
(A2.12) (these were also chosen by the above authors). Mo~
ving over to first-quantized coordinates &ﬁ\ and performing
second quantization (B.4) one has an effective means of

classifying the states and calculating the matrix elements
/Gn71/.,
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In the EPM one must transform from the oriented system to

the 1ntrinsic system. The oriented system was used +to
generate basis states for the diagonalization of the labora-
tory Hamiltonian. This diagonalization in the deformed

3-state basis vielded, after fitting to experimental data, a
number of parameters that defined the form of the effectiwve

boson expansion (III.2.3) (in the work of Gneuss et al. har-
monic—-oscillator basis states corresponding up to 33 phonons
were used). Now, one can use the i1nverse transformation of

eq. (B.4), 1i.e.

wbd 1 A
J (& Ty G )

(111.4.1) w B 1 A
lﬁm: 0((‘\3”\0(-'”\_ (:U\)EDO Wm> 3

\ 0
where w =~\[C0/B0 sand then transform the potential part to
the intrinsic coordinates by (A2.12). A usual way of expres-
sing to potential 1s the form

Vo= V(g,r) ’
where the Hill-Wheeler coordinates R and ¥ are defined by
(B.9S). Transforming, for example, the number operator N by

the formulas (III.4.1) one obtains

N 1 . A Eed m A
(I11.4.2) N = 2hw [E;o [ +co$«l~ 5#\&,\\] y T =1) T

m

which corresponds to the harmonic Hamiltonian (B.2) when ta-
king Ainto account the relation (B.3) and remembering that
and o are Hermitian tensor operators, eq. (A1.25), and that
in first quantization x*-5&T . Also the classical relation

L,

0Ky
is used (L is the Lagrangian of the harmonic system). In the
same way one obtains for the term B,, the expression

] 1 2
B . =% VBT ¥ &
(111.4.3) =4 )MK By Co >

The third-order terms are a bit more inuvolued, and for them
one obtains

N

B,y = By = (b b)) *L- [RAL & -
(I11.4.4)
ro v, ﬂ+(6w ] 04}

Performing this transformation on all the terms of the effe-
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ctive Hamiltonian (III.2.3) and then dropping, the terms

which include the canonical momentum operator 77 , one
obtains
~ _ o O - - A
V(x) = d (cyt+2cq—c,—2cy+ 2cytcgtéc,la +

+ 18 /d 3 (~hey—cy+2e,teg ) (B8]0 & +
+ d(10cy/d™=6c, 0 [&6] [68], +

+ dN7cg/2d -3c (48], - [&&], +

v ad e (881, [84], -

o~ X
- Shd /wBglcs—cytegthe, ) ’

where

~
(II1.4.5) d =~C¢/2hu = d/B,

After performing the transformation on the intrinsic (prin-
cipal axis) system and wutilizing the relation (B.3) one
obtains

2 2
x = B

[&&12'& = —J§7$b3cos3r

- 1.4
@a]2ﬂﬁa]2 = 28 /7
el fed, = 188%/35

and

(111.4.6> VR, = &*F (A, - 2BA,cos3r + B7AL) - SAL2

where

- -



(I11.4.7) Ay = ~hcy = cq4 + 2¢, + cg

4 5

Aﬂ;’: 2CL*,+ CS

Ay=cg - ey *cg 6c6
and
(111.4.8) B = B/8,
i.e. % indicates the deformation R in units of the orien-
ted deformation (which was defined in eq. (II.1.1) ) By of
eq. (IT.1.1). (Note that the potential of eqg. (III.4.8) 1s

the same as in /Gn71/, p. 455 , but there is a difference of
1/{§‘stemming from different scalar coupling conventions.
Also now 1in (III.4.6) there 1s a constant term and all the
parameters A; have a definite value coming from the energy
fits).

Jt is not surprising that one ends up with such a simple

expression (III1.4.6) for the potential. This 1s due to the
fact that the most general rotationally i1nvariant potential
V(&Lﬁ ) can always be written as a function of two

lnvariants

o= laa)g = Ta,u=0,L=0] = B2 /S

Bz [(86148], = [e,0=3,L=0] = -J2/35 e3cosar

where v denotes the seniority guantum number. So

661, Teel T = Sy 55"

In the gereral case of any tensor the seniority gquantum num-
ber 1is also active /Noé8/.

In the work of Gneuss and Greiner only the harmonic kine-
tic energy was extensively used (higher—-order kinetic terms
proved to be unimportant), and the ansatz for the potential

Vg, ) reached up to sixth order in &. Consequently a
considerable asymmetry between the kinetic terms and the po-
tential terms existed. In the EPM the effective Hamiltonian

(I111.2.3 is built up of bfT’s and b “s and therefore it
includes many kinetic terms (pure 47 s and mixed terms)
which may considerably affect the nuclear spectrum wilthout

1t showing up in the expression (III1.4.6). This makes com-
parison betuween the energy spectrum and the nuclear 1ntrin-
sic potential landscape more difficult and thus excludes the

possibility of a Gneuss— Greiner type of 1i1nterpretation of
the spectra.
In order to reproduce all physically relevant potential
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energy surfaces one needs enough terms in the potential
expansion (at least the sixth order must be included, /Gn71,
He?7/). In the case of the EPM, potential terms only up to
fourth order are included, which makes the potential sur-
faces wvery unstable against negative divergences at infini-—
ty. These divergences cause the local minimum solutions to
be quasi stationary, 1.e. non—-stationary continuum solutions
with a Jlong tunneling time. In this sense the potential
energy expansion in the EPM may only be viewed as perturba-
tive because one uses a vastly truncated effective boson Ha-
miltonian and because of the fact that in choosing only a
three—-state model space the diagonalization 1in this space
corresponds to a perturbation calculation in that matrix
elements connecting this three—-state basis to the rest of
the collective space are neglected (the same aspect 1s seen
also 1n the work of G&G, but there the model space i1s larger
and the convergence 1s tested /Gn71/).

Together the limited (although deformed and thus somehow
cptimized) basis and the truncated Hamiltonian yield poten-—
ti1al surfaces (of fitted nuclei) that have a very rich stru-
cture, but mostly bending down to negative infinity in some
part(s) of the R—Y plane unless there i1s an absolute mini-
mum at zero deformation. So, one cannot make definite conc-—
lusions about the shape of the nucleus, nor can one estab-
l1ish a one—to—-one correspondence with energy spectrum. The
inclusion of higher—-order terms 1n the boson expansion
and/or the extension of the model space could make Gneuss &
Greiner type 1lnvestigations possible also in the EPM.
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IV, &aPPLICATION OF THE EPM TO VMARIOUS

CHAINS OF TISOTOoORPES

IV.1., General

The earlier isotropic PM was tested extensively in /Sa?7/
and had a surprisingly good success 1n describing nuclear

low—spin spectra from vibrators to almost rigid rotors. The
main reason for this was the chosen model space which had
properties that were tailor made for describing nuclear de-
formations. The fitting to experimental data was easy be-
cause the model contained only two free parameters, the

deformation/softness parameter d and the energy scale para-
meter c,(the anisotropic version of the model contained four
parameters /Ho72/). The fitting procedure was easy because
one usually fixed the levels 2g and 4g and thus obtained a
very good description of the ground-state band (also the
projection procedure is the most accurate for the ground
band) . A drawback of the model was the incapability to
affect the B and ¥y band heads, which often were totally
wrong, and the spectroscopic moment of inertia of a band.
The EPM has a cure for the abouve—-mentioned shortcomings
at the cost, of course, of introducing more fitting parame-
ters, thus making the fitting process more complicated and
reducing the transparency of the interpretation of the para-
meters involuved in the fit. The process of searching for the
absolute minimum of a many—-parameter surface 1is always a

complicated task, and the inaccuracy in the calculation of
the functional to be minimized (i1.e. numerical nolse) causes
additional difficulties in the areas of small directional

derivatives. In the work /Sa77/ no systematic study was made
of the behaviour of d and c4 as functions of mass number 1in
any 1sotopic chains. Such a systematic study, howeuver, was
performed 1in the case of the EPM by the author /Su84/ for
the Sm, GD, Er and Yb chains. These results have been plot-
ted and are discussed separately in the context of the dis-
cussion of each isotopic chain. Because the only free para-
meter of the transition probabilities and the static quadru-
pole moments 1s fixed by the 2g-->0g transition, The above
energy—based systematics will also give as a byproduct the
systematics for wvarious quadrupole moments and transition
probabilities. The parameter systematics (a byproduct of the
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energy fits) is represented 1in figs. 19 and 23 and the (most
interesting) E2 systematics in figs. 24 and 25.

Because the relative transition probabilities contain no
further parameters and because their behaviour is very sen-
sitive to the fitted parameters (see section [I11.3), they
serve as an indicator of the goodness of the energy fit and
often help +to decide which one of the nearly equally deep

minima 1s the more correct one. Sometimes the decision 1s
stil]l very hard to make and a subjective opinion is needed
to decide which one of the bands 1s to be fitted well or

which of them need not be so accurate.

In this work a comparison of three models is performed
for many nuclei. These models are the EPM, the i1sotropic PM
and IBA-1 model. The older IBA fits are done using the nor-
mal boson numbers, but some recent fits use the effective
boson number discussed in /5¢83/. The IBA fits are done ei-
ther with four parameters /L182,L183c/ or with six parame-
ters /Kr84a, Kr84b, Li184a, L184b,Kr84c/., As an indicator of
the goodness of the energy fit the so-called RMS walue

f N \
1 eXxpP. 2
(W10 B E\]NZKth—EL »
=1

(N 1s the number of the energy levels i1ncluded) 1s used. In
many other works, however, a dimensionless quantity

o (
(IV.1.2) RM SY%e E\/NZ\

L =1

gl L
e ™ 1> $100 %

is used /Ha70, Ho72, Ha73/.
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"IV.2. Parameter Svystematics and the Conuergence

of the Boson Expansion

One can make systematic fits to real nucleil using second-
, third- and fourth-order effective Hamiltonians of eq.
(IIT1.2.2). When the deformation parameter d is taken into
account, this means a three-, four—- and five—-parameter fit,
and a test of the conuvergence of the phenomenological boson
expansion 1s attained. In figs. 19 to 23 these three dif-
ferent types of fit are represented by displaying the values
of the parameters d,Cq,C,,Chand Cg as a function of isotopic
mass number., The fitting 1i1s performed in four isotopic
chains, namely for the even—-even Gd, Sm, Er and Yb 1isotopes
of which only those are selected about which there are
enough low—energy data (mostly obtained by Coulomb excita-

tion) available. The fit was made to more than one or two
levels of each band (if possible) as a least—-squares fit
using weighted terms in the summation. (see eq. (III.1.4))

In this way, in addition to a proper description of the band
heads, a proper description of the spectroscopic moments of
inertia could be achieved.

The parameter systematics of the above—-mentioned figures

show a very consistent overall scheme, and clear trends may
be observed in the behaviour of the fitting parameters. The
deformation parameter grows all the way from mass number 146

to mass number 174 (with few exceptions). This is consistent
wilith the shell model picture that going farther from the
closed shells towards the middle of the shell the nuclei de-
velop from vibrators towards rigid rotors. The compressive
effect on the energy spectrum of increasing d is counterba-
lanced by an increasing scale factor of the effective Hamil-
tonian, which means an increase 1in the absolute values of
the rest of the Hamiltonian parameters. The spacial beha-
viour of the parameters in the beginning of the Sm chain 1is
to be attributed to the lack of experimental data (causing
the fit to be unreliable to a certain extent) and/or to real
shell effects (shell closure at N=82)

The convergence of the boson expansion may be seen from
two features of the systematics. One is the diminishing of
the absolute values of the parameters when going from C, to
Cg s,which is clearly seen in the figures. The other feature
is that the parameters do not change much in absolute value
when going from a three—-parameter to a five—-parameter fit.
It 1is seen, however, that there is a greater change in the
parameter values when going from the third-order Hamiltonian
to the fourth-order one than when going from second order to
third order (in the case of convergence one would expect the
behaviour to be the other way round). This can be explained
by the absence of many terms from the fourth—order Hamil-
tonian, and so when comparing the complete 2" ,37¢  and ath
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ordes, the situation would evidently be +the other way
around.

The most consistent fits seem to occur inm the case of Sm
and Gd isotopes, for which the convergence seems to be quite
rapid. On the other hand, the convergence seems to be slower
for the Yb i1sotopes, where the incompleteness of the fourth-
order of the Hamiltonian seems to play a more important ro-
le. The most striking is the behaviour of the parameters in
the Er chain, where the conuvergence seems to be the slowest
but the relative importance of the incomplete fourth—order
does not seem to be as great as in the Yb chain.

It may be noted that the parameters behave guite smoothly
all the way and their values seem to be reasonable (i.e. the
absolute minimum of the many—-parameter surface 1s evidently
found). In the case of the old PM the there was no real need
for doing this kind of parameter systematics because there
were only two parameters involuved /Sa?77/. However successful
attempts have been made at establishing such systematics in
the case of the IBA model /Ca82b/. On the other hand, Kraci-
kovd =t al. /Kr84a,b/ discovered some surprising discon-—
tinuities 1n the IBA-1 parameter behaviour in the parts of
the Sm chain where the EPM gives this smooth behaviour of
parameters., This 1s a good example of the difficulties
involuved in fitting to experimental data. A possible cure
for this lack of uniqueness in the IBA is the so-called con-
sistent-Q framework discussed in /Wa82b,Wa83/.



IV.3. Apolication of the EPM to Different Isotopic Chains

Comparison with Experiment and Other Models

Comparison between the EPM and the earlier PM and I[IBA-1
models 1s given mainly 1n the tables of the following chap-
ters. The main emphasis 1s put on comparison with the latest
6-parameter IBA-1 fits of Lipas et al.. For the EPM all the
calculated energy level data are gathered into tables H.1 to
H.4 of appendix H, where the 4- and S5-parameter results are
shown. As a measure of the goodness of fit the RMS value of
eq.(IV.1.1) is shown.

For the IBA model there are some difficulties in choosing
the right number of wvalence bosons 1n the proton shell

50-82. This i1s because there have been ambiguities is choo-
sing the correct proton number for the inert core stemming
from the closed-shell features of proton number 64
/Ca81,0g78/. To solve this ambiguity, *he so-called effec—
tive proton—-boson number, Zeff , 15 introduced and it is
obtained from figure 1 of ref. /Sc83/. In recent work by Li-
pas et al. this Z ef¢ 1s used and it gives in many cases

better results than the boson number based on the Z=350 core.

IV.3.A. The Samarium Isotopes

The Sm isotope chain in this work begins with the two-
neutron hole isotope ' Sm.,, . The chain extends to the

well-deformed nucleus 1?§m3q. As pointed out in /5t81/, an
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146 148
BAND| J| EXP. | IBA. ___EPM | EXP. , IBA EPM
UV NSRS 0 MU I H) W— 4 5
2| 747717337 7001 €947 SS0 | 5599 5573 547 ¢
- 4] 1381 [13531138311360% 1180 |118871161171197
% | 6| 1812 11869¥203412011 % 1906 | 1823417731884 *
| 8| 2738 (2287 |2656"2661% 2545 |2453%2384 12488
110 |(3723) 2615 [3258 (3316 |(3235)|3343%2995 2904
01452 [145991421%14167| 1426 [142871372711432%
| 2((2156) |2173%203092162% 1664 | 1752180471658
4| -- |2790 [2805 3039 [(1895)|21232423 (1869
nolel -- -- 3553|3920 | -- |3086 (3132|2236
8| -- -- |a301 (4813 | -- -- [3878 2723
110 | -- 5053 5725 | -- 4642 13420
| 2| 1648 1610*1?08¥1659¥ 1450 (1309147291454
| 3 1(2269) 2a5? 2389 12438 |(1904) | 1861711923 |1755
| 4 [(2439) |2256%2297 2448 1(1733) (182842076 2042
Y 15| -- |2800 [3104 |3254 {(2147)|1986%2582 |2250
L6 -- —— 930 (3183 | -- |2276 2667 [2541
7 - -- 3816 4052 | -- 2a76|3260 2770
RMS —- 187 | 102 | 91 - 58 | 98 | 24
--  [(388)(182)[(156) -- <1oeﬂ<2a3><142>
150g - 152¢ -
BAND| J | ExP. | 1BAl___EPM | ExP. | 1BA EPM
a 5 a 5
2| 332 1340 342¥ 326% 122 [ 1107 1277 120;
4| 773 | 771% 7497 798% 366 | 344% 3779 3777
o | 611279 |1279%1188 12947 707 679% 693 725%
{ | 8| 1837 1621%1657191814 71 1125 1099“1038 ]1115 %
110 | 2432 [2432%2152%2367%] 1605 |1579%1399%1522 %
[0 740 [ 728% 773% 7STH 685 | 665Y 7179 720 ¥
| 2| 1046 9831067, 9991 810 | 7ret 812" 799 %
| 4| 1449 149111933 1462% 1023 [1030%1017Y 982 *
Hlel -- 2131|2085 | 1310 |1328%1321%1275%
L8| -- —= 2745|2795 | 1666 |1762¥1709%1682 *
110 | -- 3388 /3558 | 2080 2082‘?158 2188 %
211194 1214*127a*1203* 1086 [10521131%1134F
| 311504 1150441486 1430} 1234 1239123311226 7
4 | 1643 |1635%1564%1764%| 1372 1365 1136571348°
V15| 2020 [2028%206¢%1994% 1559 1621 1151051491
Cole | —- -- |2660 |2514 [(1728) 1696 (1670 |
7 - -- 268712657 [(1946)| -- [1865 |1850 |
RMS —= 24 | 176 49 — | 36 | 66 | 46 |
— §—= = F - -- | -- [(66) |(51) |

Table IV.3. Fgm?gclson of the EPM and the & parameter
IBA fits For Sm . For the EPM four and five
parameter fits are indicated. The RMS's in parentheses
correspond to the energy data in parenthesis (the asign-
ment of the Sakali quasi-band label to these lewvels is

not unambiquous). The experimental and IBA data are taken
from /Kr84a/ and /Li84c/ . The asterisk indicates a
fitted level. All the data are in keV.
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! 146 g 148
| BCE2;J=->J") Sm i Sm
J J | exp. ¢ 1BA EPM__ |EXP. | IBA EPM i
s | ; a4 S | T a s 1
26 . 0Og | 0.048 |0.016| 0.028, 0.048 ;0.146! 0.146 0.146 | 0.146 |
4g | 2g |20.061 {0.029| 0.094|0.098 [0.25 | 0.21 | 0.26 |0.24 |
69 ag | 0.04 |0.0a | 0.14 [0.15 | -- | o0.23 |0.38 |0.31 |
89 69 -- — | o0.20 [0.15 | == |o0.21 |0.50 |0.27
08 29 - — | 0.083|0.10 | -- | o0.050| 0.17 | 0.0S8
28 0g - -- |9:10-5[7+10°¢ -- [0.0016(0.0002 j6-10~"
28 2g -- | -- | 0.013(0.004 | -- |0.002|0.0020.003
28 dg - - | 0.033|0.0a3 | -- |0.012| 0.11 |0.05a
Co2r 1 oog -- -- | 0.004|0.002 |0.008| 0.008| 0.007 | 0.007
2 29 - -- | 0.03%|0.065 [0.089| 0.209| 0.13 | 0.076
| 2r dg - - | 0.026 |0.012 | -- [0.0104 |0.0066 [2:107%
2r 0s - - | 0.08a|0.015| -- |0.010| 0.023! 0.008
B(E2;J-=>J) 8506 m i 1524,
J ) | exp. | 1BaA EPM EXP. | IBA | EPM
3 5 . 2 5
25 | 0o | 0.269] 0.269| 0.269| 0.269| 0.680 | 0.680| 0.680 | 0.680
4g 20 | 0.515| 0.470| 0.51 | 0.454| 1.02 | 0.93 | 1.0a | 1.01
69 dg -- -- 1 0.73 | 0.68 | 1.18 | 0.96 | 1.29 | 1.20
8g 69 - - | o0.50 |0.87 | 1.38 |o0.88 | 1.57 | 1.43
109 | 8¢ -- -- 1.0 | 1.0 |1.54 [ 0.75 | 1.86 | 1.71
ar 2r -- -- | 0.35 | 0.23 | 0.323! 0.333] 0.53 | 0.52
| 08 29 | 0.25 | 0.43 | 0.46 | 0.27 | 0.161| 0.026| 0.169| 0.051
28 0s |0.0043| 0.036(0.0015 |0.0053 [0.0046 [0.0067 [0.0012 [0.0014
28 29 | 0.362| 0.020| 0.026| 0.036| 0.025 | 0.006| 0.023 | 0.013
28 4g | 0.639| 0.161| 0.140| 0.240| 0.095 | 0.021| 0.19 | 0.12
as 29 - -~ " |1+10-5| 0.017 |0.0053 {0.0071 {0.0009 |0.0005S
ag 4g - 0.014| 0.065 | 0.03410.0025 | 0.04 | 0.02
2r 0g |0.0102 [0.0102| 0.015[0.0095| 0.018 | 0.018 | 0.035 | 0.027
Po2r 29 |0.0335(0.0171| 0.140 10.0643 | 0.046 | 0.075| 0.050 | 0.061
Po2r 4g | 0.043|0.038| 0.050 | 0.038 [0.0037 0.0047 | 0.013 [0.0077
| ar 29 - -~ | 0.006[1:107%[0.0036 [0.0005 [0.0055 ,0.0083
ar 4g - -- | o0.11 |0.032|0.03a|0.071| 0.10 | 0.07a '
2r 0g | 0.036| 0.061| 0.17 | 0.046| =-- — | 0.016! 0.010 |
ar 28 - -- | 0.017| 0.052{0.0011 [0.0050 {0.0219 0.0112
28 | Os | 0.723)0.255| 0.212|0.395| 1.85 [0.40 | 1.09 | 1.08 |

TABLE [V.3.2. The same as table IV.3.1, now for transition
probabilities. The asterisk indicates a fitted transition.

All the figures are given in units of e2b2 5
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abrupt shape change may be noticed between neutron numbers
88 and 90, 1.e. 150 Sm may be considered spherical and '°* Sm
deformed (this 1s seen in the EPM from the discontinuous be-
haviour of the fitting parameters in A=150,152 region). stz
may be noted that the use of the shell model is simple only
up to '50Sm because of the onset of deformation at ***Sm
/5t81, Zo80/.

The EPM results can be compared with the results given by
the IBA model. There have been numerous IBA calculations
(Fits to individual nuclei, to a whole chain and fits by the
schematic monopole and quadrupole pairing model) in Sm re-
glon /Ca80a,Ca80b,5¢c78,5¢7%a,S5a79,Su77,5u7%9,Ca7%,Cal82b,
Ar82/. The purpose now is to compare the EPM results with
6-parameter IBA-1 results of Lipas et al. for &14%,150052gy
(I have performed the fit with the EPM also to %15 Ve g
and the results are tabulated 1i1n appendix H ). In the
IBA calculations the effective proton number 7, is used for
148-15%Gq, but the usual Z is used for '*® Sm because the use
of Zs¢¢ gives bad results. Z 2¢¢ and the other I[BA-1 parame-
ters are tabulated in appendix G.

The comparison for the isotopes is presented in table
IV.3.1, uwhere the '"®Sm IBA data are taken from /Kr84a/ and
the IBA data.of 1"&:/150052gn from /Li84c/ (the corresponding
normal boson—-number IBA data can be found in refs. /Li184a,b}

Kr84a,b,c/). The IBA and EPM fits are strikingly good, The
EPM fits being a bit better in the case of e14¥Sm and the
IBA fits being a little better for '°2152gqn, As one can see

from the tables of appendix H, also the EPM fits for '3 Sm
and '°°Sm are excellent (especially for '5%Sm for uwhich 4-
and S-parameter fits give RMS=12keV including all the 11
known states). Appendix G tells that the IBA parameters be-
have wvery strangely for 1%%Sm and 159Sm, The fits are
excellent, but the initial parameter wvalues obtained from
perturbation theory /To83,L184d/ lead to strange values for
the final parameters (this 1s especially noticeable 1in the
case of the single-boson energy parameter EFS, see also
/Kr84b/ ). Such strange behaviour 1s attributed to the effec-
tive nature of the parameters by Van Isacker et al. /IsB2/,.
Instead of using this effective boson number, one could use
the normal boson number /Kr84b/, or one can count proton bo-
sons from Z=64 /Gi82,Wo083/; vet another choise 1s to use
only four bosons /Ha78. Ha79/. (in the abouve refs. this was
done for 'Y%Sm), However, it seems that the results are more
or less of the same caliber, independently of the boson num-—
ber used in the calculations.

The tranmsition probabilities for the four isotopes are
indicated 1in table IV.3.2 including experimentail, IBA and
EPM values in units of e*b*., In the case of YW&Y3Sq, the
EFPM  giuwes the following results fTor the branching ratios
whose experimental and IBA values are tabulated in table 7
of ret, /Kr84a/ and 1n the fooctnote of table & of ref.
/Xr8idb/ .



B(ER;J==>J") tdoe, dSer

B(E2; J——>J")
J| 0| J |exp.|1BA epm | Exp. epm\°

a | s 4| s

2r| 29|00 |50 [s0® |11 |27 |-- |19 | 11
3r| 4g |29 |a.8 |9.7]2.6 3.1 |-- |9.5] 6.5
3| 2r|de 1.2 3.0 ]1.2]1.1|-- |a.8] 7.5
Sr| 69 l4g |6.3 8.3 [3.0(3.8|-- [15.6(12.6
28| 25|00 11 |65 |146 |634 |[11¥]10 | 5

TABLE IV.3.3.

Experimentally known branching ratios
for 1%6Sm and 18 Sm. The experimental
and IBA figures are from /Kr84a,b/.
a) 1.25 in /Kr84b/ for the IBA

b) four and five parameter fits

* mearns a fitted BraﬂCPAng.

The EPM results are very good compared with the IBA results
especially when taking 1nto account that the transition
operator in EPM has only one free parameter which is always
fixed by the 2g-->0g transition. In the IBA one has two
phenomenological parameters in the transition operator and
one can fit either two transition probabilities or branching
ratios or their combinations. For the isotopes ®*® Sm and ***Sm
quite an extensive comparison between the IBA and the EPM
can be made because there are extensive experimental data
available <(as can be seen in table IV.3.2). Comparing the
corresponding figures, one easily sees that for 150Sm the
EPM does better than the IBA but for '32Sm the models apply
roughly eaually well, Again the EPM has thg advantage of
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using fewer parameters both i1in the energy fit and in the
transition probability fit. As can be seen 1n table 1 of
ref, /L176/, already the old PM does very well with the
branching ratios in the case of '5%Sm using only two ener-
gy—-fit parameters; 1in this case the EPM gives no significant
improwvement.

The parameter systematics of figs. 19 to 23 give an indi-
cation of discontinuities 1n parameter behaviour at ‘QQSm
and at q5;§m. The first cusp at 1" Sm can be explained by
the closure of the 50-82 neutron shell. The second one 1s of
the same kind as the discontinuity in the Gd chain at '53Gd
(though not so distinctive, see section IV.3.B). The fits
for 12,1%4Sm are uncertain because of the lack of experimental
data. The same features are also clearly seen 1n the quadru-
pole moment and transition probability systematics of figs.
24 and 25, where, for example, the shell closure at ""Sm is
realized by local extremum values of the curves at A=144.

IV.3.B. The Gadolinium Isotopes

. _ . 150 =160, e .
In this chapter the chain Gd of gadolinium isotopes

1s discussed 1in the light of the EPM, the IBA and the ear-
lier PM. There are several publications about IBA fits to Gd
isotopes /Ca80a,b; Go8lc; Ca82bj Li182; Li84a; 6i83/, but
there are two publications that are used in this work for
comparlison purposes; these are /L182, Li183c/ and /Li84a/.
(/L183/ and /L183¢c/ have the same content).

First one can compare the earlier PM and 4-parameter IBA
results of refs. /L182, L183c/ with the 4-parameter EPM cal-
culation for the whole chain 750-160G4, As can be seen from
the parameter systematics, figs. 19 to 23, the behavicur of
the four EPM fitting parameters agrees with the behaviour of
the PM and IBA fitting parameters of figs.? and 8 of ref.

AL183c/. This behaviour rewveals a shape/phase transition at
N=88&-90 (A=150-152), which has been discused in a qualita-
tive mlicroscopic way by Casten et al. /Ca83/. Another ccmmon

feature of the earlier PM (i1sotropic and anisotropic) and
the EPM 1s the discontinuous behauviour of the parameters at
N=94-946 (A=158-160), which seems to be of the same origin as
the discontinuity in the Sm chain at '°*Sm (see chapter
IV.3.A). No good explanation for this behaviour is thus far
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known . As 1in the case of the Sm isotopes, the quadrupole
moment and transition probability systematics of figs. 24
and 25 support the abouve speculations of a shape transition
and also give indications of the discontinuity at '°*Gd.

A quantitative comparison of the three models 1is per-
formed 1n table IV.3.4, which gives the RMS values corres-
ponding to the known experimental lewels (taken from /Li182/)
for the three models. The PM and IBA data are taken from
/Li83c/ and the EPM data from the tables of appendix H. One
can clearly see from the table below that the EPM does not

work very well in the case of '°9Gd and '°*Gd.
a |

quc-— BB (A fourS | four |

4 0OF 1 PM | param|param.|

L tU S LEVELS i IBA"I EPK\X :

i
9 355 } 188 | 195
150 ! |
Gd | (11){(324) (178) [(237)
} 16 | 288 | sS2 | 167
152

Gd [ (17)|(291) | (31)|(164)

16 225 126 64
134
Gd | (17)] (231) [(123) | (62)

16 230 Lk 23
156
Gd | (17)] (257) |(113) | (26)

12 | 186 | 22 | 18
158
6d |[——= | ——= | —= | ---

8 105 i | 29
160
Gd [ (9) | (104) | (13) | (27)

TABLE IV.3.4 :

Comparison of the isotropic PM, the 4d-parameter IBA
and the EPM using the RMS deviation of eqg.(IV.1.1).

The figures 1n parenthesis correspond to each other.
a) Calculated from the data of refs./L182, L183c/.

In addition to the complex level structures of these 1soto-
pes, a reason for this is the band recognition difficulties
and (possibly) the inaccuracy 1in calculating the functional
to be minimized. Also the earlier PM and the IBA have diffi-
culties in this region although the IBA can predict the
5d levels surprisingly well. It must be remembered that the
earlier projection model gives uvery good fits to ground
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B(ER:J==)47) 13054 | 5264
B(EZ:;J-=>J ) ; |
JJ U EXP. P | 18a | EPM |EXP. i PM I1BA | EPM !
28 09 29 0.051, 0.29 | 0.05 | 0.006 0.020] 0.41 | 0.06 | 0.22 |
2% 29 49! -- |0.15 |o0.17 ] 0,11 | — | 0.22 | 0.a5 | 0.2 !
28 08 29 ! -~ | 17.6 |a.sa | 14 | 2.14 | 13.8 | 2.14 | 4.96 %
48 29 dg 50.0017; 0.30 | 0.13 | 0.072| =-- | o0.43 [ 0.11| 0.22 |
48 28 4o } -- ; 60.7 | 0.46 | 0.72 | 7.3 [ 35.8 | 6.0 6.4 %
2r 09 2g | 0.032{ 0.09 | 0.12 | 0.03% 0.14 | 0.1% | 0.06 | 0.06 !
2r 29 49| - | 20 [0.77| 4| -- | 333 |o0.01| 1.8 |
3 29 43| 0.12 | 0.68 | 0.82 | 0.077| 0.45 | 0.98 | 0.39 | 0.32 |
| ar 29 4g %>o.oo9 0.0067 ! 0.34 |0.0061| 0.071| 0.021| 0.11 0.029!
) 154 156 \ 158 |
BERE . s | «« |
JJ JTEXP. iPM |1BA | EPM [EXP. 'pM | IBA ‘EPm|EXP. IPM |1BA EPM |
+ 28 0Og 2gi 0.1210.se|o.61 0.04/0.17/0.63|0.82 o.2o‘o.49eo.ss{o.55io.59
| 28 20 49| 0.36/0.3710.35|0.15!0.92|0.43/0.35]0.27 1.22io.as,o.51io.22
! 2 08 29| -- 119.3| 103{ 31 | -- |28.3| 310| 61 | -- 3?.2% 688 81
% a3 29 dg‘ 0.1010.73 o.sa%o.oz 0.20/0.85| 2.6/0.04[1.05 0.9130.5oi1.1s
|48 28 49| 33.9138.6 177}23.2 -~ |46.8| 96| 53| -- | s0 @81 236 |
~ 2r 09 29)0.0910.4710.6010.38|0.67|0.56|0.61]0.53}0.61l0.60 0.64]0.45 |
l2r 29 dgk s.osl 23 1 ia.as 11.5i 25 {17 | 5.9 17 ; 20 14 § T
13r 25 4g| 1.00! 1.711.?5i0.?2 1.5| Lol 1.8i 1.1i0.37l 2.1;1.9611.16
tar 29 39! -- l0.1210.24/0.08/0.16/0.19]0.24[0.18] -- [0.22.0.28{0.09 |

TABLE IV.3.S5. Comparison of experimental
the
is the
four

theoretical

the experimental

ones given

isotropic projection model
parameter [BA-1.

by the PM,
of

The figures for both

branching ratios with

IBA and the EPM. The PM
/LLi76/ and [8A means the
these models and

ones are taken from /Li82.,L183c¢/.
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state levels (fitting parameters are fixed by ground band
levels) but the R and Yy bands are predicted badly because
there are not enough parameters to fit the R and ¢ band
heads. The isotopes 15%-160(Gd are fitted quite well by both
the IBA and the EPM. The EPM is much better than the IBA for
Gd% and both are about equally good for 153 ,16° 54,

. In the table IV.3.5 the three models are compared with
experiment 1n the case of known branching ratios (190 Gd is
missing from the table because there are no experimental da-
ta available). Comparing the figures of the table, one sees
that none of the models is very superior to the others. The
EPM always seems to give the best or second best branchings.
The PM and the IBA seem equally good on the average. Because
there are not many experimental data available the compari-
son 1s not on a very firm basis. However, 1t 1s worthwhile
noting that the old PM gives 1n many cases very good results
despite the fact that in the energy fit it describes the R
and Y band heads quite i1naccurately.

In ref. /L1i83c/ the internal structure of the guasi-bands
was studied by drawing pilctures of certaln spectroscopic
moments of 1nertia as a function of the angular momentum
(figs. 4,5 and é in /1183c/; actually first and second ener-
gy differences were drawn). The so—called kinematic moment
of 1nertia 1s a purely kinematic quantity and i1s defined as

/St83/

(1V.3.1) §re2 = 100 = 1RE/RDTY

~

The dynamic moment of inertia @ describes how the nucleus
responds to to a force and 1s defined as /St83, Go8la,b/

(1V.3.2) &m2 = (DE/RIH T = 1k Dsow

One gets the corresponding spectroscopic quantities by reme-
mbering the discreteness of | and thus writing ( with an
obuvious notation and J = HhI)

‘725![77—_1 1 __G?f’{s 1
@ (J)EEAEJ :1J(EJ+1—EJ> )

SPEC

(IV.3.3) -1

7

v
N Y~ 1
%seaau} :AES/J ZT\E\)-}]——E\)) :

U ’\5'4’,156()&



Nc?f(‘?—1 1 e 1
&SFEQ(J) - L+[$ E04‘ :-ELJLEJ+1¢ZBEJ1

Sy -1

(SSFEC(J)

The latter reduces to

(IV.3.4)

I
P,

Yo
EJ HAEJH"AE

J

“’%ﬁﬁ - 1_{ )
(g'ngau) “ EJ+%"1EJ+1+EJ] 3
(IV.3.95) ﬁlx--1

Vspee (3) = EJ+1_ LE, +EJ

Plotting the first and second energy differences inuvolued 1n
expressions (IV.3.3,4) as functions of J tells much about
the spectroscopic structure of the band For a rigid rotor
the behaviour of A4E, is 11near and A*E, is constant. For a
harmonic wvibrator AE | hw = constant and 4% E, =0 . For
a symmetric and triaxia] rotor all the bands behave as i1ndi-
cated. above, but for a Yy-unstable nucleus the Yy-band ener-
gy differences behave in a non—-smooth way yielding a saw-
tooth line in the difference plot. This Y-band behaviour is
called the even~odd staggering effect /He?7/ and can be
explained by a repulsion of the states with the same angular
momentum in the B and Yy bands /0I77/. In addition, for
triaxial and Y—-unstable nuclei the Yy band head 1s mostly
quite low.

Judging by the appearance of the difference plots for
the Y bands of the gadolinium isotopes in ref./Li83c/, the
rotor gadoliniums 154-160Gd seem to be y-unstable nuclel
(Here the criterion 1is the odd-even staggering which re-
sembles the one encountered in the 0(é) limit of the IBA),
In /L183c/ 1t was observed that the IBA model nould not pro-
duce as good difference plots as the 1sotropic PM ({(so 1in
this respect a larger pairing term would have been needed 1in
the IBA fits). However, both models gave i1ndications of the
Yy-unstable features of the isotopes In the PM the reason
for this is the under rotational behaviour of the even J-le-
vels 1n the bands as seen in fig. 7 of the ref./L176/ for
the ground band. This results in the right even—odd stag-
gering for the v band. The EPM produces good difference
plots for the ground and g bands, but fails for Yy bands 1in
the case of the Gd 1sotopes. In the EPM the lower-lying J
levels of +the g band tend to push the higher— lving J le-
vels of the Yy band even higher, resulting 1n an opposite

even—-odd staggering compared to the Yy-unstable case. This
produces saw-tooth plots hauving a ‘phase diffprgqce’ with
the experimental plots. However, because for “#47°CGd the &

leveis are higher than the corresgonding ¢ lewvels, the re-
puision 1s downward and +the experimental results are re-



gained (this is, however, hard to see because there are not
enough experimental data available for these 1sotopes).
Finally I wont to compare the 6-parameter IBA-1 calcula-
tion of Lipas et al. /Li84a/ with the EPM calculations. The
parameters that were wused in the calculations by Lipas et
al. are tabulated in appendix G. The main purpose in /Li8da/
was to describe the E2/M1 mixing ratios in '>"Gd by the IBA
model, but they also mention the RMS value of the energy
fit, which was RMS=31lkeV. In this RMS the following levels
were 1ncluded /L184c/: 2g - 10g , 0B - 10 , 2y - 71
The corresponding RMS wvalue for the 4d-parameter EPM 1s
62keV), and for the S-parameter EPM it is 5lkeV (as seen 1in
appendix H). So both models give very good energy fits
(Girit et al. /G183/ report an RMS of 80 kelV). However, one
must take into account that in the EPM four fewer levels are
fitted, and when considering only the EPM-fitted levels, the
EPM gives a better RMS value both for 4 and 5 parameters.

IV.3.C. The Erbium Isotopes

The erbium i1sotopes fitted in this work range from 15;£r
go  WAER + The Er 1isotopes have been studied much for
their high—-spin properties and y-band structure. The iso-
tope 1'9°Er is studied in refs. /By81, Zo80/ for i1ts high-
spin properties. As mentioned in chapter III.1, the EPM con-
tains no real i1nternal degrees of freedom to describe back-
bending phenomena, so the levels above the band crossing
are, 1n principle, not describable by the EPM. So, for exam-
ple, in the case of 15°Er one must stop the EPM fitting and
comparison wilith experimental data at the first backbend of
the bands, which in this case is for the ground band at J =

10g --> 14s (s denotes here the so-called s—-band which
crosses the ground band and then becomes the yrast band. S
can be i1nterpreted as super band or side band. Fig. 2 of

ref./By8l/ shows also a second back bend at 24s --> 28s’ Yo
These backbending phenomena are better described by special
high-spin models, like +the Coriolis antipailring model
/Moé0/, +the rotational alignment model /St75,St7Z/ the
shape transition model /Th73/ and the HFBC theory /Be?9/. It
seems that, at least for the Er isotopes, the alignment mo-
del 1is the most suitable for describing the back-bending
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phenomena /Ya80/.

In the region of rare—-earth nuclei the back-bending
occurs at angular momenta 124-->16s, and especially for
156 1N EL {t occurs at 1ﬂ%——> 164/R¥73, Ja7?7, Ya80/. In
addition to a back bending in the ground state band, one may
observe backbending also for other bands. ror example, one
can observe a back bend in the ¥y band at 12,-->145 in 169 Ep,
where the odd-J side band becomes the yrast odd-J band
and the even—-J side band becomes the vyrare even-J band
/Jo?78, Ya80/. In table IV.3.6 and in appendix H all the le-
vels are interpreted as not belonging to any side bands, so
that the low—energy boson nature of the excitations is pre-
served.

Another point worth mentioning 1n connection with the Er
lsotopes 1s the odd—-even staggering phenomenon already
encountered in the Gd isotopes. In the Er isotopes the stag-
gering 1s the same way as in the Gd isotopes, 1e. because of
the higher-lying B band the inter-band interaction tends to
lower the even—-J levels in the ¥y band with respect to the
odd ones, as 1s clearly seen 1n fig. 4 of ref./Ja?7/ and 1in
fig.1l2 of ref. /Ya83/. Because B levels are quite high com-
pared ta the ¢ levels for the erbiums, the repulsion of the
same-J levels 1in the EPM seems to be insufficient to produce

this effect. As a result an almost rigid rotor spacing 1is
produced 1n the EPM (of course the fitting was made harder
by the fact that only one or two B levels were, with some

certainly, assigned 1n experiments).
The main purpose here, however, 1s to compare the EPM ca-

lculations Wwith the 6-parameter IBA-1 calculations of
/L184db,c/. Here the comparison 1s performed only for the
energles because there are not many experimental data on the
transition probabilities or branching ratios. (Except for

"E~ in table 4 of ref./Ja?7/ where the experimental figures
were compared with those given by the Alaga rules and by the
RUM (=Rotation Vibration Model, see ref./Ei73/). The EPM re-
sults for these branchings are very much the same as the
RYM(gRY) results of the above reference. Seweral experi-
mental branchings are also known for '°3Er which were com-
pared with those given by IBA-1 in ref./Wa8la/. Again the
EPM gives quilite nice results, especially for the Y
branching). The only Er isotope fitted by the IBA so far is
1e%E /Ca80a,b; WaB0a; Wa8la: Ca83b/. It has been one of the
most glorious successes of the IBA model and of modern
experimental techniques. In table IV.3.6 the isotopes Tex1&%,
166,16%E  4re represented in the light of experiment, IBA-1
and the EPM. The effective proton— boson number is used in
the IBA fits (except for 16 £y and /Sc83/ vields for the
erbium isotopes Ze¢f =3.

As can be seen 1n the table, both models give wvery good

RMS's <+he S-parameter EPM being the best (the EPM is espe-
cially good for 719°Er for which an RMS of 2.4 can be
achieved). In the case of the EPM fever lewvels are fitted

because the predicting ability of the model 1s being tested.

From the parameter systematics of appendix H one can see
that the convergence of the boson expansion 1s slower for
the erbiums than for the other isotopic chains. Especially
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: 162¢ 164c
BAND| J | EXP. | IBA EPM EXP. = IBA EPM
a 5 a 5
2| 102 | 94 ¥ 105“ 1027 91 | 88 % 94 * o1 ¥
| 4| 330 | 3114 3331 3317 299 | 289 303 299
6| 667 | 641% 6551 668% 614 | 602" 604 615 ¥
& 8 | 1097 |1081%1041%1092% 1025 -1020‘r 975" 1026‘?
§ 110 | 1603 |1614%1477 1581 | 1518 [1540%139¢ (1513 |
12 | 2165 |2241 (1953|2127 | 2083 [2150 [1856 |2065 |
14 | 2746 |2922 2464 |2724 | 2703 [2851 (2352 ;2671 |
0 [1087 [1096%1086%1084% 1246 [12267123311233¥
[ 2 11171 116?*1185 11?4 1315 1318*1314 1309 *
4 | —- 1470 |1500%1502%1486 *
2 | 901 891* 503" 908? 860 | 850% 862% 867 ¥|
3 | 1002 | 983 1000*1001* 946 94?j 9473 948%
4 11128 [1120%1129%1124% 1058 1049110601056
5 | 1286 |1286%1282%1274% 1198 1189119411189
6 | 1460 14as*1465 1457¥% 1359 [13651364.]1352 "
e 7 11669 1668 1668%1661% 1545 [1559915361532%
| 8 | 1873 |1500%1891%189¢¥ 1745 |1754%17611752*
' 9 | 2134 |2180%2139 (2151 [(1977) | 2002 1961 (1974 |
10 [2347 |2363%2388 2426 |(2184) |2279 |2233 |2251 !
11 | 2657 |2714 [2682 [2735 | -- === [l=="
| 12 [2911 3029 2943|3040 | -- == 4 == |——
| RMS -- S4 |86 | 40 - 43 | 107 | 11
] -- -— |- | -- -—  [(45) |[(101)(18)
166¢,. 168¢,. |
| BAND| -J| EXP. | IBA EPM EXP. | IBA EPM
I i 4 | 5 a4 = i
i 2] 81 72 ¥ 82 1 81 %] 80 79 ¥ 83 *I 80 ® |
4| 265 | 239 2671 2651 264 | 261% 268 264"
o | 6| 345 500% 5407 5467 549 | S46Y 538,] 544
T 8| 911 | 853% 884 911Y 928 | 931% 874" 909
! 10| 1345 [1295%1282 1345 | 1397 |1415%1258 11345
| 0 1460 [1374¥1462%1462% 1217 1162F119?‘1211
| 2| 1528 |1447}11530%1527%| 1276 |1241%12¢6%1274°
& 41(1679) {1615 1688 (1679 | 1411 1a16*1425*1423*
6| -- —— | —= | == | 1617 |1693%1673 1658
8| -- -— | - | -= [(18%0) |2058 2007 {1982
2| 786 [ 825% 784Y 789% 821 | 790% 828Y 829F
3| 859 | 897% 857% 840% 896 | 870% 901% 899¥
4| 956 | 992% 955% 955z 995 | 968Y 999% 992¥
v 5| 1075 1111:1072*1071 1118 |1095¥1116.1107"
6| 1216 |12527 1223*1216 1264 1249} 1264 11248
7| 1376 |1417 93?3 1371¥ 1433 1425‘1415 1403
< 8 [(1556) [1602¥1583%15707(1625) [1620%1613 [1594
| RMS -- 49 |20 [2.4] -- 30 142 |20
| —— (500 (20) [(2.5)] -- (50> (50) {(30) |

TABLE IV.3.6. Comparison of experiment and theory for
some Er isotopes. The experimental figures are from
NDS, appendix I, and from /Li84c/. The IBA figures
are from /Li84c/. The levels marked with an asterisk
are fitted. A1)l energies are in keV, and the RMS’s in
parentheses correspond to the energy data in paren-—
theses.
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in the region of *—16%EP, going from second order to third
in  the boson Hamiltonian seems to alter the values of the
fitted parameters a great deal., On the grounds of these
parameter systematics one might suggest that some kind of
shape transition should occur in the region of “8%-1°°F, Ho-
wever, one must be cautious about drawing such a conclusion
Jjust on the grounds of the behauviour of the fitting parame-
ters of a slowly converging Hamiltonian because the quadru-
pole moment and transition probability systematics do not
show any abrupt behaviour i1n this region.

IV.3,0. The Ytterbium Isotopes

The ytterbium chain dealt with here contains the iso-

topes 16*yb34 S ‘“ﬁybqw* . Recently +the most interesting
ob ject o? study 1n Yb nuclei1 has been the high-spin
phenomena. The degree of backbending in the Yb chain 1s not
a smooth function of neutron number as seen in fig. 18 of
ref./Wa7é6/. This has been explained in ref./Fa74/ to stem

from pairing effects and in refs./Be78, Be?%9/ to stem from
the fact that the mixing between the ground state band and
the s band 1s an oscillating function of neutron number,
This oscillation is very clear in going from '°°Yb to '°®Yb
and further to ''OVYb (between two backbending nuclei '°*Yb
only slightly upbends). This behaviour is also clearly seen
in  the parameter systematics of figs. 19 toc 23 and 1n the
quadrupole moment and B(E2) systematics of figs. 24 and 25,
where some discontinuous behaviour may clearly be observed
at 18%Yb - '¥0Yb ( one may also notice that the conuvergence of
the boson expansion 1s quite slow especially for the heavier
Yb 1sotopes).

The backbending in the deformed rare—earth region 1s

strongly influerced by the 1(13/2) neutrons /S5t75/. The
Coriolis interaction causes the 1(13/2) orbitals to align,
resulting 1n the emergence of a 1(13/2) superband. The ba-

ckbending starts for 19%Yb at 12g /Hu77/, for_ 1%0Yb at ldg
/Wa76/, for 110Yb al 14g /Wa8la,Ha73/ and for ''*Yb at 13g
/La78,Wa80b/; "t“Yb does not seem to backbend /Wa76,/. There
are not many electromagnetic data available ( only 1n table
4 of ref./Hu?v7/, in tables 3,4 and é of ref./Ca’3/ and 1in
tables 7 and 8 of ref. /Kr2dc/), so the comparison of the
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energy levels of
an asterisk are fitted.
a) Data from /L184c/ .

b) Data from /Kr84c/ .
c) Four and five parameter fits .

All

TABLE IV.3.7. Com?égison of EPM- and IBA-calculated
Yb with experiment.
energlies are in keV.
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B(E2;J-->J")| EXPN|¥1Ba | b)IpA EPM
U RE 4 5
2g 0 | 1.087/%1.087|*1.087"1.087|%1.087
4g 29 | 1.80 | 1.54 | 1.54 | 1.58 | 1.56
69 dg | 1.76 | 1.66 | 1.67 | 1.81 | 1.74
8g 6g | 1.95 | 1.69 | 1.71 | 1.99 | 1.86
109 | 89 | 2.24 | 1.67 | 1,71 | 2.19 | 1.97
129 | 109 | 1.78 | 1.61 | 1.67 | 2.39 | 2.08
0p 2g |0.0162(0.0180|0.0685|0.0949 |0.0381
28 0Og |0.0013[0.0033|/0.0121[0.0072(0.0035
2r 0g |0.0079[0.00755.0075(0.0332{0.0147
B(E23J==>J")
B(E2;J——>J )
EREEE
28| ag|og | 7.55 | 3.05 | 3.12 | 11.2 | 8.6t
28 | 49| 20 | 2.54 | 2.19 | 2.09 | 4.30 | 3.89
ag | 69| 49 | 4.6 | 2.8 | 2.3 | 5.2 | 5.3
68 | 89| 6g | 3.4 | 3.8| 2.5| 5.2 | 6.7
86 | 10g 89 | =45 | S.4 | 2.8 | 4.3 | 7.7
2r | 29| 0g | 1.69 | 2.51 | 2.28 | 1.86 | 1.71
2r | 49 | 0g | 0.165| 0.251| 0.228| 0.170| 0.128
2r | 49 | 29 | 0.098| 0.100| 0.100| 0.092| 0.075
3r | 4g | 29 | 0.486| 1,.12] 1.00 | 0.729]| 0.603
ar | 4g |29 | 3.24 | 17.0 | 10.7 | 5.42 | 4.52
Sr | 69 |49 [<0.88 | 2.95 | 2.46 | 1.43 | 1.09
| 68 |48 |89 84 115 35 17 36

TABLE IV.3.8. Comparison of EPM- and IBA—ggéculated B(E2) =

and branching ratilos
are in units of = b .,
are fixed.

a) Data from /L185c/

b) Data from /Kr8d4c/,

tables 7 and

c) Four and fiuve varameter fits
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EPM with experiment 1s not easvy. However, /Kr84c/ contains
appreciable electromagnetic data for Y2 VYh and a useful
comparison can be made. The comparison 1s performed for the
energies 1in table IV.3.7 and for the B(E2) s and branching
ratios in table IV.3.8. In addition, the tables contain the
results of two é6—-parameter IBA-1 calculations. One 1s per-
formed with the ordinary boson number (figures from /Kr84c/)
and the other with the effective boson number (figures from
/L184c/)., The parameter values used 1in the calculations are
tabulated in appendix G.

As can be seen from appendix G, the two IBA fits are per-
formed with quite different fitting parameters. The calcula-
tion with an effective boson number 1s done between the

dynamic symmetries Ues) and SU(3) (nho pairing term
included), and the other between SU(3) and 0(6) (the d-boson
number term 1s excluded). The effective IBA calculation

gives better results for the ground state band but fails for
the R and Y bands, which are, on the other hand, treated
quite well by the second IBA calculation. As can be seen,
also the total RMS deviation 1s smaller for the ordinary bo-
son—number calculation, but the S—-parameter EPM calculation
gives a still better RMS. The EPM figures are superior to
both the IBA figures in the case of ground and B bands and
about the same quality as the fit /Kr84c/ for the Y band
(the other IBA fit is worse). Because the IBA fits are done
with different parameter combinations, extraction of the
effect of the effective proton-boson number in the calcula-
tions 1s not possible.

From table IV.3.8 one can see that the two IBA fits give
about the same results, but the S—parameter EPM fit is a bit
better. However, both models give a good qualitative <(and
even quantitative) description of the electromagnetic pro-—
perties of 13%Yb,

By making the first and second energy difference plots as
in fig.S5 of ref./Kr8d4c/ ( discussed 1in section IV.3.B of
this work), one sees the fact that the EPM gives quite a
good description of the internal structure of the ground and
¥ bands of '*2Yb. However, the dynamic moment of inertia of
the R band is not very well described by the EPM for which
the Jd-parameter fit gives roughly the IBA result and the
S-parameter fit even a slightly opposite trend. A
S—-parameter fit stressing the R band could improve the si-
tuation.
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V. DISCUSSION AND COMPARISON WITH THE COHERENT

STATE MODEL (CSM) OF RADUEK ET AL.

In /Ra76a,b,c/ Rddutd, Badea and Dreizler introduced a mo-
del called the coherent state model (CSM). This model 1is
very much like the earlier PM and the EPM. In the CSM one
projects laboratory states from intrinsic states obtained by
acting with deformed—-phonon operators on a deformed coherent
vacuum for i1ntrinsic axially symmetric excltations. The
intrinsic ground state 1s the same as in the PM and the EPM
and can _be written as (This form is identical to the form
exp(=%d*) 18> = |0”> used in the EPM. Here 10> 1is defined
in (II1.1.7) or (A2.6). This equivalence is easy to prouve
using the relation /Me70/ exp(Aexp(B) = exp(A+B+2[A,B1) ).

_ T
(V.1) vy = ex?Ed(bo—bo)]I0> ;

i.e. 1t is the deformed intrinsic vacuum state. The calcula-
tions 1in these references are performed 1n a two—state basis
for every J. The other basis states are projected from the
intrinsic R state

. T
¥/ = s
(V. 2) vy = (bomd)v,

just as i1n the PM and EPM. The laboratory Hamiltonian 1s a
boson expansion like (II1.2.10) (up to fourth or sixth order)
with the specific form suggested in /0a72/. (The coeffi-
cients are free parameters as in the EPM. In principle these
coefficients could be calculated microscopically by using
the boson expansion technigues or phenomenologically by
using the potential energy surface approach.’) The energies
are calculated either as expectation values (as in the PM,
but only with a 2-state basis and with a Hamiltonian 1i1nclu-
ding also anharmonic terms) or diagonalizing in the projec-
ted state basis (as in the EPM, but Tirst orthogonalizing by
the Schmidt scheme and then performing the usuall
diagonalization).

From the very beginning the purpose of the CSM was to

attack also the high-spin region of nuclear spectra. In
order to do this, a method for describing a crossing of
ground and R bands was proposed in /Ra76a’/. There the R
band became the yrast band at some critical J, J.-, and the

fitting was extended to the high—-spin levels beyond the bac-—
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kbending region. The fits performed in /Ra7éb/ indicate, ho-
wever that this kind of boson description does not have very
much capacity for describing the band crossing in the back-
bending region. The CSM description smooths out the drastic
behaviour of the dynamic moment of inertia (i.e. 4™ )in the
back bending region and thus gives only an average descrip-—
tion of the effects of the Coriolis interaction in the rota-
ting nucleus. So, contrary to Raduta et al., I do not be-
lieve 1n the capability of this kind of model to describe
high-spin phenomena, and so I have assumed the ground state
band to be always the yrast band (see section III.1.). Howe-
ver, also the EPM could be used, like the CSM, for a high-
spin description by using i1n the fits a non-weighted chi-
squared function.

In /Ra76d, Ra78a/ the abouve model was extended to odd-A
nuclei by coupling the odd nucleon (moving in a shell model
orbital) to the collectively excited core (the first attempt
in this direction was 1in /Ik73/ where the PM states of Lipas
et al./Li76/ were used as core states). In /Ra?7/ 1t was
proved that, for the ground state band, the models dealing
with completely aligned states (=highest—-seniority states 1in
an N-phonon multiplet) and the quasi—-rotational models (the
level energies are an expansion 1n J(J+1) ) are just extreme

cases of the CSM (this 1s true also for the EPM). Also
closed forms for the matrix elements of the quadrupole col-
lective operators were derived /Ra78b, Gd78/. A new step 1n

the development of the CSM was the inclusion of the Yy de-
gree of freedom in the system /Ra81; Ra82; Ra83a,b,c;Ra84/.

There, instead of using the Sheline-Sakai (SS) scheme
(which 1is wused in the PM and EPM), the results obtained by
Roulet et al. /Ro78/ for the Pt isotopes suggest the use of
a modified SS scheme. This modified SS scheme seems to be a
basic feature of models using vr-soft potential energy sur-
faces /Shé60,Li175S/, and 1is in accordance with the experimen-
tal facts that for many isotopes B(E2; O+-—>2;l )/B(E2; Op
——>2% )>>1 and that states of the Yy band exhibit a doublet
structure as seen also in fig 2. In the modified SS scheme
the state OE 1s assumed to have a three—-phonon structure
instead of a two—-phonon content as in the EPM. By demanding
the realization of specific experimental features and ortho-
gonality before and after projection for the model states,
one ends up with a specific form of the intrinsic states Vo
y Vp and V¥, . A carefully chosen boson Hamiltonian is then
diagonalized in the three-state projected basis and for the
harmonic part N of the Hamiltonian one gets an excitation
spectrum that resembles that produced by the earlier PM and
EPM.

The excitation spectra of the three models could be com-
pared with each other by looking at fig.8 of ref./Li76/,
fig.2 of this work and figs. 1,2 and 3 of ref. /Ra82/. From
these figures one can conclude that the ground state band
has exatly the same structure in every one of the models The
8 and ¥ bands have a similar i1nternal structure (for
example the bunching of the states J = odd, J+1 = even toge-
ther has same features in each of the models), but the band
head energies behave quite diffrently (this behaviour being
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very different in the EPM from the other two models).

The bunching of the odd- and even-J Y states 1s a conse-
quence of the Yy-unstable structure built into the CSM. This
has been exploited for example in the fit to the platinum
1sotopes 1905 pr in ref./Ra81/. For the platinum 1sotopes
the deformation parameter d was smaller tham unity and the
level bunching was correct in order to produce a right kind
of even-odd staggering (see fig. 3 of /Ra82/) for the
Y-unstable platinums. Another kind of situation is encoun-
tered when one looks at the CSM fits to the Yy-unstable
osmium isotopes '**7'%°0s5 in ref./Ra84/. Because the defor-
mation parameter is in these fits quite large (dx2,5), the
nice Yy-unstable bunching encountered at small d in the pla-
tinum fits becomes an opposite bunching vielding also an
opposite odd-even staggering (compared to experimental data)
in the osmium i1sotopes. This is the same phenomenon that is
encountered in the EPM fits to the gadolinium isotopes 1in
section IV.3.B, and it is due to the specific behaviour of
the Yy-band energies as a function of the deformation para-
meter. This behaviour i1s similar in the CSM and the EPM, but
in the earlier PM the y-unstable features tended to last to

slightly greater d wvalues. This tendency in the PM also
explains the fact that 1t could reproduce quite nicely the
even—-odd staggering (1.e. A4 and A%*) encountered in the Gd
isotopes while EPM failed in most cases. So, in order to re-
produce better results 1n the case of r unstable nuclei,
the two models (CSM and EPM) should stick to a bit smaller
deformation parameters in the fits. This in turn seems to

contradict the tendency of the fitting procedures to find
large-d minima on the parameter surfaces, especially in the
case of the EPM for which d could be up to 4 in the Gd chain
and even larger for the Er and Yb chains.

In the three-state CSM the projected wawve functions be-
come the three highest—-seniority U(5) states (for each n) in
the zero-d limit, and in the large—-d limit they become the
g, R and Yt states of the BMM for the case of weak coupling
of the B and Yy vibrations to the rotational motion /Ra82/.
This 1introduces specific selection rules in the small-d 1i-
mit and the Alaga rules at large d, which is the case also
for the EPM with a Harmonic H (this i1s true when both models
use the harmonic approximation (I1.6.4) of the transition
operator). Also the absolute value of the gquadrupole moments
of the R-band states are greater than those of the ground-
band states 1n both models. It is worth noting, however,
that in the EPM the B(E2) s are calculated between eigen-
states of +the harmonic Hamiltoniarm in the projected state
basis, but in the CSM the B(E2)°'s are calculated directly
between the projected states (they are orthogonal in the
CSM) which are the eigenstates of the harmonic Hamiltorian
only in the limit d-->0. Instead, in the CSM the model Hami~
ltonian 1s chosen so as to vield approximately the projected
states as eigenstates.

Figs. 1,2 and 3 of ref. /Ra83c/ show some transition pro-
babilities B(E23J;——->(J-2);) 1i=g,B,¥, as a function of the
deformation parameter d obtained by using the harmonic tran-
sition operator between the projected states. These figures
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resemble very much the corresponding EPM figures 2,9 and 10.
The behawviour of the transition probability J:?—_>(J"2)% is

the same 1n both models, but some differences can be
observed in the transition probabilities Jp==2>(J=-2)n and
Jf-—>(J—2)r-. For the latter two B(E2)'s the CSM vields a
monotonically decreasing function of d, while the EPM

curves have a maximum at some d value. For the B(E2) s this
is around dx1.5 and for B(E2) ‘s around dx1.0 . These
differences 1in energy spectra and +transition probabilities
are wvery likely +to stem from the fact that in the EPM one
performs a complete diagonalization, while in the CSM one
assumes for the energies that the R band is totally de-
coupled from the g and ¥ bands and that the projected
states serve as the basis for the B(E2) calculations.

From the energy fits of appendix H 1t 1s easy to see that
in the EPM the ground state band has underrotational fea-

tures (the theoretical level energies lag behind the experi-
mental ones), while the Yy-band energies tend to grow too
fast. This 1s a very general feature i1n many collective
theories and in the case of the EPM it follows from the
omission of the J* term from the boson expansion
Hamiltonian(III.2.3) (the exclusicon of J* means, . according
to (I1.2.9), a partial exclusion of the term B;; ,which 1s

“overrotational’ according to /Li76/). In the CSM the term J
i1s included in the model Hamiltonian and so the theoretical
spectra seem to lack the above—-mentioned features.

In the case of "Sm  and "**Sm the 4-parameter fit gives
better RMS’s than the S-parameter one (see appendix H). This
1s due to an inaccurate minimization in the S5-parameter case
(an increase 1in the number of fitting parameters also
increases the difficulties in the search for a minimum) fol-

lowing from the less accurate behaviour (at small d) of the
functional to be minimized. It is wortwhile to note, howe-
ver, that the 5-parameter fit is 1n this case still better

at low energies because of the weighting of the chi-squared
function.
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VI. SOME CONCLUDING REMARKS

The concluding remarks of this chapter concern the pos-
sible future applications and extensions of the EPM.

The most obuvious future application of the present EPM
framework 1s the calculation of the magnetic dipole transi-
tion probabilities B{(M1l) and consegquently the multipole mi-
xing ratios defined by /Ha?S/

(VI.1) s = (FITED ) e ITED 4y

which has been recently studied to some extent 1n the IBA
model /L18da,e; Gi183; Sa8d, I1s80, 0i84d/. In the IBA the M1
operator has three adjustable phenmnomenological parameters
while 1in the EPM there is just one adjustable M1l parameter
(note, that the lowest order possible operator [b+ Elq will
not do, because it is proportional to J and hence would not
give any contribution to M1 transitions between states of
good angular momentum). The lowest order non-triwvial M1
operator would read in the EPM

wi.2y  TMD = g ML, My, s [[berJT]lB]

1 + HiCo .4

where m* is an effective magnetic coupling constant (the g
factor). Of course, to get some more flexibility to the ra-
tio (VI.1) one could include in the calculations the Jlowest
order anharmonic part of T‘5* (brings in two more parame-
ters)

(VI.3) TCE2) o g B+ quE ;

ANk, 2 A0

where

E., = [b'e!

[ |
G
—.‘—
(s )]
-
>

(VI.8) Eqy =

[—

5 + H.oc,

(M1 , ,
or the fourth—-order part of T (brings in four more para-

meters)
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—

k=23 k=24

S oS (k)
wi.sy TN = 2 e M L e M

where

(k) = % ==
wiey g = [[bTefetlB], ¢ M s {[bfb%}k[bbihﬁlq

It is worth noting that the four parameter &-ratio calcula-
tions performed with the above anharmonic T ‘%) and the T
of eq. (VI.2) would be quite compatible with the S-parameter
S calculations of the IBA ( here the energy parameters are
not counted).

A possible future extension of the model is the addition

of the oriented two—-phonon excitations to the system. (Not
much literature existets on this subject because this matter
is not well established experimentally). According to the

Bohr—-Mottelson picture these would be the following excita-
tions

(bl -4)210> B8 K=0
2
(VI.7) (t)H210> rr K=4
ST rer K=0
ot i}
(bf-drbl 10> Br K=2

After projection this would introduce four new bands into
the present description and thus increase the dimension of

the model space up to seven. So one would hawve four K=0
bands, two K=2 bands and one K=4 band. One possible exten-
sion, of course, is the inclusion of the negative-parity

octupole bands as was done in the CSM in ref./Ra84/ (the K
=0 and K=1 bands were included).
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The parameter values are a result of 3-,4- and
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FIGURE 22 : The parameter cy of the effective
Hamiltonian of eq. (III1.2.2) as a function of
the mass number in the Sm,Gd,Er and Yb chains,
The parameter values are a result of 3-,4- and
5-parameter fits to the experimental energy
spectra.
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FIGURE 23 ¢ The parameter Cs of the effective
Hamiltonian of eq. (III.2.2) as a function of
the mass number in the Sm,Gd,Er and Yb chains.
The parameter values are a result of 3-,4- and
S-parameter fits to the experimental energy
spectra.
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FIGURE 24 : Logarithms of all E2 transition
probabilities B(E2; J=2—>J=0) as functions
of mass number in the Sm, Gd, Er and Yb chains.
The normalization is B(E2; 2g——>0g) = 1 . The
wave functions used in the calculations result
from a fit to the experimental energy spectrum.
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FIGURE 25 : Quadrupole moments of the J=2 states
as functions of the mass number in the Sm, Gd, Er
and Yb chains. The_normalization is
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The wave functions used in the calculations are
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FIGURE 26:

U(S) multiphonon excitations up to four phonons. The E2
transition probabilities between the multiplet Jlevels are
also shown. (Only those levels are shown which constitute
the zero-d limit of the EPM levels in the g, R and r
bands) . The transition probability B(E2;2g-->0g) is norma-
lized to unity. The states are labelled according to the
irreducible representation labels of the chain U(5)20(5)

IN Vv MDD i
where N 1s the number of quadrupole phonons and v i1s the bo-
son senliocrity. This set of guantum numbers is complete for
N<S.
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FIGURES 27-31:

Spectra of some typical EPM-calculated nuclei with distinct
spectroscopic character. FLYp ( in fig. 27 ) 1s a typical
symmetric rotor nucleus with a J(J+1) structure within the
bands. A stiff prolate rotor is characterized by a rather
high-lying ¥ band. In the case of triaxial deformations the
Y band begins at low excitation energies, even Jlower than
the R band, as one can see in fig. 28 for 1'¢¢Er, which is
considered to be a triaxial nucleus /Bo75/. )

Fig.29 shows the spectrum of the nucleus 15% 64, which
possesses features of a y-unstable rotor. It is charac-
terized by even—-odd staggering in the Yy band. Also charac-
teristic 1is the fact that the g- and y-band energies are
more or less the same or the Yy band lies lower (as 1in the
triaxial case).

Fig. 30 shows a typical vibrator nucleus, 150Gd, with an
almost even energy level spacing and the characteristic bun-—

ching of the levels to (almost) degenerate groups. Note
especially the bunching of the J=even and J-1=odd levels in
the y band. This is in accordance with the Yy band beha-

viour encountered in fig.2.
In fig. 31 I have shown the very peculiar spectrum of
143gq calculated by the EPM (a fit to experiment with S

parameters). It shows rather nicely the flexibility of the
EPM to describe also shape co-existence phenomena in nuciel
(potential energy surfaces with two minima). In this case
the R band shows a rotational-like Jlow—energy behaviour,

the high energy levels being evenly spaced. The y band le-
vels are more or less evenly spaced (with no tendency to
bunch 1nto the J=even, J-1=odd groups, however) and the
ground—-state band shows a typical shell-model single—-par-
ticle pairing spectrum.
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APPENDICES

A. USEFUL FORMULAS

Al., Wigner D-functions and Tensor Operators

1)

‘2)

‘3)

A4)

‘5)

.6)

e 7)

In this appendix the conuventions of /Ro57/

and /Shé3/ are used.

) Jixds  —ipdy <ipds
D Loy o) =<l | e e [jm> =
. e—imo(“l.my‘"<:) m, Q_Lngyljm> Ee—-im'o(—t:my‘di\lm(ﬁ)
v | ¥
dﬁn'm(ﬁ\zd,ﬂ\'m(ﬁ)
yQiY\'mk_FJ zdi‘nm'(ﬁ)
Do ()= T ()
' YY\."YY\ ' ok
Dl b)) = ™D ()

D (L) = ™D )

\ 4T *
Dyi\ohﬂﬂ =2+ ij((s,od
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24+1 im
(A1.8) \(M(ﬁ\o@ = Eﬁ?’ldfﬂoﬁ(’a)e‘ =

' ¥
(A1.9) Di\'mﬁ-f;[’)‘-o«) = D2 (e piy)
) "* _
(A1.10) ZD “ by gy = Bmm'
1 i 3 2 - .
(A1.11) 5 ol(c,osf‘))d(m‘mlw’a)o{m"m;Kﬁ) ==)_j+1 6“! C"Hmlm 8”\{(\;
= AT W AN

(A1.12) S,_,,Cl\_ﬂ_.ﬁB BB.,.Am53nﬁJ

a\\space o o O

j}‘ﬁ' :)l %’ﬂ’l
(A1.13) S Dmml(&)Dm’\m{(‘ﬂ’H&: 1i+1 5351 6m1m;6

ay SP&C&’.

(A1.14) \S Di{m(&m& = %wlgp 6m'0 %mo

an space

Clebsch—-Gordan series :

DJ‘ @)Dm m ) =

(A1.15)
ZQ)\ m1 jz mll\)m )(31 M, y_m ‘JY‘(\)D
)mm
DJ U‘)“Z()\m”lmlbm) a
(A1.16) mam’

x()\ My )Lm |Jm)Dmrm KJL)Di\ZmL(\QJ)
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(notice: this i1s true for any jl’J2

for which J10j29j )
2;&_LLS 3 _
(A1.17) JLQJDMM’(‘SUD )Dmlm’ L)
:QS‘\ m'\ 31. mle M>(J1 YY\,\ ),_m',_lJ l\'\l)
qu _ (- ﬂm\fj”\y(\ r\)w\ﬂr\) (- my
(A1.18) ma (f5) 7 = YOrn-n)i(-m- ) () +m-n)!
2j- 228 -m-n 13+ m-n
x ((_OS%) -5»’r\%>
) (wn)‘h M\ pANt™ L T
(A1.19) &mmkf%): e Gt (cosk) (sin5) X

(n- m,n+m)

X P (cosp)

Pga'b)cw

For the Jacobi polynomial one

has the recursion relation

2ilabri)larior2j- l)P )(x)
= (a+b+2j-1)] (a+h+2j-2)a+rbr1jx +

+ (a+b)(a- b)ﬁpK 'b)kx) - 2(a+j-1)>

(3, b)

* {bri-1)(a+b+2] )P (x)

s N aYe il

(A1.20)
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.21)

.22)

.23)

.24)

.25)

For tensor operators

and components

()

Ty

= U ()

U(LQ_,) - e«LuJY\oJ

9

of rank k

q one has the relations

(k)

N

For Hermitian tensors

T

UJT

= (1) T_

Tg Ut

ke

1=

) = Z T.70%

X IREE

For the spherical components of the angular

momentum one has

( Condon-Shortley phase convention )

[\)OITUA] _ (M

where

T
q

(k)

is a spherical

-110~
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A2. Relations for Projectors and Collective Coordinates

J S S ) *
PMK = > Jduh DMK(JMUQJL\) =

(A2.1)

=2 ey MY J K]

X
6 = all additional quantum numbers
(A2.2) UL) =e it e‘LﬁJY e*irJ;; P
(A2.3) pJT =p° : pJT PJ' =5 .5 PJ
FiR KM ! MK M‘\ﬂ' JJ} MM/ K\<I
o J

he | e ik K> - NJKPMK|K>

y T .7 + 2
(A2.5) o= UlL) by, V') :Z, By D (0)
' m

B = Ul b, U 0) = 2oy Dl (2)

The b “s are quadrupole phonon operators and

transform as second—-order spherical tensors.

~N o\b"; . s
(A2.6) o> =¢e loy 4§y 10"y =e |07
(A2.7) b, 10> = Ol%mo\’a> y bl 0" =d B 10"

(h2.9) b ULANOY = b IRY =d D () R
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(A2.9) <5]UKL(LH6> _ eo\ Dy o (L)

J (k) -
(A2.10) pMKTQD = K—HM K(l)ﬂ) X
(1)
X.Z(J—M \ul’l %,\A)(J-K ki‘ Av) ;T” P

’%J«/\Vf‘/
¥
(A2.11) U(\.QA)P'\:)\KUT(&) :Z D:\M(\D—’)Di{\lK(\—(h)Pﬁf\m’
mm

Transformation of the first quantized collective
coordinates am to the intrinsic system

(principal axis coordinates) :

= UL s UG = Z X, ()

(A2.12) w mm

&/\:a_‘\:O ; &L:: a-—l

Here the a, are the collective coordinates in the
principal axis system, the « are the collective
coordinates in the laboratory system. The last relation:
specify the intrinsic system. More relations for «s

can be found in /Ei75/ and /Ho72/ .

%
~ =
(A2.13) A oy, = Z <. Dmm’ (L)
m/ '
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(A2.14)

P 10> =8, 8107

PMK\Q lo> = 6Jl6mb o>

P (oo YoY = (1) 2071 =

Ol G | LS BT

P L bl ) oY = (-1) a1 x

L J

Z\’l‘d (m m' -lm')<r2;\ 1L;n'—l<)x
=02

Lol ee] 1,107
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(A3.

A3. Clebsch-Gordan Coefficients and 3 j-symbols

. . : :)_':_"W\
<J1 Jx 35') - (=1 !

1 My M, My -J15,>+\ (51 m, 5:. W\IHB-W\B)

o J1oja )
43,20 (jym, el §, mg) =-1)0 P (m - 3;;3)
51 31 35 ) == 31*)x+J3(J jl 35 )
(A3.3) Kmx My My (-1) My M My
(A3.4) Kﬁ =) ) - in® (J* IR )
A AAC T A P AN —'\) My Mo My

(A3

(A3

(A3

(A3

(A3

(A3.1

.9) 2(31 M) mll')'m')( 51 ™, :)lml\')m) =910

5 Cavon by my ) =G0 ol my)
& (hymy ummalin=my ) = GO B m ey m)
' I 1 )= my B My )1 M\, )Lm,_ E My

' ' ))1 -m *<5\ 51 O)
o 7) ()\msl leO) .(134.\ 6)1)1 “\m -m O

ok

e (5\0310\'550> :O=(0 0 O)J N 5\*31+,35:OJ°1

CG orthogonality :

My My A

Z\ik\)l \))_“’\\\)Y\(\)()\m\ ml\jm

—
i

34 orthogonality
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(A3.11) Z My Mo e \my My my Lyl Tisdy Tmamy

AAFRALPY
(A3.12) E ' (31 I )y )( o 33 =
(133”' 1) m, My, M, B %m1m1' 6\nrxlﬁ\,'_

. my ML My
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-115=



B. THE MODEL OF BOHR AND MOTTELSON

The Bohr and Mottelson model (=BMM) contains the spheri-
cal wvibrators (spherical ligquid drop model = SLDM) and de-
formed rotors (the deformed LDM, which for axially symmetric
shapes is called the rotation-vibration model = RVM ). More
about this one can read from /Ri80/ and /Ei?5/ .

In the LDM the nuclear surface is described by the gua-
drupole degrees of freedom (which is not,of course, the most

general description):

.1  R=R(e,9) :Ko{ﬁ“Zo«ij“(@,@)}

m=-2

where X, and the o{,, have been dropped because of the
conservation of the volume and to exclude the spurious cen-
tre-of-mass motion. Here the oK's are classical time de-
pendent coordinates of small vibrations around a spherical
shape of radius R,y /Ei?3/ .

The startig point 1n the BMM is the harmonic,
scalar(=rotationally invariant), time-reversal invariant
collective laboratory Hamiltonian (isotropic)

d 1

2
8.2 [{=TeV = a.ZQBI&m\l-*damil) .
m=- L

where B and C are real constants (the inertia and stiffness

-116=-



parameters) . In the case of SLOM the usual rules of canoni-
cal quantization lead to the following second-quantized form

of H /Ei7S/ :

o L ~ B | .
(B.3) H':Zf\w(berbm*%;):*th*Sit\w 1U\)E\[C(B ;

m=-=3

where the b’s are boson operators which are related to the
Fal
first-quantized coordinates A, and their conjugate momenta

~

TTm by the relations
A /_E ﬁ- =
C& W\ .b ) )
(B.4)
W W (H) b -b) .

This gives the familiar phonon picture of harmonic quadru-
pole phonon oscillations around a spherical equilibrium sha-
pe.

In order to describe oscillations around a deformed shape
and the resulting possibility of collective guantum mechani-
cal rotations, a different way of approach to the Hamil-
tonian (B.2) must be taken. This leads to the deformed LDM
or, in the special case of an axially symmetric droplet sha-
pe, to the RUM. The first thing to do is to try to separate
the three rotational degrees of freedom described by the
three Euler angles .fl, from the intrinsic degrees of free-
dom (of which there must be two because the Hamiltonian
(B.2) has five degrees of freedom). This may be achieved by

the principal axis transformation to the i1ntrinsic system

==



(also called the body-fixed or principal axis system, see
appendix A2).

After this transformation one has, instead of the five
laboratory variables C(W\(m=0;i1,i2), the angles L and
two intrinsic variables ay ,a, ,where the latter variables
can be replaced by the more convenient Hill-Wheeler coor-

dinates B and v (g>0) :
| S S
(8.5) 8, = (>'COSY ;8,8 TAL I

The potential term of the Hamiltonian (B.2) 1s easy to
handle because 1t has the same form in the laboratory system

and in the principal axis system !

Bl
D ol — ate2al=p )
_— e s £ =
(B.6) \mm o 20, BB Vip,y=0
m =2
In the deformed model, however, one wants to make a qua-
dratic approximaticn in the vicinity of a deformed minimum

(So’y% « Then the potential of (B.6) is replaced by

A = > -~ { = . |
(B.7) \/an,&ﬂ = L[co(&; aQ )+L,l\&l* &1) ] g

0

where a, and &, correspond to the static deformed mini-
mum (this model is called the Asymmetric Rotor Model =ARM
/E173/). [t is to be noted that the abouve potential is not
an U(S)-scalar, When &,=0 one has the RVM, i.e. denoting

a, by (50 :
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b
ol .

o
(8.8) Veum$ 80182) =3C,(a,-p,) +C,a

It is worth noting that in addition to the static deforma-
tion [50 in the direction of the intrinsic z axis, an iso-

tropy ingredient is introduced in the form of different C’s

The next step 1s to transform the kinetic energy in eq.
(B.2) to the intrinsic system. This is done in /Ei?5/ ch.5,
and the result is the so called Bohr Hamiltonian /Bo52/

!

L, , :
— 2ag(s,a, TiBlaaal),

L

).)

(B.9) %BZ]&M|
m

where L sy k=1,2,3, are +the components of the angular

k
C

momentum along the intrinsic axis and the

(B.10) QKQ[B,X‘) = %B{’)lﬁhl(?/ -k %T\) ) =25

are the principal moments of inertia. The first term 1in
(B.9) 1is <clearly a rotational-like term, but because the

g?k are functions of F) and Y‘ (i.e. ay and a, ) the

2
intrinsic and rotational motion are intertwined, represen-
ting Coriolis and centrifugal effects in the system (this is
why the model is called RVM). The second term in (B.9) re-
presents an intrinsic kinetic energy term.

The next step is again the quantization of the classical
Hamiltonian (B.8) and (B.9) . There 1is no wunique way of

doing this (freedom in ordering noncommutable operators ),

but commonly one adopts the Pauli prescription of quantiza-—
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n
tion 1in curvilinear coordinates, resulting in a form of H

used by the Copenbhagen school( /Ei75/ ch.é6 ):

N N

B N
(8.1 H o= ~r}oT +.Tiﬂb ¥ N 1

where

Z L_k(m
ro‘{' 1%/k(ao;a:_> )

(B.12)

T - A
—’_v'\\o: - %{_*’a/s(” P [5 SmBYBySMBY’()){}

N\
and V is of the form V,ym in eq. (B.8). Here the é'k

Fal
are given by (B.10) and the L'k are the components of the
A

angular momentum -f along the intrinsic axes expressed 1in
terms of the Euler angles Q (/Ei175/,ch.5,eq.(2%9) ).
Al'\

The eigenfunctions of T L and Lz are given by the

rigid rotor or symmetric top elgenfunctions

/ IR

(B.13) }LYWV<> 27> <&du) :

which satisfy

Al_ , A\
UMy =wts)|umr> 5 Lt MKy =

(B.13")
- v =
"MILM kY 5 UL MKY =RILM KD
A N A
Then, since H, T and Lz commute, the eigenfunctions of

the collective Hamiltonian (B.11) have the general form

(B.14> & N >_\ Kax {py oMy :

where 4 i1includes all the additional quantum numbers. In

the case of weak rotation—vibration coupling one has a total
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separation of the 1intrinsic and the rotational degrees of

freedom, yielding the familiar BM-eigenfunctions /Bo75/

| \/ 2 L+] [
o LMK 16T (1 +5 D, i
(B.15) Vi Wrdio) L Dy (L)
s \_*
M &-\) DM"KK‘SL‘)]XO(K(FJ:Y> 3
where the i1nvariance of ﬁ under the point group Dy

/Tié64/ is taken into account.
The function EKVXK(P ,Y') is of the form (/Ei1i75/,ch.é )

K pip) = K (80 (3,)

(B.16)

where the a, and a, degrees of freedom are separated.

Any set of gquantum numbers (K,n,,ny) isl called a band
because the rigid rotor part of the wavefunction gives a
J(J+1) spectrum on top of the state \ L=K K ny o > (this
is because of the term ?rof of eq. (B.12) in ﬁ ). The
combination (0,0,0) gives the ground state, (0,0,1) gives
the F) vibrations, (i.e. deformations along the intrinsic z
axis) and (2,1,0) gives the Y vibrations (deformations
perpendicular to the intrinsic z axis).

The adiabatic wave functions (B.15) lead to an 1intere-

sting rule for the quadrupole moments. This rule reads

3K = )(UH)
@17 eQ=(yk20lux)1s20l11)eQ, = {T+172373) €Qs

where Q 1s the spectroscopic quadrupole moment and Qg  1is

the intrinsic quadrupole moment,
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=10 <\§%(Hr (Jos*e-1)dTig)y =

(B.18) , 6 £2) ) _
<i+< rj—é\nﬁl :> 5

Seecifying ea.  (B.17) for the ground, > and y band one
obtains
o
(B.19) eQle, ) = "2 €Q, A=
12 = J(J+1)

e Qly, ) = (Ur)2d73) Qo .

According to the formulas (B.19), the ground and (% band

states have negative quadrupole moments all the way, but the
gamma band has positive quadrupole moments for the states
0;; and 2;} y a zero quadrupole moment for the state

3;} and negative quadrupole moments for the rest of the
gamma band states. All this naturally assumes a positive
intrinsic quadrupole moment QO y Which means a prolate
_intrinsic shape. The negative spectroscopic quadrupole

moment may be 1nterpreted to follow from the fact that when
revoluving around this prolate object generates, on the

average, an oblate charge distribution.
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C. SOME RELATIONS FOR A NON-ORTHOGONAL BASIS

In the EPM one has to face a generalized eigenvalue prob-
lem in the non-orthogonal basis {\go>, \ﬁo), |¥b> } . Be-
cause of this, a short general discussion of this subject is
given here.

Let CT be a linear hermitean operator in a Hilbert

space with non—-orthogonal basis states {!i) }iEEI

Then let
(C.1) Oled = ala>
where la > is an eigenstate of (¥ corresponding to
the eigenvalue a . Let the basis states be normalized,ie.
(C.2) Glj> =8 ., <li>=1 V¥V i,jel
Then, owing to the completeness of the basis
(C.3) o> = D C, 14>
and '

J20c, 11> = Flad> = ale> = a2.C, 1i> .
L 1
Then sandwiching with a state <jI € i<i| }iél we get
DGO = o« Ll
1 1
Denoting
(C.d) G101 = O Giid = 8y (real)
one gets

(C.5) z( Cj’ij - of; )C; =0 )
which is a linear homogenous equation for every j. Then, as

in the usual eigenvalue problem, one gets a nontrivial solu-

tion of (C.5) 1if
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(C.&) det( O’J.i - f;) =0 .

It 1i1s worth noting that the usual eigenvalue problem is re-

covered 1if Fji = aij + In addition, because the

basis i1s non-orthogonal, the matrix CTJi is not ne-—

cessarily a Hermitean matrix.

Let &« , k€J be the eigenvalues of the problem

k
(C.1) and Cki , 1€ 1 the corresponding eigenvectors.
Then
e BAGwfi)Ge =0 V)

and as the solution to this set of equations one obtains
lod, = (CoqsCpgseevsChiseeedl

ie.

(C.8) ‘O<I<>:2Cki“> : <“k‘:zcta<il

So, because (J Jés Hermitean :

.9 o, T <yl 2 ZC o ey <LH/ Z\C C g
4] )

e

One can check the calculation in the following way @

<ot 1O lo> =20¢C<ilayy =0 2,03y =
LJ L j J .

(c.7) * % (c.3)

Then let us normalize the eigenstates

%
1 = <o<k\<><k> = Z’Ckickjﬂj Z‘CM LL
0

*
1<)
So
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o
(C.10) ZL E D_;\ngckickj =1 .
Let us see what kind of closure relation one gets in the

non-orthogonal basis %_li)k ie T t if the basis
{lu>k & is an orthonormal one in a Hilbert space r}ﬂ

, then

(C.11) 7’}\A><}/\‘ 1 .

Now ﬁAéJ

(C.12) 11> -ZKml;u) s 1u> =D A

ul
MED tel

where the coefficients Aui and BMI can be specified to
to be real. So

Suy = <viluy> = ; vli> = E:lA . '

V = k. oz pE S

" that is
(C.13) AK=1 ;A=K ,

where the fat symbols denote matrices. It is easy to prowe

also the relation

(C.14) Z“KLMKW = %13 :ZZ il &

\ & :
le. pmEJ nmel MW\LH ™)
(C.147) (\K\KT>LJ = ;‘_I.Q AN Y\m{u\%nr\)

From the above relation one sees clearly that the matrices |K
and /N are not Hermitean. Further, it is easy to show that
(C.15) 1-= Z(/}\Tﬁ\)ijuxu

Equation (C.15) goes back to the familiar expression (C.11)

1 f ﬂ\Tﬂ\ =1 . So the calculation of the closure

1n non-orthogonal basis reduces to matrix inversion accor-
ding to formulas (C.13) and (C.13). Let us take a two dimen-
sional example: let i|1>,|2>} be the orthonormal ba-

sis and ill)',lZ)’E the normalized non-orthogonal

one. Then

=The5=



11> = Ky, 11> + Kyp12)

12>7 = Ko, 11> + Kap 12
and so
) ,
') = 12y (av<al + 1yl ) + 1ar<ay
(C.16) 1= (<Al <l =<' <ei>?’)?
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D. MATRIX ELEMENTS OF THE ENERGY MATRIX

Dl. Basic Integrals

Here are retabulated the integrals of ref. /Ha70/ in the
original form and in a form suitable for computer calculation.

The notations are

Ol 2 2
g = d DOO(Q) = d P2(B) ;
where P] is a Legendre polynomial (/Ar70/,/Ab&5/)
dQ = singdpdadyr
n = 3d%x%/2
R = nexp(-d°/2)

The integrals are :

_-J—~S o NP G N
T,00) =7 )d D g ta)es = M Arlx)e dx

B &Tl(J\ B g A ; N n
I = 308 mﬁ&mwmm (W0L) :(Rgo(oo(x)a(%(x)e Ix

d 1.0 ) % 2
1,09) = ST :%}\TlSMDiokm[D;km] e§=613400(x)[1 00 el

3

L \J 1

T, ) = 4L = SMD%am[DWLm} SJL gxy[akm,wfeux
1

= —lﬁ.g ¥ b §_ J >
T, = 7 ) D5, (D (e’ = 6 o, 0 d g, e dx
d1.0)

. ) * % 2 .t

I, = Auy)':ﬁPSA&DLMmH%AmAD%h&Mf E

= BY) o ) hon 00 iy ) el oy (Ve el
-1
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H

10 1
L.43) = " 1L LT SDIL(LDM )0, mjbwkm}

- 3 L Lol s etdx

‘

* - 3 .
I,0) =0 J Dl (adnae =R A (A (e dx
-1

A * % 2
) R %ﬂLBJL{L Dilwu)Dum\Dmume =

1

J 2 g™ n
:6)‘«& KL (R A gy D) A (e dx

AT, J) . g
T, = J{& i(m\ D3, () n_\MuOO\Me =

=0%S L b0, (e dx

-1

dI,03) a_ * 2 L
1,00 = 0 = %v"g L D3 ()05 (LMD (L) ®
gl
L % 2 2 S n
% Dooliils) e’ = 0°LS Ail(x)dnbddkm () Ag Ve dx

=1
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D2. Expressions for Normalization Constants

lgg J?
1By J2

lYq J>
A= 2J+1

and Energy Matrix Elements

J

N?o(J)PMOIO>

.1-

J ~
N ol JIPyg (bo=d) 10>

J  t

Nyo (P by 105

gl ligd, = <ig 1 1ig>, N i,iea,B,r

The normalization constants read

N = Lar e ]

N. (J)
o

IS

R 2
Npo (9 = A2 [14(0+d 14( D]

A% [ 1,(D+(1-2dD) 1 (D +d T 4(D)]

-1

-1/

The overlap functions read

<gol50%

<goln){l =

Bol¥e?,

= Nay (DNp (DA[15(=14 (D)

Nogo CIINp (DA 5(J)

= Nﬁo(J)NYb(J)A[(l-d )Ig(Jd)+d IG(J)]

The different matrix elements are :

CaqINlgy>,
<go INIB >,
<go INIT >,
(Bo INIBGY,

B INIFg >y

<o INIFg %

M
N ¢
pA
d 1,00 /1,(D)
2 2
N o (DN p (A [(1-d2)1, (D +d™T5(D)
N oo (N yo (DA [T +d™ T (D]
L,.
N pg (DA L(1=d™  1,(0)+d ™ (3-2d) 1 ,(D)+d 1 ,(D))
N (N g (DAL (1=d I T (D) +d " (3-d T (J)+
+d " 1,(D]
2 2 2 4
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<o 1B10 90>y
CHL:-FNT IOy
CHINNIY

<Bg!Bag!Bg s

{BolBagl¥o?y

821 -

820

p
2d

2 2
N ol DN po €A 2d[ (1=d™) T4 (J)+d T5(D)]

3
NoXO(J)NY-O(J)AQd [gC

Npol DA 2d > [(d™-2) 1, (D +(3-2d™) 1, (Dr+
+d715()]

Ny (DN (DA 2d (2= T (+d T, (D]
[50 YO - S ‘ )

= 2d

778 d7 B,y - N

<go1Biql902,
<gQ|B’11 ”30>J
<96 1By 7o 2y
<Bg IBYq 1802,
Bo 1B 1o 2y

{ro!B3,170 >y

830 -

0

= NOXO(J)N(:,O(J)A’d'I,_(J)/2

Ny (N o (D)A+3d1 () /2
2 x 2
N ol DAL= T, (0)+d T4 )]

2 2
N ol DN ol DAL(1-3d772) T (I)+d I4(D)
= -3

772 d ' Bag - Bag ¢

(go1Bhq 1947,

<go|B,—50 |60>J

0
= NaBD(J)N{Q,O(J)A' dI4 (J)
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<ggolBiyq I¥g>, =0
aNg (Dard (1 (-1,
N ol IIN o (DA d T )

BolBye 1By

<BOIB'30 I}’o )\J

B9 = 1047284) + 14 d "By + By !

L
8,807 18,5, = BN (DALY

2.2 0°J

all other < >’s are zero .

(2))

- 2,5(2) -1
., = (¢/2d IBL" + 2/7d B

B 21 * Byyq

<918 M iggiBgary >, = 0

BolBYy " 18e0, = 3Np (DAL
BalBSa Iredy = 3N p (DN ol DAL
rolB ) vy >, = N (DAL LD

x

—_ A
" 4) (0) (2) 4
J = 6N+ apld) - gD - 382

2
Cighd 1ig>, = J(I+1)<ig Jljg I

V io.Joé{go,Bo.}’ok
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E. INTEGRALS Ii(J) IN THE SMALL-d AND

LARGE-d LIMITS

El. The Small-d Limit

In the small-d 1imit the integrals of appendix D1 can be
. i 2 } .
expanded as a power serilies in d . This is done by

expanding the exponent as
L _ %~ 2!
et Do = a P+ 3y (on) +6d (o)

and wusing the formulas (A1.14),(A1.13),(A1.17) and the
Clebsch-Gordan series (A1.15) to get rid of the integrals of
one or more D-functions. After that, use of eq. (A3.1) gives
the result in terms of the 3 symbols. It must be noted that
these formulas are valid only for low J values because for
sufficiently large angular momenta all the 3j symbols in the
expressions vanish and it becomes necessary to go to higher

orders 1in the expansion of the exponent. These few low angu-

lar momenta, however, suffice for the purpose of examining
the behaviour of various quantities in the model at small
deformations. The above behaviour of the integrals makes

also their computer calculation increase in 1naccuracy with
increasing angular momentum.

The integrals are ¢
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2
lld)q

I,00) = §,,%5 0, ol+l<000

I U)—S%JJQEQA +Uo O ™ %“33) '

9&)1.\'\’

+ 35\ 0 oo)]& + G(d°)

PR ps
2 %) 1 (v > 2\t 1% \)l‘Jr)l 2.
Ibﬁﬂ=<ooo>+ 25 O *?(ooo)*ss&ooo d =+
- AL X 36 1—*‘3> .
+{ Oy ¥ 738 Oo2 T Ja5 %w‘*l%(o 0o/’

F e (T s

L. (3)

L.0)=

M

T\ 2>

T Q) = 5 BJL+(]6 0 O)Kl 0 ‘l)&l“‘[g% 0yy ¥
B S I S8 (4|

I, = dT03)/d(d™)

kN (9 x 2\ 0 22} 1z le)(\)lw
I?KJ\:15 %JL+-<00 0)(110)+ 35(000 -110>+
SL _3_&13_\))(110)
i 1?55Jl+55\?5m‘% 00 Q0/\2 0-2)7
16 <1L&J>Klq \)) _L(+1—Jkt+1 J)
~3%5\0 o0 0/\1o-2 J19\oo ojJ\z0-1

162 %L&J\&

1%
49
‘%J
+1%5F 000 mlk + G(d%)

—{i55=



T (0= 4T,/ dd>)

2 3+1(’l PUEN Y 5 |
I“k\)\ = 3 (1) 0 2-1) ¥ FAi5
A

L o
*[ 135 6\):" F0 Coos
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E2. The Asymptotic Limit

The large—d Timit of the integrals is somewhat more
difficult to calculate and the result has quite a
complicated look. The starting poinf is the formula

(A1.18). For dio(ﬁ) one obtains

2L ~&)

J(OJQU’:):?((;) (-ﬂé(aos:_> (sin%) .

Using the relations /Spé8/

1+c0s5f C,Qﬁ&
cosB =" ) sink = WJ ; O2p T

and the definition of the integral I,(J) of

appendix D1, one obtains (x=cosR)

) & 976 ay 2
T1,09)= :_z& )&ﬂ&(”x)@iq ghitnrs)

-1

Using the binomial series in the form

le}
(1+x)° iﬂZQki\)xm
-6
(1-x) "¢ =2 )K"
n=0

and substituting 1t in the above expression yields

i I
L, = 2 \e_mlz,(é\)l(fa)mb)k—ﬂhwg Xmmebiéxclx

é‘m)r\ "]
1

=1 ""e ‘“Z KQ}L(Lin )Kd _ 6)K \)“%3 x> e}icrxlclx

5,50 0



where the last form follows from applying parity

arguments to the integrand. Now one can change
} . . 2 22

the integration variable by 1§ = 3d x and use

the formula (which is easy to prove by induction)
3
34,

5 g %_ Z&-H FESE \le
T e df =e" T (1- o) ST (e N D 3

0 k=D
-k J3d
X(é Alj o (-ﬂ (ax -1+ Bt A1 S eg“‘cl% ‘

5 ‘
A 1K

0

The remaining integral one can expand according to

the asymptotic formula /Abé5S,page 298/
i - ﬁil 7 ( )
X l’("\ Vs
Jages =45 S (122] i)

0 ’ g

Substituting all this to the last expression for I,(D

yields the result 1 ila

(E2.1) T, = 337 lZF(lg J)\A(s J,d”)

where

ACs, 9,4%) EM—aso\)?"(ls,;‘)*‘eu,f@u*)
I ke
€2.2>  Flas,d%) Z&-ﬂ klslslkpﬂ”v )

1 1 )S
Gls,d™) = -1 (as-1+ 5,00 (55
S Gt )Y R
and %Kcﬁ ) f%i% Kggl)h\ = ]+—BJL + EJW +‘.|




J ¥
F, (25 0) EZ, Q*\)é(i) Ty (25,6,0)
T, (xs,8,) ZE:( 1) (LS h)(J;;b), n=s S

The integrals I; 5 4(J) can be obtained from I,(J)
’ L)

(E2.3)

by differentiation according to appendix Dl1.
In the same way as above, ‘'one can derive the following

formula for the integral Ig(J)

_+]
|60 y-1)
€2.0)  T_())= PRLES UH)UH)Z Fy (s, 9) (s, 9,d7) |

where

Folas, )= Z( 1) \“l)(d l\H (x5,6,4)

fo(as,0,0) E;:O (-ﬂn<fs+—%\)(d;\é) y NES

Again by defferentiation one obtains the integrals IE(J)

(E2.5)

and I,(J) . For Ig(J) one obtains

[3]+1
L e o

(E2.6) T,03) = vg= e Z Folas WA (s, 9, d7)

$=0
where -2 )

+ G
Fo(2s,J) Eé&-ﬂb(\)-):bx )f (25,0, J)

(E2.7)

J-6-21

\C%(ls,é,ﬂ Enzzo.(-ﬂ“(f;f;)(d -r\b~l) y NS

and I10(J) = dI%(J)/d(dl) . Here the notation

[x] means the integer part of x.

o



Now

one has

(E2.8)

where

(E2.9)

I

or Ig(J)

X !
T, (9= 2975 g7 L, Fylas, )k (s, J,d7)

(J) = dlg(J)/d(d™) , and f
J
oy el
s=0
3=
N By J+
Fg(ls,J)';%fO(—ﬂ (\)—D_“

Nae)
%3(15‘6,3) i;g;;&‘\)n(
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F. THE BASIC TRANSITION MATRIX ELEMENTS

(ex)

T
X
- (

O

ol

The transition operator 1is ) , and

= e ey
the N’s below are the normalization constants of eq.
(I1.3.1). For the ¢y band there are two kinds of matrix ele-
ment depending on the evenness or oddness of the angular
momentum of the initial and final states. This is due to the
fact that the denominator of eq. (II.6.6) goes to zero if M
= 0 and one of the J's is odd. When both J and J° are even
or odd the formula with M =0 is the simplest to apply.
Furthermore, the matrix elements <J'=odd]| |J=even)> are not
tabulated. The transition probabilities

B(E2; J=even ---> J =o0dd)
are calculated by noting that /Li166/

(F.1) QTN 5 = I T gy*

where X 1s the degree of the spherical tensor T

For MO = 0 one has

I ITCE2) 1y = ¢iTCEY gy

So, the matrix elements needed in (I1.6.9) are

Copo 01T g, 0 0> = e Ny LING () d (2041) =

X Ku‘m)(% é \)0) { T,00)+ Lu’)l

=0



(E2)

Coov' o T Pl 0> = p* Ng, (J' ING (U)(29+7) »

X(lJ’H)()& %E))) {Lu )T [-1,(\;)—@1(\)) -
- I, () +IL(J’)]}

(e)

S VT M =even 0> =€ Ng, LWIN, ()

(LJJ/ )
R B} jrs () ) +

J

*(20+1)(2y +1)<o é é/){&
( =) %I)I (J'))Z

*Jq(jo\oo) +

(El)

S Vol T s ooy 2> =e |\lc30K\)')NYO(J)x

* (29 +1)(2y +'1)<i 3)1 é H (35 ‘Jl Z”LN’) +
w%iifﬁ(m}

(e)

Spo 30l T, Ipod 0> = e*NPo(J’)NFJO(J)Ql(lJH)X

x (2! ﬂ)(o ; él){\gl—w)[LuhLu')} ¥
+l(1—oll\1[IlU)+ILU’)]+J1[IB(J)+ISQJ')H
<po OlTo“miyo J=even o) = SN o COING (0) X
><J(1J+1)(u’+1)<olgé,)“;éé)[(l )T () +
td T + (1 Sy %I)[I () -1,051] +

<§~JL i)[\\ d7) (J’)*JlIBU’)]}

-
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/ | )
‘LU’)]*(é-Jl i)[m-dl)l’ IV 0] |
EY dd
Syo 3=l of T :

=efr%%(y)NYbhHJ(ld*ﬂﬁldWW)Q}
L gy / (1J J/
"{(110)15(\))*

o 2 -y [
+Jl(13(J)*IS(JW)]}
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G. THE 18A-1 PARAMETERS OF THE FITS IN

Sm, G5d, £r and Yb REGIONS

The pohenomenological forms of the IBA Hamiltonian

and the transition operator read

~ ~ - =
Hio, = EPSTA, + 20PAIR'P'P + % ELL L + %-00-Q°+
184 d

b {

+ S.0CT TT + S HEX-Ta
TED - g2g0(als + sTd) + (s> e200'00’a),
off = ZeFF + N ; A=27Z4+N suhere

N is the neutron and Z the proton boson number,

o (E2) - .
HIBA and TIBA are taken from ref. /Li83d/
The energy parameters are all in keV and the

transition probability parameters in eb

iISOTRi1d63m31483mi1303ma152sm 154, |162c, 1saErilssEr 1éaEr%L72Yb 172y, |
i ; i
T S R A A T 5*%\.05\?:;% ’31"')=11%W*‘Q’1%5A=E"Q=1bi
lers | 725 | 2easi 1000| 95.6| 6.0 | 100 183.92| 100 | 135 { 80.9| 0.0 |
%paza 17 Ezss.z%sa.as -2.35(-2.38 20.83{35.20 37.4 2a.9si 0.0 [-1.00
€Ll | -24 [-S7.5|-12.8| 0.76| 8.98| 7.65| 7.29 | 3.31| 8.11} 6.0 | 5.22
9Q | 25 |67.54|-28.9|-39.1|-38.5|-27.7(-27.2 |-16.1|-22.7|-25.0/-23.0
ocT 13 ?—?.21% S.13| 11.1| 7.03| 4.28] 1.45|1.90}-0.55; 8.3 | 7.55
HEX -2 | -10a(-31.8(-4.04|-2.25 |-11.9|-12.6 |12.0[-13.1] -2.0] -d.0
£250 = a - 3.11110.21410.239 | — - - ’ — 10.13510.132
—5290} = i = ¥1.ooaie.215 0.182| — — i - |c.203,0.152
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Tables H.1 - H.4

for Sm,

H. TABLES FOR THE EPM ENERGY LEVELS

IN TH 1]

Gd,

Gd

r AN

Er and Yb chains.

HA

The isotopes

list the 4 and S parameter EPM energies
142.1443m

are not tabulated because of the lack of sufficient experi-

mental

table IV.3.1., 1627168g, | taple 1V.3.6 and

data.

table IV.3.7 .

The isotopes

146—1523m are tabulated in

172yy n

An asterisk indicates a fitted level.

-143=

154g, 156g,, 150, 1526,
BAND | J| EXP. | _E°M EXP. | _EPM EXP. | _EPM EXP. |__EPM
e |5 | a |5 a 15 I~ 715
2| 82 | 83 |82 | 76 | 76%| 76| 638 | e3¢| 618°| 3aa | 364] za7]
4| 267 | 269| 267 | (2503| 249 250%| 1288 | 1247%|1338* 755 | 732} 741
% | 6| Sa4 | sS4as| Sas | (518> S08| S13| 1937 | 181612001% 1227 | 108371127
8| 903 | 897| 504 | (878) 837| 857 | 2748 | 237112631%| 1747 | 142871522
101 1333 1131101330 | -- 12241276 |(3288)| 291213267 | 2300 | 177441934
0| 1100 [ 1099[1098 | 1068 | 106841068 1207 | 123041176 615 | 7073 334¥
2| 1178 | 118311180 | ~-- |1138{1181 | 1518 | 1784]1615% 931 928; 378+
4|(1371)( 13801371 | -- |1301(1440 | 1700 |2011|2389 | 1282 |1275{1301*
[ |eé! -- |1é86[1671 | -- |1557|1825| -- 2585|3312 | 1668 | 169931839
8| -- |2050|207S | -- |1904{2297 | -- [3190(4329 |2139 |216872424
10| -- 1257612570 | -- 12333(2837| -- |440415399 | 2691 | 265873029
2| 1440 | 1442(1440 | 1441 | 14411441% 1430 | 1408314359 1109 | 118671132
3‘(1540) 1523|1520 | -- |1512(1532 | 1988 | 201411899% 1434 | 142571358 ]
~ |4alc1661)] 1633|1627 | -- | 1607 (1657 [(2080)| 2447|2007 | 1550 | 1658]1644
¥ |s| -- |1irea|17Se | -- |1723[1802| -- |2653|2636 |1861 | 185311843
6| -- |1932]1518 | -- |1867|2002| -- [3103|2760 | 1998 | 212372235
7! - 1210312091 | -- |2021)2184 | -- |3278{3441 (2394)| 229312374
RS T~ ed] 1ol 0 [ 0 | -- | 1951 280 -- | 1é7. i16
| -- Jafa2) | -- |17 {8.8) -- [ (2370218 -- | (1643171
TABLE H.1



154, | 1565, 158, 160
1
BAND| J| EXP. | EPM EXP. E EPM EXP. | EPM EXP. | EPM
4 |5 | 2 |5 xS a | s
21 123 1297 1237 89 | 91* 89§ 79 | 819 9% 75 | 789 78 %
& ¥ 3 M M * ¥ ¥
a| 371| 381] 376% 288 | 293| 290| 261 | 268] 262 252 | 252] 252
o ¥ # X ¥ X By Mo
¥ | 6| 718 | 699] 711 sss | ssé] ses’ S39 | sao| sar| sia | so3| sos
A X P 4 X
& | 1144 | 10a471089| 965 | 945] 9¢¢| 0a | sss| s0¢| 868 | sid| 83S
3 h '
] 10| 1637 | 141711498 | 1416 |1358] 14007 1350 |1293]13a7] -- |117a]1221
B B +H
ol es1| 71t 718| 1049 !1058} 10597 1196 |1150]1193] -- | 874! sa7
| ¥ X % B
21 815 | 827 818" 1129 |11277]1126Y 1260 |1261] 12597 1010 | 957] 9as
3 K] X R X
a| 1048 | 1054710407 1298 | 1290} 12827 1407 |1429]1812%c1185)] 1173] 1203
oy
f 6| 1366 1388]1385‘ 1540 |153911526" -- |1697|1657| -- | 1489|1573
3 R i
8| 1757 1791]1816 1848 | 186718567 -- |2070|2002| -- |1911|2071
10| 2194 224712318l 2220 | 2267122698 -- |25a5|2a5a| -- | 2028|2681
- = - = ;
2| 996 1012110177 1154 11179]11847 1187 | 1190(119a% 988 | 972] 980"
{ : - P { p Al K
! 3l 1128 1122‘1119; 1248 | 125611255 1265 | 12641264} 1058 | 1047 1064"
| ! r z | ]
f a; 1264 | 12701257) 1355 [ 1363713591 1358 ' 13617 1358™ 1148 | 11281150
l v | « o « X & !
| S| 1432 | 1420914107 1507 | 148471480 1481 |1483|14747] —- 1274|1313
| ! -
| | 61 1607 | 160116227 1640 [16a81633Y - |1620{1612| -- | 1386|1402
! i < _ i ; i |
! | 711810y 1798% 17977 (1850)| 17988 1792Y —- | 1791l177a] - | 1589|1663
| , |
‘ RMS | - | ea [ 53| —— | 23] 18| - {18l 3] - | 29| 2
i \ |
{ | - |e2|sn| — (26).(22) — 1= = |en|es
TABLE H.2
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158

160c .

1?0Er

l?dYb

EXP.

EXP.

EPM

EXP.

EPM

EXP.

EPM EXP

EPM |

a

S

[a 15 |

o o ~ N

10
12
14

344

797
1340
1959
2633
3315
3837

202]
¥
s23

189
*
544
b2

893 980
¥ 3
128911448
1707|1945
214412471

2597|3025

126 | 131

394"

735"

390
767
1228

1760 11587
2339 12072

2931 2590

4 :l 5
£73

1140¥

125 79

%
393

768"

260
Sa1

¥
1221 913
1739|1374
2315

2945

81

833
1192
1585
2010

%

y
260

%
518

79 76
«
2607 253
538" 526
899! 889
1329 1336
|
1813| --
i
2803 | =

76 %]

*
253

rZd
¥
254
4
S241
8?fﬁ

1299

527
894 |
1345 |
1779|1882 |

2304|2483

@ o B~ N O

930
1221
1546

i *
g818| 316

¥ R
1007] 960"
X H
1368|1298
1860|1832
2429|2511

3043|3283

894 | 892
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4
1015 960
1320
1811

2477

3287 |

(11231145

1433
1821
2298

s

891
¥
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=
8941487
¥
957 1561
1106 {1715
1335{1909
1656 | --
206a] --

14941495

3 *
1556|1556
% *
1700|1700
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1926|1927
2233|2238

2617|2636

d
853
X
1026

852
1000
h 3
117511163
14171396
156511581

1875|1901

1144

1348

86?{ 932

7
5 9791010
{

11311101
'13255
1532|
1801

934

1228
1347
1530

N

1008
34

1101

N
93811634

100711705

121211925
1356
1507

X }
1098 1805

K
1643
RS
1711
Al
1803
X
1914
2051
2202

254 | 86

11

63
(61)

15

(1D

13
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v 164, 166y, 168, ; 170y,
- |
Lo |
BAND Ji EXP. \ EPM EXP. | EPM EXP. = EPM EXP. | EPM |
R | J
| 4 | S a4 S 4 S a4 ; S |
: ] 4 RS £ | 3 ¥ |
i 2| 120 | 126 123] 102 | 104] 102¥ ses | 89 88| 84 | 87| 8a "
i | X % ¥ ¥ | % &Y ¥
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% % X * ! *| %, g A
% | 6| 70 | 733] 758| 6s8 | 6491 666 | S8S | 575 Sea| S73 | S5| 574
i | RS *
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| 2| 1074|1094 10861 -- |1147|1139 [(1233)/1228 1228ﬂ<1146) 11691139 |
. . ‘
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: ! LA ¥ % N *
3] 1004 | 994| 9917 1039 103511030 1067>| 1068 1065{ 1225 | 12271219
| x: ] 3 : : I
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i i : - H | o 3 i ) !
Y S1(1365)/1326/1324 1328 | 1319(1315 1(1302)| 1296 1291 | -- | 14801443 |
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i |
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I. Special References for the Experimental Energy

and Electromagnetic Data

NDS=Nuclear Data Sheets

1425+ J.K.Tuli, NDS 25 (1978)53

G.L.Struble et al. ,Phys.Rev.C23 (1981)2447

1445, J.K.Tuli, NOS 27 (1979)97
146¢m: T.W.Burrows, NDS 14 (1575413

W.Oerlet et al., Phys.Rev.C12 (1975)417
L886cm: B.Harmatz and J.R.Shepard, NDS 20 (1977)373
150

Sm: C.M.Baglin, NDS 18 (1976)223
D.R.Zolnowski et al., Phys.Rev.C21 (1980)2556

1525.,: C.M.Baglin, NDS 30 (1980)1
154

Sm: B.Hermatz, NDS 26 (1979)281
156

Sm: T.W.Burrows ,NDS 18 (1976)553
150

Gd: C.M.Baglin, NDS 18 (1976)223
D.R.Haeni and T.T.Sugihara, Phys.Reuv.C16(1977)120

15264: c.M.Baglin, NDS 30 (1980)1

13464: B.Hermatz, NDS 26 (1979)281

13664: T.W.Burrows, NDS 18(1976)553

Jan Konijn et al., Nucl. Phys.A3352 (1981) 191
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15864: M.A.Lee, NDS 31 (1580)381

16064: J.K.Tuli, NDS 12 (1974>477
S.A.Elbakr et al., Phys. Reuv.Cl1l0 (1974)1864

156 . .

Er: See the references in section IV.3.C
158, M.A.Lee, NDS 31 (1980)381
160 . .

Er: See the references in section IV.3.C
162c,, A.Buyrn, NDS 17 (1976)97
16

dEr': F.W.N.DeBoer, Nucl.Phys.Al1l69 (1971)577

>
O
o~

Er: A.Buyrn, NDS 14 (1975)471

168¢.; | .R.Greenwood, NDS 11 (1974)385

170g; M.R.Schmorak and R.L.Auble, NDS 15 (1975)371

164vp: A.Buyrn, NDS 11(1974)327

166vh: A.Buyrn, NDS 14(1975)471

168yh: | .R.Greenwood, NDS 11 (1974)385

170y1: M.R.Schmorak and R.L.Auble,NDS 15(1975)371

172vy: L.R.Greenwood, NDS 15 (1975)497

178v: M.M.Minor, NDS 10 (1973)515
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