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ABSTRACT 

The subject of this work is the formulation and applica
tion of a geometrical collective model with comparison to 
experiment and with other models dealing with low energy nu
clear structure. This model, called the EPM(= Extended 
Phonon-Projection Model) avoids the use of an extensive dia
gonalization basis in the deformednucleus region by cleverly 
choosing a three dimensional model space with capability of 
producing the gross features encountered in moving from 
spherical vibrator nuclei to almost rigid rotors of deformed 
shapes. 

The use of deformed oriented states calls for angular 
momentum projection to restore the broken angular momentum 
conservation in the oriented wavefunctions. After having 
achieved, in this way, a suitable set of basis states, one 
obtains the excitation energies by diagonalizing a 
phenomenological effective boson expansion Hamiltonian in 
this basis. The diagonalization reproduces the basic feature 
of the earlier projection model of Lipas et al. , namely the 
Sakai-Sheline scheme concerning the development of a har
monic 1)ibrator spectrum to a band structure characterized 
rotor spectrum, The energy spectrum obtained in this way is, 
however, quite different from the earlier PM(=Projection Mo
del of Lipas et al.). 

The E2 transition probabilities have U(S)-characterized 
selection rules in the limit of small deformations and the 
Alaga behaviour for large oriented deformations, A distinct 
feature of the EPM is the violent behaviour of many bran
ching ratios at certain deformations. 

Application of the EPM is carried out in the Sm, Gd, Er, 
and Yb regions where also a comparison with the earlier PM 
and IBA-1 results is performed.The comparis shows that the 
4- and 5-parameter EPM fits are comparable to or better than
the 6-parameter IBA-1 fits and produce a systematic parame
ter behaviour, In contrast to other geometrical models, the 
low energy transitions are characterized by weak 
� -to -ground transitions and quite strong r -to-ground tran
sitions like the IBA, Also a comparison with the 
CSM(=Coherent State Model of R�du�M et al,) is performed 
showing a strong similarity between these models 1n both 
spectroscopic energies and B(E2) behaviour, 



I.PRELIMINARIES

1.Introduction

The complications in treating the nuclear many-body prob
lem have led to the various models and approximation schemes 
and their truncations. As a basic microscopic background one 
generally considers the mean-field theory of the shell model 
upon which one then builds the remaining correlations of 
the valence nucleons, For certain areas in the chart of nuc
lides the shell model approach is impossible in spite of the 
vast variety of possible truncation schemes available, Al 1 
this is true also for the even-even isotopes which are the 
topic of this work, Because of the above-mentioned intracta
bility of the shell model for many even-even nuclei, and 
inspired by the structure of their experimental spectra, a 
new kind of approach was developed. In this approach the 
experimentally suggested correlated motion of the nucleons 
inside the nucleus was phenomenologically described by the 
collective degrees of freedom of the nuclear system, This 
approach, based on the theory of classical mechanics, gave 
birth to a wide class of nuclear collective models. Nowa
days, the name 'geometrical models" has been attributed to 
them to distinguish them from the recently developed 
"algebraic collective models', 

In all collective models the most important collective 
degrees of freedom are the quadrupole and octupole vibra
tions, rotations of statically deformed nuclear shapes and 
various density oscillations in the neutron and proton de
grees of freedom called giant resonances. The most important 
geometric models to describe the quadrupole vibrations and 
(simultaneous) rotations are the vibrator model (or the li
quid drop model for spherical equilibrium shapes) and the 
various rotor models (liquid drop models for deformed equi
librium shapes) like the rotation-vibration model for axial
ly symmetric and the Davydov model for triaxial deformed nu
clei. All these collective models restrict the shapes of the 
nuclei to special small ranges of the quadrupole surface 
coordinates and thus can not be applied to transitional nuc
lei and nuclei for which the coexistence of various shapes 
occur. This lack was cured by the Gneuss-Greiner model which 
also introduced the concept of collective potential energy 
surface to describe the development of nuclear shapes from 
vibrators to almost rigid rotors via the transitional re
gion, 

The Gneuss-Greiner model /Gn71/ was one of the first mo
dels to describe the interaction between the quasibands (ac-
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cording to the Sakai scheme) called the ground, � and Y 
band, Also other collective models were developed for this 
purpose, like the extension of the variable moment-of-iner
tia model /Oa?O/ the hybridisation of the particle (or qua

siparticle) degrees of freedom to the collective motion of 
the core of the nucleus /Ra83b/, the algebraic approach of 

the IBA /Ar81/ and the treatment of an effective Hamil

tonian within a restricted collective space generated by 
elementary excitations of a projected coherent state /Li76; 

Ra83a; Ra84; Su83a; Su84a/. 

Among the above models the most popular is nowadays the 
IBA model, mostly becauce it offers simple and compact 
expressions for energies in certain limiting situations. 
These situations are called dynamic symmetries and can be 
used as a tool in categorizing nuclei having different low 
energy spectra(in this respect it has the same properties as 
the Gneuss-Greiner model). An other way to avoid the computa

tional efforts of using (in the deformed region) a large 
diagonalization basis is to choose a deformed basis and then 
perform a projection to restore the broken rotational 
invariance, This is the line of approach chosen in the pro
jection model and in the CSM (=Coherent State Model of R�du
t� et al. /Ra83a/), These two models provide a simple way to 
describe three interacting (quasi)bands within a phonon pic
ture, 

In this work I speak about an EPM(=Extended (Phonon) Pro
jection Model ),which is an extension of the model of Lipas 
et al. /Li76/ • Like other geometrical approaches it also 
gives an intuitive grasp of the problem in terms of the con

cepts of classical mechanics, but it differs a bit from the 

famous Bohr- Mottelson approach /Bo?S/, Of course, the effe

ctive Hamiltonian used in theories of this kind lacks a mi
croscopic background (which is achieved, to some extent in 
the IBA through the formalism of IBA-2) although, in princi
ple, one could calculate the coefficients of the boson Hami
ltonian microscopically by using boson expansion theories, 
or phenomenologically by using collective potential energy 
surfaces. 

In spite of the lack of a deeper insight into the micros

copic foundations of nuclear structure, phenomenological 
models of this kind serve as a tool in producing ideas and a 
systematic description of isotopic chains that can be va

luable material when striving for a deeper-reaching nuclear 
structure theories in the future, 
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I.2.General Theory of Projection

The development of the theory of projection started 1n 
the late fifties inspired by the Hartree-Fock calculations 
for deformed nuclei. It is known that the quantum varia
tional principle for the HF wavefunctions, 

(I.1.1) <8$1 H - E 1$> = 0 

where the $'s are single Slater determinants, leads to 
various symmetry violations both in the resulting HF Hamil
tonian h and in the resulting wave functions /Ei76/, The 
same is true also for other nuclear theories of variational 
nature, like the HFB, the CHFB etc. /Ri80/. Symmetry viola
tions also occur in theories of non-variational nature, for 
example in the CSM /Ri80/ and in the projection model. In 
these theories one imposes the symmetry violation by hand as 
a starting point of the theory for example in the form of 
symmetry violating trial functions. In variational theories 
the symmetry of the trial functions and the iteration pro
cess itself determine the degree of symmetry breaking, 

The symmetries that are mostly violated are the transla
tional invariance (conservation of 1 inear momentum), rota
tional invariance (conservation of angular momentum) and ro
tational invariance in isospace (particle number 
concervation), Because the above symmetry-imposed conserva
tion laws are a fact of nature, the need of symmetry re
storation arises in theories, which try to carry a tidy mi
croscopic appeal. A way to achieve this restoration is the 
quantum mechanical projection. 

In variatinal theories an average conservation of quanti
ties can be attained by using constrained ·variation. For 
example the requirement of average conservation of angular 
momentum in the HF theory can be guaranteed by the con
strained variation (w is the Lagrange multiplier) 

(I.1.2) 
" 

<8$1 H - E -
➔ ➔ 

w j 1$) = 0 

requiring wave functions $ for whichw 

( I. 1.3) 

but which are not eigenfunctions of the total angular momen
tum J. 
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The projection of trial wave functions from the original 
Hilbert space to a more restricted Hilbert space can be per
formed in variational theories as a projection after varia
tion or before variation /Ei76/ and /Ri80/, The question of 
superiority of the two methods does not arise in non- varia
tional models like projection model, The recipe for the con
struction of the projection operators which project out wa
vefunctions containing the symmetries implied by symmetry 
groups of the Hamiltonian of the system is very simple 
/Ei76/: if \cp > is a given non-invariant state under a cer
tain symmetry operation, then an invariant state \�> may 
be constructed from it according to 

( I. 1.4) 

where the weight function f(O) has to be chosen according 
to a variational principle, ie, by minimization of the expe
ctation value <�IHI�> of the energy, The operator U(O) 
1s the unitary operator which performs the symmetry opera
tion and O denotes the parameters of the symmetry opera
tion, 

The practical ways of determining the weight function are 
many, and in the projection model one uses the results of a 
classical paper published by Peierls and Yoccoz in 1957 
/PeS?/. In this paper the spurious centre-of-mass oscilla
tion, represented by the HF-type shell model wave functions 
was attacked by projection procedure yielding a formally cor
rect expression for the total energy of the system and tran
slationally invariant wave functions, In the variation adia
batic trial wave functions(wave functions independend of the 
angular speed w of the system) were used, However, the lack 
of Galilean invariance yielded a quantitatively wrong ex
pression for the kinetic energy, .but this was corrected by 
Peierls and Thouless /Pe62/ who used non-adiabatic trial 
functions in the variation of f(O), The so called genera
tor-coordinate method uses a still wider class of trial fun
ctions /On66/, In /Pe57/ the restoration of rotation 
invariance led to the expression 

<I.1.5) 

j 

where O now refers to the Eu 1 er ang 1 es and the D M 1, ( 0) 
are the Wigner □-functions or rigid rotor eigenfunctions,
The state I� K> is often referred to as the intrinsic 
state because of the lack of good angular momentum, The N 
are normalization constants and � includes all additional 
quantum numbers. 

Because the projection methods do not quarantee the 
orthogonality of the projected states, an orthogonalization 
is usually performed, as in ref, /Li76/, Projection may also 
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lead to overcompleteness, From eq.(I.1.5) one sees that the 
projection operator P�

K (Which 1s a true projector only 
when M=K) can be written as 

(I.1.6) 

In Oirac's notation it reads /Co71/, /Ho72/ 

(I.1.7) 

-5-



II.Basic ConGepts of the Projection Mod�l

II.1 The Oriented System

The term oriented system is used here instead of the term 
intrinsic system to distinguish the BMM freely rotating true 
intrinsic system (see appendix B) from the system used in 
the PM. Below it is shown that the model Hamiltonian of the 
PM corresponds to a system which behaves like BMM intrinsic 
system that is forced to small vibrations around the labora
tory axes with the intrinsic z axis coinciding on the 
average with the lab. z axis. 

The model Hamiltonian H of the PM reads /Ha70/ 

(11.1.1) 

It may be noted that H
0 

in eq, (11,1,1) 1s an isotropic one 
(the same mass and stiffness parameter for every magnetic 
quantum number m) and that it is not a S0(3) scalar (note 
that it is expressed in laboratory coordinates �m ). So the 
non-scalarity makes H 0 only a means of generating a sui
table set of basis functions. The anisotropic model has been 
dicussed in /Ho72/. The procedure fol lowed in appendix B 
leads to the fol lowing second quantized form H

0 
of H0 : 

<II.1.2) 

where 

(11.1.2') 

and b
t ,b create and destroy usual 5-dirnension HO quanta.

To diagonalize the Hamiltonian (II,1.2) a canonical tran
sformation 

(!I.1.3) 
t 

= b - 8 d m mo 
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is needed, 
now reads 

Expressed in terms of these 'deformed phonons' H 

and the condition 

,..., 
CII.1.6)

rv 

gives as the 'deformed ground state' !O> 
herent phonon state (unnormal ized) 

,-v 

10) = t exp(db ) 10)
0 

a socal led co-

The state (II,1,7) is the ground state of the oriented sy
stem, and in analogy with the BM intrinsic � and Y state 
(see appendix B), the oriented � state is �JO> (K=O) and 
the oriented r state is �t O> (K=2), It may be noted that 
because H

0 
is not an S0(3) scalar but only an S0(2) scalar 

(axial symmetry), the oriented ground, � and r states are 
eigenstates of Li but not L

2 (see appendix B), Furthermore, 
the oriented states do not have good spherical phonon number 
as is seen from eg,(II,1,7), 

Let us see the meaning of the system represented by H
0 

in 
terms of the BM intrinsic system described in appendix B. 
The kinetic energy part is the same as in the BM model, 
(B9), and the potential term can be cast in the form 

Transforming to the body-fixed system (appendix A2) one gets 

V � i c (::11 .i... i .. '+ ic ri
:,__ 

-0 )._ Q O O I °'J.. ) ')_ Q j • 0 
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Using the relations (Al.9),(Al.10), (Al.8) and the explicit 
expressions for spherical harmonics, one get after some 
manipulations 

where (�,�,r) are the Euler angles. 
parametres of small oscillations, then 
Exploiting this one gets 

<II.1.9) 

Because the �
m

are 
� and t are smal 1. 

where e is the polar angle measured from the z axis. So one 
may picture the Hamiltonian H

0 of the oriented system as 

<II.1.10) 

where 

( I I . 1 . 1 1 ) 

<II.1.12) 

C I I. 1. 13) 

T rot 

H. t(a
0

,a
1

) + T t + V(0)1n ro 

The intrinsic Hamiltonian (II.1.11) is the Bohr-Mottelson 
Hamiltonian of (B.8) with C�=C

0 
, and contains two degrees 

of freedom, The part T�ot +V(0) includes the rest of the de
grees of freedom, namely the three Euler angles. It may be 
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noted that in V(0) the restoring force is harmonic, 
The usefulness of the oriented system lies in the fact 

that the same boson operators are used in the oriented wave 
functions as in the laboratory Hamiltonian and the transi
tion� operators; also the solution of the eigenvalue problem 
for H 1s easy, 

II.2.The Laboratory Hamiltonian

A 

The Hamiltonian H
0 

of the oriented system is used only as 
a means of generating a suitable set of basis states for the 
calculations. The energy spectrum of a nucleus is a result 
of the diagonalization of a rotationally invariant labora
tory Hamiltonian H. In the framework adopted in the PM there 
is no way of deriving the laboratory Hamiltonian from first 
principles of a microscopic theory of the nucleus, So the PM 
is a phenomenological classical collective model where 
through a suitable parametrization of the theory one gets a 
set of constants to be determined experimentally. 

The starting point of the determination of H are the re
strictions imposed on it by the rotational and time reversal 
invariance and hermiticity. The purpose in this Extended 
Projection Model (=EPM) is to write down the most general 
boson (expansion) Hamiltonian satisfying the above require
ments (here the word 'expansion' is used without trying to 
make a connection to the underlying fermion system /Ri8O/). 
This expansion is not a phonon- number conserving one as for 
example in the IBA 1 where connection to the underlying fer
mion number is made through a number-conserving phenomenolo
gical Hamiltonian /Ia81/, In this respect the EPM resembles 
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the model of Gneuss and Greiner /Gn71/ , where this kind of 
Hamiltonian is used to give insight into nuclear collective 
potential energy surfaces. There is, however, also a big 
difference: in the Hamiltonian used by Gneuss and Greiner 
there was kinetic energy terms only to the lowest order, 
while they had potential energy terms up to the sixth order, 
In the EPM the expansion is made in the second-quantized bo
son operators b� and brn instead of the collective quadrupole 
coordinates 0:m used by Gneuss and Greiner, This means that 
the expansion is symmetric in kinetic and potential energy 
in contrast to the great asymmetry in the Hamiltonian used 
by G&G (see the discussion in connection with the section 
III.4).

The most obvious lowest-order Hermitian scalar quantity
which can be formed out of the bT 's and b's is the number " 

t 
-

operator N Co and b both are tensor operators) 

<II.2.U 

This was the only term used in the earlier version of the 
PM /Li76/, where the deviations from the pure quadrupole 
phonon limit (the U(S) limit in algebraic language) stemmed 
merely from the finiteness of the model space. There is also 
another term of the second order and it is easy to form. 
Using the above notation it reads (note hermiticity) 

CII.2.2)

and is seen to be number non-conserving. 
There are two kinds of third-order terms, namely 8 11 and 

8 30 .The term 8 30 is easy to form because the coupling order 
in the terms is clearly immaterial. So it is 

CII.2.3)

the term 8,._1 is a bit trickier one, In principle it con
tains 6 different terms, but exploiting the relations 
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one notices that the coup] ing order and the mutual order of 
bt and 5 are immaterial. So one gets the compact expression 

(II.2.4) 

Note that the number of terms in B 21 1s immaterial (should 
be three because there are three ways of coup] ing the b's) 
because it is multiplied by a phenomenological constant. 

The fourth-order terms need a bit labour, but compact 
expressions can be achieved on the basis of arguments on 
uniqueness of the phonon states created on by bt's, The term 
B 40 i s a g a i n easy :

<II.2.5) 

This is so because there is only one state IN=4,J=O> (here 
N is the number of phonons) . Because the state [bt b t bt J I O >
is unique, the term B31 can be written in the form 

,_ 

CII.2.6)

The combination of two bt's and 
linearly independent L=O objects. 
the form 

CII.2.7)

two b 
These 

s 
can 

, L=0,2,4 

gives three 
be written in 

Actually, the recoup] ing of terms of the form (bt. b)(b t- b) 
gives lower-order terms in addition to the normal-ordered 
terms 1n CII.2.7). 

It is convenient to note the relation /Ho72/ 

<II.2.8) j2 = 6N -

which tells that 
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CII.2.9)

S . d f ' L B
( 41

. b H . 1 
. o • 1 nstea o us 1 ng tr 1e term 1.1- 1 n our oson am 1 ton 1 an, 

one can replace it by the square of the angular momentum. 
which has much simpler matrix elements between states of 
good angular momentum. Now we are in a position to write 
down the boson Hamiltonlan up to fourth order: 

<II.2.10) 
I\ 

" 

H = c1 N + c
1
B�0 + c�B�, + c

4
B,0 + c

5B40 +

The number of terms in the Hamiltonian (!I.2.10) can be 
reduced on various grounds. This will be discussed in the 
next chapter. It may be noted that if only the ground state 
band would be included in the description, already the Hami
ltonian 

CII.2.11)

gives all that the Hamiltonian CII.2.10) would give /Ho72/, 
It is also clear that in our present model the efficiency in 
reducing anharmonic terms of the Hamiltonian (II.2.10) to a 
few effective ones is less than in the former projection mo
del because here the diagonalization mixes also � and r 
states to the ground state band, whereas in the earlier mo
del the ground state band was chosen to be pure through 
Schmidt orthogonalization, 

The earlier PM already gave good results also for very 
deformed nuclei although only the harmonic Hamiltonian N was 
used, This is due to the deformed projected basis states 
which make the convergence of the boson expansion CII,2.10) 
faster in the deformed-nucleus region /Ho?O/. 
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II.3.0iagonalization of the Laboratory Hamiltonian

In section II,1 the oriented states 10), 13J10> and 
/3: 1]> were given. However, candidates for the physical 

states must be eigenstates of the angular momentum In order 
to achieve this, the theory of projection (section I.2) may 
be exploited. A simple prescription for the projection is 
given by the Peierls-Yoccoz projection method. (A nice dis
cussion of the angular momentum content of an oriented state 
in the light of the uncertainty principle is given 1n re
ference /Li72/), Also a Peierls-Thouless method for axially 
symmetric nuclei could be used, but it is much more compli
cated and unnecessary for the adiabatic limit. The formula 
(I.1.5) of section I.2 gives as a result 

lg 
0 

J)

CII.3.1) I /3 j)
0 

IY 
0 

j)

= 

= 

= 

J ('"J 

N90CJ)PMolO>

J t 
rv 

N /30 ( J) p MO ( bo -d) I O >

J t ~ 

Nr 0
(J)PM2b

2..
IO>

which correspond to ground state, /3 and r bands, 
It may be noted that from one oriented state one 

generates a whole band of states with angular momenta going 
from a well defined minimum up to infinity. This is analo
gous to the BMM where each intrinsic state gives a definite 
band with infinitely many states. The notation is that of 
section II.2 with N

'd- 0 
,N

0 0 
and Ny0 normalization constants 

given in appendix 02. The non-orthogonality of the basis 
states {\g 0 J) ,  \13 0 J> ,  lr0 J)3implies two ways along 
which to continue. The first way is to orthogonalize the ba
sis by a Gram-Schmidt procedure and then to diagonalize the 
laboratory Hamiltonian A in this orthogonal basis. This 
leads to the ordinary eigenvalue problem. In the earlier 
form of the PM the diagonalization part was left out and the 
orthogonalization was performed in such a way that it yiel
ded the correct way of evolution of the few low energy le
wels from pure phonon states (spherical nuclei) to rotor 
states (deformed nuclei). The correct way of evolution was 
considered to be the Sakai scheme for quasibands /Li76/. 

The second Away of dealing with the projected states is to 
diagonalize H directly in this basis yielding a generatized 
eigenvalue problem (diagonal ization in a non-orthogonal 
basis). The second way was chosen in the EPM because it is 
more straight forward when standard library routines for 
computer diagonalization of this kind are available (see se
ction III.1). In appendix C are derived a few important 
formulas concerning the. calculation in Hilbert spaces with 
non-orthogonal basis states. The basis for the diagonal iza
tion 1s the formula (C.6) where the O�j and the f i. j wi 11
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form 2x2 matrices for J=O states (there exists no Yo O>

state) and 3x3 mntrices for other J states. Here 0i:} 1s now 
the energy matrix for the laboratory Hamiltonian H to be 
diagonalized. Writing this down e�plicitly one gets for J?2

J 

H 'd":! -ex

CII.3.2)
J 

Hr� 
J

-cxR f>'t
j 

Hf'1 
J 

-o:R f'r

where 

J

H. = < i
1 J 0 

CII.3.3)
J 

R . . = < i
l J 0 

JI 

J J H °6 r, -CxR
1'r, 

J 

H r,� -ex 
J J 

H
fr, 

-exRrr, 

" 

H Jo j)

JI Jo j)

j j 

H cit -cxR-)6
j J 

H f'>t -o:Rr,y 
J 

H '(f -o: 

- 0

' i' j=g,)3,;r 

As a result of the diagonalization one gets energy eigen
values and eigenvectors which are to be normalized according 
to formula (C,10). To be able to carry all this out, one 
needs to calculate the overlaps R6 and the energy matrix 
elements H� This requires som� special tricks which are 
discussed for the number operator Nin reference /Ha?0/. The 
explicit form of P�

K 
is not needed in these calculations and 

the matrix elements of (II 3.2) can be obtained by using 
general properties of projection operators (see appendix 
A2). This is a common feature among theories where proJec
tion is used. 

As a result of the calculation of the Rl and the H� one 
gets ten different complicated integrals which must b� cal
culated numerically (see section III,2), These integrals are 
tabulated in appendix 01. They are the building blocks of 
the different energy matrix elements which are tabulated in 
appendix 02. The appendix 02 do not contain derectly the ma
trix elements of the different terms in Hamiltonian of eq. 
(II.2,10) but most of the terms are effective ones and 
marked with primes. The reason for these 'effective' terms 
is that in subtracting from the original terms lower-order 
pieces of the Hamiltonian, one arrives at easier matrix ele
ments, many of them even vanishing. This is completely legal 
because it has only a renormalizing effect on the phenomeno
logical coefficients Ci . Also the matrix elements of the 
terms 8 40 and 83 1 are not tabulated because their asymptotic 
behaviour suggested that they could be left out of the ener
gy fits(i,e, asymptotically their matrix elements become the 
matrix elements of N and 81a, see the relations CII.S.11) ), 

The computationally convenient effective operators are 
defined as the following linear combinations: 
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<II.3.4) 

where d is the deformation/stiffnes parameter of equation
(II,1.2'), Thus our effective Hamiltonian gets the form 

" " 

(II.3.5) H eff 
= c�N + c � 81.0 + c;8;_1 + c48;0 +

+ 
'8(0),

C5 'l,.).. 
+

'8(2),c6 
).).. 

+ 
/ �2 

c
1- J 

where 

/ d✓8/7 
1

•c� 
2 

C1
= C1

- + 2d /?·c
'B 

/ d�2/7
1

•c 4
2

c '.l. 
= C :i. - + d /lO·c,.,,_

<II.3.6) / -�8/7
1 •dc4 +

2

c� = 4d /7 • c '6 
/ -�2/7'.dc4

2
C4 = + d /5 • c

'1-

/ 2
C5

= d /10·c
'1-

/ 2 
c6 = 2d /7·c

'3 

and the terms 840 and 831 have been left out. 
(II.3.5) can be arrived at by inspection of the 
behaviour of the matrix elements of the different 
terms of the Hamiltonian (see section II.5), 
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II.4.The Harmonic Limit of EPM

Analytical expressions for the integrals IJ (J) ,

j =1, .. , , 10, the over 1 aps R ( and the energy matrix e 1 ements 
H f3 can be deri,Jed in the 1 i�i t of sma 11 and 1 arge deforma
tion parameters. The small-d and large-d limits of the Ij (J)

are tabulated in appendix E, and it is easy to specialize 
these formulas for definite J and then use them to calculate 
special R� and H� analytically. Of course there remains 
the task of diagonalizing 2x2 or 3x3 matrices by hand ,which 
is not a very nice Job to do. But doing all this one gets 
hold of the analytical form of eigenvalues and eigenvectors 
in the two limiting cases of the anharmonic vibrator nucleus 
(small d) and the rotor nucleus (large d).This is useful in 
checking the computer program for its correctness and 
accuracy and also gives some indications of the magnitude of 
the effects caused by that part of the Hilbert space which 
was left out of the model space. In this chapter we stick to 
H=N. 

As was mentioned above, the model space in the PM and the 
EPM is very restricted and causes the spectrum of the number 
operator to deviate from the pure phonon spectrum at non
zero deformations (d)O). � At zero deformation , d=O, the 
oriented Hamiltonian H of eq.(II,1.1) becomes S0(3) 
invariant and coincides with the laboratory Hamiltonian. 

This, in turn, should indicate that the harmonic phonon spe
ctrum is recovered for the number operator as laboratory Ha
miltonian. But this is not so obvious, because actual calcu
lation for d)O uses only three oriented states (see chapter 
II.1) and this would suggest the existence of only the
phonon vacuum and the one-phonon state. So one must be care
ful in extrapolating to zero deformations,

The fact that at small, non-zero d one gets part of the 
U(S) phonon spectrum (one gets 3 states of each angular 
momentum and these correspond to the three possible phonon 
states with that angular momentum in the U(S) spectrum, see 
fig. 26 on page 100 ), This is understandable when one makes 
an expansion of the projected states making use of 
eqs.CII,1.7) and CII.3.1). So 

lg 0 JM> 

It is easy to derive the relations 
used now to yield 
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CII.4.1)

\6 0 JM)=- N1 0t �J0 \o)+J D J1..6M lo) -t- �J
""

� x

(l ).. J ) 3 ,---...., ( l 
x a o o [b+ b+]

JM
\o) +icl ✓:l.J+1

1

\o 

x [ 1}[ b+ bt]J JM I o) + • • • } 

l L\(i L J\ 
oo/\6 oo}

x.

Now one clearly sees that at finite d the projected 
states are a superposition of ordinary U(S) phonon states 

with different phonon numbers, In the same way one gets 

< II .4.2) 

CII.4.3)

X [ 6 +\:,+]
JM 

I O > + ½_ J \j '.>..J+ 1 � ✓,,_ L + ,· \ � � �) X 

L = 0,1..14

+ 

To understand the evolution of the low end of the spec
trum to the U(S) limit, one may concentrate on J= O and J= 2 

states, 
Noting-that for the two-phonon state in the U(S) limit 

CII.4.4) I n= 2 JM> 

one gets 
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lg
0 

0 0 > = N� 0
·[!0> + 1/{io1d

,.
ln=2 0 0 > + ... ]

113
0 

0 0 > = N
r, 0

[-dlO> + ✓ -2-/s1d(1-1/2d
2

)jn=2 0 0 > + 
J

To be consistent in the power expansion and in calculating
the normalization constants N�, N� one has to use the re-
1 · 

O O I JO 

at1on 

I n=3 J=O O > = 11�7°1 [bt b+J · bt 10>
and thus arrive at the result 2 

1 g o o o > = [ 1 + a< d 4 ) J I o > + d k 1 ✓w < 1+43 d 1.11 96 + 

+ Co/'(d4) ) ln=2 0 0 > + d<d
?,

)

( I I. 4. 5) I 130 0 0 > = - �5/7 1 ( 1 +55d 
1

/ 686 + ff( d 4) ) I O > + 

+ {277<1-275d
i

/686 +u<d 4 ) )\n=2 0 O> +uCd
2

) 

I Y 0 
0 O> does not exist 

Now we come to a critical point:the truncation. The basis
flg0 ), 113

0 
>, IY

0 
> 1 is a srnal 1 subset of the complete basis

where excitations of any deformed phonon number are inclu
ded, By truncating the expansions CII.4.5) after the first
two terms one gets a two-by-two closed set of basis states , 
1.e. a one-to-one correspondence between a subspace of the
projected states and a subspace of the U(S) states. Strictly
speaking, when truncating the above expansions one 1s not
al lowed to speak of U(S) states (because they are an
infinite series of projected states), but rather quasi U(S)
states I'""'> for which 

CII.4.6) 
� d�o 
U ( 5) > ----- > I U ( 5) >

because the last terms in (II.4.5) can then be dropped. So 

<II.4.5') 
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Inverting this one gets 

<II.4.7) 

lo> :::[1-lJ�+a(cJ 4 )J\1 0 00> - i{f J
"l.

lr ll oo)

I� o > = ✓½[ 1 - ;i /·+u(J 4 )] l °oo o o> +

+ � [ \ - ,\
") 

b c1
:,.. 

+ er ( J 4 ) J I r, 0 o o >

The above results can also be obtained by diagonalization 
in the small-d limit, Using the energy matrix representation 
( II ,3,2), the expressions for the Ril and the H :j (appen
dix 02) and the the small-d values for the integrals Ij(j)
(appendix E), one arrives at the secular equation 

O= 
(II.4.8) 

< > 

which gives in addition to the normalized eigenvectors 
(II,4,7) (identification with the U(S) limit is made on the 
basis of corresponding eigenvalues) gives as the eigenvalues 

C II .4.9) 0: 1
= 2(1+10Sd

1
/980) +u(d 3

) 

From eqs,(II.4,5') and CII.4.9) one can see that when d 
goes to zero, the projected ground state goes over to the 
U(S) vacuum and the lowest� state to a mixture of the U(S) 
vacuum and the U(S) two phonon state of zero angular momen
tum. This mixture is given in this zero-d limit (strictly 
speaking the limiting value is out of the model space) by 

<II.4.10) 

with the vacuum component dominating 1 Note, that according 
to eq. (II.4.7) in the zero-d limit the EPM as also the PM 
ground state go to the pure U(S) vacuum 

The process above can be performed also on J=2 states, 
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This 1s more tedious because now we have a three-by-three 
system and the U(S) three-phonon states come into the play. 
The expansion now reads ( see(II.4.1,2,3) ) 

\ �o l M) -= N 60 { J j Y\ = 1 l t--'\) - �R I T"\-= }_ l M) +

✓5 � � ��, ( J- l L)
i 

+ G J L__i ✓il+1 \ 0 0 0 [ bt l 6+ b-r ) l ] lM lo) + u(cl 4}}
L=-0 1 :l... 1 4 

f )._ d 
I f o l M) = Ny-0 

l I Y"\ = 1 l \'1) + ft I h :: l l M) + 

15' �:> ,(J.lL\(i L'l\ 
+)._ell� Jll+1 0 0 0 / l()-)__/[6+ [b+ b+} L J J...M\o)+ u(J

?,

)1 
I I 

I 0 o l M) = N {Jo l \ '\ - J
,.

) I Y\ � 1 l M) - ff ( 1 - t d
,. 

/ I T"\-:: l l. M) -+ 
1. ✓5 .1.. cl-,_ ">7 (i 2- L) 

+ )_ d ( 1 - � ) L ✓ 1 L + 1
1 

\ o ci a [ b + ( 6 + 6 + ] L 1 ).. "" I o) + u ( J :- J }
L-=0 1 1.. 1 4 

The 3-phonon states are now introduced by the use of formu
las /Li66/ 

<II.4.11) 

<II.4.12) 

I' 

where j:;;;�2j+1
1

,l>-),(j')11_jm) is an unnormalized three-phonon 
state with the intermediate coupling indicated (see 
(II.4.14))) and the N(AA(j' )Aj) are the corresponding norma
lization constants. Use of the above formulas indicates that 
(magnetic quantum numbers left out) 
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where 

<II.4.14) 

This is obvious because the 3-phonon J=2 state is unique. 
Inserting (II.4.13) in the expansions of the previous pa

ge, calculating the norms and truncating one gets 

(II.4.15) 

� "l. 

cl ,-.____,/ d d 
l�o J..M) =[1-14 +a(J 4 )]l1 lM) -{1'[1-�+

r--_/ _J_ cl '.I.. r---._./ 

+('.o/(J4J]\il.\V\) +fi4[1-v:+ +(o/(J 4)]\ 3 ll"\)

\ r -:i.. 'l.. ( )JI r-..__/ 

ic1[ 1:Jol
..,_ 

rio J.. M) = L 1- 7-d +(J J '+ '\ l M) - � 1-+ 14 + 

Inverting, one obtains 

<II.4.16) 

r--.___., n ) d 1. 

\ l )._ \"\) :::: :1) d l - [ 1 + TT + U ( J 4 }J \ °J o ).. \"\) +

i- [ 1 + ¾_ /· + 0 ( cl et J] \ Yo J.. M ) J
I r---......;- --.fi4 f 1 11 .., 

] 

[ '\ S 'l.. 
?, 'l.. M) = 6ol._ L- L 4 - -=t cl -t (j( J 4 J I ') o l. M) + '2, ----=t J + 

+(o/(J 4 )]\ r,0 ).M) + [1+ �J'-+(r(J�)]\t; J..M)} 
Diagonalization would give as eigenvectors the states 
(II.4.16) and as eigenvalues the one-, two- and three-phonon 
energies, So calling the right sides of eq. CII.4.16) as 
I g 2 M> , \ r 2 M> , I J3 2 M> one recovers the Sakai scheme 
that also underlied the earlier PM, ref. /Li76/ (see also 
figure 2 on p. 1- o ) • 

In fig. 1 there are plotted the overlaps for various 
angular momentum values. It may be seen, that when d approa
ches zero, the value for the only J=O overlap, <g

0
j�> 
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goes to -�5/7
1

, as could also be seen from eq, (II.4.5' ). 
For the other angular momenta all the overlaps go to unity 

when d goes to zero, This is readily seen for J=2 from eq. 

(II.4.15). The asymptotic limit for the overlaps 1s dis

cussed in section II.5. 
In fig. 26 there is shown the relevant part of the U(5) 

spectrum with total set of quantum numbers and E2 transition 

probabilities up to phonon number 4. This is an exact limit 

which the EPM must approach when d decreases, so this is a 

good check for the computer code. Another limit where the 

code may be checked is the asymptotic limit discussed in se

ction II.5. 
So, the line of argument leading to the use of a very re

stricted model space is that in this way one can transfer 

some of the dynamics of the Hamiltonian to (deformed) wave 

functions, thus allowing a pure harmonic Hamiltonian to 

generate anharmonic and rotational spectra. This basis is 

intimately connected to the ellipsoidal form of the rotating 

nucleus and so even after the truncation in the number of 

the basis states, this basis is believed to describe rather 

well nuclear low-spin structure. Enlarging the number of ba

sis states will lead in the case of the harmonic laboratory 

Hamiltonian closer to the harmonic spectrum, and the re

storation of the anharmonic and rotational features in the 

spectrum wil 1 then demand a laboratory Hamiltonian going 

beyond the harmonic approximation. 
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II.5. The Asymptotic Limit of the EPM

Let us do the same as in the previous chapter (i.e. exa
mine the structure of J=O and J=2 states for H=N) now in the 
case of a large deformation parameter referred to as the 
asymptotic limit, First examine the case of J=O. Using 
appendix E for the integrals and appendix 02 for the matrix 
elements, one obtains the secular equation 

:i.. -2. 

d -1-3d -0: 
-1 - 1 -1 

2/3•d +0:d C1-1/6·d ) 

[ 1-d -1. +1 /3d 4 + uC d -b)] 0:2. + [-2d
i.

+3-d-:i.. + (JC d -4)]0:+

+ [d4-3i· +5/3+ uC d- i)] = 0

Solving this, one gets the eigenenergies 

and the corresponding eigenvectors 

CII.5.2)

I og > = 11"12'[1-3/4 ·d-
1

+ (o/(d-2.)] I go O> -

-11[2[1-1/4· d-
1 

+ (J(d--i..)J I ,1.) 0 O>

I 0
.$

> = 11{21[1+3/4•d-
1

+(o/(d-'.l.)Jj g 0 O> +

+ 11fi[1+114• d-
1 

+ crcd-1.)J I J-)0 o>

= 0 

where I 00 > is a state of angular momentum J=O belonging to 
the � band CEr>E(ground) ,M's dropped), and g stands for 
the ground state band). 

For J=2 one has the secular equation 



1 2- 1 

d -1 + 1 J� - o(

=O 

Solving this, one obtains the eigenenergies 

()(1 = d
2 - d - 1/2 + (o/'(1/d)

( II .5.3) ()(2 
= d

2 

+ (o/'(1/d)

()(3 
= d

2 

+ d - 1/2 +(Y'(1/d) 

and the corresponding eigenvectors 

I 2 °d' > = 11{21[1+ c'.1< 1/d)J J g
0 

2> - 1/ITL1+ co/( 1/d)] I �o 2>

< r r . s . a ) I 2 r > = [ 1 + CY< 1 1 d ) ] I r O 2 >

I 2 r, > = 11fi[1+ (f< 1/d)] I g 
O 

2> + 11-[2'[1+ (Y< 1/d)] I �o 2>

From eq. (II.5.4) one sees that in the asymptotic limit 
the eigenstate IJ1> 

begins to decouple from the other ei
genstates IJ�> and IJ�) and to have only one component, the 
I t0 J) component. This is in contrast to the earlier PM, 
where the ground state was chosen to be pure, ie 

<II.5.5) 

and the � and r states had the Gram-Schmidt form /Li76/ 

<II.5.6) 

There are also big differences in asymptotic energies be
tween the PM and the EPM. From eq, (II.5.3) one sees that 
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the asymptotic energy differences between states of the same 
J but belonging to different bands are Ln the EPM (with 
obvious notation) 

L1(J)0i
= Er, E'i = 2d + ff< 1/d) 

J J 

CII.5.7) L1 ( J )
Y ') 

= E� 'i = d + 1/2 + u< 1/d) 
j 

E
J 

L1 < J )0r
= Er,

J 
E y-

J 
= d - 1/2 + co/(1/d) 

while in the PM the corresponding asymptotic differences are 
/Li76/, fig.8 

PM 
()'(1/d

2

) L1 c J ) f'oo = 1 + 

CII.5.8) ,1 ( j) PM = 1 + uC1/d
2

) 
(°'o 

,1 ( j) PM 
r,y 

= 0 + (Y(1/d
2

)

So the differences are really drastic and imply a greater 
�lr flexibility for the EPM when anharmonic terms in the 

Hamiltonian are used. Here one sees clearly the effect of 
diagonalization as the best means of creating an orthonormal 
basis, the 'optimal' Gram-Schmidt basis. Here the diagonali
zation lowers the ground state much more than the Schmidt 
scheme used in the PM. The asymptotic behaviour of energies 
in the EPM is shown in fig,2 

Fig,1 shows the overlaps as a function of d. As was men
tioned in section II.4 , al 1 the overlaps tend to unity when 
d goes to zero, except the overlap <g 0 01 )3 0 0> which be
haves like 

( II .5.9) <go 0IJ3o 0> 
d"' o

= 
-✓s1i [1-43d2 

/ 4 90 + (}( d 't)]

In the asymptotic limit the behaviour, for example 
J=0 and J=2 states, lS 

<go o I 130 
0) 0...1 

-1 - ). 
-d (1+1/6•d ) + U(d-

4
) 

<go 21130 2) rJ -d-1C1-7/6•d- 2) + c:1< d - 't)

<II.5.10) <g
0 2lr0 2> ,--.J ,ff/3•d-:i + CJ<d- 4

)

< 13 0 2 I r O 2 > rv U( d - 4 )
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Comparison with fig,4 of ref. /Li76/ indicates that the 
overlaps there are wrong and the diminishing of the absolute 
values of the overlaps < g0 Jj�

0
J) should occur as 1/d, The 

other overlaps go much faster to zero, which indicates the 
decoupling of the r band from the others, 

An interesting thing is the behaviour of the matrix ele
ments of the anharmonic terms of the Hamiltonian (II.2.10). 
This asymptotic behaviour leads to the identification of the 
effective Hamiltonian of eq. (II.3.5). The rules (II,3.4) 
stem from the facts that asymptotically 

< i O I B 3 0 I j O ) rv -.µ771 d < i O I B l-O I j O >

< i0\ B,_ 1 I j0 > '"'-' -�8/7
1 

d< i0 l N I j 0 >

< i 
O 

I B 4
0 

I j O > rv -� 7 /2 
1 

d( i0 I B 3 0 I j O) rv d '.l. < i O I B l.Cl J j O >

(II.5.11) <i
0 1B�1 Jj

0
) rv -�7/2

1

d<i0 IB"l..1IJ
0

),--,._,,2d
J.

<i
0 I N 1·j0 )

< i O 
I B �� I j 

O 
> ('._/ 1 / 10 · d :i.< i 

O I B 10 I j O >

<i0 IB�;_) jJ 0 )rv 2/?•d
"2..

<i 0 l NI j0)

As is easy to see, the higher the order of the anharmonic 
term, the larger its matrix elements. This is not, however, 
a proof of the importance of the higher-order terms in the 
Hamiltonian because their asymptotic behaviour resembles 
that of N and Bio . A discussion on these matters is further 
pursued in section III.2. 
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II.6. E2 Transition Probabilities and Quadrupole Moments

To be able to discuss transition probabilities, one first 
needs knowledge of the quantum mechanical operator, the 
transition operator that is involved. In the liquid drop pi
cture the electric quadrupole operator is written as 

(II.6.1) r < E2) = \ pr2 Y* d't' = p \r1 Y* d't'l'Y\ J 1.rn a J :i-m 

when uniform density distribution 

<II.6.2) 
3 

P = 3Ze/4n:R 
0 0 

1s assumed. Assuming the quadrupole deformed shape (8.1) of 
the liquid drop, the integration of (II.6.1) over the volume 
bounded by this surface yields /Li66/ 

(II.6.3) 

Sticking now to the lowest-order operator as in the earlier 
PM and transforming the first-quantized collective coor-

"' 

dinates ��mto second- quantized boson operators according 
to eq. (B.4), one obtains 

< II .6.4) 

where 

CII.6.5)

Here, as also 1n the earlier PM, the coefficient e* 1s 
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used as an effective charge parameter and is obtained by fi
xing the value of one transition probability, which is here 
chosen to be the 2g--)Og transition. 

The above transition operator can now be used to calcu
late E2-transition probabilities defined in the standard way 
/Sh63/ as 

(II.6.6) 

-1 lEl.J ::t. 

B(E2;vJ-->µJ') = (2J+1) I (µJ' II T II vJ)i = 
(c�J 1 

(2J'+1)/(2J+1)•<µ J' 0 IT _Mo Iv J M 0 > x_ 

x ( 2 -M J M I J' 0 )
2 

0 0 

where µ,v = g,�,r. 
moment is defined as 

In the same way the static quadrupole 

eQ(r,1 JJ 

(II.6.7) j1GTT' 
= \ 5 

= 

� 16Tr ( J 
5 - J

)_ 

0 

( -JJ

'.l. 

�) 0 

\ � 

l

�) <//'

j \ \ 
- lE=1-)

J J / r' J I\ I II f-" j

{ E:l..) 

JOIT0 l f' JO)

:::: 

Here ( II II 1s a reduced matrix element. We can use M 0 
=O if both J and J' are even or odd and M 0

=2 if either of J 
and J' is odd, Because the ground, � and r states are a 
result of diagonalization in the basis {g0 ,,6 0 ,t0 } , they 
can be written as (except for the states I r J=odd) which 
are of purer character 

J

>

) 

J> 

J> 

= (C( / g' g) 

Cc.J(,6,g) 

ecJ<r,g) 

Cc /g,,6) 

cxJ(,6,)3) 

cx/t,,6) 

I 9 0 

I 13 o 

Ire 

J

>

\ 
J

>) j) 

where the ecJ(µ,v) , µ,v = g,0,r , are the components of 
the .u:th eigenvector in the basis {lg

0
),lJ$ 0 ),\(o>; for 

each J. The above decomposition of states leads also to the 
following decomposition in eqs.(II.6.6&7): 
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<II.6.9) 

I ( E1..1 I 
< ,u J' 0 T _ M

o 
I V J Mo> 

X < k O J / 0 I T ( E2 )
-M o 

1,.;here v0, i0 E: t g
0
,/30 ,;r-0 ) • The various basic transition ma

t r i x e l em en t s < k 
O 

J , 0 I T � ��) I i O J M O > can be c a l c u l ate d 
following the lines of calculation of the matrix elements of 
the Hamiltonian, examples are to be found in ref. /Ha70/. 
All the matrix elements needed in eq. (!I.6.9) are tabulated 
in appendix F. 

Checking of the computer program and the derivation of 
analytical expansions for the transition probabilities can 
be performed in two different limits: the small-d and large
d limit. These limits correspond in the language of the 
classical theories to the spherical U(S) phonon limit, and 
to the adiabatic rigid-rotor limit; these limits were alrea
dy discussed in sections II.4. and II.S. in connection with 
the energies. Figure 26 shows part of the U(S) phonon spec
trum with allowed transitions included. For a transition 
operator of the form (II.6.4) the transition probabilities 
are easily calculated, because the matrix elements of opera
tors b and b between spherical phonon states are propor
tional to boson cfp coefficients /Sh63/. 

The asymptotic limit is more interesting and connects to 
the adiabatic rotor model. When d is very large, a small 
angular velocity will be enough to attain a given angular 
momentum J. This is easy to see from the semiclassical for
mula for a rigid rotor 

Jc J+ 1 ) = � i.w :i. , [J J = -fi
where 1 is the nuclear moment of inertia, which increases 
with increasing deformation. So the low angular momentum 
part of the nuclear spectrum is free from the effects of the 
Coriolis interaction and thus the rotational motion does not 
excite additional intrinsic degrees of freedom. (The non
adiabaticity of the system sets in when systems with high 
angular momenta or small deformations are considered. Then 
additional features caused by Coriolis and centrifugal 
interactions must be considered, for example in the form of 
K mixing), This total separation of intrinsic and collective 
rotatinal excitations is called the adiabatic limit, and it 
is also realized in the case of the �Jobbl ing oriented system 
of the EPM. This means spectroscopically a rotational band 
built on top of every intrinsic exitation. The deviation 
from this law is customarily caracterized by an expansion in 
powers of J(J+1), where the magnitude of the coefficient in 
front of each term indicares the relative importance of this 
term /Bo75/ 

The effect of adiabatic rotation is seen in the so-called 
Alaga rules /AlSS/, in which the geometry solely dictates 
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the values of certain branching ratios of transition proba
bilities, Denoting by K the projection of J along the 
intrinsic symmetry axis, one has 

<II.6.10) D (El j j I< � j
) 

K1 
) 

\j l \; l j J K -7 J'1 K' ) 

( j K l K J - K I j I I</ ) 
( j I< l \< / - K I j /I I<.' ) :i.. 

which gives in the special case of the ground state band 

(Jo2..o\J'0) 
J. 

\ J o J. 0 I J" 0 y
i.

Measuring everything with respect to the transition 2g--)Og, 
one gets a useful formula 

<II.6.11) 
I:) \E.lj j � � j'<))
1:il1=1-; i 1�00)

B ( E lj Jc,
--") J

1

r, 
J

E>lE:1.j l r, �00) 

which can be compared with computer results (also the other 
possible Alaga rules have been compared to computer 
calculations). For the quadrupole moments one obtains in the 
case of the ground state band 

<II.6.12) 

These can be compared with large-d numerical results. 
An other way of checking the numerical results 1n 

large-d 1 imit is by calculating analytical expansions 
the above transitions, The Q-matrices of eq, (II.6.9) 
obtained from expressions (II.5,2) and (II.5,4), and 
asymptotic expressions for the basic transition matrix 
ments are obtained by the use of appendices F and E. 
are some results (in the units of 8(E2;2g--)0g) ) : 
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8(E2;213-->0�) r--J 1 + 2/d + c.o/'(1/di
) 

8 < E2; 213-->0 g) rv 25/256 'd-4 

[1 + (:; < 1 / d)] ,

8(E2;213-->2g) 0.J 5/56•d-
4 

+ (o/'(1/d 5)

8(E2;3r-->2g) 0--,1 25/56•d-).[1 + 312d + (f(l/d 2.)] , 

B<E2;3r-->26) r-J 25/56·d- 1 [1 + 112d + u<lld 1.)J, 

[eQ(g,2)]
2 

rv -B{rr/7 [1 + u< l/d 2)] 

[eQ(J3,2)]
2 

� -8-{n/7[1 + 1/d + (j<lld :i..) 

One more thing to be noted is the geometrical relation 
(8.17), which seems to hold true also for the asymptotic li
mit of the EPM (the same kind of relation for absolute va
lues comes out directly from Alaga rules). This has been 
computer verified and is discussed in section III.3. It is 
worth noting that in the EPM eQ 0 is d-depended and different 
for every band in order to fulfill eq. (8.17), This feature 
is built in the model in contrast to the BMM, where the same 
eQ 0 describes every band, unless new degrees of freedom are 
introduced in the model by making the eQ0 's parameters to be 
fixed by experimental data, 
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III.1. Numerical Solution

Here a brief outline 1s given of the numerical methods 
used in solving the numerical problem. As was explained in 
section II.3, the projected states <II.3,1) yielded a 
generalized eigenvalue problem of the Hamiltonian matrix and 
the corresponding secular equation is depicted 1n 
eq,(II.3,2). The calculation of the matrix elements of the 
Hamiltonian matrix H/j and the overlap matrix R( yields 
eleven different integrals, I1(J), tabulated in apiendix 01. 

Because the integrals are quite complicated, i.e. they 
become very small in the smal 1-d limit (see the discussion 
in the beginning of appendix El) and quite large asymptoti
cally and contain an exponential that increases at d>l very 
rapidly, ordinary integration techniques are not accurate 
and fast enough. Because fitting to experimental data calls 
for an optimization routine, the integrals need to be calcu
lated several times during one computer run. Also, because 
one needs to handle many D functions during each integra
tion, a method that uses as few integration points as pos
sible is needed (this excludes the usual Simpsonian techni
ques and others like it). The solution to this problem is a 
numerical integration technique that is tailor-made to this 
kind of problem. These special integration techniques use 
orthogonal polynomials to expand the integrand inside the 
integration interval. A suitable integration technique to 
carry out the integrals Ii(J) is the so-called Gauss-Le
gendre integration /Ab65, Sc68/. Here a 32-point Gauss-Le
gendre procedure was used with 20 subintervals, and as a 
consequence the integrals were written in the form 

< I I I . 1 • 1 ) I i < J) 

where 
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1 

<III.1.2) Ii(J) = 
� 

FT<x)dx

-1

<III.1.3) xjk = ( X + 2k - 21)/20
J 

and Ai and xL are the Gauss-Legendre ordinates and abscissas 
taken from /Ab65/, 

The fastest and most accurate way of calculating the Wig
ner □-functions contained in the integrals is by recursion 
using Jacobi-polynomials /Ab65, Ba??/ according to formulas 
(Al.19) and (Al,20) of appendix Al. These D functions are 
calculated at all the points (III,1.3) and tabulated 1n a 
direct access file to be used during the computer run, thus 
avoiding a continuous calculation of them. 

After computing the integrals and thereby the different 
matrix elements , the task of solving the eigenvalue problem 
remains. This is dealt with by a library routine that uses 
canonical transformation techniques /Mo73/, As a result the 
energy eigenvalues and the (unnormalized) eigenvectors in 
the projected-state basis tl g0 J> , I J3 0 J> , I Y o J>} are 
obtained, The normalization of the eigenvectors according to 
formula (C.10) yields the states tig J>, \13 J>, lr J>) and 
the eigenamplitudes �J(i,j),i,jElg,�,t1 connected by for
mula <II.6,8) of section II.6, 

During this mathematical process a physical question 
arises concerning the identification of the spectroscopic 
quasi bands /Sa82/ of real nuclei. One guiding tool is to 
observe the behaviour of the band structure produced by the 
harmonic Hamiltonian N. This was done in the earlier PM by 
choosing the order of orthogonalization in the Schmidt pro
cedure in such a way as to yield the Sakai Scheme /Li76/, 
Here the problem is more difficult to solve because of the 
large mixing of the eigenamplitudes in certain regions of 
the spectrum (this is especially true for the Hamiltonians 
containing also anharmonic terms). 

The ground state band is easy to handle by assuming it to 
be always the yrast band, 1,e, its states lying the lowest 
1n energy for each angular momentum This is justified be
cause the EPM is tailor made for describing low-lying colle
ctive excitations and thus it does not have any internal de
grees of freedom to describe band crossing and back-bending 
phenomena, which are believed to be connected either to the 
single-particle aspects (nucleon pair breaking /St72/) or to 
shape transitions. To describe the collective shape-phase 
transition in the framework of the EPM, one need a way of 
introducing two deformation parameters into the calcuiations 
and a mechanism of mixing the two bands described by these 
two parameters. This is certainly outside the scope of this 
model and so the above treatment of the g band is well foun
ded. 

The recognition of the quasi-� and quasi-( bands 1s 
much more difficult because of the large mixing of the pro
jected states in those parts of nuclear spectra where their 
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energies are close to each other. As a guideline one could 
use the same arguments as in the earlier PM and obtain the 
Sakai scheme in the small-d limit using the harmonic Hamil
tonian. Then eq,(II.4.16) would give an indication of the 
recognition procedure. This, however, must also be consi
stent with the large-d limit, eq,(II.5.4). The procedure 
which 1�ould appear natural is to assign to the· Y band the 
states having the r component dominant, while the re
maining states would belong to the � band. In the actual 
program a recognition method is used which is developed by 
collecting data from diagonalizations of different (anhar
monic) Hamiltonians and thus the method is 'experimentally' 
discovered, It also yields the scheme described above in the 
case of the harmonic Hamiltonian (this is very clearly seen 
from the energies of fig,2), In addition to this eigenvec
tor-based recognition scheme, a scheme based on experimental 
energies can be optionally used in actual fits, In this pro
cedure the experimentally known order of the ground, B and 
r energies helps in the identification of the bands (this 
is the scheme followed in most more extensive codes where a 
legion of different states with the same J are produced). 

After having completed the calculation of energies for a 
chosen set of Hamiltonian coefficients C\ of eq,(II.3,5) 
there remains the problem of optimizing the parameters Ci 
with respect to the existing spectroscopic data. There 
exists a �reat many optimization methods dealing with multi 
parameter surfaces /Ku73.Ja75/, The best of these proved to 
be a library routine /IM89/ using a quasi-Newton method 
/FI72/, This code seems to be the most accurate in disco
vering small inclinations of 'ditches' on the parameter sur
face and thus yields a result that reaches nearest to the 
correct result. The other aspect, however, which must be 
borne in mind here is that the calculation of the functional 
to be minimized is less accurate at small deformation para
meters, and thus the minimization is rendered more difficult 
by the noise in the numerical values of the functional. The 
functional to be minimized in the EPM 1s a weighted chi 
squared function 

<III.1.4) 

where �=(i,J),i=g,�,r and the sum includes all the states 
that one wants to take into the fit. The curly parentheses 
indicate functional dependence on several variables C1
(coefficients of the Hamiltonian expansion). The weighting 
here assures the improvement of the fit at low energies at 
the expense of higher energies, which is in accordance with 
the philosofy of the model (in earlier days this was also 
due to the more inaccurate experimental energies in the hi
gher-energy part of the level schemes). 

The E2 transition probabilities ard static quadrupole 
moments are calculated from the standard formulas (II.6.6) 
and (II.6.7). The effective charge, e* ,appearing 1n the 
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transition operator is determined by fixing the transition 
probability B(E2;2g--)0g) to the corresponding experimental 
value. The S0(3) Clebsch-Gordan (or 3j) coefficients 
appearing in the explicit expressions for the basic matrix 
elements (appendix F) are calculated from their explicit 
formulas /Sh63,We78/. 

The output of the program includes the fitted theoretical 
energy spectrum as printout and as a drawn level scheme (see 
figs. 27 to 31) In addition, the final values of the parame
ters C\ are printed, and certain information is given con
cerning the success of the fitting (number of functional 
evaluations, numb, of significant digits and information on 
the final gradient values at the minimum), Because the func
tional evaluation takes some time, this first part of the 
program is not very quick to perform, On the other hand the 
transition probabilities and quadrupole moments are quickly 
calculated and printed out after the minimization. 

III.2. The Effective Hamiltonian and Its Spectrum

III.2,A The Effective Hamiltonian

The number of free parameters in the effective Hamil
tonian (II.3,5) is seven and it includes all important terms 
up to fourth order. The terms B40 and B�1 were left out be
cause their matrix elements behave asymptotically according 
to eq, (II.5,11) , where the link <B10 > � constant•<B io >

is valid already at such small values as dN2, This has been 
found by numerical testing of real nuclei, namely the Gado
linium isotopes 1 s0- 1�Gd /Ve83/, There the renormalization
character of the B 3 0 term was proved by fitting each Gd iso
tope twice, with term B�o included and excluded, Because 
these Gd isotopes cover the range from spherical to well-de
formed nuclei, the omission of the B 10 term from further 
fits is well founded (on the other hand, B 11 remains 
effective). 
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The exclusion of the terms 8
) 0

,840 and 8�1 leaves us an
effective Hamiltonian with six parameters. Further investi
gations of the importance of the various terms in the effec
tive Hamiltonian can be performed by looking at their 
influence on the odd-J r-band states. Because the odd-J r

states are decoupled from the rest of the spectrum (no dia
gonal ization needed for the odd-J states because only r 
states can have odd angular momenta) it is hard to influence 
their spacing in the band. Calculation of the Hamiltonian 
between the states I Yo J=odd) reveals that the only terms 
that give a non-trivial (non-renormalizing) contribution are 
N,J

i 

and 8�';:' . So by this criterion dropping the terms 8
) 1 

and B 40 is Justified. The term B��•seems to be more impor
tant than the term &1

:� in two ways. First, as mentioned above, 
the effect of the term B��' on the odd-J members of the r 
band is 'trivial' whereas the term B��, remains effective, 
i.e. brings in a J dependence to the odd-J r-band ener
gies. Second, as can be seen from appendix 02, B��, has more 
effective matrix elements than B�f'. So the EPM would pre
dict the phenomenological quadrupole-quadrupole force to be 
the dominant one at non-zero deformations. 

So, summing up , if one takes into account the numerical 
tests, i.e. the effects on odd-J r-band members and the ma
gnitude of the matrix elements of the different terms in 
actual fits, one is left with an effective Hamiltonian with 
f i 1,•e parameters, 

CIII.2.1)

In the actual systematic fitting (see chapter IV) the tri
vial term J 1is also left out in order to cut down the number 
of fitting parameters and to investigate the ability of the 
other anharmonic terms to reproduce rotor spectra. Fol lowing 
the notation used in the computer code one can express the 
final form of the effective Hamiltonian used in systematic 
fitting as 

<III.2,2) 
" /\ 

H = CON + C 1 8 1.0 + C :i. 8 ;_ '\ + 8(2),C ':, ?.-'.l. 

The total Hamiltonian that 1s allowed 1n the fits by the 
computer code ,however, reads 

/\ 

CIII.2,3) H 

and includes seven parameters. This makes altogether eight 
parameters with the deformation/softness parameter d which 
describes the deformation of the projected basis states and 
thus may be thought to have a connection with the intrinsic 
shape of the nucleus. 
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III.2.B. The Effect of the Different Parameters

on the Enerqy Spectrum 

The effects of the parameters d,C
0 

,C
1 

and C� on the ener
gy spectrum produced by the Hamiltonian (III,2.2) was inve
stigated in /Ve83/, Here I give a short description of the 
main effects on the band heads and on the internal structure 
of the bands, By the internal structure of a band I mean 
here the spectroscopic moment of inertia 11,r,,y-- which may
be determined from the energy differences within the bands. 
The initial spectrum is chosen to have realistic parameter 
values (from the Gd region) and the evolution of the spec
trum was observed as a function of the deviation of the 
parameters from these initial values. 

The increase 1n d causes the moment of inertia of the 
band to increase which means pictorially that the band 
shrinks or contracts and all energy levels become closer to 
each other. This is easy to understand the basis of the ri
gid-rotor relation 

CIII.2,4)

This shrinking of the spectrum may be counter-acted by 
increasing the other parameters linearly, i.e. increasing 
the overall scale of the Hamiltonian, This increase in the 
moment of inertia with increasing d is quite natural if one 
imagines a relation of d with the intrinsic shape of the ro
tating nucleus (originally d described the shape of the 
oriented system). Then the increase in 1 means that the 
nucleus is becoming more prolate which in turn means increa
sing d. So the variation of d causes the spectrum to evolve 
from a spherical (anharmonic) vibrator to an almost rigid 
rotor, For small d one may also obtain ground-state band 
spectra which resemble shell model two-valence-particle spe
ctra (with pairing included), other bands may look 1 ike vi
brational or rotational at the same time, Also vibrator- ro
tator co-existence may occur� The r-band head is practical
ly independent of the magnitude of d and only a very small 
effect on the relative �-r-band position is observed, 

The parameter C 1 does not affect the �- and r-band 
moments of inertia, but affects quite strongly their rela
tive positions, 1.e. the difference between the locations of 

1 ) see fig . 31 
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their band heads. Also the parameter C� has the above 
effects on the spectrum but to a somewhat lesser extent. The 
look of the spectrum seems to depend only on the absolute 
value of the parameter C� • It affects the relative � 
and r positions in the same way as C�but the increase in 
its magnitude a 1 so makes 1 'a' increase and � 0 decrease ,

Figures 2-7 show the eigenspectrum of each term in the 
Hamiltonian (III,2.3), exept the spectrum of J1 which is 
trivial. From the pictures it is easy to see that the only 
terms that bring J dependence to odd-J r-band energies are 
N and B�{', Also one can see that the ground state band is 
not affected by the fourth-order terms B��, and B��, ,which 
has already been discussed in the case of the earlier PM in 
ref. /Ha?O/ • The

A
most interesting behaviour is carried by 

the harmonic term N, whose eigenspectrum is shown in fig,2. 
This should be compared with the results of the earlier PM 
represented in ref. /Li76/, figures 5 and 8. As already dis
cussed in section II.S, the diagonal ization has a drastic 
effect on the � and r bands while the ground state band 
remains almost unchanged. The picture clearly tells that in 
the small-d 1 imit the Sakai scheme is recovered, whereas 
asymptotically the rigid rotor spectrum will follow. As 
already mentioned in section II,S. comparison of figs, 1 and 
4 of /Li76/ reveals a mistake in ref./Li76/, which, however, 
is only due to some error in drawing and does not affect the 
code used in the earlier PM, /Li83/. The fact that asympto
tically 

<g I�> r-..11/d 
0 0 

1.e. this overlap diminishes very slowly, causes some spe
cial effects on asymptotic transition probabilities and qua
drupole moments (see section III,3).
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III.3 E2 Transitions and Quadrupole Moments 1n the EPM

The general features of transition probabilities in the 
EPM can very well be studied by using only the harmonic Ha
miltonian, This facilitates comparison with the earlier PM 
and the classical collective model of Bohr and Mottelson, So 
in this chapter the number operator N is used as the labora
tory Hamiltonian, The diagonalization introduces quite sur
prising results for some measurable quantities, and this is 
where the EPM differs from the other classical collective 
theories. On the other hand, most of the results agree with 
the earlier models and the usual vibrator and Alaga limits 
are recovered (this was discussed already earlier in section 
II.6. ).

Figs, 8-10 show some intraband transitions for each of
the ground, � and r bands (the normalization 
B(E2;2g-->Og)=1, V d, was used). The usual U(S) phonon and 
Alaga limits are recovered and the continuous increase in 
transition probability with increasing angular momentum is a 
direct consequence of boson-number non- conservation in the 
theory. This is in contrast to the algebraic.approach of the 
IBA, where boson-number conservation and the use of only lo
west-order bosons yield low-energy spectra where the bands 
terminate and produce diminishing transition probabilities 
at the upper end of the band. The only non-trivial thing in 
figs. 8-10 are the ;bumps; in the curves around the deforma
tions d=l-2. Fig,8 should be compared with figure 12 of 
ref,/Li76/ (almost the same) 

The interband transition probabilities in figs, 11-13 are 
much more interesting (the normalization is 
B(E2;2g-->Og)=1). In the asymptotic limit al 1 the interband 
transitions go to zero which indicates the adiabatic separa
tion of intrinsic and rotational motion and the evolution of 
the projected states towards orthogonality (diminishing 
overlaps), In the small-d limit the B(E2) values go to the 
U(S) values of fig, 26 which indicates that the transition 
probabilities B(E2;J�-->J�) should go to zero in this limit
(phonon number selection rule). There are also non-trivial 
bumps in these curves, especially in the curves B(E2;J0 -->J) 
, each of which has a pronounced maximum between deforma� 
tion 2 and 3. The curve for J=2 has also a local minimum 
around d=1.5 (introducing thereby a local maximum near d=l), 
This complex behaviour of some B(E2);s introduces also quite 
complex branching ratios discussed somewhat later below. 

Very interesting curves are depicted in fig, 14, namely 
the interband B(E2);s from J=2 to J=O (the same normaliza
tion as above). The curves all go to zero in the small-d li
mit because of the phonon number selection rules, and asymp
totically they approach zero. In the middle region the 
curves al 1 have a�ea�one maximum and two of them also have 
quite an unpredictible minimum of magnitude zero. The most 
interesting thing about these transition probabilities is 
that they provide the best way of making comparison (in the 
region of rotor nuclei) between experimental B(E2);s, clas
sical collective model predictions and the algebraic IBA 
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predictions, because these B(E2)'s are experimentally always 
the best known. The comparison is most conveniently done in 
the figure below, 1n which the spectrum of a prolate (or

oblate , d(O ) symmetric rotor is drawn with the above 
8(E2)'s included as given in the framework of the EPM, IBA 
and BMM (the earlier PM gives the classical BMM results 
/Li83a/), The experimental values seem to be mostly in 
accordance with the EPM and IBA results, as one can see in 
chapter IV. 

+ 
2 

0,04) 

ground band � band r band 

Fig. III.1. 
Spectrum of a symmetric rotor /Gn71/ with typical 
8(E2)'s from J=2 to J=O indicated. The figures 
in parentheses are the yield of the BMM,IBA /Li83b/ 
and EPM (with H=N). The normalization is chosen 
to be 8(E2;2g--)Og)=1. It should be kept in mind 
that in the pure SU(3) limit of the IBA the � and 
r bands belong to an SU(3) representation different 
from the ground band representation, and so the 
t�ansitions from � and r bands to the ground state 
band are strictly zero. 
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In fig,III.1 one can see that both the IBA and the EPM have 
a much weaker 2�--)0g transition than the 2r--)0g transi
tion, the value for the 2r-->0� transition being inbet
ween. This is quite the opposite to the description of the 
Bohr-Mottelson type models where the � and r excitations 
are equally strong and the transitions from the r to the � 
band are weak. Because the experimental results are in fa
vour of the IBA description a great deal of argumentation is 
pursued about the validity of the geometrical quasi-band 
concept especially in the case of the � band /Li83b; Wa81a; 
Wa82a,b; 8082; Ca80a,b; Ca83b/, The above behaviour is nice
ly shown by the asymptotic B(E2) expressions at the end of 
section II.6. 

In figs 15-17 are shown some branching ratios which are 
the best known experimentally, The same branching ratios are 
also calculated for the earlier PM as a function of d in 
figs, 14 and 15 of ref. /Li76/, As is easy to see from fig, 
17, the branching ratios behave quite violently as a func
tion of d which , of cource, is a consequence of the comp
lex behaviour of the B(E2)'s discussed above. When these EPM 
results are compared with those of /Li76/ one notices that 
the overall bahaviour of the branching ratios is more or 
less the the same in both models, but in the EPM most of the 
branchings have huge peaks (note the logarithmic scale) in 
the middle.region d=l,0-3,5, This is due to the fact that 
the 8(E2)'s go to zero at some specific values of the defor
mation parameter, These peaks indicate that in certain re
gions of the fitting parameters (even when the anharmonic 
terms are taken into account) the branching ratios range on 
a short parameter interval from ~10 5 to ~10 1 or from �1 to 
10- 4 thus serving as a very sensitive indicator of the qua
lity of the energy fit (much more sensitive than in the ear
l i er PM) • " 

AThe behaviour of the quadrupole moments in the EPM (for H
= N) is more or less the same as in the earlier PM and in 
the BMM. The behaviour of the quadrupole moment of the J=2 
triplet is shown in fig, 18, There one can see that the be
haviour of the quadrupole moments is quite smooth (the same 
is true also for the other states of the bands). As pointed 
out in section II.6, the BM relation (B,17) holds true for 
asymptotic deformation parameters. By assuming the BM rela
tion to hold exactly for large d, it is easy to get values 
for the intrinsic quadrupole moment of the BMM, eQ

0
, by de

manding the formula to agree with the EPM results for the 
J=2 states. After that one can check the deviation of the 
rest of the EPM values, as a function of d, from the values 
given by formula (8.17). The resulting intrinsic quadrupole 
moments are different for each band and thus one obtains a 
measure of the quadrupole shape of the nucleus in a consi
stent manner (it turned out that the intrinsic quadrupole 
moment of the � band is only a little greater than that of 
ground band, but for the r band the difference is about 
30%, This is in agreement with the intuitive pictorial re
presentation of these vibration modes /Co71b,p,151/). The 
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study of the asymptotic 1 imit of the EPM indicates that the 
r band quadrupole moments behave exactly according to the 
BM formula, but the ground and � quadrupole moments seem to 
converge very slowly to the BM values, This is evidently due 
to the slow lid-convergence of the oo_,1erlap (g 0 l �o > which 
causes here the adiabaticity to set in very slowly, One 
thing to be noticed is that for ail these geometry-based mo
dels the quadrupole moment of the 3r state is always zero 
and that QC2r)�-Q(2�) In BMM this follows from the 
fact that 

Q oe. 3K 
2 

- JC J+ 1 )

It is to be noted that the Q(3r)=O property is not due to 
the vanishing of a 3j symbol, but is a more general feature 
of collective models, because it is true also for the IBA 
model (at least in the SU(3) 1 imit). 

III.4.Collective Potential Energy Surfaces 1n the EPM

Collective potential energy surfaces (=CPES) have been 
used by many authors (for example /Gn69,70a,71; Ku74/) to 
visualize the nuclear intrinsic shape and to get hold of the 
systematics of different nuclear spectra, 1.e. the harmonic 
and anharmonic vibrators, symmetric and triaxial rotors 
/Oa58,60 ; Ei?S/ , r-soft (or r-unstable) nuclei /Gn?Ob, 
He??/ and nuclei with shape coexitence, It is remarkable 
that these special limits can also be realized as analyti
cally solvable dynamical symmetries in the IBA model. In the 
CPES approach the potential energy of the nucleus (in 
intrinsic coordinates) is expressed as a function of the 
collective coordinates, which are here chosen to be the 
amp] itudes of small vibrations, a� ,defined in eqs.(B,1) and
(A2.12) (these were also chosen by the above authors). Mo
ving over to first-quantized coordinates &

m 
and performing 

second quantization (8.4) one has an effective means of 
classifying the states and calculating the matrix elements 
/Gn71/. 
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In the EPM one must transform from the oriented system to 
the intrinsic system, The oriented system was used to 
generate basis states for the diagonal ization of the labora
tory Hamiltonian, This diagonalization in the deformed 
3-state basis yielded, after fitting to experimental data, a
number of parameters that defined the form of the effective
boson expansion (III.2.3) (in the work of Gneuss et al. har
monic-oscillator basis states corresponding up to 33 phonons
were used). Now, one can use the inverse transformation of
eq. (B. 4) , 1 • e.

<III.4.1) 

where w = ✓ C
0 

/B
0

1 

, and then transform the potent i a 1 part to 
the intrinsic coordinates by (A2.12). A usual way of expres
sing to potential is the form 

where the Hill-Wheeler coordinates � and r are defined by 
(B.5). Transforming, for example, the number operator N by 
the formulas (III.4.1) one obtains 

<III.4.2) 

which corresponds to the harmonic Hamiltonian (B.2) when ta-� 
king into account the relation (8.3) and remembering that TT' 
and � are Hermitian tensor operators, eq. (Al.25), and that 
in first quantization o< Jt.- ➔�t . Also the classical relation 

is used (L is the Lagrangian of the harmonic system). 
same way one obtains for the term 8�0 the expression 

( III .4.3) 
The third-order terms are a bit more involved, and for 
one obtains 

CIII.4.4)

In the 

them 

Performing this transformation on all the terms of the effe-
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ctive Hamiltonian (III.2.3) 
which include the canonical 
obtains 

where 

<III .4.5) 

and then droppingAthe terms 
momentum operator n one 

After performing the transformation on the intrinsic (prin
cipal axis) system and utilizing the relation (8,5) one 
obtains 

and 

1..Jhere 

2 2 
0: = � 

[0:o:J2•cx = -�2/7$
3

cos3t

[cxcx\ Lxc{l
0 

-= � 0 L\ 

[cxo: 12'[0:o:] 2 = 213 /7

[cxcx J4•[o:cx]4 = 1813
4

/35 

-44-



A1 = CO 
+ 2c 1

- c
l. 

- 2c
:, 

+ 2c 4 + C 5 
+ 6c6

CIII.4.7) Al = -Y2c 1.. 
- C) + 2c 4 + C 5 

A--. = 2c lj, + c5.:, 

A4 = CO 
- C

J.. 
+ C5 + 6c ('

0 

and 

CIII.4.8)
"'

J3 '= J3/J3 
0 

1.e. i indicates the deformation J3 1n units of the orien
ted deformation (which was defined in eq, CII.1.1) ) 130 of 
eq. ( I I • 1, 1) . ( Note that the potent i a 1 of eq. ( I I I . 4. 6) 1 s 
the same as in /Gn71/, p. 455 , but there is a difference of 
1/{5' stemming from different scalar coupling conventions. 
Also now 1n (III.4.6) there is a constant term and all the 
parameters Ai have a definite value coming from the energy 
fits) . 

It is not surprising that one ends up with such a simple 
expression (III.4.6) for the potential. This is due to the 
fact that the most general rotationally invariant potential 
V(��r) can always be written as a function of two 
invariants 

'}1 ':: Co:&J o = r�
:i..

,v=O,L=OJ = J.)2/{s

11..== LL&;J 'l.�J
o 

=:: [ex'> ,v= 3,L=Oj = -,_)2/35 13, 3cos3t

where v denotes the seniority quantum number. So 

In the general case of any tensor the seniority quantum num
ber is also active /No68/. 

In the work of Gneuss and Greiner only the harmonic kine
tic energy was extensively used (higher-order kinetic terms 
proved to be unimportant), and the ansatz for the potential 
V(J3,t) reached up to sixth order in &. Consequently a 
considerable asymmetry between the kinetic terms and the po
tential terms existed. In the EPM the effective Hamiltonian 
CIII.2.3) 1s built up of bt's and b 's and therefore it
i nc 1 udes many kinetic terms ( pure 17' 's and mi. xed terms)
which may considerably affect the nuclear spectrum without
it showing up in the expression (III.4.6), This makes com
parison between the energy spectrum and the nuclear intrin
sic potential landscape more difficult and thus excludes the
possibility of a Gneuss- Greiner type of interpretation of
the spectra.

In order to reproduce all physically relevant potential 
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energy surfaces one needs enough terms 1n the potential 
expansion (at least the sixth order must be included, /Gn71, 
He77/), In the case of the EPM, potential terms only up to 
fourth order are included, which makes the potential sur
faces very unstable against negative divergences at infini
ty. These divergences cause the local minimum solutions to 

be quasi stationary, i.e. non-stationary continuum solutions 
with a long tunneling time. In this sense the potential 
energy expansion in the EPM may only be viewed as perturba
tive because one uses a vastly truncated effective boson Ha
miltonian and because of the fact that in choosing only a 
three-state model space the diagonalization in this space 
corresponds to a perturbation calculation in that matrix 
elements connecting this three-state basis to the rest of 
the collective space are neglected (the same aspect is seen 
also in the work of G&G, but there the model space is larger 
and the convergence is tested /Gn71/). 

Together the 1 imited (although deformed and thus somehow 
optimized) basis and the truncated Hamiltonian yield poten
tial surfaces (of fitted nuclei) that have a very rich 5tru
cture, but mostly bending down to negative infinity in some 
part(s) of �he �-r plane unless there is an absolute m1n1-
mum at zero deformation. So, one cannot make definite conc
lusions about the shape of the nucleus, nor can one estab
lish a one-to-one correspondence with energy spectrum. The 
inclusion of higher-order terms in the boson expansion 
and/or the extension of the model space could make Gneuss & 

Greiner type investigations possible also in the EPM. 
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CH AI NS OF ISOTO P E S 

IV.1. General

The earlier isotropic PM was tested extensively 1n /Sa77/ 
and had a surprisingly good success in describing nuclear 
low-spin spectra from vibrators to almost rigid rotors. The 
main reason for this was the chosen model space which had 
properties that were tailor made for describing nuclear de
formations, The fitting to experimental data was easy be
cause the model contained only two free parameters, the 
deformation/softness parameter d and the energy scale para
meter c

1
(the anisotropic version of the model contained four 

parameters /Ho72/), The fitting procedure was easy because 
one usually fixed the levels 2g and 4g and thus obtained a 
very good de�cription of the ground-state band (also the 
proje�tion procedure is the most accurate for the ground 
band). A drawback of the model was the incapability to 
affect the � and r band heads, which often were totally 
wrong, and the spectroscopic moment of inertia of a band, 

The EPM has a cure for the above-mentioned shortcomings 
at the cost, of course, of introducing more fitting parame
ters, thus making the fitting process more complicated and 
reducing the transparency of the interpretation of the para
meters involved in the fit. The process of searching for the 
absolute minimum of a many-parameter surface is always a 
complicated task, and the inaccuracy in the calculation of 
the functional to be minimized (i.e. numerical noise) causes 
additional difficulties in the areas of small directional 
derivatives. In the work /Sa??/ no systematic study was made 
of the behaviour of d and c 1 as functions of mass number in 
any isotopic chains. Such a systematic study, however, was 
performed in the case of the EPM by the author /Sw84/ for 
the Sm, GO, Er and Yb chains. These results have been plot
ted and are discussed separately in the context of the dis
cussion of each isotopic chain. Because the only free para
meter of the transition probabilities and the static quadru
pole moments is fixed by the 2g--)Og transition, The above 
energy-based systematics will also give as a byproduct the 
systematics for various quadrupole moments and transition 
probabilities, The parameter systematics Ca byproduct of the 
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energy fits) 1s represented in figs. 19 and 23 and the (most 
interesting) E2 systematics in figs, 24 and 25, 

Because the relative transition probabilities contain no 
further parameters and because their behaviour is very sen
sitive to the fitted parameters (see section III.3), they 
serve as an indicator of the goodness of the energy fit and 
often help to decide which one of the nearly equally deep 
minima is the more correct one. Sometimes the decision is 
still very hard to make and a subjective op1n1on is needed 

to decide which one of the bands is to be fitted well or 
which of them need not be so accurate, 

In this work a comparison of three models is performed 
for many nuclei. These models are the EPM, the isotropic PM 
and IBA-1 model. The older IBA fits are done using the nor
mal boson numbers, but some recent fits use the effective 
boson number discussed in /Sc83/, The IBA fits are done ei
ther with four parameters /Li82,Li83c/ or with six parame

ters /Kr84a, Kr84b, Li84a, Li84b,Kr84c/, As an indicator of 
the goodness of the energy fit the so-called RMS value 

5 ���! 
1:-= 1

(N is the number of the energy levels included) is used. In 
many other works, however, a dimensionless quantity 

<IV.1.2) 

1s used /Ha70, Ho72, Ha73/, 
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IV.2. Parameter Systematics and the Convergence

of the Boson Expansion 

One can make systematic fits to real nuclei using second
' third- and fourth-order effective Hamiltonians of eq. 
(III.2.2). When the deformation parameter d is taken into 
account, this means a three-, four- and five-parameter fit, 
and a test of the convergence of the phenomenological boson 
expansion is attained. In figs. 19 to 23 these three dif
ferent types of fit are represented by displaying the values 
of the parameters d,C0 ,C

1 
,C1 and C5 as a function of isotopic

mass number. The fitting is performed in four isotopic 
chains, namely for the· even-even Gd, Sm, Er and Yb isotopes 
of which only those are selected about which there are 
enough low-energy data (mostly obtained by Coulomb excita
tion) available. The fit was made to more than one or two 
levels of each band (if possible) as a least-squares fit 
using weighted terms in the summation. (see eq. (III.1.4)) 
In this way, in addition to a proper description of the band 
heads, a proper description of the spectroscopic moments of 
inertia could be achieved. 

The parameter systematics of the above-mentioned figures 
show a very consistent overall scheme, and clear trends may 
be observed in the behaviour of the fitting parameters. The 
deformation parameter grows all the way from mass number 146 
to mass number 174 (with few exceptions). This is consistent 
with the shell model picture that going farther from the 
closed shells towards the middle of the shell the nuclei de
velop from vibrators towards rigid rotors. The compressive 
effect on the energy spectrum of increasing d is counterba
lanced by an increasing scale factor of the effective Hamil
tonian, which means an increase in the absolute values of 
the rest of the Hamiltonian parameters. The spacial beha
viour of the parameters in the beginning of the Sm chain is 
to be attributed to the lack of experimental data (causing 
the fit to be unreliable to a cert�in extent) and/or to real 
shell effects (shell closure at N=82) 

The convergence of the boson expansion may be seen from 
two features of the systematics. One is the diminishing of 
the absolute values of the parameters when going from C 0 to 
C 5 ,which is clearly seen in the figures. The other feature 
is that the parameters do not change much in absolute value 
when going from a three-parameter to a five-parameter fit. 
It is seen, however, that there is a greater change in the 
parameter values when going from the third-order Hamiltonian 
to the fourth-order one than when going from second order to 
third order (in the case of convergence one would expect the 
behaviour to be the other way round). This can be explained 
by the absence of many terms from the fourth-order Hamil
tonian, and so when comparing the complete 2�d ,3 rd and 4t� 
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ordes, the situation would evidently be the other way 
around. 

The most consistent fits seem to occur in the case of Sm 
and Gd isotopes, for which the convergence seems to be quite 
rapid. On the other hand, the convergence seems to be slower 
for the Yb isotopes, where the incompleteness of the fourth
order of the Hamiltonian seems to play a more important ro
le. The most striking is the behaviour of the parameters in 
the Er chain, where the convergence seems to be the slowest 
but the relative importance of the incomplete fourth-order 
does not seem to be as great as in the Yb chain. 

It may be noted that the parameters behave quite smoothly 
all the way and their values seem to be reasonable (i.e. the 
absolute minimum of the many-parameter surface is evidently 
found), In the case of the old PM the there was no real need 
for doing this kind of parameter systematics because there 
were only two parameters involved /Sa77/, However successful 
attempts have been made at establishing such systematics in 
the case of the IBA model /Ca82b/. On the other hand, Kraci
kov� et al. /Kr84a,b/ discovered some surprising discon
tinuities in the IBA-1 parameter behaviour in the parts of 
the Sm chain where the EPM gives this smooth behaviour of 
parameters, This is a good example of the difficulties 
involved in fitting to experimental data. A possible cure 
for this lack of uniqueness in the IBA is the so-called con
sistent-Q framework discussed in /Wa82b,Wa83/, 
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IV.3. Apolication of the EPM to Different Isotopic Chains

Comparison with Experiment and Other Models 

Comparison between the EPM and the earlier PM and IBA-1 
models is given mainly in the tables of the following chap
ters. The main emphasis is put on comparison with the latest 
6-parameter IBA-1 fits of Lipas et al .. For the EPM all the
calculated energy level data are gathered into tables H.1 to
H.4 of appendix H, where the 4- and 5-parameter results are
shown. As a measure of the goodness of fit the RMS value of
eq,(IV.1.1) is shown.

For the IBA model there are some difficulties in choosing 
the right number of valence bosons in the proton shell 
50-82, This is because there have been ambiguities is choo
sing the correct proton number for the inert core stemming
from the closed-shell features of proton number 64
/Ca81,0g78/, To solve this ambiguity, �he so-called effec
tive proton-boson number, Zeff , is introduced and it is
obtained from figure 1 of ref, /Sc83/, In recent work by Li
pas et al. this Zeff is used and it gives in many cases
better results than the boson number based on the Z=SO core,

IV.3.A. The Samarium Isotopes

The Sm isotope 
neutron hole isotope 
wel 1-deformed nucleus 

chain in this work begins with the two-
1��Sm�0, The chain extends to the 

1 �fm� 4
• As pointed out in /St81/, an
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! 
I 

i 
' 

146Sm 148Sm 
BAND! J EXP. IBA \ EPM EXP. I IBA \ EPM 

·· 733�- �ooJ �94' 
; i 4 I 5 I !------

74i-
•-w---•-•--• 

559� 557� 54 7 '� ! 2 550 
4 1381 1353''( 1383" 1360* 1180 1188;\ 1161'\:

1 1197)¥. i 

6 
i 6 1812 1869� 2034·'* 2011 '\(c 1906 1823 )1 1773'1/11884 � 
! 8 2738 2287 2656.x 2661 )( 2545 2453'il< 2384 !2488 
I 10 (3723) 2615 3258 3316 (3235) 3343*2995 2904 

0 1452 1459� 1421>1: 1416""' 1426 1428"' 1372'' 1432 ¥ 
2 (2156) 2173� 2030* 2162'f 1664 175i! 1804� 1658 :',;. 
4 -- 2790 2805 3039 (1895) 2123 2423 1869 

0 6 -- -- 3553 3920 -- 3086 3132 2236 
8 -- -- 4301 4813 -- -- 3878 2723 

10 -- -- 5053 5725 -- -- 4642 3420 
2 1648 1610-, 1708,1 1659'-4 1454 1430

�
1472;)1 1454 1,C 

3 (2269) 2457� 2389 2438 I< 1904) 1861 1923 1755 
4 (2439) 2256� 2297 2448 (1733) 1828,.2076 2042 

f
I 5 2800 3104 3254 i<2147) 1986;42582 2250 I --
I 

3183 I 
! 6 -- -- 2930 -- 2276 \2667 2541 
: 7 -- -- 381.6 4052 -- 2476 3260 2770

RMS -- 187 102 91 -- 58 
1

98 24 
-- (388) (182) (156) -- (106)(243) (142) 

I 

150Sm 152Sm 
BAND J EXP. IBA I 

4 
EPM EXP. IBA EPM

5 4 5 
2 334 3401 3421 326'-E 122 110" 12711 120'�
4 773 771 � 749� 798* 366 344�. 377'(. 377'¾

c6 
i 6 1279 1279i1188;i, 1294 :\ 707 679xj 693"' 725 1s,

8 1837 1S21 �1657� 1814 1( 1125 1099x.J103s'.¥ 1115 '-f 

10 2432 2432;\:/2152' 2367')(, 1609 1579*:13991 1s22'¾-
0 740 724;\' 773;,; 757* 685 665>\i 717'';, 720 � 
2 

i 
1046 993l¥ 1067; 999* 810 776). i 812* 799 '.*.

4 1449 1491�-1933" 1462* 1023 1030i;-J101 7\ 982 '(-
6 -- -- 2131 2085 1310 1329¥ i132fr 1275 � 
8 -- -- 2745 2795 1666 1762-,h 709� 1682 t 

10 -- -- 3388 3558 2080 20921'l2159'i 2188 '1: 

2 1194 1214 �1127 4 � 1203* 1052 J1131"' 1134 * 1086 
3 1504 1504 �1486'.i 1430� 1234 1239'�?233 '.I 1226 ¥

4 1643 11635>Y1564l 1764� 1372 1365x1365� 1348'.¼c 

( 5 2020 l2028'/(�2066)i 1994¥ 1559 1621t1s10'1. 14911'-

6 2660 2514 (1728) 1696 1670 
I -- -- --
I 

7 2687 2657 (1946) 1865 1850 
I 

I 
-- -- -- i 

RMS -- 24 176 49 -- 36 66 I -46 
-- -- -- -- -- -- (66) (51)i

Table_IV.3,1.
1
�g����ison of the EPM and the 6 parameter

IBA fits for Sm . For the EPM four and five 
parameter fits are indicated. The RMS's in parentheses 
correspond to the energy data in parenthesis (the asign
ment of the Sakai quasi-band label to these levels is 
not unambiquous). The experimental and IBA data are taken
from /Kr84a/ and /Li84c/ . The asterisk indicates a 
fitted level. All the data are in keV. 
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I 

I 
I 

I
I

I 

i
I 

I
I 

! 

I 
I
! 

B<E2 :J-->J'l 

J' 
I I 

2g 
t 

Og
<lg 2g 
6g 4g 
8g 6g 
08 2g
28 Og 
28 2g 
28 4g 
2r Og 
2r I 2g 
2r I 4g 

2r I 08

B<E2 :J-->J' l 
J J' I 

2g i Og 
4g 2g 
6g 4g 
8g 6g 
10g 8g 
4)' 2)" 
08 2g 
28 0g 
28 2g 
28 4g 

'18 2g 
48 4g 
2r Og 
2r 2g 
2r 4g 
4)' 2g 
4)' 4g 
2r 08 
4)' !

28 
28 Oe 

146 
Sm 

148 
Sm

EXP. i I BA i _ _  �E=P�M�--· EXP. IBA EPM 
4 5 

0,048 0.016 0,028 0,048
10,061 0.029 0.094 0.098
0,04 0.011 0. 14 0. 15 
-- -- 0.20 0 .19 -- -- 0.083 0.10 
-- -- 9 • 10 - 5 7 • 10 - 6
-- -- 0,013 0.0011 
-- -- 0.033 0.0'13 
-- -- 0,004 0.002 -- -- 0.039 0.065 
-- -- 0.026 0.012 
--

I 
-- 0.01111 0.019 

150sm ! 
EXP. IBA EPM I 

4 c; I 
0,269 0.269 0.269 0.269
0.515 0.470 0.51 0.454
-- -- 0.73 0.68 -- -- 0.90 0.87 -- -- 1.0 1.0 
-- -- 0.35 0.23 

0.25 0.43 0.116 0,27 
0.0043 0.036 0.0015 0.0053 

0,362 0.020 0.026 0.036 
0.639 0.161 0,140 0.240 
-- -- 1 • 10 -s 0.017 -- 0.014 0.065 

0.0102 0.0102 0,015 0.0095
0.0335 0.0171 0.140 0. 06113

0.0'13 0.038 0.090 0.038 -- -- 0.006 1• 10-4 -- -- 0.11 0.032 

0.036 0.061 0 .17 0.046 -- -- 0,017 0.052 

o. 723 0.255 0.212 0.395 

I 

I o .·146 ! 0 .146
0 ,25 0 .21 
-- 0.23 -- 0.21 -- 0.050-- 0.0016
-- 0.002 -- 0.012

Q.008 0.008
0.089 0 ,209-- 0.01011 

4 5 
0,146 i 0,146 
o. 26 

I 
o. 24 

0.38 0.31 
o. 50 I o. 27 
0.17 0.058

0.0002 16°10-'l
0.002 0,003 
0.11 0.05'1
0.007 0.007
0 .13 0,076

0.0066 2 ,10-'l -- 0.010 I 0.023. 0.009 
152sm 

EXP. IBA i EPM 
i I 4 c; 

0.680 0.680 0.680 0.680
1.02 0.93 1.011 1.01 
1.18 0.96 1.29 1.20 
1.38 0.88 1.57 1.43 
1.54 0.75 1.86 1.71 
0.343 0.333 0.53 0.52 
0 .161 0,026 0 .169 0.091

0.0046 0.0067 0.0012 0.00111
0.029 0.006 0,023 0,013
0.095 0.021 0.19 0.12 

o. 0053 
1
a. 0071 0.0009 0.0005

0.011 0.02 0.034 .0.0025 
0.0181 0.018 0.035 0.027
0.046 0.075 0,Q9Q I 0,061

0.0037 0.0047 0.013 :o.oon
0.0036 0.0009 0.0095 ,0.0083

0,034 0.071 0.10 I o.074-- -- 0.016. 0.010 
0.0011 0.0050 10,0219 0.0112 

1.85 0.40 I 1.09 I 1.08 

TABLE !V.3.2. The same as table !V.3.1, no� for transition 

probabilities. The ascerisk indicates a fitted transition. 

Al 1 the figures are given in units of e2b2 . 
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abrupt shape change may be noticed between neutron numbers 
88 and 90, 1 .  e. 1 50 Sm may be considered spher i ea l and 15 '.l.. Sm 
deformed (this is seen in the EPM from the discontinuous be
haviour of the fitting parameters in A=lS0,152 region). It 
may be noted that the use of the shell model is simple only 
up to 150 Sm because of the onset of deformation at 151Sm 
/St81, Zo80/. 

The EPM results can be compared with the results given by 
the IBA model. There have been numerous IBA calculations 
(fits to individual nuclei, to a whole chain and fits by the 
schematic monopole and quadrupole pairing model) in Sm re-
gion /Ca80a,Ca80b,Sc78,Sc79a,Sa79,Su77,Su79,Ca79,Ca82b, 
Ar82/. The purpose now is to compare the EPM results with 
6-parameter IBA-1 results of Lipas et al. for 14611'H1 150115 1. Sm 
(I have performed the fit 1,Jith the EPM also to ,4

1.,
144 1 15 '11 15bSm,

and the results are tabulated in appendix H ). In the 
IBA calculations the effective proton number Zeit is used for 
14 ii- 15 1.Sm, but the usua 1 Z is used for 146 Sm because the use 

of Z e H gives bad resu 1 ts. Z e ff and the other I BA-1 parame
ters are tabulated in appendix G. 

The comparison for the isotopes is presented in table 
IV.3.1, where the 14 �Sm IBA data are taken from /Kr84a/ and 
the IBA data.of l'H,JSo,,s'.l..Sm from /Li84c/ (the corresponding 
normal boson-number IBA data can be found in refs. /Li84a,b; 
Kr84a,b,c/), The IBA and EPM fits are strikingly good, The 
EPM fits being a bit better in the case of 1 '-t6, 14 71 Sm and the 
IBA fits being a little better for 1501 15 :1.Sm. As one can see 
from the tables of appendix H, also the EPM fits for 154 Sm
and 156 Sm are excellent (especially for 154 Sm for which 4-
and 5-parameter fits give RMS=12keV including al 1 the 11
known states). Appendix G tells that the IBA parameters be
have very strangely for 1 4 '6 Sm and 15 °Sm. The fits are 
excellent, but the initial parameter values obtained from 
perturbation theory /To83,Li84d/ lead to strange values for 
the final parameters (this is especial ]y noticeable in the 
case of the single-boson energy parameter EPS, see also 
/Kr84b/). Such strange behaviour is attributed to the effec
tive nature of the parameters by Van Isacker et al. /Is82/. 
Instead of using this effective boson number, one could use 
the normal boson number /Kr84b/, or one can count proton bo
sons from 2=64 /Gi82,Wo83/; yet another chaise is to use 
only four bosons /Ha78, Ha79/. (in the above refs. this was 
done for 14BSm), However, it seems that the results are more
or less of the same caliber, independently of the boson num
ber used in the calculations. 

The transition probabilities for the four isotopes are 
indicated in table IV.3,2 including experimental, IBA and 
EPM values in units of e'.l.. b'l. , In the case of '1H,, ni sm, the 
EPM gives the fol lowing results for the branching ratios 
whose experimental and IBA values are tabulated in table 7 
of ref. /Kr84a/ and in the footnote of table 6 of ref. 
/Kr8i'.Lb/. 
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8(E2;J-->J') 146Sm 148Sm
8(E2;J-->J") 

j J' j" EXP. IBA EPM "-b EXP. EPM\b 

2r 

3r 

3r 

Sr 

2)3 

4 5 4 5 

2g Og 50 so� 11 27 -- 19 11 

4g 2g 4.8 9.7 2.6 3.1 -- 9.5 6.5 

2r 4g 1.2 3.0 1.2 1 .1 -- 4.8 7.5 

6g 4g 6.3 8.3 3.0 3.8 -- 15.6 12.6 

2g Og 11 65 146 634 111.._a 10 
i l 

TABLE IV.3.3. 
Experimentally known branching ratios 
for 1 46Sm and 14 8Sm. The experimental 
and IBA figures are from /Kr84a,b/. 
a) 1,25 in /Kr84b/ for the IBA
b) four and five parameter fits
* means a fitted branching,

5 I 

The EPM results are very good compared with the IBA results 
especially when taking into account that the transition 
operator in EPM has only one free parameter which is always 
fixed by the 2g--)Og transition. In the IBA one has two 
phenomenological parameters in the transition operator and 
one can fit either two transition probabilities or branching 
ratios or their combinations. For the isotopes '1SO Sm and ,s-ism 
quite an extensive comparison between the IBA and the EPM 
can be made because there are extensive experimental data 
available (as can be seen in table IV.3.2). Comparing the 
corresponding figures, one easily sees that for 1 s 0 sm the
EPM does better than the IBA but for 151Sm the models apply
roughly equally well. Again the EPM has the advantage of 

" 
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using fewer parameters both in the energy fit and in the 
transition probability fit. As can be seen in table 1 of 
ref, /Li76/, already the old PM does very well with the 
branching ratios in the case of 151 Sm using only two ener
gy-fit parameters; in this case the EPM gives no significant 
i mpro\.1emen t. 

The parameter systematics of figs. 19 to 23 give an indi
cation of disco�tinuities in parameter behaviour at 1 :tsm 
and at � 5ii:Sm. The first cusp at 144 Sm can be explained by 
the closure of the 50-82 neutron shell. The second one is of 
the same kind as the discontinuity in the Gd chain at 15 �Gd 
(though not so distinctive. see section IV.3.8). The fits 
for 14)., 1

44 Sm are uncertain because of the 1 ack of exp er i men ta 1 
data. The same features are also clearly seen in the quadru
pole moment and transition probability systematics of figs. 
24 and 25, where, for example, the shell closure at 144 Sm 1s 
realized by local extre�um values of the curves at A=144. 

IV.3.8. The Gadolinium Isotopes

I h . h · h h . 1 5 o - 160G d f 
. 1 . . . n t .1s c apter t e c a1n ·� o gado 1n 1um isotopes

is discussed in the light of the EPM, the IBA and the ear
lier PM. There are several publications about IBA fits to Gd 
isotopes /Ca80a,b; Go81c; Ca82b; Li82; Li84a; Gi83/, but 
there are two publications that are used in this work for 
comparison purposes; these are /Li82, Li83c/ and /Li84a/. 
(/Li83/ and /Li83c/ have the same content). 

First one can compare the earlier PM and 4-parameter IBA 
results of refs. /Li82, Li83c/ with the 4-parameter EPM cal
culation for the whole chain 1 so-H,OGd. As can be seen from 
the parameter systematics, figs. 19 to 23, the behaviour of 
the four EPM fitting parameters agrees with the behaviour of 
the PM and IBA fitting parameters of figs.? and 8 of ref. 
/Li83c/, This behaviour reveals a shape/phase transition at 
N=88-90 (A=150-152), which has been discused in a qualita
tive microscopic way by Casten et al. /Ca83/. Another common 
feature of the earlier PM (isotropic and anisotropic) and 
the EPM is the discontinuous behaviour of the parameters at 
N=94-96 (A=158-160), which seems to be of the same origin as 
the discontinuity in the Sm chain at 152 Sm (see chapter 
IV.3.A). No good explanation for this behaviour is thus far
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known. As in the case of the Sm isotopes, the quadrupole 
moment and transition probability systematics of figs. 24 
and 25 support the above speculations of a shape transition 
a�d also give indications of the discontinuity at 15 iGd, 

A quantitative comparison of the three models is per
formed in table IV,3.4, which gives the RMS values corres
ponding to the known experimental levels (taken from /Li82/) 
for the three models. The PM and IBA data are taken from 
/Li83c/ and the EPM data from the tables of appendix H. One 
can clearly see from the table below that the EPM does not 
work very �ell in the case of 150 Gd and 151Gd. 

tJ VI-'\ l?:,, \_3 \@ 
I\J UC -

f O V 1, four 
Of PM 

I 
pararn, pararn. 

LEU S \..t:Vf.LS 

I I I BA-1 EPM I 

! 
I 

9 355 I 188 195 I 
150 

Gd ; C 1 1 ) ( 324 ) i ( 1 78) (237) i 
! iI 

16 288 52 167 I I 

152 
Gd ( 1 7) (291) (51) (164) 

l 16 225 126 64 I 

154 
Gd (17) (231) (123) (62) 

16 250 117 23 
156 

Gd C 1 7) (257) (113) (26) 

12 186 22 18 
158 

Gd --- --- --- ---

8 105 11 29 
160 

Gd ( 9) (104) ( 13) (27) 

TABLE IV.3.4 : 
Comparison of the isotropic PM, the 4-parameter IBA 
and the EPM using the RMS deviation �f eq.(IV.1.1). 
The figures in parenthesis correspond to each other, 
a) Calculated from the data of refs,/Li82, Li83c/,

In addition to the complex level structures of these isoto
pes, a reason for this is the band recognition difficulties 
and (possibly) the inaccuracy in calculating the functional 
to be minimized, Also the earlier PM and the IBA have diffi
culties in this region although the IBA can predict the 
Gd levels surprisingly wel 1. It must be remembered that the 
earlier projection model gives very good fits to ground 
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B < E 2 : J--> I' l' 
B<E2:J-->J' l! 

150 
Gd 

152 
Gd 

J J' J ' i EXP . \ PM

26 Og 2g 0.051 0.29 

26 2g dg 

26 06 2g 

0.15 

17.6 

d6 2g 4g 0.0017j 0,30 

4g 

2g 

4g 

60.7 
! 

0.032 0.09 

20 

IBA 

o.os

0.17 

4.54 

0,13 

0.46 

0.12 

o. 77

EPM EXP, PM 

0.006 0.020 0.41 

0,11 

14 

0.072 

0,72 

0,039 
I 
I 

2.14 

7.3 

0.1<1 

0.22 

13.8 

0,43 

35 .8 II 

0,19 

26 

Og 

2g 

2g 

2g 

dg 0.12 0.68 0.82 I 0.077 
I ! i

O.d5 I 
o .071 I 

333 I 

0 •
1
98 

0.021!
di' dg i >0.009 )0,0067 ! 0.34 I 0.0061

IBA 

0.06 

0,45 

2, ld 

0, 11 

6.0 

0 ,06 

0,dl 

0.39 

0.11 

EPM 

0.22 

0,28 

d,96 

0.22 

6.d

0,06

1.8

0.32

0 .029 I 

S< E2; J--> J' 
B<E2:J-->J' 

154 
Gd 

156 
Gd 

158 
Gd 

j 

26 

26 

26 

46 

2r 

2r 

3r 

, 4r 
i 

J' J ' :EXP . i PM IBA EPM EXP. PM IBA JEPM EXP. iPM IBA iEPM 

Og 

2g 

06 

2g 

26 

Og 

2g 

2g 

2g 

o.s5lo.59

0.51 0,22 

2g 0.12\0.58 0,61 O.Od
i 

0.17 0.63 0.82 0.20\ O.d9i0,65

dg 0.36 0.37 1

1

0.39
1

0.15 0.92 0.43 0,35 0.27 1.22
,
i0,46 

2g 19.3 1031 31 28.3 310 61 -- ,37.2 688 81 
I i I 

4g 0.10 0.73
1

0.84!0.02 0.20 0.85 2,6 0.04 1.05!0.91
:

0.50
,

1.15

dg 33.9 34,6, 177\23.2 d6.8 956 53 -- ; 60 . 8811 236 

I 1 ' 1 I : 1· 2g. 0.11910.47 lo.6olo.3a\o.67 o.s6 0.61 o.53 0.61
1

0.60 o.64
1

0.115 

I I : I I 
dg .

1
5.95 33 ; 14 

1
4.saj 11.5! 25 17 I 5.9 17 1 20 1 14 i 111

I : ' I i : ! 
dg 

I
1.00 ! 1.7 \1.75 0.72

1 
1.5 1.911.81 1.110.37

1 
2,1: 1.9611.16

dg i -- \0.12 i0,24:0.08
1
0.16 0.19!0,24i0,18! -- 10,22.0,2810,09 

TABLE IV.3.5. Comparison of experimental branching ratios with 
the theoretical ones given by the PM, IBA and the EPM. The PM 
is the isotropic projection model of /Li76/ and IBA means the 
four parameter [8A-1. The figures for both these models and 
the experimental ones are taken from /Li82,Li83c/, 
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state levels (fitting parameters are fixed by ground band 
levels) but the � and r bands are predicted badly because 
there are not enough parameters to fit the � and r band 
heads, The isotopes 754-160 Gd are fitted quite well by both 
the IBA and the EPM. The EPM is much better than the IBA for 
Gd� and both are about equa 1 1 y 900d for 1513 ,% 0 Gd. 

In the table IV.3.5 the three models are compared with 
experiment in the case of known branching ratios ( 160 Gd is 
missing from the table because there are no experimental da
ta available), Comparing the figures of the table, one sees 
that none of the models is very superior to the others. The 
EPM always seems to give the best or second best branchings, 
The PM and the IBA seem equally good on the average, Because 
there are not many experimental data available the compari
son is not on a very firm basis. · However, it is worthwhile
noting that the old PM gives in many cases very good results 
despite the fact that in the energy fit it describes the � 
and r band heads quite inaccurately. 

In ref. /Li83c/ the internal structure of the quasi-bands 
was studied by drawing pictures of certain spectroscopic 
moments of inertia as a function of the angular momentum 
(figs. 4,5 and 6 in /1 i83c/; actually first and second ener
gy differences were drawn), The so-called kinematic moment 
of inertia is a purely kinematic quantity and is defined as
/St83/ 

<IV.3.1) 

r-1 

The dynamic moment of inertia � describes how the nucleus 
responds to to a force and is defined as /St83, Go81a,b/ 

CIV.3.2) � /r•i2 = ( 1i
1
E/'OI 

1
)-

1 
= 1/t, c)!/'QcJ

One gets the corresponding spectroscopic quantities by reme
mbering the discreteness of I and thus writing ( with an 
obvious notation and J = --fiI) 

( IV.3.3) 

l) 1 5 '+, 15b G,. 
J

y -1

SsPE:.c. lJJ

' 
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<IV.3.4) 

N ) i 0 -1

1sPE:c.(JJ 
~y- -1 

� s f't:C. ( J J

The latter reduces to 

rv<),/) -1

1sPf;�(JJ 
<IV.3.5) r-, 'C -1

1 s p E:c.. ( j ) 

- ¾[E J +4 -iE
J

+l+E
j

]

= 

E. J + i - 'l t: J +1 + E J • 

Plotting the first and second energy differences involved in
expressions (IV.3.3,4) as functions of J tells much about
the spectroscopic structure of the band. For a rigid rotor
the behaviour of AEJ is linear and J kEJ is constant. For a
harmonic vibrator AE J = hw = constant and A1EJ = 0 . For
a symmetric and triaxial rotor al 1 the bands behave as indi
cated above, but for a r-unstable nucleus the r-band ener
gy differences behave in a non-smooth way yielding a saw
tooth line in the difference plot. This r-band behaviour is
called the even-odd staggering effect /He??/ and can be
explained by a repulsion of the s�ates with the same angular
momentum in the � and r bands /OI??/, In addition, for
triaxial and r-unstable nuclei the r band head is mostly
quite low. 

Judging by the appearance of the difference plots for
the r bands of the gadolinium isotopes in ref./Li83c/, the
rotor gado 1 in i urns 154-160Gd seem to be r-unstab 1 e nuc 1 e i
(Here the criterion is the odd-even staggering ,�hich re
sembles the one encountered in the 0(6) limit of the IBA), 
In /Li83c/ it was observed that the IBA model nould not pro
duce as good difference plots as the isotropic PM (so in
this respect a larger pairing term would have been needed in
the IBA fits), However, both models gave indications of the
r-unstable features of the isotopes In the PM the reason
for this is the under rotational behaviour of the even J-le
vels in the bands as seen in fig, 7 of the ref,/Li76/ for
the ground band, This results in the right even-odd stag
gering for the r band. The EPM produces good difference
plots for the ground and � bands, but fails for r bands in
the case of the Gd isotopes. In the EPM the lower-lying J
levels of the � band tend to push the higher- lying J le
vels of the r band even higher, ,�esulting in an opposite
even-odd staggering compared to the r-unstable case, This
produces saw-tooth plots having a 'phase difference' with 

15� 1'0 the exper i men ta 1 p 1 ots. However, because for · · 1 
0 Gd the )5 

levels are higher than the corresponding r levels, the re
pulsion 1s downward and the experimental results are re-
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gained (this is, however, hard to see because there are not 
enough experimental data available for these isotopes), 

Finally I wont to compare the 6-parameter IBA-1 calcula
tion of Lipas et al. /Li84a/ with the EPM calculations, The 
parameters that were used in the calculations by Lipas et 
al. are tabulated in appendix G. The main purpose in /Li84a/ 
was to describe the E2/M1 mixing ratios in 15 '+Gd by the IBA 
model, but they also mention the RMS value of the energy 
fit, which was RMS=31keV. In this RMS the following levels 
were included /Li84c/: 2g - 10g , 0� - 10� , 2r - 7r . 
The corresponding RMS value for the 4-parameter EPM 1s 
62keV, and for the 5-parameter EPM it is SlkeV (as seen in 
appendix H). So both models give very good energy fits 
(Girit et a1. /Gi83/ report an RMS of 80 keV). However, one 
must take into account that in the EPM four fewer levels are 
fitted, and when considering only the EPM-fitted levels, the 
EPM gives a better RMS value both for 4 and 5 parameters, 

IV,3.C. The Erbium Isotopes 

The erbium isotopes fitted in this work range from 
15

t�Er 
to 1��Er The Er isotopes have been studied much for 
their high-spin properties and r-band structure, The iso
tope 156 Er is studied in refs, /By81, Zo80/ for its high
spin properties. As mentioned in chapter III,1, the EPM con
tains no real internal degrees of freedom to describe back
bending phenomena, so the levels above the band crossing 
are, in principle, not describable by the EPM. So, for exam
ple, in the case of 156 Er one must stop the EPM fitting and 
comparison with experimental data at the first backbend of 
the bands, which in this case is for the ground band at J = 
10g --> 14s (s denotes here the so-called s-band which 
crosses the ground band and then becomes the yrast band. S 
can be interpreted as super band or side band, Fig, 2 of 
ref,/8y81/ shows also a second back bend at 24s --> 28s' ), 
These backbending phenomena are better described by special 
high-spin models, like the Coriolis antipairing model 
/Mo60/, the rotational alignment model /St75,St72/ the 
shape transition model /Th73/ and the HFBC theory /8e79/, It 
seems that, at least for the Er isotopes, the alignment mo
del 1s the most suitable for describing the back-bending 
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phenomena /Ya80/, 
In the region of rare-earth nuclei the back-bending 

occur� at angular momenta 12�--)16 s ,  and especially for 
1 s;s - 104 Er it occurs at 14--'

6
--) 16 5 /Ry73, Ja??, Ya80/. In 

addition to a back bending in the ground state band, one may 
observe backbending also for other bands. For example, one 
can observe a back bend in the r band at 12i--)14s in 164 Er, 
where the odd-J side band becomes the yrast odd-J band 
and the even-J side band becomes the yrare even-J band 
/Jo?8, Ya80/, In table IV.3,6 and in appendix H all the le
vels are interpreted as not belonging to any side bands, so 
that the low-energy boson nature of the excitations is pre
served. 

Another point worth mentioning in connection with the Er 
isotopes is the odd-even staggering phenomenon already 
encountered in the Gd isotopes. In the Er isotopes the stag
gering is the same way as in the Gd isotopes, ie. because of 
the higher-lying � band the inter-band interaction tends to 
lower the even-J levels in the r band with respect to the 
odd ones, as is clearly seen in fig, 4 of ref,/Ja??/ and in 
fig,12 of ref. /Ya80/, Because � levels are quite high com
pared to the r levels for the erbiums, the repulsion of the 
same-J levels in the EPM seems to be insufficient to produce 
this effect. As a result an almost rigid rotor spacing is 

produced in the EPM (of course the fitting was made harder 
by the fact that only one or two � levels were, with some 
certainly, assigned in experiments). 

The main purpose here, however, is to compare the EPM ca
lculations with the 6-parameter IBA-1 calculations of 
/Li84b,c/. Here the comparison is performed only for the 
energies because there are not many experimental data on the 
transition probabilities or branching ratios. (Except for 
'!E,1Er in table 4 of ref./ Ja 77 / 1..vhere the exper-i men ta 1 figures 
were compared with those given by the Alaga rules and by the 
RVM (=Rotation Vibration Model, see ref./Ei75/), The EPM re
sults for these branchings are very much the same as the 
RVM(g�r> results of the above reference. Several experi
mental branchings are also known for 16 iEr which were com
pared with those given by IBA-1 in ref./Wa81a/, Again the 
EPM gives quite nice results, especially for the r

branching). The only Er isotope fitted by the IBA so far is 
16 iEr /Ca80a,b; Wa80a; Wa81a; Ca83b/, It has been one of the 
most glorious successes of the IBA model and . of modern 
experimental techniques. In table IV.3.6 the isotopes 1 &.:i.,rs't,
166

1
16 i Er are represented in the light of experiment; IBA-1 

and the EPM. The effective proton- boson number is used in 
the IBA fits (except for 166 Er) and /Sc83/ yields for the 
erbium isotopes Zett =3. 

As can be seen in the table, both models give very good 
RMS's the 5-parameter EPM being the best (the EPM is espe
cially good for 'J<:,G Er for 1,.Jhich an RMS of 2.4 car, be 
achieved). In the case of the EPM fever levels are fitted 
because the predicting ability of the model is being tested. 

From the parameter systematics of appendix H one can see 
that the convergence of the boson expansion is slower for 
the erbiums than for the other isotopic chains, Especially 
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TABLE IV.3.6. Comparison of experiment and theory for
some Er isotopes. The experimental figures are from
NDS, appendix I, and from /Li84c/. The IBA figures
are from /Li84c/. The levels marked with an asterisk
are fitted. All energies are in keV, and the RMS's in
parentheses correspond to the energy data 1n paren
theses. 
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1n the region of 164 -,siEr, going from second order to third 
in the boson Hamiltonian seems to alter the values of the 
fitted parameters a great deal. On the grounds of these 
parameter systematics one might suggest that some kind of 
shape transition should occur in the region of ��4-

166Er, Ho
wever, one must be cautious about drawing such a conclusion 
just on the grounds of the behaviour of the fitting parame
ters of a slowly converging Hamiltonian because the quadru
pole moment and transition probability systematics do not 
show any abrupt behaviour in this region. 

IV.3.0. The Ytterbium Isotopes

The ytterbium chain dealt with here contains the iso-
1 b

4
Yb 

1
1-

4 '(6 R l h . . tapes 
'1.0 '3 4 - '1-0 104 • ecent y t e most 1 nterest 1 ng

object ot study in Yb nuclei has been the high-spin 
phenomena. The degree of backbending in the Yb chain is not 
a smooth function of neutron number as seen in fig, 18 of 
ref,/Wa76/. This has been explained in ref,/Fa74/ to stern 
from pairing effects and in refs,/Be78, Be79/ to stern from 
the fact that the mixing between the ground state band and 
the s band is an oscillating function of neutron number. 
This oscillation is very clear in going from 10byb to 16 '6 Yb 
and further to no Yb ( between t1.Jo backbend i ng nuc 1 e i 16 \1,Yb
only slightly upbends), This behaviour is also clearly seen 
in the parameter systematics of figs, 19 to 23 and in the 
quadrupole moment and BCE2) systematics of figs, 24 and 25, 
where some discontinuous behaviour may clearly be observed 
at 16'6Yb - noyb ( one may a 1 so notice that the convergence of 
the boson expansion is quite slow especially for the heavier 
Yb isotopes). 

The backbending in the deformed rare-earth region 1s 
strongly influenced by the i(13/2) neutrons /St75/. The 
Coriolis interaction causes the i(13/2) orbitals to align, 
resulting in the emergence of a i(13/2) superband, The ba
ckbending starts for 1�4 Yb at 12g /Hu77/, for 1

S
6 Yb at 14g

/Wa76/, for 1 '1- 0 Yb al 14g /Wa81a,Ha73/ and for 111 Yb at 18g 
/La78,Wa80b/; •'+4 Yb does not seem to backbend /Wa76/. There
are not many electromagnetic data available ( only in table 
4 of ref./Hu77/, in tables 3,4 and 6 of ref./Ca73/ and in 
tables 7 and 8 of ref, /Kr84c/), so the comparison of the 
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TABLE IV.3.7. Com?�2ison of EPM- and IBA-calculated
energy levels of Yb with experiment. Levels with 
an asterisk are fitted, All energies are in keV. 
a) Data from /Li84c/ . 
b) Data from /Kr84c/ . 
c) Four and five parameter fits .
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B<E2;J-->J') EXP .\b a) I BA· 6) IBA EPM 

j i j' 4 5: 

2g Og 1.087 � 1. 087 ;j(-1.087 o\.-1.087 * 1. 087

4g 2g 1.80 1.54 1.54 1. 58 1.56
I 

6g 4g 1. 76 1.66 1.67 1.81 1. 74

8g 6g 1.95 1.69 1. 71 1.99 1.86

10g 8g 2.24 1.67 1,71 2 .19 1.97

12g 10g 1. 78 1.61 1.67 2.39 2. 08

Of:, 2g 0.0162 0.0180 0.0685 0.0949 0.0381 

2f:, Og 0.0013 0.0033 0.0121 0.0072 0.0035 
* 

1J. 0079 2r Og 0.0079 0.0079 0.0332 0.0147 

B<E2iJ-->J') 
B<E2;J-->J") 

j j' j" 

2f:, 4g Og 7.55 3.05 3.12 11.2 8.61 

2� 4g 2g 2.54 2.19 2.09 4.30 3.89 

4f:, 6g 4g 4.6 2.8 2.3 5.2 5.3 

613 8g 6g 3.4 3.8 2.5 5.2 6.7 

813 10<.;; 8g ::::45 5.4 2.8 4.3 7.7 

2r 2g Og 1.69 2.51 2.28 1.86 1.71 

2r 4g Og 0.165 0.251 0.228 0.170 0.128 i 

2r 4g 2g 0.098 0.100 0.100 0.092 0.075 

3r 4g 2g 0.486 1, .12 1.00 0.729 0.603 
!

4r 4g 2g 3.24 17.0 10.7 5.42 4.52 I

Sr 6g 4g �0.88 2.95 2.46 1.43 1.09 

613 4.f:, 8g 84 115 35 17 36 

TABLE IV.3.8. Comparison of EPM- and IBA-�91culated B(E2)'s 
and branching ratio

2 
with experiment for Yb. All 8(E2)'s 

are in units of e�b . Transitions marked with an asterisk 
are fixed. 
a) Data from /Li85c/ .
b) Data from /Kr84c/, tables 7 and 8 .
c) Four and five parameter fits .
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EPM with experiment is not easy, However, /Kr84c/ contains 
appreciable electromagnetic data for 1 r�Yb and a useful 
comparison can be made. The comparison is performed for the 
energies in table IV.3.7 and for the 8(E2)'s and branching 
ratios in table IV.3.8. In addition, the tables contain the 
results of two 6-parameter IBA-1 calculations. One is per
formed with the ordinary boson number (figures from /Kr84c/) 
and the other with the effective boson number (figures from 
/Li84c/), The parameter values used in the calculations are 
tabulated in appendix G. 

As can be seen from appendix G, the two IBA fits are per
formed with quite different fitting parameters. The calcula
tion with an effective boson number is done between the 
dynamic symmetries U(S) and SU(3) (no pairing term 
included), and the other between SU(3) and 0(6) (the d-boson 
number term is excluded). The effective IBA calculation 
gives better results for the ground state band but fails for 
the � and r bands, which are, on the other hand, treated 
quite well by the second IBA calculation, As can be seen, 
also the total RMS deviation is smaller for the ordinary bo
son-number calculation, but the 5-parameter EPM calculation 
gives a still better RMS. The EPM figures are superior to 
both the IBA figures in the case of ground and � bands and 
about the same quality as the fit /Kr84c/ for the Y band 
(the other IBA fit is worse); Because the IBA fits are done 
with different parameter combinations, extraction of the 
effect of the effective proton-boson number in the calcula
tions is not possible, 

From table IV.3.8 one can see that the two IBA fits give 
about the same results, but the 5-parameter EPM fit is a bit 
better. However, both models give a good qualitative (and 
even quantitative) description of the electromagnetic pro
perties of 1�ivb. 

By making the first and second energy difference plots as 
in fig.S of ref./Kr84c/ ( discussed in section IV.3.B of 
this work), one sees the fact that the EPM gives quite a 
good description of the internal structure of the ground and 
r bands of 1 �ivb. However, the dynamic moment of inertia of 
the 0 band is not very well described by the EPM for which 
the 4-parameter fit gives roughly the IBA result and the 
5-parameter fit even a slightly opposite trend. A 
5-parameter fit stressing the � band could improve the si
tuation.
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V. DISCUSSION ANO COMPARISON WITH THE COHERENT

STATE MODEL CCSM) OF R�DUJ� ET AL. 

In /Ra76a.b,c/ R�dut�, Badea and Dreizler introduced a mo-
del ea 11 ed the coherent state model ( CSM). This model 1 s 
very much like the ·earlier PM and the EPM. In the CSM one 
projects laboratory states from intrinsic states obtained by 
acting ,Jith deformed-phonon operators on a deformed coherent 
vacuum for intrinsic axially symmetric excitations. The 
intrinsic ground state is the same as in the PM and the EPM 
and can be written as (This form is identical to the form 
exp(-Y2d 2

) 10) = I Or, ) used in the EPM. Here 10) is defined 
in (II.1.7) or (A2.6). This equivalence is easy to prove 
us i n g the re 1 at i on /Me 7 0 / e x p ( A ) e x p ( 8 ) = e x p ( A+ B + Y2 [A , B] ) ) . 

CV. 1)

1.e. it is the deformed intrinsic vacuum state. The calcula
tions in these references are performed in a two-state basis
for every J. The other basis states are projected from the
intrinsic � state

< V. 2) 

Just as in the PM and EPM. The laboratory Hamiltonian is a 
boson expansion like (II.2,10) (up to fourth or sixth order) 
with the specific form suggested in /Oa72/, (The coeffi
cients are free parameters as in the EPM. In principle these 
coefficients could be calculated microscopically by using 
the boson expansion techniques or phenomenologically by 
using the potential energy surface approach,) The energies 
are calculated either as expectation values (as in the PM, 
but only with a 2-state basis and with a Hamiltonian inclu
ding also anharmonic terms) or diagonalizing in the projec
ted state basis (as in the EPM, but first orthogonalizing by 
the Schmidt scheme and then performing the usual 
diagonal ization). 

From the very beginning the purpose of the CSM was to 
attack also the high-spin region of nuclear spectra. In 
order to do this, a method for describing a crossing of 
ground and � bands was proposed in /Ra76a/. There the e

band became the yrast band at some critical J, J Gr, and the 
fitting was extended to the high-spin levels beyond the bac-

-68-



kbending region, The fits performed in /Ra76b/ indicate, ho
wever that this kind of boson description does not have very 
much capacity for describing the band crossing in the back
bending region. The CSM description smooths out the drastic 
behaviour of the dynamic moment of inertia (i.e. J� )in the 
back bending region and thus gives only an average descrip
tion of the effects of the Coriolis interaction in the rota
ting nucleus, So, contrary to Raduta et al., I do not be
lieve in the capability of this kind of model to describe 
high-spin phenomena, and so I have assumed the ground state 
band to be always the yrast band (see section III.1. ), Howe
ver, also the EPM could be used, like the CSM, for a high
spin description by using in the fits a non-weighted chi
squared function. 

In /Ra76d, Ra78a/ the above model was extended to odd-A 
nuclei by coupling the odd nucleon (moving in a shell model 
orbital) to the collectively excited core (the first attempt 
in this direction was in /Ik73/ where the PM states of Lipas 
et al ,/Li76/ were used as core states). In /Ra77/ it was 
proved that, for the ground state band, the models dealing 
with completely aligned states (=highest-seniority states in 
an N-phonon multiplet) and the quasi-rotational models (the 
level energies are an expansion in J(J+1) ) are just extreme 
cases of the CSM (this is true also for the EPM), Also 
closed forms for the matrix elements of the quadrupole col
lective operators were derived /Ra78b, Gd78/, A new step in 
the development of the CSM was the inclusion of the Y de
gree of freedom in the system /Ra81; Ra82; Ra83a,b,c;Ra84/, 

There, instead of using the Sheline-Sakai (SS) scheme 
(which is used in the PM and EPM), the results obtained by 
Roulet et al. /Ro78/ for the Pt isotopes suggest the use of 
a modified SS scheme, This modified SS scheme seems to be a 
basic feature of models using r-soft potential energy sur
faces /Sh60,Li75/, and is in accordance with the experimen
tal facts that for many isotopes B(E2; o0-->2� )/BCE2; 0�
-->2; )))1 and that states of the Y band exhibit a doublet 
structure as seen also in fig 2. In the modified SS scheme 
the state 00 is assumed to have a three-phonon structure 
instead of a two-phonon content as in the EPM. By demanding 
the realization of specific experimental features and ortho
gonality before and after projection for the model states, 
one ends up with a specific form of the intrinsic states �6 
, �0 and �Y. A carefully chosen boson Hamiltonian is then 
diagonalized in the three-state projected basis and for the 
harmonic part N of the Hamiltonian one gets an excitation 
spectrum that resembles that produced by the earlier PM and 
EPM. 

The excitation spectra of the three models could be com
pared with each other by looking at fig,8 of ref,/Li76/, 
fig,2 of this work and figs, 1,2 and 3 of ref, /Ra82/, From 
these figures one can conclude that the ground state band 
has exatly the same structure in every one of the models The 
� and r bands have a similar internal structure (for 
example the bunching of the states J = odd, J+1 = even toge
ther has same features in each of the models), but the band 
head energies behave quite diffrently (this behaviour being 
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very different in the EPM from the other two models), 
The bunching of the odd- and even-J r states is a conse

quence of the r-unstable structure built into the CSM. This 
has been exploited for example in the fit to the platinum 
isotopes 1

'.}
01 1 '3'.l...Pt in ref./Ra81/. For the platinum isotopes

the deformation parameter d was srnal ler than unity and the 
level bunching was correct in order to produce a right kind 
of even-odd staggering (see fig, 3 of /Ra82/) for the 
r-unstab]� platinums, Another kind of situation is encoun
tered when one looks at the CSM fits to the r-unstable
osmium isotopes ,�i-

1860s in ref,/Ra84/. Because the defor
mation parameter is in these fits quite large (d�2,5), the
nice r-unstable bunching encountered at small d in the pla
tinum fits becomes an opposite bunching yielding also an
opposite odd-even staggering (compared to experimental data)
in the osmium isotopes. This is the same phenomenon that 1s
encountered in the EPM fits to the gadolinium isotopes 1n
section IV.3.B, and it is due to the specific behaviour of
the r-band energies as a function of the deformation para
meter. This behaviour is similar in the CSM and the EPM, but
in the earlier PM the r-unstable features tended to last to
slightly greater d values. This tendency in the PM also
explains the fact that it could reproduce quite nicely the
even-odd staggering (i.e. J and J i) encountered in the Gd
isotopes while EPM failed in most cases. So, in order to re
produce better results in the case of r unstable nuclei,
the two models (CSM and EPM) should stick to a bit smaller
deformation parameters in the fits. This in turn seems to
contradict the tendency of the fitting procedures to find
large-d minima on the parameter surfaces, especially in the
case of the EPM for which d could be up to 4 in the Gd chain
and even larger for the Er and Yb chains.

In the three-state CSM the projected wave functions be
come the three highest-seniority U(S) states (for each n) in 
the zero-d 1 irnit, and in the large-d limit they become the 
g, � and r states of the BMM for the case of weak coupling 
of the � and r vibrations to the rotational motion /Ra82/. 
This introduces specific selection rules in the smal 1-d 1 i
mit and the Alaga rules at large d, which is the case also 
for the EPM with a Harmonic A (this is true when both models 
use the harmonic approximation (!I.6.4) of the transition 
operator). Also the absolute value of the quadrupole moments 
of the $-band states are greater than those of the ground
band states in both models. It is worth noting, however, 
that in the EPM the 8(E2)'s are calculated between eigen
states of the harmonic Hamiltonian in the projected state 
basis, byt in the CSM the B(E2)'s are calculated directly 
between the projected states (they are orthogonal in the 
CSM) which are the eigenstates of the harmonic Hamiltonian 
only in the 1 imit d--)0. Instead, in the CSM the model Hami
ltonian is chosen so as to yield approximately the projected 
states as eigenstates. 

Figs. 1,2 and 3 of ref. /Ra83c/ show some transition pro
babi 1 ities BCE2;Ji.--><J-2);_) i=g,$,J', as a function of the 
deformation parameter d obtained by using the harmonic tran
sition operator between the projected states, These figures 
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resemble very much the corresponding EPM figures 8,9 and 10. 
The beha•Jiour of the transition probabi 1 ity J "3'-->(J-2)� is
the same in both models, but some differences can be 
observed in the transition probabilities J0-->(J-2)0 and 
J1-->(J-2)� . For the latter two B(E2)'s the CSM yields a 
monotonically decreasing function of d, while the EPM 
curves have a maximum at some d value. For the 8(E2) 's this 
is around d�l.5 and for B(E2) 's around d�l.O . These 
differences in energy spectra and transition probabilities 
are very likely to stem from the fact that in the EPM one 
performs a complete diagonalization, while in the CSM one 
assumes for the energies that the � band is totally de
coupled from the g and r bands and that the projected 
states serve as the basis for the B(E2) calculations. 

From the energy fits of appendix Hit is easy to see that 
in the EPM the ground state band has underrotational fea
tures (the theoretical level energies lag behind the experi
mental ones), while the r-band energies tend to grow too 
fast. This is a very general feature in many collective 
theories and in the case of the EPM it follows from the 
omission of the J 2 term from the boson expansion 
Hamiltonian(III.2.3) (the exclusion of J 1 means, )according
to CII.2.9), a partial exclusion of the term B�� ,,.Jhich is 
'overrotational' according to /Li76/). In the CSM the term J 
is included in the model Hamiltonian and so the theoretical 
spectra seem to lack the above-mentioned features. 

In the case of 150 Sm and 15 1.Sm the 4-parameter fit gives 
better RMS's than the 5-parameter one (see appendix H). This 
is due to an inaccurate minimization in the 5-parameter case 
Can increase in the number of fitting parameters also 
increases the difficulties in the search for a minimum) fol
lowing from the less accurate behaviour (at small d) of the 
functional to be minimized. It is wortwhile to note, howe
ver, that the 5-parameter fit is in this case stil 1 better 
at low energies because of the weighting of the chi-squared 
function. 
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VI. SOME CONCLUDING REMARKS

The concluding remarks of this chapter concern the pos
sible future applications and extensions of the EPM. 

The most obvious future application of the present EPM 
framework is the calculation of the magnetic dipole transi
tion probabilities B(Ml) and consequently the multipole mi
xing ratios defined by /Ha?S/ 

( VI. 1) 8 - < f II T < E2) 
II i ) I< f II T < E2) II i )

which has been recently studied to some extent in the IBA 
model /Li84a,e; Gi83; Sa84, Is80, Oi84/. In the IBA the Ml 
operator has three adjustable phenomenological parameters 
while in the EPM there is just one adjustable Ml parameter 
(note, that the lowest order possib]e operator [b+ bJ, wi 11 
not do, because it is proportional to J and hence would not 
give any contribution to Ml transitions between states of 
good angular momentum), The lowest order non-trivial Ml 
operator would read in the EPM 

(VI .2) T(Ml) __ * 1,( 
m · \/VI..... :,1 

where m� is an effective magnetic coupling constant 
factor), Of course, to get some more flexibility to 
tio (VI.1) one could include in the calculations the

d h 
. 

f T ( E1.) ( b ' ' or er an armon1c part o rings 1n two more
ters) 

<VI .3) 

where 

CV I • !l.) E 1.() = [ b t b 1 ] :i.. + H • c •

(the g 
the ra

lowest 
parame-

( 1'11J 
or the fourth-order part of T (brings in four more para-
meters) 
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<VI .5) T,(Ml) = Li (k) 

C( k.v4./\. -,, 1 + L (k) 

J3 k vVl 
:i...,_

k=l,:i k= 1 14 

where 

( k.) 
[Lbt bf bt]kbj, 

(k) - L[ t tj [-- j j (VI .6) Jil 1:,1 = 
JA 

).1. 
=- b b k bb k 1

It is worth noting that the four parameter 8-ratio calcula- )tions performed with the above anharmonic T (E:i.) and the T lM1 

of eq. (VI.2) would be quite compatible with the 5-parameter 
8 calculations of the IBA ( here the energy parameters are 
not counted) • 

A possible future extension of the model is the addition 
of the oriented two-phonon excitations to the system. (Not 
much literature existets on this subject because this matter 
is not well established experimentally). According to the 
Bohr-Mottelson picture these would be the following excita
tions 

<VI.?) 

< b t -d) 
2 

10 >0 

(bt )
2 10> 

1 

bt b t 10> 
:i. -2. 

<b!-d)bl10> 

f3 f3 K=O 

r+r K=4 

r-r K=O 

f3r K=2 

After projection this would introduce four new bands into 
the present description and thus increase the dimension of 
the model space up to seven. So one would have four K=O 
bands, two K=2 bands and one K=4 band. One possible exten
sion, of course, is the inclusion of the negative-parity 
octupole bands as was done in the CSM in ref./Ra84/ (the K 
=O and K=l bands were included). 
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U(S) multiphonon excitations up to four phonons. The E2 

transition probabilities between the rnultiplet levels are 

also shown, (Only those levels are shown which constitute 
the zero-d limit of the EPM levels in the g, � and r 

bands). The transition probability B(E2;2g--)0g) is norma
lized to unity, The states are labelled according to the 
irreducible representation labels of the chain U(S)JO(S) 

::JO ( 3 )::::>Q ( 2 ) , 1 • e • 

IN V j M > 

where N is the number of quadrupole phonons and v 1s the bo
son seniority. This set of quantum numbers is complete for 

N<S. 
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FIGURES 27-31: 
Spectra of some typical EPM-calculated nuclei with distinct 
spectroscopic character. 1 ��Yb ( in fig. 27 ) is a typical 
symmetric rotor nucleus with a J(J+1) structure within the 
bands. A stiff prolate rotor is characterized by a rather 
high-lying r band. In the case of triaxial deformations the 
r band begins at low excitation energies, even lower than 
the � band, as one can see in fig. 28 for 16 bEr, which is 
considered to be a triaxial nucleus /B075/. 

Fig.29 shows the spectrum of the nucleus 15i Gd, which
possesses features of a r-unstable rotor. It is charac
terized by even-odd staggering in the r band. Also charac
teristic is the fact that the �- and r-band energies are 
more or less the same or the r band lies lower (as 1n the 
triaxial case). 

Fig. 30 shows a typical vibrator nucleus, 150 Gd, with an 
almost even energy level spacing and the characteristic bun
ching of the levels to (almost) degenerate groups. Note 
especially the bunching of the J=even and J-1=odd levels in 
the r'band. This is in accordance with the r band beha
viour encountered in fig,2. 

In fig. 31 I have shown the very peculiar spectrum of 
14gSm calculated by the EPM (a fit to experiment with 5

parameters). It shows rather nicely the flexibility of the 
EPM to describe also shape co-existence phenomena in nuclei 
(potential energy surfaces with two minima). In this case 
the � band shows a rotational-like low-energy behaviour, 
the high energy levels being evenly spaced. The r band le
vels are more or less evenly spaced (with no tendency to 
bunch into the J=even, J-1=odd groups, however) and the 
ground-state band shows a typical shell-model single-par
ticle pairing spectrum. 
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APPENDICES 

A. USEFUL FORMULAS

Al. Wigner □-functions and Tensor Operators 

(Al. 2) 

(A1.3) 

(A1.4) 

(A1.5) 

(A1.6) 

(Al. 7) 

In this appendix the conventions of /Ro57/ 

and /Sh63/ are used. 

. 
. 

J�, m (-0) == °'-�m,\0) 
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(AL8) 

( AL 9) 

<AL 10) 

< AL 11) 

( AL 12) 

< AL 13) 

( AL 14) 

< AL 15) 

< AL 16) 

.
'�

D� 1
rn ( - f 1 - 0 1 - �) ,:: D/1'rn

1 ( °' 1 fi , r) 

1 
' •J 2 

J d ( �osr, ) J �, m, ( J' ) J_ �', m� \ I' ) � 2. j + 1 & j j' l\n, m', brn,_�:

l.'\\ 11 1.T\' 

j .... dJ1 � j J J ... do<-sin('cl
r,

dy 
@llspac.e 0 O 0 

'l. 

\ •>t
•I in 

J D�
1
rn2- \ J1) D��m� C.f1 )J J1 = l j + '\

@\\ spac.e 

J O � rn ( J1) d Jl, - 1:, \"I
,. 

S j O b "'' 0 bma
di\ space. 

Clebsch-Gordan series 

. ' 

x- \ j, rn1 j� rn1. I j rn) D�\rn, LI1) D�:rn:L-(J1)
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( Al. 17) 

< Al. 18) 

( Al. 19) 

( Al. 20) 

(notice: this is true for any j1,j2

for which jl ej2 � j )

lj+J \ j� �1 �1-. 

'bTT:l. J J JL DMM1 (�) D rn,rn; (JL) D K\._m-L (Jli) 
::

-= \ }1 rn, �,._ rn�I J M )(j, m; j1.. rn� I J \"\
1

)

For the Jacobi polynomial 

has the recursion relation 

one 

. ) p(c)16J lj\c1+b-r�)la+b+2.j-i j (x') -

= ( d + b + 2. � - 1 ){ ( J + 6 + lj - l) \ J + b + 1-j l X +

1 \a It)) 
+ (ci-+-6)(a-\J)� pj-1 \XJ - l\ci+�-1)x

, \� 1 b) 
X (t)+1-1)(3+6+2,)P, (X) 

J J J-l
-1()Q_



< AL 21) 

< AL 22) 

( AL 23) 

( AL 24) 

( AL 25) 

For tensor operators of rank k 

and components q one has the relations 

For Hermitian tensors 

For the spherical components of the angular 

momentum one has 

J - J 
0 'r J 

_-_l_r -t'J) i1 = + -[5:: \ J x - l '/ 

' 

= +I't[j(j+1)-m(rnct:1)J'lj fl\±1)

( Condon-Shortley phase convention ) 

where T
(k)

1s a spherical tensor. 
q 
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A2, Relations for Projectors and Collective Coordinates 

(A2.1) 

<A2,2) 

(A2,3) 

<A2,4) 

(A2,5) 

(A2.6) 

(A2.7) 

(A2,8) 

1.J+'\ \ ;\(.-

- '61\)_ J dJ1 D�K (SL)U(SL) -

=Llo<.J iv1)<o<.J Kl

o = all additional quantum numbers

The b 's are quadrupole phonon operators and 

transform as second-order spherical tensors. 

lo> 
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(A2.9) 

(A2,10) 

<A2,11) 

(A2,12) 

(A2.13) 

"' ,...J 

<ol U(J'1;\o) 

J (k.J M-1<..
PMK T� -:::: (- '\ J (2.J +,) 

X L., ( j - M k '1,1 I /\ I"' )( H< k. 'i I /\ \) )':\rv-=i'

X 

-\-(k)
. ➔I 

1.-:\ + 1

Transformation of the first quantized collective 

coordinates � to the intrinsic systemm 
(principal axis coordinates) : 

' 

Here the a are the collective coordinates in the 
m 

principal axis system, the � are the collective 
m 

coordinates 1n the laboratory system, The last relation: 

specify the intrinsic system, More relations for �'s 

can be found in /Ei75/ and /Ho72/ , 
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<A2.14) 

j 

p M K I O > ::::: 6 JO 6 1,0 \ 0 )

X ( J._ l, J ) [ 7' t] rn \\\
1 

- K b b J M \ 0)

p � K [ 6 � \ b �/ ) 2.] \ o ) � ( - 1 J \<.✓ l J + 1 , x_
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A3. Clebsch-Gordan Coefficients and 3j-symbols 

(A3.1) 

(A3.2) 

<A3.3) 

(A3.4) 

(A3.5) 

(A3.6) 

<A3.7) 

(A3.8) 

CG orthogonality : 

' ' 

(-JJl,-):i..-m_:; 

�lj -i,
+ 1 \� 1 rn, )� rn"J..\ J�-rn�) 

<A3,9) 2 ( i, h\1 j-,_ 11\,_ \\'re.')( j, m 1 j,. m,_ \ ·) rn) = bjj' bmm' 
m \ 11\ 1.. 

<A3,10) ? \ j, m'
1 

j,. tn� \ j m )(j, rn, \• m,.. I j m) � brn :m/\n�m,_
J Y-Y\ 

3j orthogonality 
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( A3, 11) 

<A3,12) 

L(� 1

' 

J 1. 

rn
-i.

rn,rn
1... 

i, )(i1 j,_ i ✓ ,) = 

rn
:, 

m 1 m i. rn � 

� ( 2 j, + 1 ) ( �
1

1 

j 1-. 

J> )( j,, 'r(\ l. rn 1., rn1

J"j rn:,
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B. THE MODEL OF BOHR AND MOTTELSON

The Bohr and Mottelson model (=BMM) contains the spheri

cal vibrators (spherical liquid drop model = SLDM) and de

formed rotors (the deformed LDM, which for axially symmetric 

shapes is called the rotation-vibration model = RVM ). More 

about this one can read from /Ri8O/ and /Ei?S/ 

In the LDM the nuclear surface is described by the qua

drupole degrees of freedom (which is not,of course, the most 

general description): 

<B.1) 

where o<. 00 and the cx'.
1
m have been dropped because of the 

conservation of the volume and to exclude the spurious cen-

tre-of-mass motion. Here the cx.'s are classical time de-

pendent coordinates of small vibrations around a spherical 

shape of radius R
O 

/Ei 75/ • 

The startig point in the BMM is the 

scalar(=rotationally invariant), time-reversal 

collective laboratory Hamiltonian (isotropic) 

<B.2) H 

harmonic, 

invariant 

where B and C are real constants (the inertia and stiffness 
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parameters) . In the case of SLOM the usual rules of canoni

cal quantization lead to the following second-quantized form 

of H /Ei?S/ : 

<B.3) 

/\ 1. 

H ::: L 'h W ( b t
rn 

b
Y"\ 

+ s:_· ) = 'h W N + i h W , W === ✓ C f B 
1 

m
-:=: 

-1 

where the b's are boson operators which are related to the 

first-quantized coordinates. ctm and their conjugate momenta 

flm by the relations 

<B.4) 

TT ==\"(\ • 

This gives the familiar phonon picture of harmonic quadru

pole phonon oscillations around a spherical equilibrium sha-

pe, 

In order to describe oscillations around a deformed shape 

and the resulting possibility of collective quantum mechani

cal rotations, a different way of approach to the Hami 1-

tonian (B,2) must be taken, This leads to the deformed LDM 

or, 1n the special case of an axially symmetric droplet sha

pe, to the RVM. The first thing to do is to try to separate 

the three rotational degrees of freedom described by the 

three Euler angles J1 from the intrinsic degrees of free

dom (of which there must be two because the Hamiltonian 

(B,2) has five degrees of freedom). This may be achieved by 

the principal axis transformation to the intrinsic system 
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(also called the body-fixed or principal axis system, see 

appendix A2). 

After this transformation one has, instead of the five 

laboratory variables ex ( m=O ;t 1,±2), the angles J1 and 
m 

two intrinsic variables a
0 

,a
i 

,where the latter variables 

can be replaced by the more convenient Hill-Wheeler coor

dinates � and r (�)0) 

(8.5) 

The potential term of the Hamiltonian (8,2) is easy to 

handle because it has the same form in the laboratory system 

and in the principal axis system : 

(8.6) 

In the deformed model, however* one wants to make a qua

dratic approximation in the vicinity of a deformed minimum 

{30 1 '{o , Then the potential of (8.6) is replaced by

< 8. 7) 

where a
0 

and a
1 

correspond to the static deformed mini-

mum (this model is called the Asymmetric Rotor Model =ARM 

/E i 75/). It is to be noted that the above potential is not 

an U(S)-scalar. When �
1

=0 one has the RVM, i.e. denoting 
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(B. 8) 

It 1s worth noting that in addition to the static deforma-

tion 1n the direction of the intrinsic z axis, an 1so-

tropy ingredient is introduced in the form of different C's 

The next step is to transform the kinetic energy in eq, 

(B.2) to the intrinsic system, This is done in /Ei?S/ ch,5, 

and the result is the so called Bohr Hamiltonian /Bo52/ 

<B,9) 

where 

momentum 

<B. 10) 

L' 
k 

k=1,2,3, are the components of the angular 

along the intrinsic axis and the 

are the principal moments of inertia, The first term 1n 

<B.9) is clearly a rotational-like term, but because the 

�
k. 

are functions of 0 and '( -(i.e. 

intrinsic and rotational motion are intertwined, represen

ting Coriolis and centrifugal effects in the system (this is 

why the model is called RVM). The second term in (B,9) re-

presents an intrinsic kinetic energy term, 

The next step is again the quantization of the classical 

Hamiltonian (B,8) and (B,9) • There 1s no unique way of 

doing this (freedom in ordering noncommutable operators ), 

but commonly one adopts the Pauli prescription of quantiza-
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(\. 

tion 1n curvilinear coordinates, resulting 1n a form of H 

used by the Copenhagen school( /Ei75/ ch,6 ): 

(B,11) 

where 

<B.12) 

/'\ 

1k and V lS of the form VR.VM 1n eq, (8.8). Here the 

are given by (8.10) and the L' are the components of the 

angular momentum t' along the intrinsic axes expressed ln

terms of the Euler angles n (/Ei75/,ch.5,eq,(29) ), 

The eigenfunctions of and are given by the 

rigid rotor or symmetric top eigenfuncttons 

(B,13) ffi+1' L* 
I L MI<> = ,/� DMI< (t.11...) 

which satisfy 

(8,13') 
LJ._ I L f\ \") = L(\_+1)! L M K); L.

=t:
\L M K) = 

::: \V\ \ L M I<-) i t 3 \ L M I< ) = I< I L M \<( )

A. 1' 2. A 
Then, since H. ➔L and L� h . f . f, � commute, t e e1gen unct1ons o 

the collective Hamiltonian (8.11) have the general form 

(8.14) 

where OZ. includes all the additional quantum numbers, In 

the case of weak rotation-vibration coupling one has a total 
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separation of the intrinsic and the rotational degrees of 

freedom, yielding the familiar SM-eigenfunctions /Bo75/ 

(8.15) 

where the invariance of under the point group Di 

/Ti64/ is taken into account. 

The function xcl..K(f> ,'f) is of the form (/Ei75/,ch.6 ) 

(8.16) 

where the a
0 

and a� degrees of freedom are separated.

Any set of quantum numbers (K,n1 ,n0) is called a band 

because the rigid rotor part of the wavefunction gives a 

J(J+1) spectrum on top of the state <this 

is because of the term Trot of eq. (B. 12) in H ) . The 

combination (0,0,0) gives the ground state, (0,0,1) gives 

the r vibrations, <i.e. deformations along the intrinsic z 

axis) and (2,1,0) gives the'{ vibrations (deformations

perpendicular to the intrinsic z axis). 

The adiabatic wave functions (8.15) lead to an intere

sting rule for the quadrupole moments, This rule reads 

(8.17) 

'l.. 

�K-J(J+l) 
e.Q ::: \ J K 1. 0 \JI< )(J J 2. 0 \ J J )e.Q0 ==- \J+1J(2-J+3) e_Qo 

where Q is the spectroscopic quadrupole moment and Q
0 

1s 

the intrinsic quadrupole moment, 
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(B,18) 

Specifying eq, 

obtains 

(B,19) 

e Q O = < 1< I � � ( 0 J , 1.. ( � c:..o s '.l-e - , J cl i: \ 1<)

fiill1 < I lE.l.11 -. .,,, )"" 
✓ '5 - K TO 11ntr K 

<B.17) for the ground, p and { band one

J 

• 

According to the formulas (B,19), the ground and r band 

states have negative quadrupole moments all the way, but the 

gamma band has positive quadrupole moments for the states 

and , a zero quadrupole moment for the state 

and negative quadrupole moments for the rest of the 

gamma band states, All this naturally assumes a positive 

intrinsic quadrupole moment Q0 which means a prolate 

intrinsic shape, The negative spectroscopic quadrupole 

moment may be interpreted to follow from the fact that when 

revolving around this prolate object generates, on the 

average, an oblate charge distribution. 
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C. SOME RELATIONS FOR A NON-ORTHOGONAL BASIS

In the EPM one has to face a generalized eigenvalue prob-

1 em in the non-orthogona 1 basis { I g
0 

> f I f.>o > f \ 'fo > } Be

cause of this f a short general discussion of this subject is 

given here, 

Let (j be a linear hermitean operator in a Hilbert 

space with non-orthogonal basis states 

Then let 

<C. 1) Co/10:> = 0: lo:> 

where IO: ) lS an eigenstate of er corresponding to 

the eigenvalue 0: , Let the basis states be normalizedfi�. 

(C.2) <ilj> 3; o . .  
l J 

<iii>= 1 \;/ i,jeI 

Then f owing to the completeness of the basis

(C.3) 

and 

lcx> = �C. Ii> 
' l 

L 

ULiC, Ii>= ulcx> = 
i_ l 

o:lo:> = 0:�C- Ii> 
\ l 

Then sandwiching with a state <jl E �<ii 5 iE:I

Denoting 

(C.4) 

one gets 

<C.5) 

[ici<jl(Jli> = 

(jlUli> - Co/.'
J l 

<j Ii>= 

L< u . . - cxf .. ) C . = 0 
i 

l J l J l 

f' ' 
l J

we get 

\re.a\) 

which is a linear homogenous equation for every J, Then, as 

in the usual eigenvalue problem f one gets a nontrivial solu-

t ion of ( C • 5 ) if 
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(C.6) det( U.. - cxf .. ) = 0 
J 1 J l 

It is worth noting that the usual eigenvalue problem 1s re-

covered if f .. = 8 .. , In addition, because the 
J 1 l J 

basis 1s non-orthogonal, the matrix 

cessarily a Hermitean matrix, 

U.. is not ne
J 1 

Let cxk , k E J be the eigenvalues of the problem 

(C.1) and Cki , iE I the corresponding eigenvectors.

Then 

<C.7) \/ j ' 

and as the solution to this set of equations one obtains 

I ex \,. = ( C I<.. 1 ' C kJ. ' •• • ' C k i. ' • • • ) T

le, 

<C.8) <o<_ k l = �c:;_ <il 

<C.9) 

One can check the calculation in the following way : 

< o( k I u I o( A> = L C �k' CJ.. i < L I d I )0 ) = � C �- L U,
L
·' C / . 

L j L 
J i. M j J /\j 

(. C,1) v * V � (c.�; -
. = �ck�� Q(A f {i c

,< j' :::: °'J.. � C k.i. c,{ , = ex). bk,t.

1 

So 

l J J 
L.j 

,J 

Then let us normalize the eigenstates 
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( C • 10 ) � C: � -;- 2.. z: f l j C k t'. C k
j
' ::;;; 1

L � < J 
Let us see what kind of closure relation one gets in 

non-orthogonal basis i E I if the basis

1s an orthonormal one 1n a Hilbert space 

, then 

<C.11) 

Now 

(C.12) Ii>= LiK, l .u> 
1--<�J l,U 

• 

I .u > = � A
.u 

. I i > 
t'.. c:: I 1 

the 

where the coefficients A . 
,U l 

and B
,ui can be specified to 

to be real. So 

8
r,

v = <v l.u>

that is· 

<C.13) /AIK ::: 1 j /A = \\<.-1 
where the fat symbols denote matrices. 

also the relation 

It 1s easy to prove 

<C.14) 

1.e.

(C.14') (IK\KT )L. =={L)'::: Lu�T /f\) Y'IY'n t L(\ +rn ,J n1M<= I J 

From the above relation one sees clearly that the matrices \k

and ff\ 

(C.15) 

Equation 

if 

are not 

<C.15) 

Hermitean. Further, it is easy to show that 

11. = .Li ( //\T /A. ) .. I i >< j I 
" .,, I 

lJ 
� 1j 

goes back to the familiar expression (C.11) 

/P,.,T/� = 1 . So the calculation of the closure 

1n non-orthogonal basis reduces to matrix inversion accor-

ding to formulas (C.15) and (C.13). Let us take a two dimen

sional example: let t11>, 12>1 be the orthonormal ba-

sis and l 11>', 12)'j the normalized non-orthogonal 

one. Then 
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and so 

<C.16) 

11)' = K 11> 
1 1 + K12 I2>

12 >' = K21 11 > + K22 12 >
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D. MATRIX ELEMENTS OF THE ENERGY MATRIX

01. Basic Integrals

Here are retabulated the integrals of ref. /Ha70/ 1n the 

original form and 1n a form suitable for computer calculation. 

The notations are 

2 1 2. 

s = d D (�) = d P2<�)
00 

where P1 1s a Legendre polynomial (/Ar70/,/Ab65/) 

dQ = sin�d�do:dr 

1'l = 3d2
x

2/2 

()l = �exp(-d
2

/2)

The integrals are 

I 1 l J) = i�,. j J n, D �: l JL I er

d1
1 (J1 Ii lJ1 -= J l ,f) 

l. 

d 11 U) 
I ?, \J) = J\Jl.)1-

d 1,1, U{ 
1

4
lJ'):;: J(;f) 

= (;\_ � J �o ( X J e. ri d )<_ 
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�-
'>( r -a C>q \) 0 y ex) Q L 'f l '>C)

-c 
Q r ( x Y'· --r1 (' 'c0 :::: d ( ru1 J C) 

0 
a x

i � L °L (' j � "'t. 

� 

x C1J'') a-zGl 151 ') ""tOG l 1.51) -c � 0 1J' f \ <..11 'h -== (,:I) f -l \"')
\,

\,I 
-c.. -c. �r J -L-(1)�lF 

l-

')( f d l 'I( ) O Q )'? l ')( ft.'-Y-7 l ')( J -c -c )0 \ '\J):=. 

/J L c. (' j 
� 

= c1l15'')
00

(](157f
t

--CCl(,u1')-c-ca7Jf \--cD,9, =-(,J')_f_ = \_C')
0

\,I � -c. -c. >¥
c 

J � (n ilf 
l-

')( F d l :x'.) ()-c. Y7 C)q -C,Q )0 ( ':i) \. '-Y' ' tO -::: i <-L-(' J 



Igo J> =

I �o J> = 

lr0 J> = 

A = 2J+1 

02. Expressions for Normalization Constants

and Energy Matrix Elements 

J ,.., 

N�
0 
(J)PMO 10>

J t rv 

N r, /J)PM0(b0 -d) 10>
J t N to

< J) p M2b 2. I O > 

• <i
0 1 I jo >J = < jo I , I i 

O >J \j 

The normalization constants read 

N90(J) = [AI1(J)] -�
- 1/i

N
{)0

(J) = A-1/2 [d
1 I1(J)+(1-2d 1.)I 1(J)+d

2.
I3(J)] 

y. [ ). 
J 

-1/). 
N '{o ( J) = A- 2 I 8 < J) +d I 9 ( J)

The overlap functions read 

(g0 1�0 >J = N�/J)N00<J)Ad[I:i..<J)-I 1 (J)] 

<golro >J = N1o<J)N
y-

o<J)AdI5<J) 

<�olro >J = N
r,

o(J)N -to<J)Al<1-d
l..
)I5(J)+d

2
I6(j)1

The different matrix elements are 

" 1 

N : 

(g0 INlg0 >J = d I i<J)/l 1 (J) 

N � 0 
( J) N P.,o ( J) Ad L ( 1-d J. ) I:i. ( J) +d 2.. I 3 ( J)]

= Ni
0
<J)Nt

0
(J)Ad[I5(J)+d

1

I
6
(J)] 

::2. [ ii 1. '.)_ 't ] 
= N f.i/ J ) A ( 1 -d ) I :i.< J ) + d < 3-2 d ) I 3 ( J ) + d I 4 < J ) 

= N ['>o ( J) N r-/ J) A [ ( 1-d 2) I S ( J) +i
1

· ( 3-d 
1

) I 
6 

( J) +

+i
+
r ,..< J )]

= N fo < J) A [r i < J) +2d 
1 

I� ( J) +d 1. I 10 < J) +d 
4 
I 11 < J)]
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<go IB:i o lgo>J = 2d 

<golB:i..o IJ3o>J = N � / J) N f':>o < J) A· 2d [ ( 1-d 1) I 
1 

< J) +d 1 I 1 ( J )] 

<go I B 10 I f"o >J = N
'1 0

(J)N¥
0
(J)A•2d I5(J)

<� 0 IB 10 IJ30 )J = N {1->o ( J) A· 2d 1 L< d 
1 

-2) I 1 ( J) + ( 3-2d 'l..) I :i. ( J) + 

+d l. I 3 
< J ) J 

<J3 0 IB 10 Ir-0 )J = N f:>o ( J) N fo ( J) A· 2d :i.[< 2-d 1) I 5 ( J) +d 
1 

I 6 ( J) J

< (" 0 I B 1.0 I Yo ) J = 2d 

(golB�1 lgo)J = 0 

(g 0 IB�1 I)30 )J
= N 'to ( J ) N p, 0 < J ) A · d·I 1 ( J ) / 2 

(g0 IB\_1 lr-0 >J = -N '1'o< J) N fo ( J) A· 3d Is ( J) /2

< �o I B ;_ 1 I l3o >J
= N�0

(J)A'G1-d:,..)! 1(J)+d
-i

I ?>(J)]

<�0 1s;_1 lr0 >-J -N (';io ( J) N fo < J) A{ ( 1-3d 
1

/2) I 5 ( J) +d l. I6(J)]= 

<r-0 IB;_ 1 lr- 0 >J = -3

(g 0 IB'� 0 lg 0>J = 0 

< g O I B ,� 0 I )3 0 > J = N 
6 0 < J) N �o ( J) A· d I 1 < J)
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(g 0 I8'?i a I r0 >J
= 0 

< 13 0 I B ,� 0 I130>J 
= -2N ;/ J) A' d :i. L:1 1 ( J )-I :i.. ( J)]

<� o
IB'30 I r

0 >J 
= N

r, 0
(J)Nf

0
(J)A•d I5(J)

<ro IB'30 I r0 >J 
= 0 

< O ) , -1 < 0 ) ,-;--;, -1 B · B ,_ 'l. 
= 10 d B -i,. + '\J 14 d B 3 o + 10

<� IB lo) , I�> = SN!
0
<J)AI1(J) 

0 1...'l. o J ,� 

all other < >'s are zero . 

6B(O)
). 'l. 

3s<2)
1.'l. 

➔
2. 

(i
0

IJ lj0 )J = J(J+1)(i 0 Jlj 0 J> 

\:J io,jo e- tgo,�o'ro1 
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E. INTEGRALS I.(J) IN THE SMALL-d AND 
i 

LARGE-d LIMITS 

El. The Small-d Limit 

In the small-d limit the integrals of appendix 01 can be 

expanded as a power series in d
2 

, This is done by 

expanding the exponent as 

and using the formulas (A1.14),(A1.13),(A1.17) and the 

Clebsch-Gordan series (Al.15) to get rid of the integrals of 

one or more □-functions, After that, use of eq, (A3.1) gives 

the result in terms of the 3j symbols, It must be noted that 

these formulas are valid only for low J values because for 

sufficiently large angular momenta all the 3j symbols in the 

expressions vanish and it becomes necessary to go to higher 

orders in the expansion of the exponent, These few low angu

lar momenta, however, suffice for the purpose of exam1n1ng 

the behaviour of various quantities in the model at small 

deformations, The above behaviour of the integrals makes 

also their computer calculation increase in inaccuracy with 

increasing angular momentum, 

The integrals are : 
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-i. 

J_ :L (')..')...J) 4 I 1 ( J) ::: 5 JO + 5 5 J )._ d + i \ 0 C) 0 d - -+-

') 1 ::L J l l 1'b J "2. 4 6 i [ ( )
)., 

\ )
J_ 
l + s 2s bJi. + i' o o o -t- )s o o o j + O(J )

1 i)...J 1. _1_ +l Ji'l. + 
� L 

k 

I .,_ u/� s'iin + \o <l o)ci + 50 OJ). T(oo ol 
<) J)...4 4 L,] + ½\ o o o) cl + t'.;\,:l")

J_).. j -t- _l ). JJ,.2. -t-}__Q Ji'-\- 1.. 

').. l 
J.. 

)..J I,(J)= (o o o) )...5 bJ.,__ + 1-\0 o o) ,s\o o o) d +

1 _l_ l 7,G l. 4 J 
l 

i 

+ so bJo + 1T5 bJ,_ + 19-5 b J 4 + J..4'5 ( o o o) +

l 1 )... .. 1b2.. 4 � J 4 . £> 
( j }

:i., 

( }
,_ 
�+ 4� o o o + 1 .:i...)_s o o o d + u ( d )

JI;,(J)
l4(JJ � clCJ ).')

,1_ r ]_ )._ J)f :i. ).. J ' :l. r _l_ 
I 5 l J1 = s 'b JJ_ + \ o o o \ i o -J... / d + L so t J� +

1 ( J 1. i}( J ).. 2.) __j_ r J :i.. 4)( j ]____ 4-\l 4 
+ 1- o o o \-1. 2. o + .)s \ o C) o \-1. 2. a JJ d + u(cl6

) 

I b (J')-= d l.s(J)/c:H,J '.2. J 

1 ).. ( J )_ -:1.. \ ( J l l.} _ tl ( J l 4 \ ( J 2. 4 )
I

.,_
(J')-=- 'l.5 b J1- + '1-\o C) o J -2. 1- o + ":>s\o o ol -21. o +

) _ _L _1 _J_ 4 ( 1. 1. J \( 1- l J \ 
+ l n-s bjJ.. + ?:iS fis b ,)4 - 49\o a oJ\i o -1./ -

�(l 4 Jl( i 4 J\ 1'6 _l (4 1- J\(4 l J) 
- )__ 't 5 0 Q O \ l O -l) -r- 4°J fil \ 0 0 0 ) 1- 0 - l. +

ll1,, _l ('-1- 4 J ) { \\ 4 J \ 1 ,_ u 
+ i 4 S � 0 0 () \ 1 0 -)_) ) J + U \ J 'j
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j().._).. J\
). 

[ � 
J-t-1()...)_J\1-

I
':)

(f)-= C-,J o )...-)__) + -=r�-,J o i-2-) +

+ � '[\s(�: _\)(� � -tn d ,_ 
+ 0(d

4 )
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E2. The Asymptotic Limit 

The large-d limit of the integrals is somewhat more 

difficult to calculate and the result has quite a 

complicated look. The starting point is the formula 

(Al.18). For dj (�) one obtains
00 

Using the relations /Sp68/ 

and the definition of the integral I 1 (J) of 

appendix 01, one obtains (x=cos�) 

Using the binomial series in the form 
6 

\1i-1'J
0 =L(:)xm

rn=() 
J-6

( \ - )(_ y
) 
- 6 � Li ( J � 6 ) ( -1) nx r\

'r\ "" 0 

.. 

and substituting it in the above expression yields 

1 

-J-'\ _J .. /i � ( J )1..( o \( J-b) n+6\ m+n 3:.J�
1..

I,/J') -= :2_ e ,L_,\6 \m}\ n l-'\J Jx e dx 
o,rn

1
'(\ -1 

"' -;: J e- J/'-L, ( �) l,_,\,) V; 6 
h-1 r

6 

� A 1.S e �Jx�cl x
6 I::, ,f\ () 

-135-



where the last form follows from applying parity 

arguments to the integrand. Now one can change 

the integration variable by 1�
1 

= 3d�xi and use 

The remaining integral one can expand according to 

the asymptotic formula /Ab65,page 298/ 

Substituting all this to the last expression for I1 (J)

yields the result 

<E2,1) 

where 

<E2.2) 

and 
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(E2..3) 

The integrals 1
2 3 4 (J) can be obtained from I 1

(J)
' ' 

by differentiation according to appendix 01, 

In the same way as above, ·one can derive the fol lowing 

formula for the integral I
5

(J):

(E2.4) 

where 

F 5 l 1-s, J ) "'f l- 1 J° ( � � �) \ J � i) f 5 h.s, 6 , J l
6 =-o 

<E2.5) 

f s l 1-S 1 6 1 J ) =f l - 1f ( is+_�) ( J � 
6 

) 1 f\ Sc l.S
\'\�O 

Again by defferentiation one obtains the integrals I
5

(J)

where 

<E2.7) 
J-6-l

and 

[x J 

f 'I, h. S I 6 I j ) cc� (_ - \) n ( ;\ +_ �) ( J -I'\() - '.L) ! Y\ ,0 )_ S

).. 

I10 (J) = dii(j)/d(d ) • Here the notation

means the integer part of x. 
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Now I 11 ( J)

'l. 

= dI 13 <J)/d(d ) , and for 

one has 

<E2.8) 

where 

<E2.9) 
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F. THE BASIC TRANSITION MATRIX ELEMENTS

The transition operator 1s , and 

the N's below are the normalization constants of eq, 

(Il,3,1), For the r band there ·are two kinds of matrix ele

ment depending on the evenness or oddness of the angular 

momentum of the initial and final states, This 1s due to the 

fact that the denominator of eq, (II.6.6) goes to zero if M 

= 0 and one of the J's is odd. When both J and J' are even 

or odd the formula with M = 0 is the simplest to apply, 

Furthermore, the matrix elements <J'=oddl IJ=even> are not 

tabulated. The transition probabilities 

B(E2; J=even ---> J'=odd) 

are calculated by noting that /Li66/ 

(F.1) (j' II T (?.) II j) = (-1)j-j' (j II T (A) IIJ' )*

where A 1s the degree of the spherical tensor T 

For M = 0 one has : 

<J' IT <E2) IJ> = <J IT <E2) IJ' >

So, the matrix elements needed in (II.6.9) are 
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1.(
1..

J J') (J_ J J') } 
+J o o o l

5 lJ) + i.-2. o I 1 LJ 1 l

(E1..) 
* <r, 0 J' o!T

0 lr-,
0 Jo>� e Nr 0 lJ')N 00 \J)d(2.J+1)x

(J_ j J'){ X l 2-J I 1- 1 ) 0 0 0 \ J 1-1 ) [ I 1 ( j ) + I 1 ( JI) J ++ 1-( 1 -J")[ I,_ (J) + I ,.. lJ')] + J '-

[ T,,l J)+ r, ( J')]}
</ I l (E i.) I 

> - � ( /) )
, I' 0 J o . TO . y0 J � ever, o - e N 

00 
J Ny, l J x x d \ 2- J + 1 ) ( 2-J ' + 1 ) ( � � ;

1 
H ( � � � 

1 
) [ ( :L - J ,_ )I s l J ) +

(l. J J') + d ,_ I" lJ )] + 2. -1. o [I,_(J')-I,lJ')] +( l. J /)[ 1\ • I"\ J.. ·Jl + G -)__ :,__ (1-J !I 5 lJ ;+J IblJ') J
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G. THE IBA-1 PARAMETERS OF THE FITS !N

Sm, Gd, Er and Yb REGIONS 

The phenomenological forms of the iBA Hamiltonian

and the transition operator read 

HIBA = EPS· �,
-l.

+ 1'-z • ELL· L +

+ S·OCT·T; • S•HEX•T: 

T;;�> = E2SD•<dt s + s t J) + <S>-½.E2DD{d\;J :l.. 

Aeff =Zeff+ N ; A= Z + N ,where 

N is the neutron and Z the proton bo5on number, 

HIBA and are taken from ref, /Li83d/ 

The energy parameters are al 1 in �eV and the 

transition probability parameters in eb . 

I ISOTP.: 146S \ 148S i 150S I I 
m, m\ m 152sm l54Gd 162Er 164Er 1166Er

i I ' 

JAe-<=f 
! 
!A •�•1 �t

! 
)EPS I 725I 

=:-t1..= s\;t�=c 
I 

2645\ 1000

: 
� t "t =1 1.7* 4 � 1 ),+;-=) �..,.,,,"' \01.'-�1•1'b 

I ;:. ,s 
I 

96,6 o.o 100 ,83.921100 I 
I 

168 ! • -,- I 1 ""2 i 
Er 

l 
l · "'Y!:, [ '"' Yb I 

I 
' 

I I �+·) � i:l.14 +10-=14\/\ � f,<v• 1b 

105 80 ,'J o.o

I \P.:.!R 17 ,268,1138.45 -2.86
i 

-2.88
I , 

30 . 83 I 35. 20 137 . .l 124. 95 ! o.o -1.00

\EU .. 
I 
I 
I 

-24

QQ i 25 

OCT 13 

HEX -2 I 

E2Sw 

-E200 I I- I 

I 

-57.5
,

-19,8 0.76 8.98 

67.s41-2s.9 -39,1 -38.6
I 

-7.211 5 , .�. -� 11. l 7.03 
I 

-104
1

-31.S -4.04
1

-2,25

- 0.11110.214 0.239

- \1.oos\o.215\o.1s2

I 

i 7.65 7.29 8.31 8, 11' 6.0 S.82

-27.7 -27.2 i-16. 1 -22,7 -25.0 -23,0

4,28 1. <15 1.90 -0.55 8.0 7.55

-11.9 -1.!,6 -12.0 -13,1 -3.0 -d,0
i 

-

I 
- - - :0.135 0. 132

i0.2:J3-
I 

-
I 

- - 0.15<1 
: 
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BAND 

0 

t 

H. TABLES FOR THE EPM ENERGY LEVELS

IN THE Sm, Gd, Er ANO Yb CHAINS

Tables H.1 - H.4 list the 4 and 5 parameter EPM energies 

for Sm, Gd, Er and Yb chains. The isotopes 142•144sm

are not tabulated because of the lack of sufficient experi

mental data. The isotopes 146-152sm are tabulated in

table IV.3.1., 162-168Er in table IV.3.6 and 172Yb in

table !V,3.7 . An asterisk indicates a fitted level. 

154sm 156sm 150Gd

J EXP. EPM EXP. EPM EXP. 
I 

EPM 
4 I 5 4 I 5 4 5 

76 ... 76� 
• 

618� 2 82 83 82 76 638 636 
4 267 269 267 (250) 249

"' 
250;,; 1288 124i� 1338* 

6 544 545 546 (518) 508 513 1937 181�� 2001 "' 

8 903 897 904 (878) 837 857 2768 2371 2631"' 

,10 1333 1311 1330 I --
I 1224 1276 (3288) 2912 3267 

0 1100 1099 1098 1068 1068" 1068' 1207 1230' 1176>t 
2 1178 1183 1180 -- 1138 1181 1518 1784 1615" 
4 (1371) 1380 1371 -- 1301 1440 1700 2011 2389 
6 -- 1686 1671 -- 1557 1825 -- 2585 3312 
8 -- 2090 2075 -- 1904 2297 -- 3190 4329 

110 -- 2576 2570 -- 2333 2837 -- 4404 5399 
2 1440 1442 1440 1441 1441' 144P' 1430 1404 1<135" 
3 (1540) 1523 1520 -- 1512 1532 1988 20141 1899'1' 

4 (1661) 1633 1627 -- 1607 1657 (2080) 244712007 
5 -- 176d 1756 -- 1723 1802 -- 2653 2636 
6 -- 1932 1918 -- 1867 2002 -- 3103\2760 

EXP. 

344 
755 

1227 
1747 
2300 

615 
931 

1282 
1668 
2139 
2691 
1109 
ld34 
1550 
1861 
1998 

152Gd

EPM 
4 1-s 
3611'4 347

"' 

732J 741 ... , 
1083J 1127
1428� 1522 
17711 1934 

71� 634� 
92 . 878°1 

1275 1301:{. 

1699" 1839 
2168j2424 
2658,3029 
118�1132� 
1425 1358 
1658,1644; 
1853, 1843. 
212312235 

7 -- 2103 2091 -- 2021 218d -- 3278134111 ,( 239d) 22931 2374 
I RMS 

I 
-- 8.4 1.6 1 -- 0 0 -- 1951 240 -- 167, 176 · -- C 12) (12) -- (17) (8 .8) -- < 237 J1< 218) -- (16dJ,\C17ui 

TABLE H.1 
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I
BAND 

I 

I I 

('::i 

l'l 

J EXP. 

2 123 

4 371 

6 718 

8 1144 

10 1637 

0 681 

2 815 

4 1048 

6 1366 

8 1757 

10 2194 
i 
i 2 996 

I 3 1128 

I d 1264 

I 5 1432 

! 6 1607

7 < 1810 l

RMS 

EPM 

4 I s I 
129' 12l 

381� 376l 

695� 711� 

104i 1089 

1417� 1498 

EXP. i EPM 

89 

288 

4 ! 5 

91 ;., 89 * 
,,, ;i 

293 290 

585 586 589� 

965 94$ 96l' 

1416 135(} 1400
1 

EXP. 

79 

261 

539 

904 

1350 

711� 718 10119 I 105t 1os<i� 1196 

8221 81l 1129 112/ 112l 1260 

1054, 1040lo 1298 1290� 1282 i 1407 

1386113ao:i. 1s40 1s39" 1s2l --

179ii 1816 I 1848 1867"1 18sl --

22111� 2318 I 2220 2267, 2269)1 --

10d' 10171 11sa 117s111911· 1187 

1122' 11194 12as 12s6j 125l 126s 

127a' 1257j 1355 1362j 1359� 1358 

11120411110·1 1507 1484, 1480
,;, 

1481

164i11622116114 . 1646, 1633� --
� • I � -� 1798:1797 (1850)j 1798j1792 --

I ; 
64 53 -- I 23 i 18

(62) (51) -- I (26) i <22) --

TABLE H,2 
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EPM EXP. 

, 4 ! 5
I 81 � 79 )< 7s 

I 26l 26£ 252 

540� sai:"" 514 

' , 888
,

906
� 

1293 13<17 

868 

1190 1193 --
� .!i< 1261 1259 1010 

1a2l u1l < 1185 J 

1697 1657 --

2070 2002 --

2545 2454 --

1190� 1194)d 

➔ � 1264 1264 ·, 

! 136r4 1358�. 
I 

988 

1058 

1148 
� � 1483' 1474'1 --

1620 16121 --

1791 17741 --

18 3.5 --

-- I --

EPM 

4 5 

78 "' 78 'i.-

252
x 

252
:\i 

so3" sol 
'I; � 

814 835 

1174 1221 

876 8.17 

957' 945\ " � 
1173 1203 

1489 1573 

1911 2071 

2428,2681 

9721 980..,.
1 

104 ?J 1064'"1

11281150'tj 

1274 1313 

1386 1442 

1589 1663 

29 26 

(27) (25)



I=, 
A. 

N 

D 

J EXP. EPM l EXP. 
1------. 

EPM I EXP·! EPM 
1-----

EXP ·I EPM
�-----J 

EXP.J EPM 

4 5 4 5 ! I 4 5 
I I 

361 341� 192 202
� 

189
� 

126 

772
-.; 

828� 527 523 546 390 I 
_ii .� ..'I :;:J 1199 1344 970 893 980 767 

131'1 125' 79

394-1,; 393� 260

739' 768
1 541 

4 

81,j 

� 
260 

'I: 
518 

2 344 

4 797 

6 1340 

8 1959 163l 185; 1493 128l 1448� 1228 1140
,i 

1221� 913 833 

10 2633 2a76 2367 2073 1707 1945 1760 1587 1739 1374 �192 

12 3315 2526 2886 2681 2144 2471 2339
1

2072 2315
i 

14 3837 2982 3417 3190 2597 3025 2931 i2590 2945! --

-- �585 

i2010 

5 4 ! 5

79, 76 77 '- 76 ::t: I
J ""I itl 

260 I 253 254 1 253 '! 
5384 526 5211'1 52? 

999 j 889 877, 89l' 

1329 i 1336 129911349 I 

18131 -- 11 77911882 ' 

23431 -- !230412483 

o 930 948
Yi 

953� 806 81s"' a1l 894 i 892
;,, 

8881

2 1221 1249� 1170"' 989 10of 960
-;r, 

1008 1104211 1015, 

891 

960 

89t 894� 1487 

9d 95l1561 

,'1 '-: 

1494 1495 
'>I ii; 

1556 1556 
:._ 'I '<. :� I � :¥.· 

4 1546 1686 1593 1257 1368 1298 -- 1378 1320 
r-, I 

I 6 --

< 1123)1145 

-- 11433

1106 j 1715 

1335 j 1909 

1700 1700 
'<'. t: 

l 8

!10

! 2

i 3

i 4 
'{, 

I : 
I 7

2212 2204 --

-- 2779 2920 --

-- 3365 3688 --

930 94l 952 820 
'I '4 

1243 1235 1180 1043 

I 
• � 

1351 11397 1375\1184 

I �' 
1663,17111674 --

-- !1845 1856 --
1 

-- :2211 2240 --

1860 1832 -- 1879 1811 1926 1927 

2429 2511 

3043 3283 
'.( ··,c 

853 852
J 

102! 10oo''J 
117,g 11631
1417

1
13961

1565
,
1581 

1875 1901 

-- 2505 2477 -- 11821 1656! -- 2233 2238 

-- \3217 3287! -- 2298 2064i -- 2617 2636 
'I: .'tt � '<,; 

·� ,'I" 

855 861! 86f; 932 934 93811634 1643 1644 

987 991

1

: 979! 1010 10013
"" 

1007� 1709 171/ 171t' 
! � �: � � 

-- 11144 1131j1101 i1101 1098 1805:1803 1802 
I I , ; I '\l � 

-- '1348 13251 --
,

11228 1212:1926 1 1914 1914
° 

-- 1537 15321 -- 11347 13561 -- 2051 2049 
! I 

-- 1811 1801! -- 1530 1507\ -- 2202 2204 

RMS -- 345 180 -- 254 86 -- 144 11 -- 63 15 -- 13 9.2 

-- I -- -- -- -- < 61 ) < 15 > -- --

TABLEH..3 
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I 

I 

I 
I 

;
I 

I 

I 

i 164Yb 166Yb 168Yb
i 170Ybi I ' 

BAND j EXP. EPM I EXP. 

I 4 5 

21 12J 
� 

124 123 102 
ii. �

4' 386 386 389 330 

� 6 760 733"' 758� 668 

8 1222 1137 1200 1098 

10 ! 
I

1752 1584 1700 I 1606
I 

I 
ol 967'1 966

l
1043) 976 

10941 1086 --2 1074 

4 (1323) 1382 1 1370 --
111:, 6' 

8 

\10 

i
2: 

I 
3 

4 

5 

6 

7 
i 

RMS I 
I 
I 

--

--

--
864 

1004 

1824 1824 

2397 2441 

3067 3193 
' 

8761 8761 

. � �9941 991 I 

..J '<i 
1145 1142

1
1140: 

C 1365): 1326, 1324 '. 

--
--
--
--

i i i

!1519115301
! I

I 1764j 1781

! 61 I 19

I (59) 
I

(25) 

--

--

--
932 

1039 

1163 

1328 

1482 

1725 

--

--

i EPM EXP. 

4 I 5 

lO
M 

102" 88

331
"-

331 286 

649 666 585 

1 . 1033 1084 970 

1466 1567 I 1424 

104l 1043� 

1147 1139 

1382 1365 

1751 1730 

2249 2239 

2857,2888 

9371 940
"' 

1035j 103/ 
. '\; 1163 I 1160 

C 1156) 

(1233) 

1391 

--

--
--
984 

(1067) 

< 11 71) 
--t 'lil 

131911315 j(1302) 

1496
,. 

14984 ( 1445)

1706 1710 I --
47 15 --

(45) (14) --

TABLE H.4 
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EPM EXP. 

: 4 5 
I ... ,

88 :I>' I 89 84 
... � 

287 287 277 
>IC �: 

575 584 I 573 

932 9631 963 

: 1338 
I 

1<104 ! 1437

1154 1158 ! 1069 
-.. 

122llc 1146 i 1228 

1401� 13931 --
i 

1671 1655 --
2041

1
2019 --

2512 2492 --
987 999'fl 1139"

1065, 1065 1225 
:1 

1167�(1328) 1170 

1296· 1291 ! --
1449 1443 --

f 1616 ! 1611 --
I 

36 I 8.2 --
(26)

i 
(7.0) --

l 
EPM I

I 

4 I 5 I

87 ""I 84 'if 

2811
�. 

278 ! 

56:
1

574'; 
922 961�! 

1336 1426 I 

... 
1069 �i 1077 

1169 1139 

1390 1302 

1738 1560 

2208 1914 
I ! 2788 2363 
I 

/ 114o'111a4 ... 
! '<I "<: 
! 1227 j 1219

133211320 
I 

1480 1443 

1621 1597 

J 18,3411763 

39 I 4.8 

(35)1(5.5)



I. Special References for the Experimental Energy·

and Electromagnetic Data 

NDS:Nuclear Data Sheets 

142sm: J.K.Tuli, NDS 25 (1978)53

G.L.Struble et al. ,Phys.Rev,C23 (1981)2447

144sm: J,K,Tuli, NDS 27 (1979)97

146sm: T.W,Burrows, NDS 14 (1975)413

W,Oerlet et al,, Phys.Rev,C12 (1975)417 

148sm: B.Harmatz and J.R.Shepard, NDS 20 (1977)373

lSOSm: C.M.Baglin, NDS 18 (1976)223 

O.R.Zolnowski et al., Phys.Rev,C21 (1980)2556 

152sm: C.M,Baglin, NDS 30 (1980)1

154sm: B,Hermatz, NDS 26 (1979)281

156sm: T.W.Burrows ,NOS 18 (1976)553

lSOGd: C.M.Baglin, NDS 18 (1976)223 

O.R.Haeni and T,T,Sugihara, Phys.Rev.C16(1977)120 

152Gd: C.M,Baglin, NOS 30 (1980)1

154Gd: B.Hermatz, NDS 26 (1979)281

156Gd: T.W.Burrows, NOS 18(1976)553

Jan Konijn et al,, Nucl. Phys.A352 (1981) 191 
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158
Gd: M.A.Lee, NDS 31 (1980)381 

160
Gd: J.K. Tul i, N0S 12 0974)477 

S.A.Elbakr et al., Phys, Rev.C10 (1974)1864 

156
Er: See the references in section IV,3.C 

158
Er: M.A.Lee, N0S 31 (1980)381 

160
Er: See the references in section IV,3,C 

162
Er: A,Buyrn, NDS 17 (1976)97 

164
Er: F.W.N.0eBoer, Nucl .Phys,A169 (1971)577 

166 
Er: A.Buyrn, NDS 14 (1975)471 

168 
Er: L,R,Greenwood, NDS 11 (1974)385 

170 
Er: M.R.Schmorak and R.L.Auble, NOS 15 (1975)371 

164 
Yb: A.Buyrn, NDS 11(1974)327 

166 
Yb: A,Buyrn, N0S 14(1975)471 

168 
Yb: L.R.Greenwood, N0S 11 (1974)385 

170
Yb: M.R.Schmorak and R.L.Auble,NDS 15(1975)371 

172
Yb: L.R.Greenwood, NDS 15 (1975)497 

174
vb: M.M.Minor, N0S 10 (1973)515 

-148-



/Ab65/ 

/Al55/ 

/Ar70/ 

/Ar81/ 

/Ar82/ 

/Ay74/ 

/Ba??/ 

/Be78/ 

/8e79/ 

/BI79/ 

/8052/ 

/Bo75/ 

/Bo82/ 

/Br68/ 

/8y81/ 

/Ca73/ 
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