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Cortical networks show characteristic recruitment
patterns after somatosensory stimulation by
pneumatically evoked repetitive hand movements in

newborn infants
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Controlled assessment of functional cortical networks is an unmet need in the clinical research of noncooperative subjects, such as
infants. We developed an automated, pneumatic stimulation method to actuate naturalistic movements of an infant’s hand, as well as
an analysis pipeline for assessing the elicited electroencephalography (EEG) responses and related cortical networks. Twenty newborn
infants with perinatal asphyxia were recruited, including 7 with mild-to-moderate hypoxic-ischemic encephalopathy (HIE). Statistically
significant corticokinematic coherence (CKC) was observed between repetitive hand movements and EEG in all infants, peaking near the
contralateral sensorimotor cortex. CKC was robust to common sources of recording artifacts and to changes in vigilance state. A wide
recruitment of cortical networks was observed with directed phase transfer entropy, also including areas ipsilateral to the stimulation.
The extent of such recruited cortical networks was quantified using a novel metric, Spreading Index, which showed a decrease in 4
(57%) of the infants with HIE. CKC measurement is noninvasive and easy to perform, even in noncooperative subjects. The stimulation
and analysis pipeline can be fully automated, including the statistical evaluation of the cortical responses. Therefore, the CKC paradigm

holds great promise as a scientific and clinical tool for controlled assessment of functional cortical networks.

Key words: corticokinematic coherence; EEG; functional networks; passive movement stimulation; perinatal asphyxia.

Introduction

A pertinent evaluation of the newborn infant’s cortical function is
a persisting challenge for both neurodevelopmental science and
pediatric clinical work. An essential aspect of this challenge is
the lack of ability to cooperate combined with limited behavioral
repertoire, especially in the infants with acute medical adversities.
Yet, it has been clearly established that estimates of the early
brain function, such as electrophysiological measures of the cor-
tical function via electroencephalography (EEG), would provide
the most sensitive prediction of neurological recovery or later
neurobehavioral development (Walsh et al. 2011; Awal et al. 2016;
Fogtmann et al. 2017). Currently, early electrophysiological assess-
ment after medical adversities is focusing on the recovery of
normal EEG background patterns or the emergence of the sleep-
wake cycle (Walsh et al. 2011; Olischar et al. 2013; El-Dib et al.
2014), both of which are considered to be surrogate markers of the
global brain health. In addition, a delayed or absent somatosen-
sory response in the primary somatosensory cortex to electrical

stimulation of a peripheral nerve is known to predict clinical
outcome accurately in severe disabilities (Nevalainen et al. 2017;
Pittet-Metrailler et al. 2020).

General interest in cortical electrophysiology is increasingly
focused on the higher-level brain functions, such as attention,
visuospatial skills, language, and memory. It is well established
(e.g. Bassett and Bullmore 2009; Jung et al. 2018) that the higher
brain functions are essentially network processes, and they rely
on large-scale cortico-cortical interactions which can be mea-
sured using electrophysiological modalities, such as EEG or mag-
netoencephalography (MEG). Such functional networks can also
be observed in sleeping infants, and recent studies have shown
many clinically meaningful changes in the cortico-cortical net-
work properties, e.g. frequency-specific patterns of dysconnectiv-
ity, after preterm birth (Tokariev et al. 2019; Yrjola et al. 2022)
or fetal drug exposures (Tokariev et al. 2022) for instance. There
is, however, a striking mismatch between the currently available
clinical methodology for newborn neurological assessment versus
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the need for controlled assessment of cortical networks in new-
born infants.

Indirect evidence from long-latency somatosensory responses
suggested that cortical information spread may correlate
with later neurobehavioral outcomes (Rahkonen et al. 2013;
Nevalainen et al. 2015); hence, the somatosensory system could
potentially be utilized to assess cortico-cortical network integrity
for predicting later neurodevelopment. This avenue is essentially
blocked by practicalities: the conventional somatosensory
response paradigm with electric nerve stimulation is unnatural
and its combination with EEG recording comes with certain
technical challenges, including potential issues with electrical
safety. Meanwhile, many pragmatic issues compromise the
response analysis by digital offline averaging as well as its
essentially visual interpretation from the conventional, very
small-amplitude somatosensory response waveforms.

Most of these challenges could be overcome by assessing
sensory brain responses to well-controlled, naturalistic, repeated
stimulation in frequency domain (Smeds et al. 2017; Ahtola et al.
2020), which yields responses robust to environmental noise
(Bourguignon et al. 2016) and even allows statistical testing of
the response significance (Kabdebon et al. 2022). We showed
recently on an infant visual system study (Ahtola et al. 2020)
that repeated stimulation can be used to measure the spread
of the cortical responses from the primary visual cortex to other
cortical areas. We now suggest that a comparable paradigm could
also be viable with somatosensory stimuli for measurement
of corticokinematic coherence (CKC) that emerges from the
coupling between cortical activity and limb kinematics and
reflects processing of the proprioceptor afference in the primary
sensorimotor cortex (Piitulainen et al. 2013; Bourguignon et al.
2015). CKC methodology has already been widely developed for
adults (Piitulainen et al. 2013, 2020; Bourguignon et al. 2015) and
a recent proof-of-concept work using manual hand movement
stimulation suggested its applicability in infants as well (Smeds
et al. 2017).

Here, we set out to study how infants’ cortico-cortical networks
can be examined in EEG responses to somatosensory stimuli using
repeated naturalistic hand movements. We developed a clinically
applicable, mechanical, pneumatic stimulation system for mov-
ing infant’s fingers accurately and automatically (cf. Piitulainen
etal.2015) and used the CKC paradigm (Bourguignon etal.2011) to
measure coupling between somatosensory afference and cortical
activity (Smeds et al. 2017). In addition, cortico-cortical network
recruitment related to CKC was studied by analyzing directional
brain interactions using phase transfer entropy (PTE; Lobier et al.
2014) measures. Finally, we examined the technical robustness
of the EEG responses to common sources of recording noise
present in infant study environments, as well as the physiological
sensitivity to infants’ vigilance state and clinical condition.

Materials and methods

Participants

We studied a cohort of 20 infants (10 females) that were recruited
for another study exploring clinical signs of mild perinatal
asphyxia (Tuiskula et al. 2022) after larger recruitment from the
neonatal units of Helsinki University Children’s Hospital and Jorvi
Hospital (Espoo, Finland) during 2018-2019. The infants were born
full term at gestational age of 40.4+ 1.2 weeks (mean =+ standard
deviation, SD), while their postnatal age at the time of the
recording was 17.1+11.3 days. The project was approved by the
Ethics Committee of the Helsinki University Central Hospital, and

parents or guardians of the participants gave an informed consent
for the study and the publication.

The included infants met at least one of the following condi-
tions: umbilical arterial cord pH below 7.10, 1-min Apgar score
not exceeding 6, need for assisted ventilation or cardiopulmonary
resuscitation at birth), but no other apparent reason for distress at
birth. The exclusion criteria were the presence of known congen-
ital anomaly or chromosomal abnormality, indication of another
neurological condition, or obvious infection.

The infants were categorized into subgroups based on the
evolution of neurological symptoms during their first 6 h after
birth. The attending neonatologist diagnosed the presence and
grade of hypoxic-ischemic encephalopathy (HIE1-3; Sarnat and
Sarnat 1976). If the criteria of HIE was not fulfilled, the infant
was categorized as HIEO (perinatal asphyxia without hypoxic-
ischaemic encephalopathy). The majority (N=13) of the infants
within the cohort belonged to the HIEO category. Yet, 7 cases were
diagnosed with either mild (HIE1; N=5) or moderate (HIE2; N=2)
HIE. Infants with HIE3 were excluded from the study. This back-
ground information is presented individually in Supplementary
Fig. S1 together with individual CKC measurement graphs.

The infants were also examined with magnetic resonance
imaging (MRI) soon after the birth, at the median age of 2 weeks
(interquartile range: 10-16 days), using a 3T scanner (Siemens
Skyra, Siemens Healthcare, Erlangen, Germany). Our MRI protocol
included axial T1- and T2-weighted images of the brain (details
described in Tuiskula et al. 2022). A pediatric neuroradiologist,
masked to the clinical condition, reviewed the MRIs following the
scoring protocol of Weeke et al. (2018). The cohort was further
categorized into subgroups based on whether they had abnormal
findings in gray matter (GM; N =4) or white matter (WM; N=8).In
total, 50% of the infants within the cohort (N =10) were found to
have abnormal findings in white and/or gray matter.

EEG recording and movement stimulation

The recording setup (Fig. 1A and B) consisted of the commercial
EEG system and a custom-made movement actuator (‘stimula-
tor”). The stimulator included a pneumatic pump (FIA AB, Lund,
Sweden; Supplementary Fig. S2) that could be programmed to
generate periodic inflate/deflate cycles of a rubber bulb (“bal-
loon”; taken from a regular laboratory pipette) at constant 1.78 Hz
frequency (interstimulus interval 561+2.9 ms as averages of
mean and SD in the recordings). As the bulb was wrapped inside
the infant’s palm, it exerted passive finger extensions and flex-
ions (see Supplementary Video S1). The stimulator pump was
stored in an aluminum case with layers of polyurethane foam to
provide acoustic insulation so that it would attenuate most of the
operating noise that could elicit a concomitant auditory response
component.

The first harmonic of the fundamental stimulator frequency
(3.56 Hz; later referred to as the “response frequency”) was used in
the CKC analyses, because each movement cycle (comprising one
inflation and one deflation of the pump) induces 2 somatosensory
afference volleys arising primarily from the muscle afferents acti-
vated by extension and flexion of the fingers separately, and thus
both likely contribute to the evoked brain response (Piitulainen
et al. 2013, 2020). A total of 4 min of continuous movement
stimulation was delivered to each hand, one at a time. Addi-
tionally, we recorded a control condition with the stimulator on,
but the balloon removed from the infant’s hand to test whether
any remaining pump noise (acoustic or electromagnetic) could
lead to detectable brain responses when using the present kind
of EEG analysis pipeline. These epochs also served as a general
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Fig. 1. Experimental setup and illustrated analysis pipelines described in the method. A) The setup consisted of EEG recording using an EEG cap and
balloons wrapped into the infant’s palms for delivering repetitive stimulation at 1.78 Hz frequency. B) The stimulation balloon before and after wrapping
it inside the infant’s palm. The tube on the right side of the balloon was connected to the pump that was at about 2 m distance from the infant.
C) Responses of CKC were detected from EEG using ITC at the first harmonic of the stimulator frequency. The EEG was made reference-free using
current source density transformation, divided into epochs based on the trigger from the stimulator, while wavelet decomposition was used to extract
the analytic phases of the signals at different frequencies. D) Cortical CKC networks were evaluated from the EEG transformed into cortical parcel
signals and filtered around the response frequency (3.56 Hz). Directed PTE was calculated between analytic phases of all signal pairs and used to
quantify directional connectivity in the functional networks between the parcels. The locations of the selected channels in the trace examples in (C)

and (D) are marked with overlaid boundaries in the topographical figures.

baseline in the statistical analyses when needed. For one infant,
we could not perform this control recording at all due to technical
challenges.

The EEG signal was acquired at 2 kHz with a clinical NicoletOne
EEG system (Natus Medical Inc, Pleasanton, CA, USA) following
the hospital’s routine protocol for neonatal EEG (as in Nevalainen
et al. 2017, 2019). We used an EEG cap (Waveguard, ANT-Neuro,
Berlin, Germany) with 21 sintered Ag/AgCl electrodes positioned
consistently according to the international 10-20 standard: Fp1,
Fp2, F7, F3, Fz (as a reference), F4, F8, M1, T3, C3, Cz, C4, T4, M2,
T5, P3, Pz, P4, T6, O1, and O2. An analogue trigger output from

the pump was connected to an auxiliary DC input of the EEG
amplifier to provide timestamps for each inflation event, i.e. the
synchronization between the EEG recording and the stimulation
(see Fig. 1C and Supplementary Fig. S2). The data were exported to
EDF+ files for further signal processing using customized scripts
in MATLAB (MathWorks, Natick, MA, USA) environment.

EEG preprocessing and visual inspection

The EEG was pre-filtered within 0.5 and 30 Hz with a combination
of high-pass and low-pass digital filters (Butterworth IIR zero-
phase forward and reverse filter, order 5), then resampled to
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250 Hz to reduce the computational load, and finally segmented
into 1,100 ms long epochs, always starting 200 ms before a stim-
ulation trigger event (inflation) and ending 900 ms after it. Each
segment was detrended by subtracting the local mean value from
the signal. Alternative epoch durations were also tested during the
development of the CKC algorithm. Results of this optimization
are presented in Supplementary Fig. S3.

With average stimulation frequency of 1.78 Hz an epoch of
the chosen length comprised 2 full stimulation cycles. No overlap
between the consecutive epochs was allowed. The recordings were
visually screened for high-amplitude artifacts by an experienced
EEG reviewer (author SL). Only recognizable EEG was taken into
further analysis as the epochs that coincided with the artifact
segments were discarded (8.7% + 11.9% of all epochs).

We wanted to assess how the prevailing vigilance states could
affect the CKC, and hence, the sleep cycles within the recordings
were visually scored based on EEG activity and trace alternant
sleep characteristic. The recordings of right and left hand stim-
ulations were classified independently using the standard sleep
classes of newborns: active sleep (AS), quiet sleep (QS), and awake
(Walsh et al. 2011). If none of the sleep classes covered more than
80% of the recoding alone, it was labeled as “undetermined” and
excluded from the subsequent sleep state comparisons (25% of
cases).

The overview of the EEG analysis workflow is presented in
Fig. 1C and D. After general preprocessing steps, it is divided
into 2 analytical branches: i) to determine whether (or not)
the inspected recording contains a statistically significant CKC
response (Fig. 1C) and ii) to evaluate the functional connectivity
and cortical networks activated by the movement stimulation
(Fig. 1D).

Response detection from scalp signals using
a CKC metric

The EEG responses evoked by the movement stimulation were
estimated using CKC at the frequency band corresponding to
the stimulation (both movement and control stimuli). Our imple-
mentation of CKC was based on inter-trial phase coherence (ITC)
that yields a measure of phase-locked synchronization between
repeated trials (i.e. epochs) in relation to the stimulus events
(Tallon-Baudry et al. 1996; Delorme and Makeig 2004) using an
equation:

ITC = | - %eien
N n=1 ,

where 6, is instantaneous phase within a trial n and N is the total
number of the trials. This approach deviates slightly from the
conventional CKC paradigm, where the coherence is computed
directly from the coupling between the movement kinematics
(accelerometer) and cortical activity (M/EEG). Instead, we esti-
mated the coherence with methods routinely used in evaluation
of steady-state evoked potentials and event-related potentials in
time-frequency plane (e.g. Brickwedde et al. 2020).

First, EEG was transformed to signals of current source density
(CSD) using an algorithm based on spherical spline interpolation
and scalp surface Laplacian (Perrin et al. 1989). CSD estimates are
reference-free, and hence, the technique improves the accuracy
of localization of the responsive areas at scalp level. To empha-
size this, the transformation was performed with medium spline
flexibility (m=3) without smoothing (A =0).

We chose an analysis pipeline that would allow for adapting
to varying temporal properties of the evoked oscillations (e.g.
stationarity; Keil et al. 2022) To this end, we decided to calculate

the ITC from the instantaneous phase components of the signal
that we extracted using convolution with a set of Morlet wavelets
that decompose the EEG into complex-valued time-frequency
(t-f) plane. The wavelet frequency bands covered a range from
0.5 to 12 Hz in 40 logarithmic steps. Given the study design and
prior results (Smeds et al. 2017), we were especially interested in
the activity at the first harmonic of the fundamental stimulation
frequency (3.56 Hz), which was measured by setting one frequency
bin to match exactly this frequency (Mujunen et al. 2021). In
the design of the wavelet decomposition, we prioritized spectral
resolution over temporal resolution (Delorme and Makeig 2004).
As a result, the full width at half maximum accuracy of the
transformation was 1.18 Hz and 740 ms at the response frequency
band (Cohen 2019).

From the t-f representations of the responses (group averages
presented in Supplementary Fig. S4), we could see the evoked EEG
response to encompass strongly “steady-state-like” characteris-
tics with the highest ITC values concentrating mainly within a
narrow response frequency band. We wanted to quantify this acti-
vation by devising a channel-specific CKC metric. It was defined
as an average of all ITC values of the t-f decomposition from the
response frequency (3.56 Hz), excluding the values of the first and
last 200 ms of the epoch length. CKC values range between 0 and 1
representing the overall magnitude of the elicited EEG activation
time-locked to the stimulation.

Statistical significance related to a given ITC value was cal-
culated using parametric circular statistics (e.g. Kabdebon et al.
2022). Rayleigh test evaluates the probability that a single coher-
ence value results from a random phase distribution, i.e. phases
uniformly distributed around a circle. Assuming that the phase
distribution is unimodal and the data are sampled from the von
Mises distribution, we used an equation (Berens 2009), which
estimates the P-value as:

14+4N+4N? (1-1TC?) - (1+2N)

)

P=e

where N is the number of trials. The approximation is valid,
provided the number of trials is sufficiently large (Cohen 2014).
We determined the significance of the CKC by averaging all the P-
values of the ITCs within the aforementioned t-f range. An alpha
level of 0.01 was used as a threshold for statistically significant
CKC response detection. When needed, the false discovery rate
(FDR) correction for multiple comparisons was performed using
the procedure by Benjamini and Hochberg (1995).

As seen from the equation above, in theory, the statistical
significance of the ITC-based findings could be dependent on
the amount of analyzed data and epoch division. In our analysis,
we assessed the technical trade-off between recording length
and reliability of response detection with a simulated test that
repeated the CKC response detection using an increasing number
of epochs included (taken cumulatively from beginning of the
recordings).

Influence of artifacts on the response detection
performance

Neonatal EEG studies in the clinical environment are often
performed in suboptimal recording conditions. Interference
from external (e.g. electrical devices) or internal sources (e.g.
respiration and cardiac activity) may couple to the EEG acquisition
and results in signal artifacts and extensive noise (Keil et al.
2022). These technical adversities can be defeated only partially
by an expert technician (preparation of electrodes and cables) and
various post-processing techniques (filtering and signal
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decomposition tools). We wanted to test how our study paradigm
copes with such situations using simulated test scenarios where
authentic CKC recordings were deteriorated by adding various
kinds of artifacts (as in Résédnen et al. 2013).

To reproduce the test scenarios as realistically as possible,
the artifact signal components were extracted from previously
recorded example EEGs known to be specifically contaminated
by certain artifacts: i) electric muscular activity (EMG; frequency
band 5-70 Hz), ii) electromagnetic interference caused by mains
and external devices (2-125 Hz), iii) movement due to respiration
(1-30 Hz), and iv) electric cardiac activity (ECG; 2-35 Hz). We
used bandpass filtering to isolate the artifact from other sig-
nal components (cutoff frequencies above). Before superimposing
them to the CKC recordings, the extracted signals were first
normalized and then amplified by different gain factors to sim-
ulate different degrees of artifact coupling severity. After mixing
the epochs of our original recordings with the artifact signals
(summed together), the CKC response detection was repeated to
estimate how much the given artifact type and magnitude affects
the response rates.

Network analysis using cortical source signals

The functional networks associated with the evoked CKC
responses were analyzed at source space signals that provided
improved spatial resolution and separation of cortical activities.
The 21-channel EEG data were transformed into cortical parcel
signals using source reconstruction described with details in our
previous work (Tokariev et al. 2019). The transformation was
composed of a realistic 3-shell (skull, scalp, and intracranial
volume) head model segmented from an MRI of a full-term infant,
a forward solution calculated with the symmetric boundary
element method (Gramfort et al. 2010), and an inverse solution
generated by dynamic statistical parametric mapping (Dale
et al. 2000). Tissue conductivities of the segmented volumes
were set to 0.20 S/m for skull, 0.43 S/m for scalp, and 1.79 S/m
for cerebrospinal fluid. The procedure yielded 8,014 source
signal components corresponding to fixed source space dipoles
orientated orthogonally to the cortex surface. The source
signals were clustered into 58 parcels symmetrically across the
hemispheres and corresponding parcel signals were computed as
weighted mean of their activity (Tokariev et al. 2019). Each parcel
was categorized, based on its anatomical location, as frontal (F),
central (C), temporal (T), or occipital (O).

We used directed PTE (dPTE) to evaluate functional connec-
tivity and information flow between brain regions (Hillebrand
et al. 2016). It is an established measure of directional connec-
tivity calculated between pairs of phase time-series extracted
from the cortical signals using Hilbert transform. To focus on
the connectivity patterns specifically activated by the movement
stimulation, an additional set of filters (high-pass and low-pass
Hamming-window FIR filters, forward-backward, order 626) was
applied before the Hilbert transform to constrain the signals
tightly around the response frequency band (3.56 £0.3 Hz).

In the algorithm presented by Hillebrand et al. (2016), bidirec-
tional PTE (Lobier et al. 2014) values between signals x and y (PTEyy
from x to y and PTEyy from y to x) are normalized together to yield
a measure of dPTE that estimates the preferred direction (“bias”)
of the information flow:

PTE,y

PTEy = -0 .
dPTEy PTE,y + PTEx

The dPTE values range between O and 1, with a value of 0.5
indicating equal causality between the signals. dPTEs were cal-
culated between all parcel signal pairs, resulting in an individual
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58 x 58 interaction matrix (like in Fig. 1D) that comprises the
functional connectivity estimates (edges) between all the parcels
(nodes).

Based on stimulations with our source reconstruction model,
we knew that certain connections would have tendency to yield
“noisy” connectivity measures due to suboptimal number and
layout of recording electrodes (details in Tokariev et al. 2019). To
improve reliability of further analyses, these edges were iden-
tified (32% of all possible connections) and removed from the
interaction matrices using a binary fidelity mask common for all
recordings.

Consistent network

Directional connectivity data were analyzed both individually and
at group level. In the group analysis, we aimed to distinguish
the networks formed by the connections that emerged as the
strongest consistently within the cohort (details of the procedure
presented in Tokariev et al. 2019 and Ahtola et al. 2020). First,
the 5% of edges with the highest dPTE values were selected from
each individual interaction matrix. This proportion, later referred
to as k-value, specifies the expected size of the network. The
resulting binary arrays were summed over the group yielding
a matrix that shows the strongest edges for a given stimulus
condition at group level. Consistent network (CN) was determined
statistically from this prevalence matrix as the subset of edges
that survive an edge-by-edge binomial test (probability of success
was set to 5% corresponding to the k-value, statistical alpha level
to 0.05, and number of occurrences to 20 matching the number of
infants). FDR correction (Benjamini and Hochberg 1995) was used
to control for multiple comparisons.

Spreading index

While calculation of CN provided us a proxy for response net-
works at group level, we needed another approach to compare
the connectivity patterns between individuals. To this end, we
devised a novel parameter called Spreading Index (SI) that aims
to quantify the extent of the outbound-biased information flow
from an individually selected subset of parcels that respond most
prominently to the stimulation.

First, we created a reference distribution of surrogate dPTE
values by pooling together all parcel pairs from the control record-
ing of a single individual. Typically, these dPTEs were normally
distributed around the average of 0.5. Next, we compared each
dPTEyy (element in 58 x 58 matrix) from the movement stimula-
tion to the mean (1) and standard deviation (o) of the reference
distribution and calculated a standard Z-score:

dPTEyy —

Zyxy =
Y 2

The Z-scores can be used to distinguish connections that are
significantly different from the mean of the surrogate data at
a given alpha level using a right-tailed Z-test. We determined
individually a subset of 4 parcels, “source nodes,” that generated
the highest number of significant outbound edges (P<0.01)
from the contralateral hemisphere and, finally, calculated the
proportion between the number of significant edges and all
possible edges originating from these sources. The resulting
percentage is the SI that ranges between 0 and 100% and
reflects the extent of information spread from the primary source
nodes to secondary areas. Similarly to CKC calculations, SI can
also be extracted from the ipsilateral response components
by constraining the source node selection to the ipsilateral
hemisphere (in relation to the stimulation side). This was used
in the evaluation of the response laterality (see below).
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Symmetry of the response

Since movement stimulation was performed separately for the
right and left hands, the responses were also asymmetric and
allowed obtaining separate metrics for each stimulation side.
Hence, we could also assess symmetry of the response as a ratio
(0%-100%) between the lower and higher scoring sides. This was
hypothesized to be affected by unilateral brain damage.

We also wanted to assess hemispheric lateralization of the
response with respect to stimulation side. This laterality metric
was derived from a combination of the contralateral and ipsilat-
eral values for CKC and SI metrics and expressed as a ratio (0%-—
100%) between the contralateral value and the sum of the con-
tralateral and ipsilateral values. Laterality of 100% indicates that
the response is completely contralateral, whereas 50% implies
equal response in both hemispheres after unilateral stimulation.

Statistics

The pairwise group comparisons (based on clinical gradings, MRI
findings, or vigilance states) of continuous variables (such as
CKC metrics) were carried out using Mann-Whitney U test with
an alpha-level of 0.05. A more conservative alpha level of 0.01
was chosen for the detection of CKC responses. A FDR correction
(Benjamini and Hochberg 1995) was applied to control the family-
wise error rate stemming from the multichannel EEG data (g-
parameter set to 0.01).

Analysis software

All signal processing and analyses in this work were performed
using custom-scripted MATLAB routines (version R2018A) and
functions within several freely available MATLAB toolboxes.

EEG was preprocessed using FieldTrip toolbox (Oostenveld et al.
2011, https://www.fieldtriptoolbox.org) and transformed to CSD
signals using functions of CSDtoolbox (Kayser and Tenke 2006a,
2006b,  https://psychophysiology.cpmc.columbia.edu/software/
csdtoolbox). For the source reconstruction, we used openMEEG
toolbox (Gramfort et al. 2010, https://openmeeg.github.io) and
Brainstorm toolbox (Tadel et al. 2011, https://neuroimage.usc.
edu/brainstorm). In connectivity analyses, dPTE was calculated
using a function “PhaseTE_MF” included in Brainstorm Toolbox
(Tadel et al. 2011). The version we used was 2.5 (June 2017) with the
default approach “scott” applied for the calculation of bin size for
phase occurrence histograms. CKC responses were visualized in
topographic 2D views with EEGLAB toolbox (Delorme and Makeig
2004, https://sccn.ucsd.edu/eeglab/index.php) using the inverse
distance interpolation method, while their statistical significance
was evaluated using a function “circ_rtest” from CircStat Toolbox
(Berens 2009, https://www.jstatsoft.org/article/view/v031i10).

The function for computation of CNs is freely available online
for download at https://github.com/babyEEG/neoNets. The novel
codes for detection of CKC responses and calculation of related
cortical networks and SI metrics are all shared at https://github.
com/ahtolee/CKC-EEG-Networks, along with compatible exam-
ple data.

Results
CKC responses were detected from all recordings

For the movement stimulation, significant CKC responses
(P <0.01) were detected from both hands in all subjects (Fig. 2B).
For the control stimulation without physical contact to the
participant, no significant responses (e.g. auditory ones) were
detected in any of the infants. Analyses of the sensor space data
(CSD montage) indicated clearly contralateral responses with the

highest CKC observed at the C3/C4 electrode locations (Fig. 2A)
that correspond to the sensorimotor cortices (see also Smeds
et al. 2017). Individual-level results for all infants are shown in
Supplementary Fig. S1.

For a comparison, we performed also cortical level CKC
response analysis with the same data transformed into parcel
signals, which showed more varying and widespread cortical
responses (Fig. 2C and D). Like the sensor space analyses, cortical
responses were also strongest (Fig. 2C) and most prevalent
(Fig. 2D) at the parietal lobe of the contralateral cortex. Yet, the
responses were also frequently detected at many other nearby
cortical regions, including an ipsilateral component in many
infants (cf. Bourguignon et al. 2012; Vallinoja et al. 2021).

We also assessed how the response detection is affected by the
recording length and found that increasing the number of epochs
included in the CKC analysis resulted in a ceiling effect: the peak
CKC magnitude (averaged over the cohort) plateaued after about
40 epochs, equaling 44 s of stimulation (Fig. 2E). Conversely, the
proportion of infants showing a significant CKC response (P < 0.01)
increased with the epoch count until a 100% ceiling was reached
after 50-100 epochs (55-110 s). Increasing the amount of data did
not bring artificial CKC responses with the control stimulation,
though there was always some nominal CKC value observed in
the control condition as well (Fig. 2E and F).

In order to verify that the results are not too dependent on the
choice of the computational method, we also examined the CKC
responses with other signal processing techniques, such as calcu-
lating the phase coherence at the response frequency in spectral
domain using fast Fourier transform (as in Kabdebon et al. 2022).
The findings were highly comparable with the wavelet-based
algorithm primarily used in this work, which was expected from
the fundamental similarities in the decomposition methods. A
correlation between CKC values from the 2 methods was as high
as r=0.97 (Pearson’s test). However, the wavelet-based method
was found to give a better signal-to-noise ratio with on average
14% higher peak CKC values.

Responses survive significant real-world artifacts

Our findings above show that the CKC responses are readily
detected in all infants in well-controlled laboratory conditions
such as those in our clinical research center. However, the prac-
tical utility of the method is potentially challenged by the real-
world artifacts that often contaminate EEG studies in different
recording environments. To assess the robustness of our method
in suboptimal conditions, we conducted additional experiments
by artificially adding artifact noise to our relatively clean data
and subsequently testing the algorithm’s capability to sustain
successful CKC detections.

Examples of these contaminated data epochs and their spec-
tral density graphs are presented in Fig. 3. Comparison of the
frequency spectra of the artifacts shows that most of the artifact-
specific power (i.e. what departs from the universal 1/f form) is
localized at the frequencies that are much higher than the CKC
response frequency (3.56 Hz). Only respiration frequency as such,
as well as some components of the ECG waveform, may overlap
the CKC response band.

As expected, sensitivity of the detection algorithm to artifacts
was dependent on their spectral contents. Adding incremental
amounts of artifact noise showed that both the mean CKC mag-
nitude and the CKC response detection rate may survive even
through the strongest tested EMG and electrical interference lev-
els. The CKC response rate was also found to survive moderate
levels of respiration and ECG artifacts; however, the mean CKC
levels were gradually decreased with the increasing power of
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Fig. 2. CKC response detection. Topographic head plots in (A) show group averages of CKC values calculated from the scalp EEG recordings of the
3 stimulus conditions. B) Corresponding channel-specific response rates with the statistical threshold set to P <0.01. C) and D) Corresponding CKC
and response rate distributions that were calculated from cortical parcel signals and then projected over a 3D cortex model. E) and F) The peak CKC
magnitudes (averaged over the cohort) and corresponding response rates (FDR applied) as a function of the amount of data. Note the ceiling effect in
response rate between 50 and 100 epochs (F), while no change is seen in the mean CKC after about 40 epochs (E).

these artifact types in particular. From the 4 tested scenarios, the
spiky ECG artifact poses the greatest threat for the algorithm.
In the most severe (“high”) ECG artifact condition (RMS power
14 uV/m?), the response rate drops to 50% (Fig. 3E), but at this
point the deteriorated EEG would already be practically “unread-
able” due to the predominant artifact component (Fig. 3B).

We also validated the original response detection (cf. Fig. 2A
and B) by replacing the manual artifact screening with an auto-
matic artifact rejection procedure based on simple amplitude
thresholding instead. This yielded nearly identical results (data
not presented) showing significant CKC responses (P < 0.01) from
both hands in all infants, while no responses were detected from
the control condition. Although visual inspection of the recordings
is always recommended, these results indicate that the prepro-
cessing steps in the analysis pipeline could be easily automatized.

CKC activates cortical response networks

Analysis of cortical activity time-locked to the stimulation
revealed CKC responses over wide-ranging cortical areas (Fig. 2C
and D and Supplementary Fig. S1). As expected, some responding
parcels were also frequently (68% of recordings) found in the
ipsilateral hemisphere. To probe the CKC-related connectivity
patterns, we assessed direction of the information flow between
the parcels by calculating dPTE between pairs of bandpass filtered
cortical signals.

Figure 4A presents parcel-by-parcel (i.e. nodal) group averages
of the dPTE values projected over the 3D cortex model. Averaging
shows the net bias between inbound and outbound information
flows to/from a network node revealing whether the node
operates mainly as a source transmitting information or a sink
receiving it. Notably, the topographical distribution of the most
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outbound dPTE values is remarkably similar to the CKC pattern
presented in Fig. 2C. These findings are compatible with a view
that these peak parcels represent the primary somatosensory
cortex, which will be the primary source of outgoing (red)
information flow to drive the CKC response over to other cortical
regions. On the contrary, we could not distinguish any distinct
parcels that would stand out as information sinks. At group level,
the information is distributed from the primary sources across
the cortex quite evenly.

As shown in Fig. 4A, a single parcel was found to stand out
as an outgoing source of information flow in each ipsilateral
hemisphere. We next wanted to examine its relationship to the
anatomically corresponding parcel on the hemisphere contralat-
eral to the stimulation. We examined the strongest 10 inbound
and outbound connections associated with these 2 nodes (Fig. 4B)
and found that this ipsilateral parcel mostly receives information
from the contralateral side and distribute it further to other
ipsilateral areas. The net outbound flow in this parcel exceeds its
inbound flow; hence the node appears more as an information
source than a sink (dPTE >0.5).

While the average primary source areas seemed to converge
nicely to consistent neuroanatomical rationales, there was sub-
stantial inter-individual variation in the overall level of dPTE
strengths in the networks (Supplementary Fig. S1). Such variation
supports reduction of network complexity and data variability by
estimating group-level CNs (Tokariev et al. 2019; Ahtola et al. 2020)
based on statistical comparison of the subsets of the strongest
edges in the recordings (group averages also presented in Sup-
plementary Fig. S5). The CN diagrams presented in Fig. 4C (per
stimulus condition) were calculated by selecting the strongest
5% of edges in each interaction matrix (k-value) and setting the
statistical threshold to P < 0.05. In line with the findings above, we
found 3-4 contralateral parcels operating as the primary sources
in the group-level CKC networks, distributing information flow
within and across the hemispheres. Notably, the CN patterns
were highly symmetric between sides of stimulation, while the
control (auditory) stimulation failed to elicit any significant CNs.
Corresponding network graphs with different k-values (expected
network size) and alpha levels are presented in Supplementary
Fig. S6.

Additional analyses of the CKC networks are presented in
Supplementary Fig. S7 where we examined edges that were found
to significantly differ from the reference data (control recordings)
based on Z-test statistics. We observed that while the number of
the most active source parcels was generally constrained, their
locations varied between individuals. This information was used
in the development of the SI that we applied in the subsequent
individual-level analyses where the effect of vigilance state and
clinical condition were evaluated.

Effects of vigilance states and severity of
neurological adversity

We finally wanted to examine how the CKC is affected by the
clinical key scenarios. Vigilance state is the behavioral context
in all assessment, while neurological problems caused by varying
degrees of brain injury are the clinical context in most studies in
human infants.

Vigilance state

As newborn babies sleep daily between 18 and 22 h, most neuro-
physiological neonatal studies are carried out during sleep. Hence,
itis essential to estimate the effect of vigilance state on the results
(Pihko and Lauronen 2004). In our data, the level of CKC, measured
at the channel maximum, was not significantly affected by the
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prevailing vigilance state (Fig. 5A), although the CKC response
appeared slightly weaker during QS. However, the spatial extent
of CKC responses was significantly larger in AS than awake (42%
vs. 21% of CSD channels; P <0.05; Mann-Whitney U test; Fig. 5B).
The SI, i.e. the extent of cortico-cortical information flow from
the primary somatosensory cortex, however, was not significantly
affected. Plotting the diagnostic subgroups into the graphs (note
the marker symbols) shows that there was no apparent system-
atic bias to explain the observations.

Severity of perinatal asphyxia

As a tentative evaluation of the clinical potential of the presented
method, we compared response and network metrics between the
subgroups of infants with different clinical conditions: perinatal
asphyxia without HIE (HIEO), mild HIE (HIE1), and moderate HIE
(HIE2). Figure 6 presents mean (of right and left hand) CKC and SI
as well as their average laterality and symmetry for the infants in
these subgroups. For one infant (HIEO), the SI metrics could not be
computed due to missing control recording.

The differences observed in the comparisons were often subtle.
Measured with CKC, the response magnitudes were typically high
for stimulations of both sides. CKC symmetry was above 60% in
HIEO and HIE1 groups, but one HIE2 case produced symmetry
of less than 40%, i.e. the CKC response magnitude of right hand
stimulation was less than half of the left side. CKC laterality tends
to decrease for infants with higher HIE severity.

The same propensity was also present in the comparisons
of SI distributions, where the overall variation was greater. On
average, SI decreased in more severe clinical subgroups (HIEI,
HIE2). Although the average SI in HIEO and HIE1 groups was 77%
and 65% respectively, there were also 3 clear outliers, i.e. infants
with constrained information flow in the networks activated by
the stimulation (Fig. 6D). The 2 cases with HIE2 yielded low SIs
for the right hand stimulation (compared with the left), which
resulted in highly biased SI symmetry (Fig. 6F). Yet, the size of
the HIE2 group does not permit reliable statistical evaluation.
Moreover, there were no significant differences in SI laterality
values between the 3 groups.

Structural brain injury

The abnormal brain MRI findings were further categorized into
white matter or gray matter findings. There was substantial vari-
ation in CKC and network metrics in the infants with no WM
findings, and thereby no correlation was observed between these
metrics and grade of the WM findings (data not shown). To
simplify the statistical comparison, the infants were divided into
2 subgroups based on whether there were findings of either type
(GM or WM) in their MRIs. CKC and network metrics of the infants
in these groups are presented in Supplementary Fig. S8. It appears
thatinfants with MRI abnormalities (N =9; one infant omitted due
to missing control recording) show a tendency to yield slightly
lower and more asymmetric SI values compared with those with
normal MRI (N =10). Yet, neither of these observations were sta-
tistically significant within the studied cohort. Analysis of the
CKC response magnitude did not reveal considerable differences
between the groups.

Discussion

We showed that cortical networks can be recruited reliably in
awake and sleeping newborn infants by using a pneumatic
stimulator that generates passive, repetitive hand movements.
These responses can be quantified by CKC measured from the
scalp EEG signals. The recruited functional networks were highly

220z Jaquieoa( 7| Uo Jasn ejAyseaAr 1o Alsiaaiun Aq 6S/£Z89/€/£08Yq/100182/S601 0 | /I0P/3|21LB-80UBAPE/I00480/W02 dNo dlwapede//:sdiy WoJl papeojuMo(]


https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac373#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac373#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac373#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac373#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac373#supplementary-data

10 | Cerebral Cortex, 2022

A Right stimulation Left stimulation Control Mean dPTE
e > R & S & out
2 : " p 3 2 . p 3 : . 0.56
S , ’ Za. B < 0.54
f 0.52
\ [ ] * * ()
2 . o : O . 2 0.5
L) L} I )
0.48
L] (8 (8 L]
(] [ ] [ ] (]
0.46
(] [} [} o
S % = : - 0.44
in
B Right stimulation Left stimulation
(Contralateral response i Contralateral response Ipsilateral response

L R

4 Inbound P Outbound

C Right stimulation Control
S f e g
L ?‘\'\\ ‘\\ \‘ // ’//' /'
\\\\\\¥Z
\ \,\"‘/ﬂ A o pr't
Ce oC
[ ] [ ]
[ ] e
[ [ ]
@ o
[ ] [ ]
[ ] [ ]
[ ] [ ]
® ]
T % o T
.’. ..
LS °®
Consistency o *
F Frontal, C Central, T Temporal, O Occipital [ T

<0.4 >0.4 >0.6 >0.8

Fig. 4. Response networks. A) Group averages of the nodal dPTE values. dPTE >0.5 (red) means that the amount of nodal outbound information flow
exceeds the corresponding nodal inbound flow. B) Strongest 10 inbound and outbound connections of symmetrically chosen contralateral and ipsilateral
parcels that were generally outbound biased. The graphs illustrate the difference of connectivity patterns between the hemispheres: The contralateral
parcel receives information flow mainly within the hemisphere and the ipsilateral parcel across them. C) CN graphs (P <0.05, k=0.05), as circular
diagrams, include the connections that appeared consistently among the strongest across subjects. The color scale of the arrows depicts the proportion
of infants showing the given edge (i.e. “consistency”). The connections measured during the control stimulation were highly random and hence did not

yield any consistent pattern.

220z Jaquieoa( 7| Uo Jasn ejAyseaAr 1o Alsiaaiun Aq 6S/£Z89/€/£08Yq/100182/S601 0 | /I0P/3|21LB-80UBAPE/I00480/W02 dNo dlwapede//:sdiy WoJl papeojuMo(]



Eero Ahtolaetal. | 11

1 100 100 p .>‘ A
$ . 9° o
08 e = 80 * & 80
B i ’ - ¢ B
. 06 ° 24 o S 60 /' 8 60
X —— > ° S ooto i < 'S
(@] > e @ [0 ® obp o))
0.4 o @ Z 40 oo . £ 40 A
> (J = ® . @pbA 3
o ° 8 g ® ° o > .
0.2 8 20 _‘r_ ® ® % 20 (] 2®
o >
0 0 - - - 0
Awake AS Qs Awake AS Qs Awake AS Qs
(N=5) (N=16) (N=9) (N=5) (N=16)  (N=9) (N=5) (N=16)  (N=9)

@ HIE0O P HIE1T A HIE2

Fig. 5. Responses and network metrics of recordings performed during different vigilance states: awake, AS, and QS. A) CKC magnitude defined as
channel-specific maximum. B) Response coverage defined as the percentage of channels that showed a significant (P <0.01) CKC response. C) SI
reflecting the extent of information flow from the primary source nodes to secondary areas. Panels A) and B) were calculated from the scalp data
and (C) from the parcel source signals. Results from right and left hand stimulations were pooled together in all graphs, while the different markers of
the recordings depict infants in different clinical subgroups (HIEO, HIE1, HIE2). The horizontal lines represent the median values of the distributions.
The asterisk symbol between the response coverages in Awake and AS conditions implies a statistically significant (P < 0.05) difference.

Average of hands Laterality Symmetry
11 100 100 7 > A
-~
081 s® ~ 80 %@ > < 801 ':?" )
™~ ..* ( ) & /
o & g Oo o o e — o . > —_—
X061 | © > A = 60 ® © 601 et
2 ™ —— A 5 > =
8 0.4 1 ] § 40 C% 40 1 i
= & > g o
X
0.2 © 2 O 201
0 : : - 0 0
HIEO HIE HIE2 HIEO HIET HIE2 HIEO HIET HIE2
(N=13)  (N=5) (N=2) (N=13)  (N=5) (N=2) (N=13)  (N=5) (N=2)
1001 o 100 1001 . epe =3
—& @ O
o > % e R A -_— ‘
80 1 > 80 > . 80
=Y - 5O S . o B
Q < + = ° ——
= 50 > Z60] &0 > 2 60 ~ >
7} | (e ® g
c 2 £ 4
© |
$ 40 5 40 o 40 L
[ 2 %] o
20 . > 20 20 i
0 0 0
HIEO HIE1 HIE2 HIEO HIET HIE2 HIEO HIET HIE2
(N=12)  (N=5) (N=2) (N=12)  (N=5) (N=2) (N=12)  (N=5) (N=2)

@ HIEO P HIE1 A HIE2

Fig. 6. CKC metrics of infants in different clinical subgroups (HIEO, HIE1, HIE2). Panels (A)-(C) depict response magnitudes measured with CKC, whereas
(D)—(F) show SI values that quantify the degree of information flow in the networks activated by the stimulation. CKC and SI were assessed based on
their average magnitude, mean laterality, and symmetry between right and left side stimulations. The horizontal lines represent the median values of
the distributions.

consistent across the infant cohort that varied with clinical showing that the CKC response originates mainly in the primary
presentations and vigilance states. The findings were in line with sensorimotor cortex and then propagates to nearby cortical
previous evidence (Smeds et al. 2017; Bourguignon et al. 2019), areas related to motor functions, eventually covering wide
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cortical regions. Our findings show that the extent of CKC
spread might be affected by neurological conditions, such as
perinatal asphyxia and/or hypoxic-ischemic encephalopathy.
The results support the use cortical CKC after pneumatic hand
movements as a scientific and/or clinical tool for a controlled
assessment of cortico-cortical networks related to sensorimotor
integration.

This study aimed to develop a clinically applicable, end-to-end
solution for assessing cortical networks involved in somatosen-
sory processing. To this end, we developed an automated, natural-
istic stimulation method with a pneumatic pump and constructed
an analytic pipeline for assessing cortical CKC responses and
cortico-cortical recruitment from the EEG signals; thereafter, we
evaluated reproducibility and clinical usability of the developed
method with term neonates having perinatal asphyxia. CKC is
considered to arise from neuronal communication between cor-
tex and peripheral proprioceptors (Proske and Gandevia 2012);
in addition, it is likely that CKC responses after passive hand
movements also involve peripheral tactile input, and perhaps a
mixture of cortical and subcortical inputs (Piitulainen et al. 2013;
Bourguignon et al. 2015, 2019).

Passive stimulation is generally useful when aiming to separate
sensory and motor systems. In the infant studies, however, passive
stimulation is mandatory due to lacking cooperation. Here, we
used a custom-built movement actuator, which yielded signifi-
cant (P <0.01) CKC responses for both hands in all (100%) infants.
No false detections were observed (responses in the absence of
physical stimulation) suggesting high sensitivity and specificity.
The CKC responses were even resistant to incremental addition
of various sources of naturalistic noise in the signal; only sub-
stantial amount of low-frequency noise (e.g. respiration and ECG
interference) had notable deteriorating effect on the response
detection. Hence, the automated movement stimulation and its
associated analytic pipeline appear to provide added sensitivity
and robustness compared to the previously published manual
stimulation (Smeds et al. 2017) where 3 out of 13 studied infants
showed only partial CKC responses.

The strongest CKC was generated at the first harmonic of the
fundamental movement frequency (at 3.56 Hz), i.e. frequency
associated with flexion-extension phases of the movement stim-
ulus. The same was observed also previously in infants (Smeds
et al. 2017) but less systematically in adults where the funda-
mental and the first harmonic frequencies show more equal CKC
strength (Piitulainen et al. 2013, 2015, 2020). The CKC responses
peak near contralateral primary sensorimotor cortex; however,
the parcels with strongest CKC were located slightly more lateral
compared to the parcels that showed highest likelihood (response
rate) of a significant CKC response. Nevertheless, the results
showed clearly that CKC is not confined to a single cortical spot;
it rather encompasses wider cortical areas, including midline and
the ipsilateral hemisphere that is also known to receive direct
proprioceptive input from the periphery. The variation between
individual topographic maps may be related to immature orga-
nization of the newborn cerebral cortex (Nevalainen et al. 2014)
and/or to the unavoidable variation of electrode placements in
respect to the cortical areas (Kabdebon et al. 2014).

Despite the variation in local CKC response topographies,
there was a salient inter-individual consistency in the cortical
networks associated with CKC response. We could show how the
most active contralateral Rolandic areas, in terms of processing
somatosensory afference, operated as the driving sources dis-
tributing the information flow to other cortical regions (Fig. 4C).
The analysis of network patterns also depicted 2 symmetrically

located parcels that convey CKC-related information flow to the
ipsilateral areas (Fig. 4B), possibly operating as “network relays”
between the hemispheres. Although some of the CKC-related
processing is likely emerging through the direct thalamocortical
connections (Nevalainen et al. 2014), it is reasonable to assume
that the full cortical extent of the CKC response arises largely
as a cortico-cortical spreading from the primary somatosensory
cortex. Hence, we suggest that both CKC magnitude and network
characteristics could be used as clinically relevant parame-
ters to assess cortical somatosensory function and recruit-
ment of the related cortico-cortical networks in a controlled
manner.

In addition to the “core network” that was consistently found
in the infants, there were also other cortical connections that
showed much higher inter-individual variability, both in their den-
sity and distribution. This motivated us devising metrics, such as
SI, for measuring the network involvement. Previous studies have
shown that the cortical extent of conventional somatosensory
responses of neonates (e.g. Rahkonen et al. 2013; Nevalainen et al.
2017) may correlate with clinical outcomes. Our present findings
provide tentative data that an increasingly severe brain injury
(HIE) may link to less cortical spreading as well as less symmetric
responses. Likewise, infants with abnormal MRI findings in their
white and/or gray matter showed a tendency for lower SI and less
symmetric CKC network. While physiologically plausible, these
findings did not reach statistical significance in our small cohort,
and more recordings, especially to infants with HIE, are needed to
confirm these findings.

The exact mechanistic underpinnings of the development
of CKC responses and their cortico-cortical spread are as yet
poorly understood at the cellular level. However, related studies
on animal models have shown that higher-order somatosensory
cortical areas become responses to thalamic sensory input at the
end of the first postnatal week (Cai et al. 2022). This suggests
that the cortico-cortical mechanisms underlying CKC response
are present at around full-term age in the human infants. Future
studies are warranted to show the developmental changes in
CKC responses, and their cortical spreading, during both preterm
period and during infancy as a part of neurodevelopmental
assessment, as well as in several other clinically relevant
neurological conditions.

There was also a perhaps surprising spread of CKC responses to
the parietal regions, which is likely due to both physiological and
physical reasons. First, early brain development is characterized
by highly exuberant cortical connections (Innocenti and Price
2005), and it may be possible to see cortico-cortical spread in the
young infants to areas that become “disconnected” by pruning
of connections later in life. Second, we cannot know exactly the
spatial relation of our scalp electrodes and source activities to
the functional cortical parcels. Therefore, some apparent spread
between nearby regions, such as anterior parietal area, may be
(see Bastos and Schoffelen 2016) due to physical reason (spatial
smear) or technical reason (computational leakage). These can be
fully disambiguated by combining very high-density recordings
(over 100 electrodes; Yrjola et al. 2022), digitization of the elec-
trode coordinates, and individual MR imaging; such work is doable
in centers where such methodology is available for research use
in the human infants.

There are some technical considerations that merit atten-
tion when comparing our present findings to prior literature.
Our present use of pneumatic stimulator called for streamlining
the technical setup from the previous studies (e.g. Bourguignon
et al. 2011; Piitulainen et al. 2013; Smeds et al. 2017), and we
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calculated CKC directly from trial-to-trial phase using only EEG
signals without accelerometer data. Such solution comes at a
cost of losing sensitivity to variations in movement frequency
(Cohen 2014); it is not a problem when the stimulator operates
at a stable frequency, which is also known to elicit stronger CKC
than irregular stimulation (Mujunen et al. 2021).

The present analysis algorithm was built using freely available
MATLAB toolboxes, and it can be compiled as an automatic (or
semi-automatic) workflow that preprocesses the data and calcu-
lates the response graphs and associated P-values from a bedside-
recorded EEG file in minutes. Our in-house trials have shown
that such automated pipeline will may provide an easy access
to objective and consistent studies of somatosensory function,
which is a significant advance compared to the conventional
clinical performance and interpretation of evoked potentials via
averaged trials in the time domain. This pipeline may also be opti-
mized, for instance by focusing only on the spectral component
of the frequency of interest rather than producing the full time-
and frequency-resolved representation presented in this work to
provide further “quality control” at the level of single subjects and
electrodes. One computationally suitable option is replacing the
wavelet decomposition with Fourier-based analyses (Kabdebon
et al. 2022).

In this work, we used a custom-built movement stimulator
(see also Jousméki 2021), which may hinder the uptake of the
method. However, the stimulator solution needed for CKC record-
ing is mechanically simple. We are currently piloting alternative
options, such as commercially available electric breast pumps,
which generate very comparable periodic suction, and they can
be easily changed to movement stimulators. Our first pilot record-
ing (Supplementary Fig. S9) showed that such application needs
only low-tech level instrumentation that could be readily accom-
plished as a part of future clinical studies.

The insensitivity to both sleep state changes and real-life arti-
facts indicate general robustness of CKC as a measure of cortical
function which can be applied in a wide range of recording
environments and situations. Indeed, the hereby presented CKC
paradigm holds potential for clinical research use as a completely
noninvasive tool for a controlled assessment of cortical functions.
CKC metrics could readily provide complementary information
to the diagnostic routines of neurological examination, brain
imaging, and EEG monitoring. Most importantly, consistent and
reliable CKC responses can be elicited during a routine EEG study
using naturalistic movement stimulation, and the computational
analysis pipeline can be fully automatized, delivering statistically
assessed study results; this is possible even in the presence of con-
siderable noise that typically compromises all computational and
visual EEG analyses. A particularly attractive research application
of a method of this kind is perhaps early prediction of neurocog-
nitive development (cf. Nevalainen et al. 2015, 2017) after mild-
to-moderate degree brain injury during perinatal period. While
outcome prediction is well established after a severe brain injury,
there is scarcity of methods available for predicting outcomes in
mild-to-moderate cases, which however are much more prevalent
and hence clinically meaningful. It is conceivable that assessing
functional integrity of cortical networks might provide a needed
insight about cortical recovery potential after early adversity.
However, prospective studies with larger patient populations are
needed to examine this idea and to establish the perceived added
value of CKC paradigm at bedside.

Supplementary material

Supplementary material is available at Cerebral Cortex online.
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