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ABSTRACT
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This research examines the current state of the performance indicators and other
metrics used to measure the technical performance of a Security Operations Cen-
ter (SOC), as based on empirical experience, the current methods for measuring
the technical performance of different types of SOCs are inadequate. Without
properly constructed performance indicators or metrics, it is difficult to evaluate
the actual performance of a SOC, which makes it difficult to assess the concrete
impact a SOC has in terms of overall cyber defence capabilities.

Design Science methodology is used as the research methodology in this re-
search. The outcome of the research is a design science artifact, a novelty metric
selection framework, that can be used to construct metrics to measure the techni-
cal and non-technical performance of a SOC. The design science artifact was suc-
cessfully demonstrated by constructing five metrics that can be, as such, adopted
by different types of SOCs to improve the technical performance measurement
capabilities of their threat detection capabilities.

The original hypothesis is supported by the literature reviewed within the
research, as the commonly mentioned metrics revolved mostly around opera-
tional activities. Furthermore, the research concluded that the current method-
ologies to construct metrics and the commonly deployed metrics are inadequate
to measure the technical performance of a SOC. The literature outlined a limited
amount of technical performance metrics, but the ones evaluated, were consid-
ered to be invalid according to the metric selection framework.

The design science artifact and the metrics utilized to demonstrate the met-
ric provide means for SOCs to construct metrics and measure their technical per-
formance, but further research around the subject is required to enable compre-
hensive industry-standard measurement capabilities to emerge.

Keywords: security operations center, soc, csoc, cyber security operations center,
metric, measurement, technical, performance, cyber defence, performance indi-
cator
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Tutkimuksessa selvitetään tietoturvavalvomon (engl. Security Operations
Center, SOC) suorituskykyindikaattoreiden tämän hetkistä kyvykkyyttä mitata
tietoturvavalvomon teknistä suorituskykyä. Empiirisen kokemuksen perus-
teella voidaan todeta, että tällä hetkellä yleisesti käytössä olevat menetelmät
eivät ole riittäviä erilaisien tietoturvavalvomoiden teknisen suorituskyvyn
mittaamiseen. Teknisten suorituskykyindikaattoreiden puute aiheuttaa sen,
että tietoturvavalvomoiden teknistä suorituskykyä on hankala mitata, jonka
seurauksena tietoturvavalvomon käytännön vaikutusta organisaation kyberpuo-
lustuskyvykkyydelle on hankala määrittää.

Tutkimuksessa käytetty tutkimusmenetelmä on suunnittelutiede, joka tuot-
taa iteratiivisen prosessin lopputuloksena artefaktin. Työn tuloksena syntynyt
artefakti on uudenlainen menetelmä, suorituskykyindikaattoreiden valintake-
hys, jonka avulla voidaan luoda teknisiä sekä epäteknisiä suorituskykyindikaat-
toreita. Luotuja suorituskykyindikaattoreita voidaan käyttää hyväksi tie-
toturvavalvomon suorituskyvyn mittaamisessa. Artefakti esiteltiin onnis-
tuneesti luomalla viisi metriikkaa, joita voi sellaisenaan käyttää tietoturvavalvo-
moiden teknisen suorituskyvyn mittaamisen parantamiseen uhkien havainnoin-
tikyvykkyyden saralla.

Tutkimuksen aikana suoritettu kirjallisuuskatsaus tukee alkuperäistä
hypoteesiä, sillä kirjallisuudessa useimmiten mainitut metriikat mittaavat
pääasiallisesti tietoturvavalvomon operatiivisia toimia. Tämän lisäksi tutkimuk-
sessa päädyttiin johtopäätökseen, jonka perusteella nykyiset menetelmät suori-
tuskykyindikaattoreiden luomiseen ja olevassa olevat suorituskykyindikaattorit
eivät ole riittäviä teknisen suorituskyvyn mittaamiseen. Kirjallisuudessa maini-
tut tekniset suorituskykyindikaattorit osoittautuivat epäpäteviksi valintake-
hyksellä arvioitaessa. Artefakti ja sen esittelyyn luodut mittarit mahdollistavat
tietoturvavalvomoille suorituskykyindikaattoreiden luomisen sekä teknisen
suorituskyvyn mittaamisen parantamisen artefaktin esittelyssä käytetyillä met-
riikoilla. Tästä huolimatta, aihepiiri vaatii tarkempaa tieteellistä tarkastelua,
jonka pohjalta voidaan luoda kattava alan standardi tietoturvavalvomoiden
teknisen suorituskyvyn mittaamiseen.

Avainsanat: tietoturvavalvomo, tekninen suorituskyky, mittaaminen, kyberpuo-
lustus, mittari, suorituskykyindikaattori, soc, csoc
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GLOSSARY

Benign true-positive A detection or a security incident that is technically a

true-positive incident but the activity causing the de-

tection is benign and thus not malicious.

Detection A detection originating from a positive hit on a mon-

itoring rule, which acts as an impulse to begin the se-

curity analysis process.

Event Processed log event or telemetry data without signifi-

cant or identified security value.

False-positive A detection or a security incident that ends up being

created as a result of an incorrectly functioning moni-

toring rule and the activity associated with the detec-

tion is not malicious.

Monitoring rule Concrete manifestation of a monitoring scenario con-

structed in a detection technology, for example, SIEM

or IDS, which generates detections upon a positive hit.

Monitoring scenario A formalized description of a monitoring rule that at-

tempts to detect the manifestation of a threat scenario.

Raw event Unprocessed log event or telemetry data originating

directly from the source entity.

Security event Processed log event or telemetry data with significant

security value.

Security incident A confirmed or suspected true-positive detection re-

sults in a security incident that triggers a security in-

cident response process.

Threat scenario A formalized description of a threat that could poten-

tially affect the security of the organization.

True-positive A detection or a security incident that is both techni-

cally correct and ends up being a result of malicious

activity.



1 INTRODUCTION

Cyber threats have evolved dramatically within the past couple of years, as they
have become more sophisticated and complex, and as a result, have a bigger
impact on the operational activities of the affected organization. The usage of
general-purpose malware has declined recently, but simultaneously more ad-
vanced threats such as supply chain compromises, ransomware and other extor-
tion activities, attacks against critical infrastructure, disinformation campaigns,
and targeted business e-mail compromises are trends among others that are con-
tinuously increasing in terms of volume (European Union Agency for Cyberse-
curity [ENISA], 2021). The risk of threats related to cybersecurity is a major con-
cern in several recently published corporate risk surveys (Allianz, 2022; Caldwell,
2021; PwC, 2022) and the global risk report published by the World Economic Fo-
rum (2022) depicts that cybersecurity failure could become a significant risk to
the world, being on par on short term with the debt crisis, and on medium term
with biodiversity loss. The increased sophistication and the associated risks re-
quire organizations to step up their defensive capabilities to combat the evolving
threat landscape, as traditional malware and network defences are not enough to
protect the organization from modern-day cyber threats.

One strategy for organizations to increase their cyber defence capabilities
is to build an in-house Security Operations Center (SOC) or outsource the oper-
ations to a dedicated managed security services vendor. According to Nathans
(2014), SOC is typically responsible for the detection of security incidents and
the related incident response activities resulting from a true-positive security in-
cident. Nathans also determined that depending on the size and the needs of the
organization, the SOC can consist of a single person responsible for the security
or a larger team of operative personnel working in 24/7 shifts, developers, ar-
chitects, and managers that together form a coherent collection of different com-
petences put together to prevent, detect and respond to cyber threats targeting
the organization. To quantify the operative efficiency and capabilities of a SOC,
the performance should be measured through a set of commonly agreed met-
rics and other performance indicators. A systematic literature review on SOCs
performed by Vielberth, Böhm, Fichtinger, and Pernul (2020) concluded that the
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currently established metrics are insufficient for measuring the performance of a
SOC, which means there is currently no industry standard framework that can be
used to measure the performance of a SOC.

Multiple publications on SOCs focus mostly on quantitative metrics related
to vulnerabilities and operational metrics, especially volume- and time-based
metrics, to measure the performance of SOCs (Ahlm, 2021; Kokulu et al., 2019;
Nathans, 2014). Based on empirical experience from real-world implementa-
tions, most SOCs have not successfully implemented valid metrics for other cat-
egories, such as threat detection capabilities, threat hunting, or other technical
areas within the SOC. Quantitative metrics are useful for managerial level staff
members to measure and optimize the usage of human resources performing the
analysis work, and other quantitative metrics, such as vulnerability-related data,
can provide an overview of the overall exposure to known threats within the
environment (Nathans, 2014). In practice, they are inefficient to measure the ca-
pabilities of the SOC, as they are unable to measure the effectiveness of the detec-
tion capabilities and other protective controls. Measuring the false-positive rate
of the monitoring rules is a common solution to combat this issue (Ahlm, 2021;
Nathans, 2014), but looking at the false-positive rate alone can be misleading in a
practical sense since the outcome of such metrics can be manipulated either sub-
consciously or consciously by the detection engineering team, which typically
produces the threat detection capabilities for a SOC. Several studies have been
performed on general security metrics (Böhme, 2010; Pendleton, Garcia-Lebron,
Cho, & Xu, 2016; Salmi, 2018) and in addition, there are also commonly refer-
enced industry standards such as ISO/IEC 27004:2016 (2016) and NIST SP 800-55
(Chew et al., 2008) that organization can use to measure the effectiveness of their
information security, but as determined by Vielberth et al. (2020), there is a lack
of literature on how to specifically measure SOC as a function or entity.

The lack of commonly accepted methods to measure the technical perfor-
mance of a SOC is especially prominent when the SOC is being outsourced to
a third-party vendor, as it makes it difficult to measure the quality of the service
provider during the tendering and production phases. In practice, this often leads
to a situation where the tendering process produces a suboptimal result, either by
selecting the vendor that has the lowest total cost of service or the most convinc-
ing sales material to provide a false sense of quality to the procurement team. A
trend has been observed in recent years in Finland, where the select vendors are
chosen for a proof of concept phase during the tendering process of outsourcing
the SOC, in which an attack simulation is performed in an environment temporar-
ily monitored by the vendor and afterwards, their threat detection capabilities are
evaluated. The trend is essentially a manifestation of the difficulty of evaluating
the technical capabilities of different vendors during the tendering process and
while it can provide meaningful insights when comparing the different vendors,
the results are not truly comparable between the vendors, as the number of re-
sources allocated to the proof of concept phase can significantly impact the final
results and thus skew the vendor selection based on false conclusions.
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1.1 Research methodology

Design science research methodology has been selected to be used as the primary
research methodology of this research. The initial hypothesis of the research is,
based on empirical experience, that there are no suitable frameworks out there
that could be efficiently used to measure the technical performance of a SOC.
As a result, the expected outcome of the research is a novelty framework that
would provide an industry-standard way to measure the technical performance
of a SOC.

Design science as a research methodology has been traditionally utilized
within the field of engineering (Hevner, March, Park, & Ram, 2004; Peffers, Tu-
unanen, Rothenberger, & Chatterjee, 2007) but it has also been incorporated as a
commonly used research method into the field of information systems research
(Peffers et al., 2007). As such, it is suitable for solving what is fundamentally
an engineering problem within the field of information security, which is closely
related to the field of information systems. The research method can be used to
create an information technology artifact, which is a solution to an information
technology problem observed by an organization (Hevner et al., 2004). As per
the definition by Peffers et al. (2007), the methodology used in this research is an
iterative process consisting of six activities, which are:

1. Identify the problem and motivation
2. Define the objectives of a solution
3. Design and development
4. Demonstration
5. Evaluation
6. Communication

Peffers et al. (2007) determined the first activity to consist of identifying and
demonstrating the problem by providing the fundamental principles behind the
research problem, effectively justifying the need for the artifact to provide a solu-
tion to the problem at hand. The second activity consists of defining the solution
based on the problem statement and the knowledge of the related topics. The
third activity is about creating an artifact to provide a solution to the problem.
In the fourth activity, the artifact is demonstrated in association with the prob-
lem. The fifth activity evaluates the effectiveness of the artifact as a solution to
the problem statement. The sixth and final activity involves the communication
of the problem, artifact and the results of the study to a broader audience, which
is commonly achieved by writing a research paper about it (Peffers et al., 2007).

The first activity of the design science research methodology is covered in
the chapter 1, the second activity is the chapter 6 backed by a literature review in
chapters 2, 3, 4 and 5. The third and fourth activities are covered in the chapter 7
and the fifth activity in the chapter 8. The sixth activity is effectively the entirety
of this thesis and as such, none of the chapters is explicitly associated with the
sixth activity.
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The purpose of the literature review is to provide sufficient theoretical back-
ground on the subject and enable a way to construct and utilize the design science
artifact in a way that relevant metrics for SOCs can be produced with it. In addi-
tion to topics related to SOCs (chapter 2) and the way the SOCs are currently mea-
sured (chapter 5), the literature review focuses on metrics and measurements on a
general level (chapter 4), and adversary behaviour (chapter 3), which is expected
to produce information that can be utilized during the creation of the metrics.

The primary search engines used for the literature review to discover aca-
demic journals and other publications are JYKDOK1, IEEE Xplore2 and Google
Scholar3. Google Search4 is used for discovering commercial and other non-
scientific publications used as supportive material for the published material.
A keyword search is used as the search method for the discovery of literature
related to SOCs and metrics. The search query for SOC-related literature is ’(secu-
rity OR cyber security) (operations OR operation) (center OR centre)’ and the metric-
related search query is ’(metric OR measurement OR "performance indicator")’. Ad-
ditionally, when searching for SOC-related metrics, the two queries are combined
with an AND operator. There are no predefined keywords for other topics cov-
ered within this thesis and as a result, the remaining topics are discovered with
free-text search based on the specific topic expected to be discovered.

Peer-reviewed research published in academic journals is considered the
preferred source for information, but commercially produced material, industry
standards, and other non-academic literature is used as supporting material if
the preferred source for information does not exist or the information contained
within the source is inadequate. The systematic literature review about SOC-
related publications by Vielberth et al. (2020) is used as the primary source for
information within this research, as the information contained in the research
is comprehensive and it manages to stitch together the information scattered
throughout multiple publications to a coherent description on how SOCs are seen
from the academic perspective.

1.2 Research question and scope limitations

The objective of this research is to determine which metrics and other perfor-
mance indicators are relevant for measuring the technical performance of a SOC.
A technical performance metric within the context of this thesis is defined as: "a
qualitative or quantitative indicator derived from one or more measures result-
ing from the activities performed by a SOC, which describes how well the SOC
can utilize technologies to prevent, identify, detect and respond to cyber threats
affecting the organization". The objective of the research leads to the following

1 https://jyu.finna.fi/
2 https://ieeexplore.ieee.org/
3 https://scholar.google.com/
4 https://www.google.com/
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research questions:

1. What frameworks are available to measure the performance of a SOC?
2. What are the commonly mentioned key metrics used to measure a SOC?
3. Can the common metrics be used to measure technical performance?
4. How can the metrics be improved to enhance the reporting capabilities

of technical performance?

The focus of this thesis is on the technical performance of a SOC, which leads to
process- and people-related metrics being out of the scope of this research, unless
they have a direct relation to the technical performance. Additionally, to ensure
the resulting artifact is neutral in terms of technologies used by the SOCs, the
metrics related purely to capabilities provided by technology are out of the scope
of this research. In other words, within the context of this research, it is irrelevant
whether product A is unable to detect a threat while product B can.
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2 SECURITY OPERATIONS CENTER

The SOC is considered to be a pivotal function in the overall cyber defence capa-
bilities of modern enterprise organizations and it is being referred to in literature
and by practitioners by multiple different names, such as Cyber Security Opera-
tions Center (CSOC), Computer Security Incident Response Team (CSIRT), Com-
puter Incident Response Team (CIRT), Computer Security Incident Response Ca-
pability (CSIRC) and Network Operations and Security Center (NOSC) (Knerler,
Parker, & Zimmerman, 2022). However, it might be worth noting that function is
likely to focus on a slightly different aspect of the overall cyber defence depend-
ing on its name, for example, CSIRT and CIRT focus more on post-attack incident
response activities (Vielberth et al., 2020) while CSOC takes a more holistic ap-
proach covering multiple different cyber defence functions (Knerler et al., 2022).

2.1 What is a Security Operations Center?

One common way to describe a SOC is through a People, Processes and Tech-
nologies (PPT) framework (Knerler et al., 2022; Vielberth et al., 2020) where each
subcategory is seen as a separate building block for running a successful SOC.
Vielberth et al. (2020) summarized in their study that the people block describes
the people associated with the SOC and their required competencies, the process
block describes how the people are interacting with each other and how security
incidents are handled, and the technology block describes the tools the work is
done with. The study also argued that the PPT framework can be expanded to
include Governance and Compliance, which enables organizations to utilize the
SOC as a function to ensure compliance with various standards, such as ISO/IEC
27001, GDPR, or PCI-DSS. Furthermore, including governance and compliance
as a part of the PPT framework will bring a more structured approach to manag-
ing the SOC via maturity assessments and metrics, which can be used to better
determine the current state of the SOC (Vielberth et al., 2020).

Vielberth et al. (2020) concluded that the people aspect of the framework
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consists of the people who are working in the SOC or are otherwise working in
close collaboration with the SOC. Based on the study, the responsibilities in a
SOC are typically structured by different tiers of analysts and a manager, who
is responsible for managing the operations. Following the definitions within the
study, tier 1 is typically responsible for reviewing the detections and performing
triage on the alerts, which in practice means, they confirm the detection and thus
determine whether there is a security incident, determine the severity of the secu-
rity incident and enrich it with additional data. If the security incident cannot be
mitigated at tier 1, it is typically escalated further to tier 2 (Vielberth et al., 2020).

As determined by Vielberth et al. (2020), tier 2 reviews the security inci-
dent and performs an in-depth analysis utilizing more advanced techniques with
the primary purpose of determining the scope and the impact of the security
incidents, and tier 3 handles the major security incidents and performs digital
forensics, which are activities the tier 2 is usually unable to perform. The study
also concluded, that in addition to the response activities, tier 1 is responsible
for configuring and managing tools, tier 2 is responsible for designing and im-
plementing strategies to contain and recover from security incidents and tier 3
is responsible for proactively identifying and mitigating threats affecting the or-
ganization. In addition to the responsibilities, there are typically several roles
within the SOC, which can be managerial roles, such as incident response coordi-
nators or security managers, technical roles, such as security analysts or security
engineers, consulting roles, such as security architects or consultants, and other
external personnel working closely with the SOC (Vielberth et al., 2020). The typ-
ical roles and responsibilities within SOC and their interactions are depicted in
figure 1.

FIGURE 1 Interactions between various roles and responsibilities in SOC according to Vielberth
et al. (2020, p. 8)

The work performed at a SOC is heavily driven by processes, as the work is struc-
tured around the prevention, detection, and response of security incidents, which
means the work can often be quite hectic, and as such, without properly defined
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processes there is a risk of SOC not being able to properly eradicate an active
threat from the environment. Usually, some form of security incident manage-
ment process is used as a basis for the entire operation, for example, the Com-
puter Security Incident Handling Guide (NIST SP 800-61), which consists of four
phases "preparation", "detection and analysis", "containment, eradication and re-
covery" and "post-incident activity", as depicted in figure 2 (Vielberth et al., 2020).
The purpose of the preparation phase as defined by Cichonski, Millar, Grance,
and Scarfone (2012) is to ensure the SOC has the necessary visibility and poten-
tial to detect and respond to security incidents and that they are ready to perform
such activities in the later stages of the process. They also determine that the
preparation stage also includes activities that are aiming the prevent security in-
cidents altogether, such as malware prevention or user awareness training. They
further define that the detection and analysis consist of responding to security in-
cidents by analyzing, documenting, and prioritizing them, and finally notifying
the necessary people of the detected security incidents. The third phase of the
process is about containing the security incident by limiting the potential dam-
age the incident can cause, followed by evidence gathering and identifying the
attackers’ host. Once the impact of the incident has been limited and the source of
the attack has been identified, the threat can be eradicated and recovery actions
can be started (Cichonski et al., 2012). The final stage of the incident response
lifecycle, post-incident activity, does not contain activities that the SOC would
typically be responsible for.

Other processes utilized in a SOC can include processes such as data col-
lection process, automation of response activities via a Security Orchestration,
Automation and Response (SOAR) tooling (Vielberth et al., 2020) or a detection
engineering process, which is used to create, validate and tune monitoring rules
(Knerler et al., 2022). SOCs can also have supplementary processes that are not
directly tied to security or incident management, such as problem management
or change enablement processes.

Preparation
activities

Detection
and analysis

Containment,
eradication

and recovery

Post-incident
activities

FIGURE 2 Incident response life-cycle as depicted by Cichonski et al. (2012, p. 21)

The technology describes the tooling and associated supplementary technical so-
lutions used by the SOC personnel to run the SOC processes (Vielberth et al.,
2020). According to the book by Knerler et al. (2022), the tooling typically in-
cludes security information and event management (SIEM) software to collect,
process, and correlate events collected from log sources to generate detections for
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the analysts to investigate, endpoint detection and response (EDR) tooling run-
ning on endpoints that utilize machine learning and analytical rules to generate
detections, a network sensor to collect network data and detect intrusions, differ-
ent platforms, such as incident management, big data analysis, or a SOAR plat-
form. EDR software is considered to be an essential tool in a modern SOC, as it
also allows the analysts to perform response activities on the endpoints (Knerler
et al., 2022), such as investigating the endpoint via a remote command prompt
or isolating the endpoint to prevent communication to destinations other than
the EDR server. A SOAR tool can be used to automate workflows and certain
response activities to enable faster containment of potential security incidents,
which can be a valuable tool to both decrease the workload of the security ana-
lysts and reduce the impact of the security incidents (Knerler et al., 2022).

Vielberth et al. (2020) have conducted a systematic literature review of SOC-
related literature and have determined, that the definition of SOC is not universal
across the literature, which makes it difficult to determine what SOC is. As a
result of the systematic literature review, Vielberth et al. (2020) defined SOC as
follows:

The Security Operations Center (SOC) represents an organizational aspect of an
enterprise’s security strategy. It combines processes, technologies, and people to
manage and enhance an organization’s overall security posture. This goal can
usually not be accomplished by a single entity or system but rather by a complex
structure. It creates situational awareness, mitigates the exposed risks, and helps
to fulfill regulatory requirements. Additionally, a SOC provides governance and
compliance as a framework in which people operate and to which processes and
technologies are tailored. (Vielberth et al., 2020, p. 4).

Within the context of this thesis, the above definition of SOC is being used. Fur-
thermore, the SOC as a function can be further split into multiple collections of
tightly interlinked functional areas, which according to Knerler et al. (2022) are
the following:

1. Incident triage, analysis, and response
2. CTI, hunting, and analytics
3. Expanded SOC operations
4. Vulnerability management
5. SOC tools, architecture, and engineering
6. Situational awareness, communications, and training
7. Leadership and management

Some more mature or larger SOCs could have elements from all of the functional
areas above, but a single operations center does not necessarily need to cover
all of the areas to be a functional part of the overall cyber defence capabilities
(Knerler et al., 2022). The SOC services that were determined to be the most rele-
vant within the context of this thesis, are "Incident triage, analysis, and response",
"CTI, hunting, and analytics" and "Expanded SOC operations".
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2.1.1 Incident triage, analysis, and response

Based on the definition by Knerler et al. (2022), incident triage, analysis, and re-
sponse form the backbone of a SOC, and without these functions, it is not pos-
sible to run a viable operation, as the security incident management process is
operated within this function. According to their definition, the incidents are de-
tected, analyzed, contained and recovered from, based on the work conducted
in this function. The tier 1, tier 2 and tier 3 analysts are typically performing
real-time security monitoring by utilizing security technologies, such as SIEM or
EDR, to react and analyze detections to determine whether they are true-positive
or not, and thus evaluate whether they become a security incident or not (Knerler
et al., 2022). Incidents are traditionally categorized either as false-positive, mean-
ing the detection logic is incorrect, benign true-positive, meaning the detection
logic is correct but the detection was proven to be legitimate, and true-positive,
meaning the detection is considered to be a legitimate security incident.

According to Knerler et al. (2022), hundreds of millions of raw log data are
typically collected every day to either a SIEM, log management, or a big data
analysis platform. The raw data is collected from various log sources, networks,
servers, endpoints, clouds, applications, and many others, which forms the ba-
sis for threat detection. Unnecessary noise is filtered out from the raw data, the
filtered data is reduced to interesting security events out of which detections are
created based on the monitoring rules resulting from the detection engineering
process (Knerler et al., 2022). Detections can be referenced as alerts, alarms, of-
fenses, or incidents depending on the source, but the fundamental definition is,
that they are not yet considered to be security incidents. Detections are a result
of monitoring rules that are created as a part of the analytics process based upon
monitoring scenarios that aim to detect adversary behaviour and as a result, be
able to gain actionable detections for the SOC analysts to investigate further. Fig-
ure 3 depicts how the raw data is transferred to actionable detections by the SOC
analysts and the related personnel.

According to Knerler et al. (2022), operating without a SIEM or a data anal-
ysis platform can also be a viable option to consider for smaller and more focused
SOCs. They mentioned that in such situations, the detections are mostly based
on an EDR and other security products, which can be used purely based on their
native capabilities, or the SOC can augment the capabilities based on a detection
engineering process, and in such setups, the data used for incident response pur-
poses is typically stored in log management or a cloud-native storage platform
and is retrieved when necessary. Some more mature SOCs can also opt-in to build
their in-house SIEM-like capabilities based on a big data platform and augment
their detection capabilities with machine learning and other statistical method-
ologies to discover anomalies within the massive amounts of data collected to
the platform (Knerler et al., 2022).
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FIGURE 3 The SOC funnel: from raw data to actionable detections

2.1.2 Cyber threat intelligence, hunting, and analytics

Knerler et al. (2022) introduce cyber threat intelligence (CTI), threat hunting, and
analytics as functions that are complimenting the incident triage, analysis, and
response functions by providing them with actionable threat intelligence in the
form of tactics, techniques, and procedures (TTPs), that are used to quantify the
behaviour of adversaries. They also discuss Indicators of Compromise (IoC) that
are forensic artifacts attributed to attackers, such as IP addresses of Command
and Control (C2) servers and hashes of malware used to gain an initial foothold
within the environment. The TTPs can be used as a basis for the detection engi-
neering process, which contributes to the analytics function by providing action-
able direction to the creation, tuning, and optimization of monitoring rules and
thus enabling the SOC to detect threats associated with real-world adversaries
(Knerler et al., 2022). The threat scenarios are modelled as monitoring scenarios
that often are describing the threat, the detection logic, and the response activities
to mitigate the impact of the threat. According to Knerler et al. (2022), monitoring
rules can either be conditional expressions modelling a suspicious chain of events
based on the TTPs or they can also be mathematical models or machine learning
algorithms that aim to discover anomalies from the events stored in a data ana-
lytics platform. Without the analytics function, SOC would have to rely on the
native detections produced by the technologies used at the SOC, which could
considerably decrease the quality of the detections SOC is dealing with (Knerler
et al., 2022).

As defined by Knerler et al. (2022), threat hunting is a proactive activity
performed either by SOC analysts or dedicated threat hunters, and it goes be-
yond the threat detection capabilities provided by the monitoring rules to detect
adversaries that are either previously unknown or are using techniques that are
hard to model as monitoring rules or the capabilities are otherwise not yet there.
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Threat hunting is typically based on a hypothesis, meaning the hunting activities
are structured in a way that they have a specific objective the hunting activity
is aiming to accomplish, which for example means, a hypothesis can be that an
unknown threat actor is performing activity X to achieve objective Y and hunting
is about looking at indicators of activity X from within the environment (Knerler
et al., 2022).

2.1.3 Expanded security operations center operations

In addition to the traditional SOC functions, Knerler et al. (2022) establishes the
concept of expanded SOC operations that includes proactive methods within the
SOC in the form of attack simulations, adversary deception, insider threat pre-
vention, and other active defence-related methodologies. According to them, the
expanded operations are typically a part of more established and larger SOCs.
They also state that attack simulation can be done as a part of the detection en-
gineering process to validate the monitoring scenarios, or it can be a separate
function organized in the form of red or purple teaming exercises, adversary em-
ulation, or any other kind of testing activities similar to a penetration test. As Kn-
erler et al. summarized, in all of the previous situations, the fundamental idea is
to validate the detection capabilities of the SOC by utilizing offensive techniques
in the live environment to see how the detection and incident response capabili-
ties hold against the techniques used by real-world adversaries. The detection of
insider threats can also be a separate operation from the day-to-day operations of
the SOC in situations where an insider threat is a substantial concern for the orga-
nization and needs to be taken care of with higher priority, and thus, it could be
justified to run insider threat detection as a separate function from the SOC with
own people, processes and technologies rather than relying on the same elements
utilized by the SOC (Knerler et al., 2022).

2.2 Maturity models

A maturity model can be used to assess the maturity of an organization or a
process. The maturity is usually expressed as tiers of maturity where each tier
contains multiple requirements the organization or process must fulfil to reach a
certain level of maturity. There are several cybersecurity-related maturity mod-
els currently being used, such as Cybersecurity Maturity Model Certification
(CMMC) by the U.S. Department of Defense (2021), Framework for Improving
Critical Infrastructure Cybersecurity by the National Institute of Standards and
Technology (NIST 2018) and Cybersecurity Capability Maturity Model (C2M2)
by the U.S. Department of Energy (2022). While the general-purpose security
maturity models are covering topics relating to the SOC, they are not directly
applicable to measuring the maturity of a SOC. For this purpose, some frame-
works are available, such as the SOC-CMM by Van Os (2016), CTI-SOC2M2 by
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Schlette, Vielberth, and Pernul (2021) and the ENISA CSIRT Maturity Frame-
work, which is more aimed towards assessing the maturity of national CSIRT
functions (Dufkova et al., 2022), such as The National Cyber Security Centre Fin-
land (NCSC-FI), but can to some degree be applied to SOCs.

The SOC-CMM maturity model by Van Os (2016) introduces a capability
maturity model for SOCs as a design science artifact, which is based on items
discovered in a systematic literature review and a survey on SOCs. Within the
model, the maturity aspect is measuring the maturity of the business, people, and
process domains, and is based on the five levels of maturity: initial, managed,
defined, quantitatively managed, and optimizing, which are defined according
to the Capability Maturity Model Integration (CMMI) model. Based on the SOC-
CMM model, the initial level means there is no practical progress on an area that
has been identified, managed level states that the activity is formalized so that it
can be reliably repeated. The model also determined defined activities as some-
thing that are documented and formalized, quantitatively managed activities as
something that are being measured for optimization on a process level, and the
optimizing being a level where the activities are optimized on an organizational
level. The capabilities are measured on a score between 0% and 100% and are not
associated directly with CMMI levels, but instead, the results are normalized on
a five-point scale upon which capability targets can be defined (Van Os, 2016).
The usage of the SOC-CMM model is further clarified in a whitepaper published
at a later date (Van Os, 2018), which summarized the usage of the SOC-CMM
compactly but does not provide additional insights on the tool itself.

Another example is a CTI-centric capability and maturity framework CTI-
SOC2M2 by Schlette et al. (2021), which is an interesting model for measuring the
SOCs, as it does not measure the overall capabilities or the maturity of the SOC
similarly as SOC-CMM does, but it rather assesses SOCs based on how well the
usage of CTI is incorporated in the core services. The fundamental idea behind
the framework is that without the usage of CTI, a SOC is unable to act swiftly on
emerging threats and thus is unable to identify and mitigate post-exploitation ac-
tivities resulting from the initial breach, increasing the impact of the breach. Sim-
ilar to the other frameworks, the framework has maturity levels that are based
on maturity tiers, which in the framework are none, initial, core, extended, and
visionary, and to move from one maturity level to another, a specific capability
level must be reached for specified services. For example, to reach the initial ma-
turity level of the CTI-SOC2M2 framework, capability level two must be reached
within the services "Log & event management", "Security monitoring, analysis
& threat detection" and "Vulnerability management". Each service has a source
and format for CTI data and the scoring is done based on how well the sources
are utilized within the domain, for example, the initial maturity level being the
source for the CTI is assessed and the visionary level requires a mechanism to
keep track of the changes within the CTI and the related formats (Schlette et al.,
2021).
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3 CYBER ADVERSARY BEHAVIOUR

As the purpose of a SOC is to protect the environment against security threats and
prevent detections from becoming high-impact security incidents, understanding
how cyber adversaries are operating is an essential part of planning the overall
defensive capabilities as well as the operational activities. A threat landscape
report published by ENISA (2021) and similar whitepapers published by sev-
eral commercial organizations (CrowdStrike, 2022; Firstbrook et al., 2022; Sophos,
2022) mention an increase in the sophistication of cyber attacks conducted by ad-
versaries leading into the decline of general purpose malware and other run-of-
the-mill techniques that traditional cyber defences are effective against to. As ad-
versaries are constantly evolving and circumventing traditional cyber defences,
cyber defenders need to understand what they are against, which is why un-
derstanding adversary behaviour is essential to construct a viable cyber defence
operation.

3.1 Attribution of cyber adversaries

The types of adversaries can be generalized into three different groups: cyber-
crime actors, state-sponsored actors, and hacktivists (CrowdStrike, 2022; ENISA,
2021). The definition of the adversary types varies from one source to another, but
ENISA (2021) determines that cybercrime actors are in it for personal gain, which
means they are likely to utilize cost-effective techniques and target organizations
that could potentially hand out a hefty payment. Based on the report, this is usu-
ally done either through the extortion of data or selling tools, such as ransomware
or C2 frameworks, or other information stolen from the victim, such as creden-
tials or confidential information, on a dark web marketplace. State-sponsored
actors usually have different motives, and although some state-sponsored actors
have conducted intrusions purely for monetary gain, actors attributed as state-
sponsored have focused mostly on espionage and sabotage driven by geopoliti-
cal tensions (ENISA, 2021). As an example, it is considered that a state-sponsored
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threat actor originating from Russia was behind the SolarWinds supply-chain
breach in 2020, as the focus of the campaign was placed on espionage and the
post-compromise activities targeted critical organizations in the United States
(Willett, 2021). A recent report by Microsoft (2022) demonstrates that threat actors
associated with the government of Russia have utilized cyber attacks to sabotage
Ukrainian infrastructure before a kinetic strike conducted as a part of the Russo-
Ukrainian War, which fits well into the definition of the activities performed by
state-sponsored adversaries. The last adversary group, hacktivists, are consid-
ered to be actors that typically are performing relatively traditional unsophis-
ticated attacks, such as denial of service and defacements, as a protest against
organizations, which can minorly impact the target organization, but ultimately,
the threat is nowhere near the other adversary groups in terms of potential impact
(ENISA, 2021).

As stated by Rid and Buchanan (2015), attribution of cyber adversaries is
fundamentally about identifying the entity behind the cyber attack, but the attri-
bution as a process and the methodologies associated with it have been a source
of debate among practitioners. Furthermore, they also mention that attribution
of the adversary is an important part of assessing the potential impact of security
incidents, but the attribution of adversaries can sometimes be difficult to per-
form accurately. Organizations can have difficulties performing the attribution
in-house and as a result, they have to rely on public resources to do so. However,
public attribution can sometimes be driven by geopolitics and it is not common
for intelligence agencies to disagree on the attribution on a national level, which
can lead to inaccurate attribution especially when it comes to state-sponsored
threat actors (Egloff, 2020).

The term Advanced Persistent Threat (APT) is used to describe threat actors
that are well organized, properly funded, and are aiming to establish long-term
persistent access to the target environment (Cole, 2012). One way to perform
the attribution is by analyzing the TTPs used by the adversary when travers-
ing through the target organization attempting to meet their ultimate objective
(Bahrami et al., 2019; Cole, 2012) but as concluded by Rid and Buchanan (2015),
a high-quality attribution cannot be done with purely a technical routine, but
instead requires a multi-layered approach to complete the analysis work, such
as figuring out the reasoning for the selection of victims or performing exten-
sive analysis on how the payloads delivered to the victim organization are pro-
grammed.

Although the attribution of threat actors is a relatively complicated prob-
lem, some frameworks attempt to map out how adversaries are behaving. Such
frameworks include the Diamond Model (Caltagirone, Pendergast, & Betz, 2013),
MITRE ATT&CK® Framework (Strom et al., 2018), Lockheed Martin Cyber Kill
Chain® (CKC) (Hutchins, Cloppert, & Amin, 2011) or the Unified Kill Chain
(UKC), that attempts to bring best parts of MITRE ATT&CK and the CKC to-
gether in a unified model (Pols, 2017). Out of these frameworks, the most com-
monly observed frameworks are the MITRE ATT&CK Framework and the CKC.
However, as the CKC is a linear model describing the end-to-end process of an
entire attack, that focuses on preparation (reconnaissance, weaponization), ex-
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ploitation (delivery, exploitation, installation), and post-exploitation (command
and control, action on objectives) activities (Hutchins et al., 2011), it has been a
subject to some criticism among practitioners as it is unable to accurately model
the adversary behaviour between stages. For example, the phases "Command
and Control" and "Action on Objectives" can contain lateral movement and priv-
ilege escalation between them, but when using CKC, these activities cannot be
distinguished, making the usage of CKC relatively ineffective in the practical ap-
plications, even though the fundamental idea behind CKC is still standing on
solid ground.

3.2 MITRE ATT&CK Framework

The MITRE ATT&CK Framework is a collection of adversary TTPs with the pur-
pose of mapping out adversary behaviour throughout the attack lifecycle (Strom
et al., 2018) based on evidence observed in the real world. Version 11 of the frame-
work consists of fourteen tactics (Mitre Corporation, 2022) that represent the rea-
soning behind the actions of the adversary, and several hundreds of techniques
that model out how the objective is met. For example, within the paper pub-
lished by Strom et al. (2018), the tactic "Credential Access" consists of techniques
describing methods for stealing credentials, such as "OS Credential Dumping"
or "Brute Force". The tactics and techniques as defined in the paper are still rel-
atively abstract, but the procedures attached to the tactics describe the specific
way of performing the technique. For example, a procedure can be a description
of a method that utilizes PowerShell to dump credentials from Local Security
Authority Server Service (LSASS) or a specific way to perform password spray-
ing. The way the adversaries utilize specific procedures is what the framework
is basing the attribution on; although credential dumping as a technique is the
same, different threat actors might have opposite procedures from one another to
accomplish this objective (Strom et al., 2018).

The framework can be utilized by SOCs to design and build their monitor-
ing scenarios around real-world threat scenarios rather than relying on vendor-
produced content or attempting to build the capabilities completely in-house
(Ahlm, 2021; Strom et al., 2018). Based on the description by Strom et al. (2018),
one of the key features of the framework is the possibility to utilize the TTPs
to perform adversary emulation. They state, that when performing an adver-
sary emulation, a threat actor relevant to your organization is chosen and the
effectiveness of the procedures used by the threat actor group is tested in a live
environment. They argue that this activity measures the effectiveness of the se-
curity controls in terms of preventing the execution and being able to detect both
successful execution and the execution attempts blocked by the security controls.
Fundamentally, it is about providing actionable TTPs, that can subsequently be
prioritized by the defenders to improve the organizational defences against cyber
threats (Strom et al., 2018).
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There is some criticism among the cyber security practitioners of using the
framework to assess the performance of SOCs and for a good reason. The re-
search on the subject is relatively limited and it is currently unknown whether it
is a good or a bad thing for the industry to base threat detection on a single frame-
work. Additionally, several commercial organizations are using the framework to
advertise their product capabilities in terms of coverage, which is in direct con-
tradiction with the design philosophy of the framework as per the publication
by Strom et al. (2018), who are the original authors of the framework. Targeting
100% coverage is not reasonable, as the solution would likely end up producing
a large amount of false-positive or benign true-positive detections, making the
SOC inefficient at completing its primary objective. Effective threat detection is a
balance of several factors and utilizing the framework as a basis for creating ac-
tionable threat detection capabilities is a vital part of the overall strategy, meaning
it should not be the sole source of information, but it could be argued that it is the
best we have available at the moment.

3.3 The Unified Kill Chain

A whitepaper by Pols (2017) introduces the UKC, which was designed to im-
prove the linear approach taken by the CKC and extend it with elements from
the MITRE ATT&CK framework and multiple different variations of the CKC.
They demonstrate that the UKC can be used to describe the end-to-end process
of an attack and instead of being completely linear, it contains three separate it-
erative phases describing the journey of the adversary within the compromised
environment, with an ultimate target of achieving the final objective they have
defined for themselves. If an adversary fails to meet the objectives within a sin-
gle iteration of the phase they are in, they can adjust their approach and re-iterate
the phase for as long as required to meet the objective of the phase and move on
to the next phase (Pols, 2017). The comparison of tactics between CKC, MITRE
ATT&CK, and the UKC is shown in table 1.

The first stage of the UKC by Pols (2017) is "Initial Foothold" in which the
attacker aims to gain a persistent presence within the targeted environment. The
first stage contains adversary tactics that when used together, aim to breach the
initial defences of the organizations and provide the adversary with the necessary
level of access to pivot further into the environment, which is the objective of the
first phase. The second stage within the UKC is "Network Propagation", which
depicts the actions required by the adversary to gain a sufficient level of access
within the target environment to achieve their ultimate objective, usually mean-
ing access to a critical asset within the environment. The third phase is "Action
on Objectives", which contains phases to achieve the objectives, usually in the
form of data collection, exfiltration, and impacting the systems, by for example
distributing ransomware malware in the environment (Pols, 2017). The phases of
the second stage of the UKC are a good example of how the CKC falls short, as
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TABLE 1 The Unified Kill Chain stages with Cyber Kill Chain and MITRE ATT&CK

Cyber Kill Chain MITRE ATT&CK Unified Kill Chain

Initial Foothold
Reconnaissance * * *
Weaponization * * *
Delivery * * *
Social Engineering *
Exploitation * * *
Persistence * * *
Defence Evasion * *
Command and Control * * *
Pivoting *

Network Propagation
Discovery * *
Privilege Escalation * *
Execution * *
Credential Access * *
Lateral Movement * *
Access *

Action on Objectives
Collection * *
Exfiltration * *
Impact * *
Objectives * *

none of the stages of the CKC are contained within the stage. The second stage
of the UKC highlights the fact that in many cases adversaries have a long way
between Command and Control and their objectives, which offers the defenders
multiple chances to detect the adversary and evict the threat.

Pols (2017) mentions that one way to use the UKC is to plan the defensive
strategies in a way that an adversary has difficulties progressing from one stage
to another, which limits the potential impact of the adversary’s actions within the
environment. It is difficult to completely prevent the compromise of an internet-
connected device so accepting the fact can be a viable way to re-prioritize the
defensive efforts, which can potentially lead to a more effective security posture
against advanced adversaries (Pols, 2017).
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4 METRICS AND MEASUREMENTS

Following the definition by Savola (2007), the primary purpose of a metric is to
measure how well a business process, product, or resource is behaving, and upon
which a business decision can be made. Typically, a metric consists of one or more
discrete single point-in-time measurements, from which metrics are then derived
from (Savola, 2007). For example, a measurement could be a temperature mea-
surement taken every hour and a metric could be the daily average temperature
calculated from the hourly measurements. The metric could then be used to track
the changes in the average temperature over years to determine the impact of cli-
mate change on the average temperatures at a specific location.

Within the context of cyber security, Black, Scarfone, and Souppaya (2008)
state that organizations can utilize metrics to verify the effectiveness of their cyber
security program by making observations about the measures behind the metrics.
This can, for example, help with the verification of security controls, identify ar-
eas of improvement or conclude the value of investments by observing long-term
trends (Black et al., 2008). According to Savola (2013), to produce quality met-
rics for security, the resulting metrics must conform to three fundamental quality
criteria: correctness, measurability, and meaningfulness. According to his defi-
nition, correctness is about the metric being implemented correctly and provid-
ing error-free results, measurability requires the metric to have defined dimen-
sions, quantities, or other qualities, and meaningfulness is fundamentally about
the metric being relevant and fit for purpose. The usability of the metrics should
also be considered, as it has a direct impact on the practical meaningfulness of
the metric (Savola, 2013).

4.1 Metrics and key performance indicators

The literature about security metrics uses the terms metrics and key performance
indicator (KPI) almost interchangeably, although their fundamental meaning is
slightly different from one another. A KPI is aligned with the strategy of the com-
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pany, it has a significant impact on the company, it is non-financial, the period for
the measurements is less than a week and it is tied specifically to single or mul-
tiple teams working in close collaboration (Parmenter, 2019). For example, a KPI
in the SOC could be the number of high-priority security incidents this week that
have not been handled according to the service level agreement. Following the
definitions by Parmenter (2019), measuring the total number of incidents not han-
dled as per service level agreement for a longer period of such, such as a month
or a quarter, would be considered a performance indicator, as the scope is not
limited to high-priority incidents and the period is longer. He also expands the
definition of indicator slightly further and defines that there there are two groups
of performance measures, result indicators and performance indicators, and in
these groups, there are select key indicators that have a more significant impact
on the business and thus, are called KPIs and key result indicators. Result indi-
cators are used to measure the activities spanning multiple teams and can be fi-
nancial or non-financial, while the performance indicators are non-financial, tied
to a specific team, and measure a limited group of activities (Parmenter, 2019).
Metrics on the other hand are general purpose standards of measurements as per
the definition by Merriam-Webster5, so it could be stated that all KPIs are metrics,
but not all metrics are KPIs.

Most of the metrics mentioned in the literature are either performance or
result indicators and it is up to the organization to decide whether an indicator
can be considered a key indicator or not. For an organization that provides man-
aged security services and running a SOC is a major source of their revenue, a
performance indicator displaying the number of incidents that were not handled
according to a service level agreement could be a KPI. For a larger organization
for which the revenue from the SOC business is only a fraction of the total rev-
enue, the same indicator could simply be a simple performance indicator as the
impact of the metric is considerably lower.

4.2 Constructing metrics

An example structure of a metric is depicted in figure 4, in which the metric
"number of security incidents with reaction SLA violations" is derived from the
measurements of the reaction time for detections and tickets originating from
multiple different sources. The configuration of the metric only selects the mea-
surements where the reaction time exceeds a pre-determined value used to de-
fine the maximum time allowed to pass until the analysts react to detection or a
ticket. The value of the metric could be zero even though there would be sev-
eral measurements within the two categories if none of the reaction times pass
the pre-determined upper limit for the reaction time and thus be in breach of the
service level agreement (SLA).

There are several ways to construct or select metrics that are for measur-

5 https://www.merriam-webster.com/dictionary/metric
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Metric A
Number of security incidents with reaction SLA violations

Measurement A
Reaction time for detections

Source 1
SIEM

Source 2
EDR

Source 3
IDS

Measurement B
Reaction time for tickets

Source 4
Internal

Source 5
External

FIGURE 4 Structure of a metric

ing the outcome of an activity. A paper by Doran (1981) describes a method that
utilizes the S.M.A.R.T. method, which is an acronym for specific, measurable,
assignable, realistic, and time-related, to select a suitable metric. Furthermore,
he argues that S.M.A.R.T. framework defines objectives that should be met when
selecting metrics and it is not necessary to completely fulfil all of the objectives,
but the closer the metric matches the criteria, the smarter the metric is. Within
the framework, specific means that the metric should target a specific area or
an entity, measurable means the metric needs to have a quantifiable indicator
of progress, assignable should determine who takes responsibility for the met-
ric, realistic means achieving realistic results and time-related specifies when the
results are available (Doran, 1981).

Brotby and Hinson (2013) introduces another acronym-based methodology,
which is the PRAGMATIC method that consists of nine metametrics (predictive,
relevant, actionable, genuine, meaningful, accurate, timely, independent, and
cheap) depicted in table 2, which are essentially scoring criteria for the metric
itself. As per the definition in the book, the PRAGMATIC method has scoring
criteria in a range between 0% and 100%, and the overall score for a metric can
either be the average score of the metametrics or the average score after the indi-
vidual metametrics are weighted based on selected criteria. Based on the method,
the resulting score defines how well-structured the metric is, which in practice
means, the higher the percentage, the better the metric is. The method contains
a guideline that has a verbal definition for four different scores upon which the
score for the given metametric can be determined (Brotby & Hinson, 2013). The
definitions for the metametrics are also depicted in table 2.

In summary, the S.M.A.R.T. and PRAGMATIC methods are more about
how metrics can be selected and which principles should be embraced when a
metric is constructed. There are also other methods to construct metrics, for ex-
ample, the Annex A of the ISO/IEC 27004:2016 (2016) standard summarizes a
measurement information model contained in the ISO/IEC 15939 standard and
describes how specific attributes related to an entity can be converted into an in-
formation product that can be used for conducting business decisions. Within the
standard, the process starts by selecting which attributes from an entity should
be measured, after which the measurements are converted to derived measures,
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TABLE 2 Metametrics as defined by Brotby and Hinson (2013)

Metametric Definition

Predictive Metric can be used to predict what will be happening in the future.

Relevancy Metric must produce relevant information for the intended targets of the metric.

Actionable Metric must be influenced by the organization the metric is expected to measure.

Genuine The metric should be objective, and provide credible and unambiguous informa-
tion based on real-world information.

Meaningful The metric should provide information that can be consumed by the intended
audience of the metric.

Accuracy The metric should be precise and provide correct information.

Timeliness The metric should be timely in a way that any actions performed can be swiftly
observed.

Independence The metric should be objective and it should not be possible to manipulate the
metric.

Cheap The metric should be cost-effective and have a high net value.

out of which an indicator, or a metric, is ultimately constructed. The indicator is
then interpreted to make an information product that can be used for conducting
a business decision (ISO/IEC 27004:2016, 2016).

The study conducted by Savola (2013) focused on determining the quality
of a security metric, rather than attempting to provide guidelines on how met-
rics can be scored or constructed. The outcome of the study was that a security
metric should be correct, measurable, meaningful, and to some degree usable.
The model is built in a way that related criteria are linked to the primary criteria,
for example, unbiasedness and representativeness are linked to correctness, and
objectiveness and applicability are linked to meaningfulness (Savola, 2013). Sim-
ilar to S.M.A.R.T. and PRAGMATIC methods, the model can be used as a guide-
line when metrics are being constructed or a metric is selected from a group of
metrics, by for example ranking the metric based on correctness, measurability,
meaningfulness, and usability similar to the PRAGMATIC model.

4.3 Problems and pitfalls of metrics

Metrics can provide valuable insights into the performance of an organization
but when incorrectly constructed, they can become counterproductive and as a
result, decrease the performance of an organization rather than improve it. There
is a possibility the metric can be incorrect either due to a problem with the raw
measurements, a programming error has happened in the algorithm used to de-
rive the metric, or someone is either maliciously or non-maliciously interpreting
the metric incorrectly to steer their agenda forward in the organization (Brotby &
Hinson, 2013). A study by Hauser and Katz (1998) argued that it might also be
possible that certain metrics, which are hard to influence by the activities of team
members, might lead to a situation where short-term decisions are favoured over
long-term decisions. They argued that short-term decisions could have a swift
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positive impact on the metric value and thus are subconsciously seen by the team
as a better decision to make. There is also a possibility that a metric is precisely
wrong, meaning that something is measured with high accuracy but the metric
does not improve the business process it is supposed to improve, and as a result,
it leads to negative consequences (Hauser & Katz, 1998).

We can also approach the problems with metrics from the quality perspec-
tive. As pointed out by Savola (2013), the top three criteria for a metric should
be correctness, measurability, and meaningfulness. An attribute closely related
to correctness is unbiasedness and objectivity, meaning the interpretation of the
metric should not be influenced by the beliefs or biases a person looking at the
metric might have, as otherwise, it could have unforeseen consequences for the
interpretation of the metric. A similar conclusion could be reached in the other
categories, for example, reproducibility is closely related to measurability. If a
result from a metric cannot be reliably reproduced, the metric could produce an
incorrect value and thus be subject to unconsciously interpreting it incorrectly.

The problem can also be with the quantity of the metrics. If the security
metrics are not complete and they have significant gaps in some areas, it might
not be possible to correlate multiple metrics together to gain an understanding
of the entire situation, which then could lead to incorrect decisions. On the other
hand, having too many metrics can also be a source of incorrect decisions, so it is
crucial to balance the quantity and the quality of the metrics to create a coherent
collection of metrics to base the decisions (Brotby & Hinson, 2013). A book by
Parmenter (2019) presents an idea of a 10/80/10 rule as a way to structure the
collections of metrics, in which there are ten key result indicators, a sum of eighty
performance and result indicators, and ten KPIs covering the entire organiza-
tion. He also argues that smaller organizations can manage with fewer indicators
while larger organizations should figure out whether they can reduce the number
of indicators or combine some cross-business unit metrics into one generic met-
ric. An exception to the rule can be made if an organization is running multiple
distinct businesses with different business models and as such, it is also entirely
possible to deploy multiple sets of indicators following the 10/80/10 rule within
a single organization (Parmenter, 2019).
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5 SECURITY OPERATIONS CENTER METRICS

This chapter reviews a select group of SOC-related literature, both academic and
commercial, to determine what kind of metrics can be discovered from the litera-
ture. In addition to literature specific to SOC, some of the key sources for generic
security metrics are also reviewed to determine how well the generic security
metrics can be applied in the SOC context. The objective of the SOC-related lit-
erature review is to gain a sufficient understanding of the metrics that could be
considered to be common or typical for SOC and therefore, be considered to be
established metrics for SOCs.

5.1 Published literature on Security Operations Center metrics

Vielberth et al. (2020) performed a structured literature review of the current state
of SOC-related academic research published between 1990 and 2019. One of the
conclusions they reached in the research was that the general level of governance
and compliance-related aspects of SOC-related research are immature and while
there is a significant amount of research about security metrics, the same cannot
be said about SOC metrics-related research. Based on the research, they have
identified four major groups for metrics: general SOC, people, technical, and
governance and compliance metrics. The general metrics mentioned in the re-
search consisted of coverage and general performance metrics, such as average
analysis time or mean time to detect. They also introduced a couple of people-
related metrics, such as metrics to measure the efficiency of the people working at
the SOC, such as the number of incidents closed per shift. Finally, they outlined
several technical metrics, such as threat, vulnerability, risk, alert, incident, and
resilience-related metrics, such as threat actor attribution, cost per incident, or
the number of incidents. Governance and compliance metrics include maturity
and other compliance-related metrics, such as the number of policy violations
or the percentage of systems with tested security controls (Vielberth et al., 2020).
The research provides an excellent summary of the common metrics described
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in the academic literature and it succeeds in highlighting the lack of a common
group of metrics used to measure the technical performance of a SOC. It contains
some relevant metrics for measuring the technical performance of a SOC, such
as false-positive rate, mean time to detect, threat actor attribution, and defensive
efficiency (Vielberth et al., 2020) but fails to demonstrate meaningful metrics on
several areas of the SOC-CMM framework such as automation & orchestration,
threat hunting, and detection engineering & validation.

Within a book by Nathans (2014), the SOC-related qualitative and quanti-
tative metrics are mostly discussed within the context of two primary domains:
metrics that are utilized by the management of the SOC and metrics that are re-
lated to vulnerabilities. The management-related metrics contained within the
book consist of qualitative metrics such as the top 10 oldest tickets, and quantita-
tive metrics such as tickets per incident type, number of tickets, number of tickets
solved within agreed limits, number of incidents per department, mean time to
resolution, mean time to first response, or average analyst downtime between
tickets (Nathans, 2014). On an overall level, the metrics associated with the SOC
management revolve mostly around tickets, their categories, and the way they
are handled by the analysts, and the primary purpose of these metrics is to man-
age the staff and demonstrate that time-based contractual obligations such as the
service level agreement are met within the SOC and as such, do not provide a
concrete way to measure the technical performance of a SOC.

Keeping track of vulnerabilities within the environment is a vital part of en-
suring the security of the monitored environment as per the definition by Nathans
(2014). He defines that vulnerability-related information is crucial for SOCs to be
able to meet their primary goal of detecting potential security incidents. Nathans
also argues that SOCs are usually not the ones who are applying the fixes to the
vulnerabilities, but instead, they work in close collaboration with system admin-
istrations responsible for applying the fixes. As per the definition by Nathans,
SOC can provide the system administrators meaningful information about the
impact of the vulnerabilities, instructions on how to properly mitigate the vul-
nerabilities or information if they have already been exploited and as a result,
incident response activities are required. The metrics related to the vulnerabil-
ities are categorized similarly to the management-related metrics and there are
qualitative metrics, such as the top 10 vulnerable endpoints, quantitative metrics
such as the number of vulnerable endpoints, number of vulnerabilities per sever-
ity, number of unknown assets, and the time it took to apply a patch that fixed the
vulnerability (Nathans, 2014). While metrics related to vulnerabilities are more
relevant from the technical performance point of view compared to supervisor-
themed metrics, the proposed metrics are not sufficient to be used to demonstrate
the technical capabilities of a SOC. However, as the book by Nathans focused
mostly on high-level concepts related to SOC it was expected to not contain con-
crete lists of metrics to be implemented by SOCs.

Agyepong, Cherdantseva, Reinecke, and Burnap (2020) have constructed a
framework in which the SOC is split into multiple functions and each function is
measured separately to determine the actual performance of the analysts within
the context of a function, which are monitoring and detection, analysis, response
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and reporting, intelligence, baseline and vulnerability, and policies and signature
management. Furthermore, the framework proposes that each function should
monitor its performance in terms of quantitative (absolute numbers derived from
analysts’ tasks, time-based measures), and qualitative (quality of analysts’ analy-
sis and report) performance metrics, out of which the qualitative metrics are seen
as subjective and as such, hard to measure in practice (Agyepong et al., 2020). The
framework does not provide concrete measurement mechanisms upon which or-
ganizations can implement the metrics defined in the framework, which leads
any implementation based on the framework to be different from one another,
making it difficult to compare the results between multiple organizations.

In his master’s thesis, Keltanen (2019) proposed to utilize results from a cus-
tomer survey as a way to measure the performance of an outsourced SOC. The
focus of the thesis is placed on the way the customer survey should be structured
and how to build meaningful metrics to be measured with the questionnaire sent
out to the customers. The method chosen for developing the metrics within the
thesis is the Goal-Question-Metric (CQM) method, where a goal is first defined,
then a question is asked on how the goal can be achieved, and finally, a metric
provides an answer to the question is created. Keltanen then ranks the metrics
based on the PRAGMATIC method, where the metric is ranked based on sub-
metrics referenced as metametrics, such as how genuine or accurate the metric is.
The resulting score will help to evaluate different metrics between one another,
making it possible to determine which metric is considered to be the most im-
portant (Keltanen, 2019). The study does not present concrete metrics that could
be used by SOCs to measure their performance but rather focuses on how the
metrics can be constructed.

Kokulu et al. (2019) published a research in which they performed a qual-
itative study on the issues observed by SOC practitioners. The study was based
on interviewing eighteen persons working in a SOC, ten of them being managers
and eight being security analysts. They concluded, that the key issues for SOCs
are: lack of visibility on networks and endpoints, protections against phishing
are inefficient, false-positives appear to have no significant impact on the oper-
ative activities of the SOCs, current performance metrics are ineffective and the
analysts and managers disagree on several high-impacting topics, such as level
of automation, tool functionality, and evaluation metrics. The research implied
that quantitative metrics, such as mean time to response, mean time to detection,
and the total number of incidents, are more common within SOCs and that the
common metrics include mostly metrics that are seen as beneficial by most of the
managers but useless by the analysts. The analysts mentioned that the metrics se-
lected for measuring the performance are used to measure completely irrelevant
things and are used for demonstrating a false improvement to the upper manage-
ment rather than demonstrating the actual performance of a SOC (Kokulu et al.,
2019). While the research did not contain any meaningful metrics for the tech-
nical evaluation of SOC performance, the evaluation metrics being a subject of
disagreement between the security analysts and the managers is a good exam-
ple of the mismatch between the practitioners and managers in general, which
could be a contributing factor on the lack of common metrics for measuring the
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technical performance of SOCs.
A SOC framework proposed by Onwubiko (2015) consists of log collection,

analysis, incident response, reporting, personnel, and continuous monitoring. He
defines that the reporting part of the framework consists of metrics used to eval-
uate the performance of the SOC and to determine the return on investment.
The framework does not contain a concrete set of metrics a SOC should take
into use, but instead, it provides a top five examples that should be taken into
account, which are the number of incidents, the performance of the cyber oper-
ations (true-positive, false-positive, false-negative, true-negative), top ten cyber
attacks, a summary of policy violations and a summary of privileged use misuse
detections (Onwubiko, 2015). Rather interestingly, the research is among the few
that discusses false-negative detections, but unfortunately, it does not deliver any
actionable information about this or any other metrics for that matter.

5.2 Commercial whitepapers and publications

In addition to scientific research and other publications on the subject, there is a
plethora of commercial material available that discusses the metrics to measure
SOCs. As scientific research and other published works are fairly limited in terms
of content and availability, looking into unpublished works could provide addi-
tional insights into the available metrics for the SOC, as seen by the industry and
the SOC practitioners.

Zimmerman and Crowley (2019) held a presentation at the annual FireEye
Cyber Defense Summit of 2019 about practical SOC metrics, which laid out seven
focus groups for the metrics. The first group they introduced was about the health
of the data feed, presenting the idea that the status of the data ingestion should
be monitored to detect if there are any large-scale gaps within the visibility due
to sensor issues. The second group was about the coverage of the monitoring in
terms of the percentage of environments covered, linked to different computing
layers, and the number of device groups covered. The third group within the pre-
sentation consisted of vulnerability relating metrics, for example, the percentage
of assets covered by the vulnerability assessment, and the fourth group focused
on the monitoring rules and highlighted some generic metadata about the mon-
itoring rules themselves, such as the kill chain or MITRE ATT&CK mapping or
which data sources the monitoring rule depends on.

The fifth group within the presentation by Zimmerman and Crowley (2019)
was all about the analysts’ performance and provided metrics such as the true-
positive rate per analyst or the true-positive rate of escalations made by the an-
alyst. The sixth group within the presentation was about incident handling and
mentioned the usual operational metrics, such as time to detect, time to react, and
time to containment, and it also further presented more advanced types of met-
rics, such as the relation of proactive vs reaction work, incorrect conclusions, and
insufficient threat eradication. The final and seventh area was about risk priori-
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ties and general hygiene and contained metrics about discovered and mitigated
vulnerabilities (Zimmerman & Crowley, 2019). The presentation contained sev-
eral metrics that are useful for the demonstration of the technical performance of
a SOC but lack the justification behind the metrics and as such, the authority of
the author is the only basis for the metrics.

Gartner published a guide (Ahlm, 2021) discussing the industry best prac-
tices for building and operating a modern SOC, among which a set of funda-
mental metrics were defined. The metrics contained in the guide focus mostly
on quantitative metrics and they were grouped into four categories, which are
incident volume, incident detection, incident response, and incident impact. The
incident volume group, as described in the guide, consisted of metrics focusing
on the metadata of the incidents, such as the total number of incidents or incident
severities. The incident detection group within the guide paid more attention to
the detection capabilities and included metrics such as the total number of use
cases or false-positive rate for the said use cases. The incident response group fo-
cused on how long it takes for the incident to be handled and had metrics such as
time to detect and time to contain, and the final group of incident impact contains
metrics such as financial loss or brand impact and attempts to quantify the actual
impact of the security incidents in the form of relatively simple metrics (Ahlm,
2021). The metrics for most parts are not relevant for the technical performance
of a SOC, except for the false-positive rate and the time to contain. It could even
be argued that some of the metrics presented in the paper, such as the total num-
ber of use cases, could be considered harmful, as focusing purely on the quantity
of the use cases with no regard to the quality could end up contributing to a false
sense of security, as a large number of monitoring rules does not directly correlate
with a better detection capability.

A survey by SANS Institute (Crowley & Pescatore, 2019) surveyed 355 or-
ganizations about common and best practices for SOCs. Among the topics they
surveyed, there were questions about which metrics are used by the SOC or mea-
sure its performance. The results of the survey conclude, that quantitative metrics
such as the number of incidents handled and time from detection to containment
to eradication are the most common ones used by the surveyed organizations.
According to the survey, the three least commonly deployed metrics were "Losses
accrued vs. losses prevented", "Monetary cost per incident" and "Avoidability of
the incident" all of which are relatively difficult to implement, and as such, it
was concluded that the results are not surprising. Out of the metrics mentioned,
there were a few metrics that are relevant for measuring the technical perfor-
mance of the SOC, which are "Threat actor attribution", "Time from detection to
containment to eradication", "Thoroughness of eradication" and "Thoroughness
and accuracy of enterprise sweeping" (Crowley & Pescatore, 2019).

A guide for measuring SOC published by Logsign (n.d.) groups the recom-
mended metrics into two categories, metrics for security operations and metrics
related to business requirements. Within the guide, the number of security in-
cidents was raised as the most important metric for security operations, as the
metric can be used to derive additional information, such as whether the overall
number of security incidents is increasing or decreasing. The guide also depicted
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additional metrics for the security operations, such as the number of alerts per
analyst, the number of alerts closed by automation, the number of false-positive
alerts, and the average time to detect a security incident. Metrics related to busi-
ness requirements were also mentioned, which are essentially about measuring
how the SOC is running from the business perspective, and the metrics include
the productivity of security analysts and the number of incidents impacting the
business (Logsign, n.d.). The metrics described in the guide are somewhat rel-
evant for measuring the technical performance of a SOC, but the justifications
for the metrics are practically non-existing and as such, the whitepaper is similar
to the other commercial material and is relying purely on authority without any
scientific justification behind the metrics.

A blog post by Simos and Dellinger (2019) presented some of the key met-
rics used at the Microsoft SOC. Time to acknowledge (TTA) was the first metric
mentioned within the blog, which is about the responsiveness of the SOC. Ac-
cording to the definition in the blog, the TTA measures the time between the alert
being raised and the time an analyst begins the investigation process. The sec-
ond metric outlined in the blog is time to remediate (TTR), which measures the
time it takes to contain an incident from the time of detection. The lower the
TTR the less time the adversary has within the environment, and the third metric
measures the number of incidents remediated grouped per response type, mean-
ing either manually by an analyst or automatically by automation technologies.
The fourth and last metric is escalation between tiers, which is used to track the
workload between SOC tiers (Simos & Dellinger, 2019). The metrics mentioned
in the blog are mostly about measuring the response capabilities of the SOC and
are highly relevant to the technical performance of the SOC.

5.3 Generic security metrics

In addition to SOC-specific frameworks and methodologies, several publications
describe ways of measuring information security on a general level rather than
focusing on a specific topic within the field of information security. One such doc-
ument is the Performance Measurement Guide for Information Security (NIST SP
800-55) published by the National Institute of Standards and Technology (NIST),
which describes a way for the organization to create, select and implement met-
rics for monitoring the state of security program on an overall level (Chew et al.,
2008). Another publication is the ISO/IEC 27004:2016 standard, which describes
guidelines that can be utilized by organizations for measuring the effectiveness of
the information security management system implemented as per requirements
defined in the ISO/IEC 27001:2013 standard (ISO/IEC 27004:2016, 2016).

The NIST SP 800-55 definition by Chew et al. (2008) contains some examples
of metrics that organizations can deploy to meet a portion of the requirements de-
fined by the Federal Information Processing Standard (FIPS) 200, which is used to
describe the minimum requirements for federal information systems within the
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United States. The metrics mentioned in the SP 800-55 are not directly targeted to
be deployed to measure a SOC, but some of the metrics are similar to the metrics
commonly observed in the SOC-related literature, such as the number of inci-
dents or the number of incidents reported within an agreed timeframe. Similar
to the ISO/IEC 27000 family of standards, there are some relations between the
NIST publications, as the metrics described in the NIST SP 800-55 are referring to
security controls in the NIST SP 800-53. However, the fundamental idea of NIST
SP 800-55 is not about providing a list of metrics for organizations to deploy but
instead providing detailed guidelines on how organizations can implement a se-
curity measurement program themselves, describing a process of developing and
implementing metrics (Chew et al., 2008).

The ISO/IEC 27004:2016 (2016) standard describes the rationale, charac-
teristics, types of metrics, and processes relating to measuring the effectiveness
of the information security management system (ISMS). Based on the standard,
the rationale behind the measuring is that although the controls described in the
ISO/IEC 27001 standard are in place, there is no guarantee that they would re-
main effective for eternity and as a result, several of the controls also enforce the
implementation of a metric to evaluate the effectiveness of the control. In addi-
tion, within the standard, the metrics validate the results of the implementation
process and provide additional benefits for the organization, such as increased
accountability and support for the decision-making process. The standard also
discusses the characteristics of the security metrics and it provides information
on the general properties of metrics, suggestions on what business processes to
monitor, what to measure, and when and by whom the monitoring of the metrics
is performed.

The ISO/IEC 27004:2016 (2016) standard groups the types of metrics into
two categories: performance and effectiveness metrics. Within the context of the
standard, the performance metrics are used for measuring the progress and the
effectiveness of the implementation of the ISMS processes, and the effectiveness
metrics are used to measure the impact of the implemented processes, for exam-
ple, cost savings or a degree of customer trust gained or maintained by the ISMS
program. To support the creation of effective metrics, the standard introduces six
processes: identity information needs, create and maintain measures, establish
procedures, monitoring and measure, analyse results, and evaluate information
security performance and ISMS effectiveness (ISO/IEC 27004:2016, 2016). Similar
to NIST SP 800-53, the metrics proposed by the ISO/IEC 27004 standard are ex-
amples of generic security metrics that are not directly related to SOCs. However,
a functional SOC can have an impact on the effectiveness of the metrics, such as
a decrease in the cost of security incidents, which is one of the sample metrics
contained in the document.

In his master’s thesis, Salmi (2018) conducted a survey of information se-
curity metrics implemented in large Finnish corporations, in which he identified
28 security metrics categorized into either management, operational or techni-
cal metrics. The study contained no metrics that would be directly related to
the technical performance of a SOC, but several metrics are closely related to
the typical activities of a SOC, such as the business impact of security incidents,
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characteristics of security incidents and system vulnerabilities (Salmi, 2018). The
characteristics of the observed security metrics mentioned in the thesis are match-
ing closely the quantitative metrics mentioned in other literature, especially the
ISO/IEC 27004. It could be concluded that in Finland, organizations are build-
ing their security metrics on the requirements of the ISO/IEC 27004 standard,
and as a result, are not effectively measuring the technical performance of their
SOCs in a way that would be strongly incorporated in the metrics related to the
information security management system related processes.

Pendleton et al. (2016) performed a literature survey on the system secu-
rity metrics. The research classified systems based on two groups of systems:
enterprise systems and computer systems. The study defined, that the term en-
terprise system refers to a group of individual interconnected computer systems
that together form an enterprise system, and that the computer system refers to
an individual entity, consisting of a single self-contained node, device, or com-
puter. The research resulted in a framework, which categorizes security metrics
based on four sub-metrics: metrics of system vulnerabilities, metrics of defence
power, metrics of attack or threat severity, and metrics of situations. All of the
sub-metric groups defined within the research contain metrics that can be used
to measure the performance of a SOC, and for example, the metrics of situations
group discusses metrics that are also commonly referred to in the SOC-related
literature, such as incident rate, which is used to measure how often computer
systems are infected with malware, or cost of incidents, which measures the mon-
etary losses resulting from incidents. The remaining groups are telling a similar
story, the metrics of the attack group contain a metric for measuring the success
of detection of malware associated with advanced persistence threat actors, and
the defence power group discusses intrusion detection metrics, such as false- or
true-positive rates, and the vulnerability group contains metrics to measure the
lifetime of a vulnerability (Pendleton et al., 2016). Despite introducing multiple
useful concepts, the metrics described in the research were quite abstract on a
practical level, but regardless, they contained enough information to enable a rel-
atively straightforward process to derive metrics dedicated to a SOC based on the
metrics demonstrated in the research.

5.4 Summary of Security Operations Center metrics

As a summary of chapter 5, table 3 describes the top thirty most commonly seen
metrics in the literature. Some of the metrics were combined into a generalized
term instead of having two separate rows for what is essentially the same thing,
such as "time to resolution" and "time to incident closure". Another general level
observation from the metrics was that the terminology does not appear to be con-
sistent among the literature. For example, the metric "mean time to detect" is
used to describe at least two different behaviours, the time it takes to react and
perform the analysis of the alert (Agyepong et al., 2020; Ahlm, 2021; Crowley &
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TABLE 3 Top 30 metrics in the literature
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Number of security incidents * * * * * * * * * * *
Mean time to reaction * * * * * * *
Number of vulnerabilities * * * * * * *
False-positive rate * * * * * *
Mean time to detect * * * * * *
Mean time to resolution * * * * * *
Cost of security incidents * * * * *
Detections per category * * * *
Mean time to vuln. remedy * * * *
Number of vulnerable devices * * * *
% of employees trained * * *
% of standard systems * * *
Analyst productivity * * *
Coverage of vuln. scanning * * *
Downtime due to sec. incidents * * *
Incident avoidability * * *
Incidents with business-impact * * *
Mean time to containment * * *
Mean time to triage * * *
Number of incidents per shift * * *
Number of monitored assets * * *
Number of patched vulns. * * *
Number of risk per severity * * *
Resolution SLA breaches * * *
Severity of sec. Incidents * * *
Threat actor attribution * * *
# of automated incidents * *
Mean time to escalation * *
Quality of eradication * *
Reaction SLA breaches * *
Sources of detection * *

Pescatore, 2019) and time it takes for the SOC to become aware of the incident
(Logsign, n.d.; Vielberth et al., 2020). Some of the publications did not provide
enough information to make a clear distinction between the two (Kokulu et al.,
2019; Zimmerman & Crowley, 2019). However, as the systematic literature re-
view on the SOC metrics performed by Vielberth et al. (2020) provided a separate
metric for the average analysis time in addition to the time to detect, a conclu-
sion could be reached that the correct definition for time to detect metric would
be the time between the initial activity of the adversary and the first detection
caused by the activities. This viewpoint is also supported by the Computer Se-
curity Incident Handling Guide (NIST SP 800-61), which separates the detection
and analysis as a separate activity within a single phase of the incident response
life cycle (Cichonski et al., 2012). Table 3 follows the terminology used in the lit-
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erature and thus is partially inconsistent. As a result, it succeeds in highlighting
a common problem with SOC-related metrics in the literature.

The most common metric was the total number of security incidents, which
was mentioned in eleven of the fourteen publications included in table 3. This
is not a surprise, given the number of incidents is mentioned as a specific met-
ric in both NIST SP 800-53 and ISO/IEC 27004, and it is a metric that can easily
be collected and used outside of the scope of SOC. Vulnerability-related metrics
are also relatively common, with the count of vulnerabilities being mentioned in
seven publications, and mean time to vulnerability remediation and the count of
vulnerable devices were mentioned in four publications. Operative metrics, such
as mean time to reaction, detection, resolution, containment, triage, and escala-
tion were also commonly mentioned, but the publications also contained a few
technical performance metrics. The technical performance metrics mentioned in
the source literature were false-positive rate, threat actor attribution, the num-
ber of security incidents closed with automation, and the quality of eradication.
Many of the publications did not explain the metrics with enough detail to draw
a definitive conclusion of the actual meaning of the metric, which means some
of the items summarized in table 3 are subjective to some degree, as the termi-
nologies used were slightly different between the publications, which is likely to
skew the results slightly.

The literature review further emphasizes the need for a common frame-
work that could be used for the performance evaluation of SOCs globally, as the
metrics presented in table 3 are scattered broadly and as mentioned earlier, there
appear to be no common definitions for the so-called key metrics. The published
literature is mostly focusing on operational SOC-related metrics or general secu-
rity metrics. Although the commercial whitepapers provide slightly better tech-
nical performance metrics, they fall short in several ways, for example, the lack of
proper justification is seen throughout the commercial whitepapers, which means
they are attempting to push their message through based purely on authority and
are not attempting to justify their views. Although the scientific research around
the subject is limited, several studies have arrived at a similar conclusion (Agye-
pong et al., 2020; Keltanen, 2019; Kokulu et al., 2019; Vielberth et al., 2020), which
supports the original hypothesis of lack of commonly available technical perfor-
mance metrics for measuring the performance of a SOC. The lack of standard
technical performance metrics could be attributed to the lack of a sufficiently ma-
ture governance model for SOCs as pointed out by Vielberth et al. (2020) in their
structured literature review about SOCs.
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6 SOLUTION OBJECTIVES

The objective of the solution is the documentation of an approach for the cre-
ation of SOC-related metrics. Additionally, the solution should be used to create
three to seven metrics that can either augment existing technical performance
metrics or introduce completely new metrics and provide capabilities to measure
the technical performance in an area where previous metrics are either incom-
plete or entirely missing. Based on the literature review, the requirements for the
solution are the following:

1. A selection criteria for the creation of metrics should be well-defined.
2. A separate quality criteria for the metrics should be defined and the met-

rics created with the framework should conform with it.
3. The metrics should be directly associated with a specific SOC function.
4. The metrics should be universal and not tied to a specific technology or

an organizational structure.
5. The metrics should be justified either by scientific research, industry

standards, or through other means that considerably decrease the sub-
jectivity of the metrics.

The justification for the item 1 is that there does not appear to be an industry-
standard framework for the creation of metrics, especially for a SOC. There are
selection criteria such as S.M.A.R.T. (Doran, 1981) and PRAGMATIC (Brotby &
Hinson, 2013) that are used for the creation of security metrics, but the selection
criteria remain subjective at best, especially when the context is shifted outside
from general security metrics. The creation of a comprehensive framework for
measuring the performance of a SOC is out of the scope of this research, and
the focus is placed on enabling the creation of selection criteria that can be used
as a part of the comprehensive framework. The resulting selection criteria will
be based on a combination of existing methods and interpretations within the
context of a SOC.

Although the creation of a comprehensive framework is out of the scope
of this research, the quality criteria for the SOC metrics should be defined. The
justification for the item 2 is that based on the empirical experience, many of the
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metrics used for measuring SOC are of low quality especially when it comes to
bias and objectivity. The literature review did not prove the hypothesis to be false
nor did it confirm it to be true either. As a result, to ensure the resulting metrics
are of high quality, quality criteria for SOC metrics should be defined.

The justification for the item 3 and item 4 is the same, which is the universal
applicability of the resulting metrics. In practice, this means the metrics should
be usable by most SOCs out there, given they include the function to which the
metric is tied. Finally, the justification for the item 5 is that the metrics in some
situations do not appear to be backed up by scientific research or by any other
method, especially when it comes to commercial sources, which means the met-
rics are purely based on the authority of the author and not necessarily on any-
thing meaningful.
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7 MODEL CREATION AND TESTING

This chapter consists of the creation of the design science artifact in the form of
a metric selection framework. The metric selection framework can be used to
construct metrics used to measure the performance of a SOC and consists of the
requirements for the metric to be valid and the characteristics of the metric, which
should be documented for each metric created with the selection framework. The
design science artifact is evaluated by utilizing it to create metrics that are used
to measure the technical performance of a SOC. Scoring and weighting of the
metrics have been left out of the framework, as they have too many variables to
result in objective scoring of the metrics.

The model is being constructed based on requirements defined in two sep-
arate stages, as depicted in figure 5. The first stage consists of the solution objec-
tives that are defined as a part of the design science research methodology in the
chapter 6. The second stage consists of the metric selection framework, as seen in
figure 6, that consists of the requirements the metric should conform to and the
characteristics that must be describable in the metric documentation.

Stage 1
Solution objectives

Stage 2
Selection framework

Stage 2b
Metric characteristics

Stage 2a
Metric requirements

FIGURE 5 The metric construction stages

7.1 Quality criteria for the metrics

As the quality of the metrics is a critical factor when it comes to metric adaptation,
the metrics should conform to formal quality criteria to ensure the metrics can
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contribute something back to the organization. Lack of quality can lead to a wide
variety of issues, such as SOC personnel seeing metrics as useless (Kokulu et al.,
2019) or the focus being placed on measuring topics that are irrelevant for the
organizational performance (Hauser & Katz, 1998).

The quality criteria for the SOC metrics is based on the model presented
by Savola (2013), which concludes that correctness, measurability, and mean-
ingfulness are the primary quality criteria for security metrics. The study also
concluded, that on a practical level, usability is also a factor to take into consid-
eration, and as such, it is added as the fourth criterion within the quality criteria.
The quality criteria are shown in table 4, which describes the characteristics of the
quality criteria within the context of a SOC.

TABLE 4 The quality criteria for the SOC metrics

Criteria Characteristic Description

Correctness Granularity
The metric should provide the necessary granularity to
tie the metric to a specific function or team within the
SOC.

Completeness
The metric should completely fulfil the goal defined in
the metric documentation. If the metric cannot alone
fill the goal, the metric should be coupled together with
another metric.

Objective and unbiased

The results should not be influenced by the activities
performed by the person setting up the metric and the
bias should be minimized to acceptable levels defined
in the metric description.

Measurability Availability Measurements used to construct the metric must be au-
tomatically available in a reliable and consistent format.

Reproducibility
The metric must be reproducible by different persons
across multiple organizations given access to the same
measurements.

Meaningfulness Impactful
The metric must have an impact on the daily activities
and it must be capable of showing the progression of
development efforts.

Clarity The interpretation of the metric must be unambiguous
and consistent across the entire lifecycle of the metric.

Comparability The result of the metric must be comparable between
multiple SOCs even between organizations.

Usability Portability
The metric must be usable by multiple different SOCs
and not be dependent on their size, structure, service
model, or parent organization.

Controllability
The team the metric is used to measure must be capable
of keeping the metric value between the expected val-
ues.

Scalability The metric must be able to behave consistently with low
and high volumes of measurements.

Presentable It must be possible to visually present the information
the metric is expected to provide.
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7.2 The metric selection framework

The metric selection framework used for the creation of the metrics used for mea-
suring a SOC is depicted in figure 6. It consists of two parts, the metric require-
ments, and the metric characteristics. To qualify to be a valid metric, all the cri-
teria defined in both the metric requirements and the characteristics must be ful-
filed. The metric requirements are:

1. The metric has a clear and well-defined goal.
2. The owner of the metric is clear.
3. The results are not dependent on third parties.
4. The metric can be justified.
5. The metric is tied to a success factor.
6. The metric is aligned with the quality criteria.

The metric should have a well-defined goal, which means the metric must be
meaningful as per the quality criteria by Savola (2013) and the PRAGMATIC
methodology by Brotby and Hinson (2013). On a practical level, the goal can be
defined arbitrarily, but as there is a distinctive disconnection between the general
security metrics and the SOC-related metrics, it would best to have a connection
to the information security management program deployed within the organiza-
tion, for example, the ISO/IEC 27001, which subsequently creates a link to the
metrics defined in the ISO/IEC 27004. For example, the metric "mean time to
reaction" could have a goal to increase the probability of the impact of a security
incident being limited only to a single entity and thus decrease the costs associ-
ated with the security incidents. The metric could be linked to the measurement
construct "B.8 Security incidents cost" in ISO/IEC 27004, which has a direct rela-
tion with clause ten in the ISO/IEC 27001 standard (ISO/IEC 27004:2016, 2016).

Metric
selection

framework

Metric
characteristics

Target audience and intended use

Required measurements

Measures to reduce bias and subjectivity Can the characteristics be defined?

Valid metric

Invalid metric
Format for the presentation of the metric

Required additional contextual information

Interpretation instructions

Metric
requirements

The metric has a clear and well-defined goal

The metric can be justified

The owner of the metric is well-defined Are the requirements met?

Valid metric

Invalid metric
The metric is tied to a success factor

The results are not dependent on third parties

The metric is aligned with the quality criteria

Yes

No

Yes

No

FIGURE 6 The metric selection framework

The metric should also be assignable directly to a function within the SOC. The
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function definitions can differ between SOCs and some of the functions men-
tioned in the section 2.1 could be in practice produced by the same team, for
example, threat hunting and incident response can be performed by the same
team, although they are considered to be different SOC functions as per the def-
initions within the section 2.1. By assigning the metric to a specific function, it
is possible to establish clear ownership of the metric and target the metric to a
specific area as per the S.M.A.R.T criteria (Doran, 1981), and define a relationship
with the SOC-CMM by Van Os (2016), or any other capability maturity model
organizations are using to measure the maturity of their SOC.

If the metric is influenced by a third party, the metric does not measure only
the performance of the SOC, but rather the entire chain related to threat detection
and incident response. In the big picture, measuring the end-to-end capabilities
is an important factor to consider, but as the objective of the metrics within the
context of this thesis is to measure the performance of the SOC, the metrics can-
not be influenced by third parties. For example, if the SOC is outsourced to a
third-party vendor and the incident response is done internally by the customer
organization, metrics such as "mean time to resolution" or "mean time to contain-
ment" are dependent on the activities performed by the customer and as such, are
not viable metrics for measuring the performance of the outsourced SOC.

Establishing a connection between the indicator and the critical success fac-
tors (CSFs) is a fundamental requirement for KPIs as described in the book by
Parmenter (2019). On a practical level, establishing a connection between the
CSFs and the KPIs enforces organizations to identify the factors that are critical
contributors to organizational performance and thus qualify to be measured with
the KPIs. The same logic can also be applied to performance indicators and other
metrics in a way that if they are tied to critical or non-critical success factors, the
metrics are tied to something concrete that contributes to the performance of the
organization, and as such, ensures that the metrics are meaningful and relevant
as per the PRAGMATIC methodology by Brotby and Hinson (2013).

The metrics should also be justifiable by scientific research or industry stan-
dards, or through other means documented in the metric description. If the met-
rics are justifiable, there is no need to rely on the authority of the source as it is
possible to evaluate the credibility of the justification and thus decide whether
the metric is reputable or not, which in turn decreases the bias and the subjectiv-
ity of the metric, and as a result, increases the correctness of the metric as per the
quality criteria defined by Savola (2013).

And finally, the metric should for the most part conform to the quality cri-
teria as defined in section 7.1, as based on empirical experience, the quality of the
existing metrics is not sufficient to measure the performance of a SOC and as such,
any metrics created with the selection framework should be of high quality. It is
expected that no metric can completely fulfil the quality criteria in all situations
and within different types of SOCs. For example, some metrics are unlikely to
be applicable for both outsourced and in-house SOCs as with outsourced SOCs
the scope of the monitoring could be restricted or the service does not include
custom monitoring rule development.

If the metric has passed the requirements defined for the metric, the metric
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can be constructed. The metric can have different characteristics depending on
multiple variables, such as which SOC function it relates to or who are the stake-
holders the metric is targeted to. The fundamental characteristics that should
always be defined are the following:

1. Target audience and intended use
2. Measures to reduce bias and subjectivity
3. Required additional contextual information
4. Requirement measurements
5. Format for the presentation of the metric
6. Interpretation instructions

The target audience of the metrics and the intended use must be well defined
because as pointed out by Kokulu et al. (2019), there is a mismatch between the
evaluation metrics when it comes to SOC managers, the SOC analysts, and other
technical personnel. In practice, this means the expected audience for the met-
rics must be carefully considered to prevent having non-actionable metrics to
measure the performance of a specific team, which is against the PRAGMATIC
methodology as defined by Brotby and Hinson (2013) and as pointed out by
Hauser and Katz (1998), it could cause the teams to prioritize unfavourable short-
term decisions to improve the metrics.

Unbiasedness and objectiveness are a major part of correctness and as such,
if we can reduce bias to a minimum and ensure the metric is objective, we can
fulfil the most important quality criteria as described by Savola (2013), which is
correctness. A metric that would be completely objective and unbiased would
be an unrealistic target, but by considering ways to reduce bias and subjectivity,
and documenting the results, it is possible to improve the quality of the met-
ric. It is also possible to identify if the metric is too biased or objective to not
meet the quality criteria even though bias and subjectivity have been reduced to
a minimum and thus the metric would not be genuine, as per the PRAGMATIC
methodology by Brotby and Hinson (2013).

There can also be situations in which a counter-metric or other additional
contextual information is needed to provide a better picture of the overall situa-
tion. For example, a SOC could have a metric to measure the number of distinct
monitoring rules and the metric could then be used to measure the detection
potential of the SOC. However, the high number of monitoring rules does not di-
rectly correlate with the performance of a SOC, since if a majority of the security
incidents resulting from the monitoring rules are false-positive, the SOC is un-
likely to be able to handle them effectively. So to measure the effective detection
potential, the metric for the number of monitoring rules should be coupled with
the false-positive rate to form a better picture of the expected potential.

As the metrics consist of measurements as depicted in figure 4, the source
for the measurement data must be defined along with the format of measurement,
the measurement interval, and any other information that affects the measure-
ments or metric in any way. For example, a metric measuring the mean time to
resolution would require each security incident to have two measurements, one
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to measure the time when the incident was opened and another one to measure
the time when the incident has been resolved.

Metrics must also be presented in a way that they clearly and consistently
depict the information the metric is supposed to deliver. The metric can, for ex-
ample, be presented either numerically, by visualization methods, such as various
charts or time series graphs, or in a text format within a table. The way the metric
is presented should provide the person interpreting the metric with the necessary
information to make decisions based on the data seen.

Interpreting the metrics is an important factor to ensure the metrics provide
valuable insights for the stakeholders. Although the fundamental idea is that the
metrics themselves should be presented in a way they are self-explanatory, in
the practical sense some metrics can be hard to interpret regardless. The metric
documentation should include the expected way to interpret the results to ensure
the metrics are not misinterpreted by the expected audience.

7.3 Model evaluation

According to the guidelines defined by Hevner et al. (2004), the evaluation of the
artifact can either be observational, analytical, experimental, testing, or descrip-
tive. As per the definition within the study, the observational evaluation method
consists of either a case or field study, where the artifact is studied or monitored
in a business environment. They also determined that the analytical evaluation
contains static analysis, architecture analysis, optimization, and dynamic anal-
ysis, and aims to evaluate the artifact through the examination of qualities or
properties. Hevner et al. further stated that the experimental methodology con-
sists of controlled experiments and simulation, in which the artifact is evaluated
in terms of qualities within a controlled environment or executed with simulated
data. They also defined the testing as an activity that consists of either black-
or white-box testing, where the artifact is evaluated either by inspecting its in-
terfaces or testing internal functions within the artifact. The final method is de-
scriptive, which can either be an informed argument or a scenario, in which a
convincing argument is provided to justify the artifact or the artifact is demon-
strated within a detailed scenario (Hevner et al., 2004).

The method for the evaluation of the model is a combination of descriptive
and experimental methodologies. The descriptive methodology is used to create
a scenario that utilizes the artifact documented in the section 7.2 to create three
to seven metrics, which are documented within the section 7.4. As a result of
the creation of the metrics, the utility of the artifact will be demonstrated. The
scenario that demonstrated the artifact is defined as: "It must be possible to cre-
ate metrics based on the metric selection framework in a way that the metric can
be visually demonstrated by utilizing simulated data constructed from measure-
ments, that could be realistically collected as a part of the day-to-day activities of
a SOC following the concepts defined in the chapter 2". The scenario is consid-
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ered to be valid if the metrics can be produced as per the scenario description,
but in addition to the capability to create the metrics, the metrics must also be
validated. The validation is to ensure the artifact can produce meaningful met-
rics that can be utilized in a real-world situation. The validation of the metrics
is further discussed in the section 7.5, in which the experimental methodology is
utilized to conduct a controlled experiment to validate the metrics.

7.4 Metrics for Security Operations Center

This section contains the metrics created by the metric selection framework de-
scribed in the section 7.2. The content in the following sections describes how the
metrics are meeting the objectives defined in the metric selection framework, as
displayed in figure 6. The section forms a coherent description of the metric with
a default assumption that the quality criteria are met by all of the metrics pre-
sented in the sections, and as a result, the exact descriptions of the quality criteria
are omitted from the descriptions to avoid unnecessary repetition of the content
in table 4. However, if there is any potential for non-conformities of the quality
criteria under certain circumstances, those will be mentioned separately within
the corresponding section.

The measurements used to construct the metrics in this chapter have been
programmatically generated and presented by utilizing open-source tools and
python modules, most prominently Jupyter Notebooks6 and a python graphing
library Plotly7. Additionally, scikit-learn, which is a python module used for data
analysis and machine learning algorithm development (Pedregosa et al., 2011), is
used for data manipulation and other transformations. The parameters for the
creation of the data points are adjusted every 100 steps to create variation in the
results over time, which aims for a better representation of the value evolution
over time and thus, simulates how the metric behaves with changing conditions.

7.4.1 Distribution of detections among the Unified Kill Chain

A metric that depicts the distribution of detections among the UKC measures
how effective is the SOC in detecting threats in the early stages of the UKC, and
thus decreases the impact of a security incident. The goal of the metric is to focus
the efforts of the development of threat detection capabilities on adversary tech-
niques used within the initial foothold stage of the UKC, and as a result, prevent
network propagation within the environment. The metric is tied to a function
responsible for custom analytics and detection creation as per the definition by
Knerler et al. (2022). If the SOC does not have a team or a group of people who are
responsible for the custom analytics and detection creation function, the metric

6 https://jupyter.org/about
7 https://github.com/plotly/plotly.py
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is not measuring the performance of a SOC but rather the tools the SOC is using.
Therefore, without custom analytics and detection creation function, the metric
is dependent on third parties and thus is not a valid metric for a SOC without the
function present.

While the critical success factors as described by Parmenter (2019) are al-
most always specific to an organization, a broader approach can be taken with
the definition of success factors as they can be derived directly from the expec-
tations of the activities performed by the SOC. One of the mission statements
of a SOC as depicted by Knerler et al. (2022) is to utilize proactive measures to
prevent security incidents from materializing or becoming widespread and thus
the capability to do so can be seen as a success factor for a SOC. Furthermore, the
metric can be justified by the decreased cost of recovering from a security incident
if the advancements of the adversary can be stopped in the earlier stages of the
UKC, meaning the probability of the adversary being able to exfiltrate sensitive
information or perform destructive actions has decreased as a result. The scien-
tific research on the impact of early detections on the cost of security incidents is
insufficient to draw a scientific conclusion, but a commercially produced cost of
data breach report by IBM (2022) concluded that between March 2021 and March
2022, the average cost of a security incident exceeding two hundred days before
identification was approximately 30% higher than a security incident with iden-
tification under two hundred days. However, adversaries can traverse across the
UKC in mere minutes if the circumstances are correct and as such, an adversary
that has been present within the environment for tens of days is likely to have a
significant foothold already in place.

In terms of the quality criteria, the correctness criteria are achieved if all
true-positive detections across different detection technologies and other non-
technical detection sources, for example, reports from end-users, are augmented
with a piece of information about which step of the UKC the detection is related
to. If certain detections are left out of the measurements used to construct the
metric, the metric is no longer complete and as a result, it can also be heavily bi-
ased. For example, leaving out the previously mentioned reports from end-users,
which typically are related to the final stages of the UKC, will increase the bias
and thus makes the metric difficult to evaluate. In terms of measurability, the cri-
teria are fulfiled if the SOC processes enforce the definition of the UKC stage for
each detection and security incident handled and the information automatically
contributes to real-time service reporting.

When it comes to meaningfulness, the metric conforms to all of the charac-
teristics. There could be some concerns about the comparability between differ-
ent SOCs, as depending on the scope of the monitoring, the detection focus could
be placed on different parts of the kill chain. For example, a SOC that focuses on
monitoring endpoints and identities is likely to have a different distribution of de-
tections, compared to a SOC that focuses on infrastructure and networks. While
fundamentally different, both detection strategies could be effective in stopping
adversaries but in terms of the metric, the one that catches the adversaries ear-
lier could be seen as the better strategy, since the goal of the metric is to push
the development of detection capabilities in the earlier stages of the UKC. Us-
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ability could be slightly problematic for the metric, as the behaviour is likely to
be inconsistent with an extremely low volume of detections but once the amount
of detection increases the scalability should start to normalize. In practice, this
means the time frame of the metric must be long enough to normalize the results.
The target audience of the metric is the detection engineers and the SOC man-
agement, as the metric can be used to steer the development efforts in addition
to being able to measure the effectiveness of the SOC, and as such, is a relevant
metric for management as well.

The metric consists of the categorization of the UKC phase stored in the
statistics collected from true-positive security incidents and detections. The data
is not recorded for the reconnaissance or weaponization phases, since they can
be difficult or impossible to prevent, and as such, stopping an attack within the
weaponization phase is unlikely to happen. Before the presentation, the data
must be normalized by utilizing the MinMaxScaler8 utility class, which normal-
izes the dataset and ensures the data values are between zero and one. Normal-
ization makes the metric easier to be compared between SOCs as the absolute
values of detections do not influence the metric values. Additionally, to measure
the evolution of the metric over time, the coefficient must be calculated regularly.

Once the dataset has been normalized, the metric can be visualized as two
charts. A bar chart containing the distribution of normalized detections across
the UKC and a line chart depicting the evolution of the metric over time. Within
the bar chart, there is an additional visual representation that contains a linear
regression trend line, which depicts the actual value of the metric in a form of a
linear regression coefficient, which is based on the count and the distribution of
detections among the UKC. If the coefficient of the linear regression is negative,
the metric is considered to show a positive result, as it indicates that the number
of detections is decreasing as the UKC is traversed forward, meaning the SOC is
more effective in detecting the security incidents in the earlier stages of the UKC.
The value of the coefficient can be followed over time to determine whether SOC
is improving or not. If the coefficient trend is decreasing, SOC is improving in
terms of the metric, meaning the new detections are starting to shift more towards
the left and thus detections occur in the earlier stages of the UKC. As all of the
necessary data is presented in the metric, the metric can survive on its own and
does not require any counter-metric to properly interpret the results.

Figure 7 depicts a visual representation of the metric with a detection strat-
egy focused on the initial foothold stage, meaning that a larger portion of the
detections is within the initial foothold stage, compared to network propagation
or the action on objectives stages. Figure 8 depicts the metric with a detection
distribution focused on the network propagation. Both strategies have statisti-
cally a similar amount of detections in the final phase of the kill chain and thus
both are as effective when it comes to preventing the adversaries from reaching
their objectives, but the strategy with a focus on the initial foothold stage is bet-
ter in terms of the metric, as it is more effective at preventing the incidents from
traversing forward within the UKC.

8 http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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FIGURE 7 Initial Foothold focused detection strategy
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FIGURE 8 Network Propagation focused detection strategy

Figure 7 also shows that the value of the linear regression coefficient is decreas-
ing over time, meaning the detection strategy is showing signs of improvement,
whereas in figure 8 the trend is increasing, which shows signs of deterioration.
Both figures are displaying a large variation at the beginning of the metric, which
means the metric becomes accurate with a sufficiently large quantity of true-
positive detections and as a result, the linear regression trend line alone could
be ineffective at displaying the efforts of recent development activities. As the
trend of the coefficient would primarily be used to measure the impact of the de-
velopment efforts, the graph could be displayed only after a sufficient amount of
true-positive detections have been recorded.

7.4.2 Number of verifiable monitoring rules

The metric "Number of verifiable monitoring rules" measures the portion of mon-
itoring rules that can be verified either automatically or manually by executing
actions that trigger the monitoring rules. The goal of the metric is to improve the
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rate of verifiability of the monitoring rules, encourage detection engineers to bet-
ter utilize threat intelligence as a part of their daily routines, and provide a mean
for the SOC to demonstrate what attacks they can detect. Similar to the metric in
section 7.4.1, the metric is tied to a function responsible for custom analytics and
detection creation as per the definition by Knerler et al. (2022) and is valid only if
the SOC has a team responsible for the creation of custom analytics.

As the purpose of a SOC is to mitigate risks and create situational aware-
ness by utilizing technology to detect security threats affecting the organization
(Vielberth et al., 2020), a fundamental success factor could be the possibility to
detect relevant threats targeting the organization and as a result, reduce the risk
level of the organization. The problem with an approach where the detections are
not tested is the lack of visibility on the capabilities and the information on what
risks can be reduced with high confidence. For example, a SOC could utilize a
SIEM rule to detect password spraying against the organization and as such, the
risk of password spraying is considerably reduced, as the expectation is that a
SOC would be able to catch successful password spraying activities. However,
without testing the rule, how can the SOC be sure the rule is working? By testing
the rules by performing various methods of password spraying and observing
the results of the activities, the SOC can increase their confidence in the capa-
bilities to detect such activities in case all methods trigger an alert as expected.
Furthermore, the metric can be justified by the capability requirements defined
by the SOC-CMM framework version 2.2 (Van Os, 2022), which devotes an en-
tire section to automated detection testing and adversary emulation, and to reach
higher levels of maturity in the detection engineering & validation section, the
SOC must be able to test the validity of their monitoring rules. Adversary em-
ulation and the utilization of offensive techniques in the form of a red or purple
team exercise are also seen as a vital part of the expanded SOC functionalities,
described as a top strategy for world-class SOCs by Knerler et al. (2022).

In terms of the quality criteria, the metric is slightly problematic, as unbi-
asedness and comparability cannot be completely achieved, as the value of the
metric is highly dependent on the strategy the SOC has taken for building up
its detection capabilities. If for example, the SOC relies almost exclusively on
native capabilities provided by a technology vendor, the metric will either show
an abnormally low value due to not having any in-house monitoring rules or an
abnormally high number due to having only a few rules that can be easily cov-
ered by a handful of testing scenarios. One possible solution to this could be the
addition of testing capabilities for the native capabilities in addition to in-house
capabilities, but as the capabilities of the technologies are usually not properly
documented, the extent of the testing capabilities cannot be reliably measured.
Another solution would be to measure the absolute number of testable detec-
tions, but the results would also be dependent on the detection strategy, as some
SOCs can have a high number of relatively simple monitoring rules while some
may have a low number of more complex monitoring rules.

Otherwise, the metric meets the quality criteria. The metric is granular
enough to be tied to a specific SOC function and completely fulfils the goal de-
fined for the metric. If the data is created and collected automatically as a part
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of the rule development process, the measurability criteria are completely met.
The metric is also impactful, as the metric can be used to direct the threat devel-
opment efforts in a way that encourages the threat detection engineers to create
testing cases for their monitoring rules. The output of the metric is consistent
across the lifecycle as it is measuring the ratio between the monitoring rules and
the testing scenarios, meaning it is not affected by external conditions and as a re-
sult, it meets the clarify and scalability characteristics of the quality criteria. The
metric is usable by multiple SOCs, although the interpretation can slightly vary
between the SOCs, due to the reasons mentioned earlier. The team responsible
for threat detection can control the outcome of the metric, and it can be presented
in terms of the current stage and historical progress, as demonstrated by figure 9.

To construct the metric, the creation of the measurements from the moni-
toring rule documentation or a similar source is required, as the data is not gen-
erated from the operational activities of a SOC. The creation of the measurement
should happen when a new rule or test is added. The measurements required
to be generated are, per MITRE ATT&CK tactic, the number of monitoring rules,
the number of automated and manual tests, and the test coverage as a percentage
compared against the total number of monitoring rules. Additionally, the mean
value of the percentages should be calculated, which depicts the value of the
metric at the given time. The tactic dimension is used to create a logical group-
ing capability for the monitoring rules, and at the same time, enable the metric
to be combined with other metrics using the tactics as a dimension. Since not all
monitoring rules are necessarily tied to any particular tactic, an unclassified cate-
gory must be added among the tactics to take such situations into account in the
metric.
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FIGURE 9 Number of verifiable monitoring rules

Figure 9 depicts two ways to present the metric. One as a combined bar and line
chart and another one as a line chart, depicting the evolution of the metric over
time. The bar chart displays, per MITRE ATT&CK tactic, the number of distinct
monitoring rules and the sum of verifiable monitoring rules. Next to the bars,
there is a trend line that displays the percentage of verifiable monitoring rules.
The value of the metric is the mean of the percentage of the monitoring rules
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covered per MITRE ATT&CK tactic at a given time. The intended way to interpret
the metric is to follow the trend of the mean to determine whether the SOC is
improving over time or not, by observing the trend line seen in the secondary
chart.

For the metric to provide meaningful information, it needs a counter-metric
that displays the number of distinct monitoring rules, seen as the blue bars in
figure 9. If the SOC has a low number of monitoring rules, the metric value can
be abnormally high, which will increase bias and decrease the comparability of
results between different SOCs. Although, as previously mentioned, the number
of monitoring rules can also be misleading, as there is a possibility to create a
large number of low-fidelity monitoring rules that can be tested automatically,
for example, the launch of a specific process, like powershell.exe, could generate
a low severity detection that would subsequently be automatically closed as a
benign true-positive detection. Without a unified approach for the creation of
monitoring rules between SOCs, a way to reduce the bias of the metric to an
acceptable level was not discovered.

Additionally, as the metric is measuring only the number of verifiable mon-
itoring rules resulting from the SOCs development efforts, it fails to demonstrate
the verification capabilities of native vendor detections. This makes the metric
subjective, as some SOCs are likely to rely more on native capabilities for threat
detection than others, making the metric inaccurate when attempting to compare
SOCs with a different approach to the threat detection. A dimension that dis-
plays the number of vendor-native detections that can be tested could be added
to the metric, but in doing so, the bias of the metric would continue to increase.
A better solution would be to create a separate metric for measuring the number
of verifiable vendor-native scenarios and construct another metric that takes both
metrics into account.

To summarize, the metric alone is situational but when used as a part of
a larger collection of metrics, it can provide additional insights to measure the
overall quality of the monitoring rules. However, bias cannot be reduced enough
to make this metric valid as per the metric selection framework. This does not
mean the metric cannot be used by SOCs to measure and report their performance
and progress, but rather that the metric is not valid between multiple SOCs, and
as such, it cannot be used to mitigate the problems mentioned in chapter 1 as
a motivation for this research. The audience of the metric can be both technical
SOC personnel as well as the management of a SOC, as the value of the metric
can be used to measure the progress of development in a way that supports both
the technical teams and the management.

7.4.3 Distribution of detections by source

The goal of the metric is to determine to what extent the development efforts of
the SOC can contribute to the detection of security incidents. On a practical level,
if a large portion of detections originates from the native capabilities of the tech-
nologies in use, the detection engineering function may not be able to provide
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additional value in the form of new monitoring rules. The metric can be tied to
a specific function, which is the function responsible for the creation of custom
analytics within the SOC. The results of the metric are somewhat dependent on
third parties, as the technologies selected to protect the environment have an im-
pact on the metric results. However, as the fundamental purpose is to compare
the custom capabilities against the native capabilities, the metric is not dependent
on third parties but rather influenced by them, which makes the metric pass the
requirement.

As per the definition by Knerler et al. (2022), custom analytics and custom
capability development are the functional areas of a SOC and as such, it could
be stated that the capability to augment the detection capabilities provided na-
tively by the technologies is a success factor for a SOC. On an overall level, the
SOC-related literature does not succeed well in the definition of why custom an-
alytics should be created in the first place. For example, Ahlm (2021), Knerler
et al. (2022), Van Os (2022), and Vielberth et al. (2020) among others mention the
creation of monitoring rules as a fundamental part of the SOC capabilities, but
none are discussing in detail whether the creation of monitoring rules is some-
thing the SOC should focus on or not. However, as the literature appears to agree
that the creation of monitoring rules is something SOCs should be doing, it acts
as a justification for the metric. Additionally, the metric can also be justified by
the fact that it can display whether it makes sense to invest in the development
of custom capabilities or not.

Looking at the quality criteria in terms of correctness, the metric can be
slightly problematic, as the metric can become biased if a SOC starts to replace
native capabilities with a custom detection logic, and thus decreases the native
detection capabilities. For example, the SOC can create a monitoring rule that
raises an alert from native alerts produced by an anti-virus program only if a cer-
tain threshold exceeds, which blurs the line between native and custom capabil-
ities. Technically the actual source of the detection is the anti-virus program, but
the detection is raised as a result of custom capabilities. Additionally, whether
the malware detection by an anti-virus program counts as a detection within the
context of SOC capabilities or not, can also be subjective. The measurability cri-
teria are achieved for as long as the data is collected from all true-positive and
benign true-positive detections.

In terms of meaningfulness, the metric has the potential to impact the de-
velopment efforts, but without additional measures to decrease the subjectivity
and bias, the metric value can be difficult to compare between multiple SOCs, es-
pecially when differences in the tooling and the detection strategy can also have
an impact on the metric. However, given the goal of the metric is to measure
how well the SOC can augment the native capabilities, the problems related to
the comparability could be considered to be a minor issue and as such, the small
amount of bias and subjectivity does not make the metric invalid. There could
also be slight problems in terms of clarity, as the metric can be hard to interpret,
as it requires additional context about the detection strategy to properly interpret.
In terms of usability, there are no difficulties to achieve any of the characteristics
defined in the quality criteria, as the metric can be used as such by multiple SOCs,
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the progression of the metric can be controlled by the threat detection function,
the metric behaves consistently as it is measuring the ratio between native and
custom detections capabilities of the SOC.

With MITRE ATT&CK tactic as the primary dimension for the metric, as
seen in figure 10, the metric provides a method for the detection engineering
function to align and focus their development efforts on specific tactics, which
makes the metric relevant for them to help with the planning of the development
activities. In addition to the detection engineering function, the SOC manage-
ment can also benefit from the metric, as the value of the metric over time can be
used to determine the direction and the impact of changes made within the de-
tection engineering team and subsequently demonstrate the value the detection
engineering function provides.

To decrease the subjectivity and bias of the metric, it is necessary to set cer-
tain limitations to the metric. Within the context of this metric, detections origi-
nating from native capabilities are something that technology, for example, SIEM,
EDR, or an IDS, has provided the first indication of compromise with out-of-the-
box capabilities and without correlation to other data sources. Meaning, if the
source of the detection is an alert from an IDS or anti-virus program, it consti-
tutes a native detection. However, if the anti-virus alert is correlated with other
endpoint-related logs before generating a detection, it is constituted as a custom
capability. Additionally, all detections that have been contained automatically
and do not require further actions from the SOC, for example, an anti-virus pro-
gram or an IDS preventing an infection or the delivery of a malicious payload,
are out-of-scope for this metric. Furthermore, all false-positive detections and
detections not originating either from a technology or a monitoring rule, such as
reports from end-users, are also removed from the measurements of the metric,
as they are unnecessary for achieving the goal of the metric. Some SOCs could
also have a detection strategy in which they focus their development efforts on
the detection of complex and seldomly occurring scenarios and otherwise rely on
the native capabilities. In such a situation, the metric could be considered to not
apply to them.

To construct the metric, the source for the detection in addition to MITRE
ATT&CK categorization must be recorded for all true-positive and benign true-
positive detections. One way to present the metric is seen in figure 10, which
displays two charts. A bar chart displaying, for each MITRE ATT&CK tactic and
an unclassified category for detections not mapped to MITRE ATT&CK, the cur-
rent state of the metric in terms of the number of detections per category, and the
ratio between native and custom detections. Additionally, the metric displays a
line graph on a secondary y-axis depicting the score for each tactic and the overall
value of the metric, which is the mean of the scores for each category. The line
graph displays the evolution of the value of the metric over time along with a
linear regression depicting the trend of the metric. The metric can be presented
as such, as it does not require a counter-metric or any other metric to be properly
interpreted.

The value of the metric is above one if native detections constitute a higher
proportion of overall detections compared to custom detections, which means
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FIGURE 10 Distribution of detections per source

the closer the value is to zero, the better the value can be considered to be. How-
ever, in a practical sense, due to variations in detection strategies between SOCs,
a value within the range of 0.80-0.20 can be considered to be a good value. If
the value drops too close to zero, there is a possibility the SOC has not deployed
the technologies properly, they are inefficient for threat detection, or are other-
wise utilizing the technologies incorrectly. Furthermore, if the value closes to
or exceeds one, the SOC is not capable to outperform the capabilities provided
natively by the technologies.

7.4.4 Technical accuracy of the analysis

Measuring the quality of the analysis work (Agyepong et al., 2020; Zimmerman &
Crowley, 2019) or eradication (Crowley & Pescatore, 2019; Zimmerman & Crow-
ley, 2019) has been mentioned in the literature but the ways to measure the quality
of the work has not been covered in detail. Measuring the quality of the analysis
work is subjective and it is unlikely to be possible with a general-purpose metric,
but measuring the accuracy of the analysis could provide some hints about the
quality of the analysis work. A metric that measures the accuracy of the analysis
has a goal to enable the capability to measure the technical quality of the analysis
work and assign a quantifiable value on how well the analysts are performing on
a technical level.

The metric is a collection of several factors that contribute to the quality of
the analysis work. To calculate a value for the metric, an approach similar to the
calculation of the net-promoter score (NPS) (Reichheld, 2004), in which customers
are scoring a service on a range from 0 to 10, can be adopted. Based on the ap-
proach, scores 0-6 are detractors, 7-8 are passive and 9-10 are promoters, and the
NPS is calculated by subtracting the percentage of detractors from the percent-
age of promoters, providing a score between -100 and 100. The formula for the
calculation of the NPS is NPS = ( P1−D

P1+P2+D) ∗ 100 where P1 are number of promot-
ers, P2 are the number of passives and D are the number of detractors. Although
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in the academic sense, the NPS methodology has some issues for what is being
used for (Bendle, Bagga, & Nastasoiu, 2019), but regardless of its limitations, the
model succeeds in producing a value of the relationship of discouraged (detrac-
tors), neutral (passives), and encouraged (promoters) activities, and as such, it is a
valid and relatively simple approach to take. Additionally, the modular approach
enables organizations to extend the metric to include additional activities within
the metric if required, based on the unique requirements of the organization.

Table 5 summarizes the activities included in the scope of the metric. Pro-
moters are activities that should be encouraged to be performed continuously
and are signs of a well-performing SOC, passives are activities that are expected
from the SOC under normal operations and detractors are activities that the SOC
should attempt to avoid, as they can harm the overall situation. For the sake of
simplicity and to stay within the defined limits of this research, the number of
activities is limited only to a few technical activities, but a practical implication of
this metric can include additional technical and operational activities in the list
of activities, such as whether detection was investigated according to time con-
straints (passive) or not (detractor), MITRE ATT&CK categorization was correct
(passive) or incorrect (detractor) or an adversary behind a true-positive incident
was attributed (promoter) or it remained unknown (passive).

TABLE 5 Grouping of activities per NPS category

Category Activity

Promoters True-positive incident was escalated to third-party.
Escalated incident was not returned to SOC for further investigation.
Original priority was correct throughout the incident lifecycle.
No unknown entities before escalation.

Passives Benign true-positive incident was escalated.
Escalated incident was returned to SOC for further investigation.
Priority of the security incident was adjusted after the initial analysis.
Unknown entities before escalation.
The initial conclusion on the returned incident was correct.

Detractors False-positive incident was escalated.
False-negative detection.
The initial conclusion on a returned incident was incorrect.

In terms of the metric requirements, the owner of the metric is the management
of the SOC, as the metric is constructed from several factors resulting from the
analysis work. The activities themselves are something that can be tied to a spe-
cific function within SOC. As the data is collected from the activities performed
by the SOC, the results are not dependent on third parties. The metric can be
justified by the idea that if the analysis is of low quality or the quality keeps de-
creasing over time, the SOC might not be able to combat the challenges produced
by a modern-day adversary or they might not have sufficient knowledge of the
monitored environment. The same idea could be considered to be a success factor
for a SOC, meaning that a SOC has to operate at a high quality to succeed in the
modern threat landscape.

Looking at the quality criteria, as long as the activities selected for the met-
ric are the same between SOCs, there should not be any major problems to con-
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form with the quality criteria. As the metric could be considered to be a com-
posite metric, the activities are the actual metric items that should conform to the
quality criteria, and if the chosen activities are aligned with the quality criteria,
the metric itself will also conform to the quality criteria. Portability and com-
parability could be slightly problematic if additional activities are added to the
metric, but as it has been defined in table 5, the metric is portable and compa-
rable between SOCs, as the activities are generic enough to not be influenced by
the variations between different SOCs. The distribution of the activities can be
slightly subjective, as there could, for example, be a difference between SOCs on
how benign true-positive incidents are seen. Some organizations could consider
them as a normal day-to-day activity and thus be classified within the passive
category and some organizations could see them as something that should not
happen often and as such, could be seen as a detractor.

The metric is more intended for the management of the SOC as they are
likely to be more interested in the overall situation rather than focus on specific
metrics. However, if the individual metric items are also constructed as a part of
this composite metric, they are likely to be something that can be directly tied to a
specific team and thus, be relevant for the individual teams as well. For example,
the team performing the analysis work could be more interested in the capabil-
ity to resolve all entities and the correctness of initial conclusions, whereas the
detection engineering team could be interested to keep track of the true-positive
rate and the correctness of the original incident priority. Reducing the bias and
subjectivity can be difficult if the activities chosen as a basis for the metric are bi-
ased and subjective, to begin with. Adding classification criteria for the activities
could help with the subjectivity of the activity grouping. However, to stay within
the scope of the thesis, the creation of such criteria will not be discussed in detail.
If the metric is deployed to production, there should be some degree of criteria
used to classify the activities.

The measurements required to construct the metric vary depending on the
activities chosen for the metric. When utilizing the activities shown in table 5,
information about the security incident classification (true-positive, benign true-
positive or false-positive), original priority, final priority, escalation status, num-
ber of unknown entities, the outcome of the initial conclusion and whether the
security incident had to be re-investigated by SOC has to be recorded for each se-
curity incident. Additionally, any incidents not detected by the SOC, for example,
the ones reported by end-users, must also be recorded, as they are known false-
negative detections. A single security incident can contain one or more activities
contributing to the metric.

The metric can be presented similarly to the other metrics, as seen in fig-
ure 11. Within the figure, there is a bar chart depicting the count of activity occur-
rences for each category (promoters, passives, detractors) per MITRE ATT&CK
tactic. If there are zero items within the MITRE ATT&CK tactic, the tactic is omit-
ted from the visualization. In addition to the count of activity occurrences, the
NPS is displayed individually for each MITRE ATT&CK tactic to demonstrate
the difference in the technical accuracy of the analysis between tactics. Due to the
way the NPS is calculated, the actual value of the metric must be calculated from
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all occurrences of the activities, rather than taking the average of the individual
NPS. The secondary graph in figure 11 depicts the evolution of the NPS over time
and a linear regression that demonstrates the trend of the evolution of the metric.
If the NPS is above 0, it means there are more promoters than detractors, and as
such, the higher the score, the better the value of the metric is.
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FIGURE 11 Detection accuracy NPS

The metric works as a standalone metric and does not require additional contex-
tual information to be utilized. The value of the metric alone cannot be used to
compare different SOCs as the value is affected by the selection of the activities.
Additionally, even though SOC A and SOC B would have the same number of
promoters and detractors, due to the way the NPS is calculated, the number of
passives will impact the results. Despite the minor limitations and slight subjec-
tivity, it is sufficient to meet the solution objectives and as a result, the metric can
be considered to be a valid metric. An alternative form of the metric could be
to ignore the passives altogether and only calculate the ratio between promoters
and detractors, but by doing so, the activities that the SOC is expected to perform
would have no impact on the metric value and as a result, the value of the metric
would be heavily influenced by the extremes of either category, as the smoothing
factor of the passive would be missing from the calculation.

7.4.5 Accuracy of automated containment

Automated containment could be used as one way to decrease the time it takes
to contain a security incident and thus positively impact the metric that mea-
sures the mean time to contain a security incident, mentioned by Crowley and
Pescatore (2019), Kokulu et al. (2019), and Zimmerman and Crowley (2019). If
the mean time to containment could be pushed down to zero, the practical impli-
cation would be that none of the true-positive security incidents would be able
to traverse down the UKC and reach the action on objectives stage, assuming
that the detection would happen in the earlier stages of the UKC. Pushing the
mean time to containment to zero is unlikely to be possible, but pushing the met-
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ric value as low as possible would be a realistic objective for a SOC to pursue,
and thus, the goal of the metric is to push down the value of the mean time to
containment metric.

The metric can be justified by the fact that containment activity is the first
post-detection activity within the incident response life cycle as described in the
Computer Security Incident Handling Guide (NIST SP 800-61) by Cichonski et al.
(2012). The purpose of the containment is to limit the impact of the incident, stop
it from spreading further or prevent it from causing any further damage (Cichon-
ski et al., 2012). Containment in the traditional sense can be disconnecting the
device from the network or shutting it down (Cichonski et al., 2012) but mod-
ern tooling can offer more advanced capabilities, such as isolating an infected
endpoint, sinkholing command and control traffic or revocation of compromised
credentials. For example, by utilizing a SOAR platform, it is possible to automate
such a response to security incidents (Knerler et al., 2022) and as a result, to au-
tomate the activities, the SOC needs to have a sufficient level of maturity to do
so. Furthermore, automation capabilities are listed as aspects within the technol-
ogy domain of the SOC-CMM maturity-capability model (Van Os, 2022), which
further justifies the metric.

As has been previously mentioned, the capability to prevent security inci-
dents from materializing or becoming widespread by utilizing proactive method-
ologies is one of the mission statements of SOC, as described by Knerler et al.
(2022). As such, the capability to prevent the escalation of incidents can be de-
fined to be a success factor for a SOC. As the metric is about an automated con-
tainment when a detection contributing to a true-positive security incident is trig-
gered, the metric can be tied to the team responsible for the detection engineering
and other automation activities. Furthermore, the metric is not directly depen-
dent on third parties, but certain types of SOCs could have difficulties perform-
ing automated containment, for example, outsourced SOCs without jurisdiction
over the incident response process within the customer environment.

The correctness and measurability criteria are achieved if the outcomes of
all the security incidents independent of the source are recorded and used as a
source when constructing the metric. By utilizing a confusion matrix to construct
the metric and calculating the F-score as the value of the metric, the objectivity of
the metric can be significantly reduced, as the F-score can be used to quantify the
ratio between correct and incorrect activities. The correct activity is a containment
when an incident is true-positive and not containing when it is anything else,
and incorrect activity is a failure to contain when an incident is true-positive and
containing when it is anything else. A false-negative detection is always incorrect,
as, without detection, there is no possibility to perform automated containment.

However, since SOCs could have different response capabilities, the met-
ric can be slightly biased if the theoretical response capabilities are not identical
between the SOCs. In terms of meaningfulness, the metric is impactful as it has
an impact on the daily activities of the detection engineering team by providing
them with data about the effectiveness of the response automation. Addition-
ally, the metric is expected to behave consistently and be clear to interpret after a
few detections have been recorded, but as previously mentioned, there could be
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some issues with comparability as the level of automation capabilities can vary
between SOCs. Looking at the usability, the metric can be adapted by all SOCs,
and the detection engineering team has control over the metric, for as long as
they can perform automated responses.

To avoid confusion between the classification for the confusion matrix and
the typical classification schema for security incidents, the security incident clas-
sification must be mapped to the confusion matrix classifications, based on the
information on whether a containment was done or not, since it is not a one-to-
one mapping between the classifications. The categorization has been summa-
rized in table 6. Security incidents cannot be true-negative, since detections are
only raised based on monitoring rules that can lead to either true-positive, false-
positive, or benign true-positive detection. Within the confusion matrix, benign
true-positive and false-positive incidents are classified as true-negative if contain-
ment has not been performed, meaning it has been correctly identified to not be
a true-positive incident and a correct containment activity (no containment) was
selected.

TABLE 6 Confusion matrix compared to security incidents and state of containment

Confusion matrix classification Security incident classification Containment state

TP True-positive Yes
FP Benign true-positive Yes
FP False-positive Yes
FN True-positive No
FN False-negative No
TN Benign true-positive No
TN False-positive No

Figure 12 depicts one possible way to visualize the metric with a confusion matrix
on the left side and on the right side, a line graph depicting the evolution of the
normalized F-Score over time along with a linear regression depicting the trend
of the metric. The values used to construct the confusion matrix and calculate the
F-score have been normalized with the MinMaxScaler9 utility class to remove the
detection volumes from the metric, which are not necessary for the interpretation
of the metric, and thus making the metric easier to compare between different
SOCs.

A study by Goutte and Gaussier (2005) defines the formula for calculating
the F-score as F1 =

2PR
P+R . They also define that the value produced is the harmonic

mean of precision (P) and recall (R), which means the value of the F-score is be-
tween zero and one. Precision is the ratio between true-positives and all identi-
fied elements (P = T P

T P+FP ) and recall is the ratio of true-positives and all relevant
elements (R = T P

T P+FN ) (Goutte & Gaussier, 2005). A score of one indicates that
both precision and recall are perfect and thus, the higher the F-score is, the better
the value of the metric is.

To construct the metric, a measurement containing the security incident
classification and a boolean value whether an automated containment was done
or not, must be recorded for every security incident independent of the source of

9 http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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the detection. The metric works as such and does not require additional contex-
tual information to be properly interpreted, although if a SOC cannot automate
the containment, the metric value will always be zero and as such, is not applica-
ble for such SOCs. Interpretation of the metric is relatively simple, the higher the
F-score is, the better the accuracy of the automated containment within the SOC
is. This means there are fewer unnecessary endpoint isolations and password
resets resulting from the automated containment activities while being able to
perform containment when the activity is relevant. Depending on the situation
and the monitored environment, it might be viable to try to reach a high recall
value, which means that a higher number of relevant incidents are contained, but
among the contained incidents, there are also a lot of incidents that should have
not been contained.
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FIGURE 12 Automated containment of true-positive security incidents

Although the metric remains subjective to some degree, it can be considered to
be valid from the selection framework point of view. If the metric is used in
production, the metric could be coupled with additional visualization to display
the F-Score per MITRE ATT&CK tactic and containment activity, for example,
endpoint isolation or password reset, to be able to better understand which con-
tainment activities upon which MITRE ATT&CK tactics are performing better or
worse than the others.

7.4.6 Other considered metrics

In addition to the metrics described above, this section briefly discusses some of
the more significant metrics that have been considered to be selected but ended
up being left out of the scope due to multiple different reasons. The metrics de-
scribed below are valid on a theoretical level and could be utilized by SOCs, even
though they were not included in the previous sections of this research.

Time to detect an incident is one of the more commonly mentioned metrics
in the literature, and as was previously mentioned, there are also several inter-
pretations for the metric. A metric that monitors the time between the initial
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detection and the first activity by the adversary could have a been good metric to
be added to the list of metrics. For example, if an adversary first opens a remote
desktop connection at three o’clock, but is first detected at half past three as the
adversary performs another activity, it would mean there would be a 30-minute
time window between the first activity and the detection, meaning the time to
detect an incident is 30 minutes. On a practical level, this metric would have be-
come too biased based on the selection framework, as it would require SOCs to
perform an extensive investigation of all true-positive incidents to determine the
true first activity rather than just containing and eradicating the adversary dur-
ing the investigation response process. Although it would be a good practice to
perform a deep analysis on all true-positive incidents, in practice, this may not
be performed if there is no evidence to indicate the original entry point for the
adversary was other than the infected device.

Another metric that was considered was the percentage of actionable data
to measure how well the data collected is utilized by the SOC. The definition
would have been that actionable data is something that directly contributes to a
monitoring rule, or is used for threat hunting or incident response purposes, and
any other data would be considered to be non-actionable. The problem with the
metric is that defining which data is used for incident response activities is rela-
tively difficult to determine, and as such, the metric would be highly subjective.
Additionally, some organizations can utilize the same platform used for threat
detection for long-term log archival for compliance and other purposes, which
would also skew the metric significantly. Being able to understand the collected
data and optimizing it based on how the data is used, is a fundamental compo-
nent when it comes to building an effective SOC, and as such, the metric could
probably be made valid within a single SOC by measuring the portion of classi-
fied data compared to unclassified data.

The relevancy of the detection capabilities compared to relevant APT actors
was also considered as one metric. The fundamental idea behind the metric was
that SOCs should focus the development efforts of their detection capabilities on
relevant MITRE ATT&CK techniques used by adversaries that are active within
the industry of the organization the SOC is monitoring, or the organization is
through some other way at an elevated risk of being targeted by a select group
of APT actors. The problem with the metric was that the definition of relevant
APT actors ended up being difficult to define in a way that would be neutral
across multiple SOCs. Additionally, it was difficult to determine the value to be
measured, as looking purely at the coverage of the techniques of MITRE ATT&CK
framework can be misleading, and as such, the measurements would have to be
brought down to the level of procedures, which ended up being too complex
to construct to stay within the intended scope of this thesis. Understanding the
relevancy of the monitoring is something that would be an important factor for
SOCs and as such, the metric would be relevant, but probably quite complex to
implement.

Coverage of the environment was also considered as a metric, where the
value of the metric would be indicating how well the environment is covered by
the security monitoring capabilities. The idea was dismissed relatively quickly as
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organizations can have completely different ways to architect their environments
and as such, the creation of a generalized model of the environment required to
construct the metric was determined to be too complex for this thesis. However,
it is an important aspect for SOCs to understand the breadth of the monitoring
and as such, the metric is valid but can be difficult to implement.

7.5 Model validation

To validate the metrics produced by the artifact, a controlled experiment is con-
ducted, which falls within the experimental design science evaluation method as
per the definitions by Hevner et al. (2004). Mettler, Eurich, and Winter (2014)
have proposed an evaluation framework for design experiments, which intro-
duces three layers that can be used for the evaluation process of a design science
experiment. The first layer proposed within the study is the user layer, which is
based on how the artifact is used or misused by the study subject. They also ar-
gued that the design science experiment should describe the user characteristics,
sampling procedure, and a description of the experimental setting to evaluate
the impact of the user on the results of the experiment. The second layer of the
framework is the use of the artifact, which should describe how the artifact is
used within the experiment. The key areas within the use layer are the usage
situation, the usage scenario, and information on whether the users are manipu-
lating the artifact during the tests (Mettler et al., 2014).

The final layer of the framework by Mettler et al. (2014) is utility, which de-
scribes the evaluation metrics and the outcome of the experiment resulting from
the use of the artifact by the user. They also state that during the experiment,
defining the evaluation criteria and other metrics is something that should be
properly documented to ensure the results can be replicated. Furthermore, ad-
ditional metrics must be defined that can mediate and moderate the effects of
user-specific attributes on the results of the experiment (Mettler et al., 2014).

In terms of the user layer, the metrics are evaluated within a SOC that pro-
vides managed SOC services to large and medium enterprises and as such, the
user of the artifact is not any particular user but rather the entire SOC. Since the
SOC is not interacting directly with the artifact but simply acts as a source for
the measurements, the user layer is not that important when it comes to the val-
idation of the model. The user itself has an impact on the utility layer, as was
described earlier, and thus it is vital to highlight the user of the artifact, as the
results could vary if the test would be executed in a SOC that provides security
monitoring for in-house purposes. As the validation is about the utility provided
by the metric, the use layer is not applicable. Within the utility layer, the metrics
are judged by an evaluation metric: "Can the measurements required to construct
the metric be collected within the SOC used as the test subject?", meaning is it
possible for the SOC on a theoretical level to take the metrics constructed by the
metric selection framework into production use.
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The demonstration of metrics with live data could also have been a valid
evaluation metric for the metrics, but due to the metrics requiring historical data
to provide information other than a snapshot of the current state, the evaluation
would require a longer period to be properly evaluated. Therefore, within the
timeframe allocated to this thesis, a long-term evaluation is not possible to be
conducted for metrics that do not have a sufficient level of historical measure-
ments to be available. The metrics have been tested with simulated data during
the creation process and the expectation is that the metrics behave in a similar
way when real-world measurements are used as a source for the metrics, and
thus, it was determined to be sufficient to demonstrate the capabilities of the met-
rics. Furthermore, simulation is considered to be a viable testing methodology as
determined by Hevner et al. (2004), which means the metrics were already tested
with a viable testing methodology during the creation process and as such, the
testing conducted focuses on validating the measurements and the feasibility of
the collection of the measurements required to construct the metric.

The validation plan therefore can be defined as: "The valid metrics created
with the design science artifact are tested in a SOC that provides managed SOC
services to large and medium enterprises. For each metric, the required measure-
ments are attempted to be collected from the existing SOC functions, and if the
measurements can be collected or can be made available, the testing is considered
to be successful."

7.5.1 Required measurements

Before the data collection can be started, it is necessary to define the measure-
ments that are required to construct the metrics described in the section 7.4. Out
of the metrics generated, the metrics that were determined to be valid were the
distribution of detections among the unified kill chain, distribution of detections
by source, technical accuracy of the analysis, and the number of true-positive inci-
dents with automated containment. The metric Number of verifiable monitoring
rules was considered to be invalid by the criteria defined by the metric selection
framework. The required measurements are summarized in table 7.

TABLE 7 Required measurements to construct the metrics

Measurement Type

Security incident classification String
Detection classification String
State of automated containment Boolean
Original priority of the security incident String
Final priority of the security incident String
Information about whether a security incident has been escalated Boolean
Information about who the security incident has been escalated to String
Number of unknown entities related to a security incident Integer
Information about whether the initial conclusion was correct or not Boolean
Information about whether the security incident had to be re-investigated by SOC Boolean
Original detection source String
MITRE ATT&CK tactic categorization String
Unified Kill Chain stage String
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7.5.2 Collecting measurements

The classification for detections and security incidents is available in multiple
locations, as several products produce detections for the SOC to investigate. The
SOC in which the validity of the measurements is being validated is utilizing a
SOAR platform to collect all detections into a single pane of glass, which unifies
the analyst workflows across products and as a result, it is producing a unified
classification of the detections and the security incidents alike. Furthermore, the
SOAR platform is responsible for performing automated activities as a response
to detections, and as a result, it can produce information on whether a security
incident was automatically contained or not. The original priority, which is a
result of the initial analysis performed in tier 1, and any changes to the priority
as the analysis is progressing are also recorded by the SOAR system and made
available for reporting purposes once the detections have been closed.

As the investigation workflow is managed by utilizing the SOAR platform,
information about the escalation status and destination can also be produced by
the SOAR platform. The escalation status is also available in the information
technology service management (ITSM) system, which is being used to manage
the security incidents between the SOC and third-party stakeholders, such as the
customers or their service providers.

The SOC is resolving unknown entities, such as IP addresses without a host-
name association, during the tier 1 workflow, but the information about the un-
known entities that remain after the analysis has been concluded is not currently
stored anywhere. The known entities are extracted to SOAR and linked to the
ongoing investigation, but unknown entities remain for the analyst to manually
identify as a part of the analysis process. As a result, reliably being able to pro-
vide a numerical value for the count of unknown entities for every detection han-
dled by the SOC is unlikely to be realistically achieved even if the data would be
currently recorded. It could be possible to construct a workflow that reminds an-
alysts to record the unknown entities in the case, but as there is a human reliance
on the activity, the data cannot be reliably and automatically collected, which
violates the quality criteria as defined in table 4.

Information about the accuracy of the initial conclusion and whether the
SOC had to re-investigate the security incident or not, can be produced as a part
of the workflows used to manage the security incidents, as reassigning the case
back to a security analyst after escalation to third-party means the case had to
be investigated again by the SOC. During the closure workflow, the accuracy of
the initial analysis must be confirmed by a human, which can cause imperfect
measurements if automated closure workflows are utilized or the confirmation
of the accuracy of the analysis is not done properly.

Detection source and MITRE ATT&CK tactic categorization are also avail-
able in the SOAR platform, and the UKC stage can be partially derived from the
tactics, but the transition between phases is not recorded as the monitoring rules
are tied to the MITRE ATT&CK framework. Additionally, the mapping of the
detections is only partial as some of the sources for detections do not provide
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MITRE ATT&CK categorization along the detection, which results in a partially
manual categorization process that leads to an unnecessarily high number of un-
classified detections, that skew the metrics that heavily rely on the accuracy of
MITRE ATT&CK categorization, such as the distribution of detections among the
UKC.

To summarize, as the SOC is utilizing a SOAR platform to manage the secu-
rity incident management process, the information about the activities associated
with the various activities within SOC is already available or can be made avail-
able with minor adjustments. If a SOAR system is not used to handle the incident
response process, the information would have to be collected separately from
various systems utilized by the SOC, such as SIEM, EDR, or an ITSM system, and
stored in an external system to take care of the reporting, as it is necessary to com-
bine information from multiple systems to construct the metrics. As the security
incident management process can involve a lot of manual activities, the reporting
requirements must be considered thoroughly to avoid having the SOC analysts
manually record information that is not used for a specific purpose, and to en-
sure that recording the necessary information is enforced by a technical solution
to avoid the metrics becoming biased or imperfect.

The results of the measurement validation are summarized in table 8. The
validation of the measurement is considered to be a success if the measurement
is already recorded, a partial success if it is not recorded at the moment but can
be made available, and a failure if the measurement can not be collected without
significant changes to the ways of working or the technical solutions in use.

TABLE 8 Results of the measurement collection

Measurement Success Success (Partial) Failure

Security incident classification *

Detection classification *

State of automated containment *

Original priority of the security incident *

Final priority of the security incident *

Information about whether a security incident has been
escalated

*

Information about who the security incident has been es-
calated to

*

Number of unknown entities related to a security incident *

Information about whether the initial conclusion was cor-
rect or not

*

Information about whether the security incident had to be
re-investigated by SOC *

Original detection source *

MITRE ATT&CK tactic categorization *

Unified Kill Chain stage *
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8 RESULTS AND DISCUSSION

The metric selection framework, which is the design science artifact constructed
in this research following the design science methodology as described by Peffers
et al. (2007), can be successfully used to construct metrics that can be used to
measure the technical performance of a SOC, as was demonstrated by the metrics
outlined in the section 7.4. Out of the five metrics that were constructed, four
metrics were considered to be valid in terms of the metric selection framework.
The invalid metric outlined in the section 7.4.2 had a problem with too much bias
and thus was considered to be invalid, as ways to reduce the bias to acceptable
levels were not discovered as a part of the metric construction phase. On an
overall level, the remaining metrics suffered from similar issues, as reducing the
bias and subjectivity was difficult to perform, and the entire definition of what is
an acceptable level of bias or subjectivity remained relatively subjective as well.

The valid metrics created with the framework can help SOCs to push their
detection capabilities more towards the earlier stages of the unified cyber kill
chain to decrease the potential impact of the security incidents (section 7.4.1) and
quantify the value of their detection engineering function (section 7.4.3). The
metrics can also be used to provide insights on the activities performed as a part
of the analysis process (section 7.4.4) and measure how precise and sensitive the
workflows for automated containment are (section 7.4.5). While the metrics are
by no means comprehensive, they can be used to measure the technical perfor-
mance of a SOC within the respective areas, and as such, can be used to enhance
the reporting capabilities related to the technical performance of a SOC, for as
long as the required measurements can be made available.

The collection of the measurements required to construct the metrics was
verified in a SOC that is offering managed SOC service to medium and large en-
terprises. Out of the thirteen measurements required to construct the metrics, six
were already available, another six were not available but could have been made
available with minor adjustments, and one was considered to not be something
that could be made available without significant changes to the ways of working
or the technical solutions utilized by the SOC. The SOC utilizes a SOAR plat-
form to manage the detections and security incident management workflows,
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which made the collection of the measurements relatively straightforward. A
SOC that utilizes more than one system to manage the security incident man-
agement workflows is likely to require a third system to collect and combine the
measurements from multiple systems, as the metrics require measurements from
multiple sources, such as a SIEM and an EDR, to be considered complete and
thus conform to the quality criteria associated with the metric selection frame-
work. Despite the success of the validation, the validation of the measurements
should be handled better during the metric creation process to ensure the mea-
surements can be made available as expected.

During the creation of the presentation for the metrics, the objective was to
provide a way for both the team and the SOC management to benefit from the
outcome of the metric, which resulted in a two-part visualization strategy; one
graph for the team the metric is intended for and another one for the manage-
ment of the SOC. The teams responsible for the metrics may be more interested to
gain additional insights from the low-level information outlined in the first graph
while the SOC management could be more interested to follow the metric value
evolution over time, as seen in the second graph. One of the mismatches between
technical staff and managers outlined by Kokulu et al. (2019) was the interpreta-
tion of the values and meaning of the metrics deployed, and as a result, it was
seen as a key factor to consider during the metric creation process but was not
considered with sufficient detail in the metric selection framework. As the visu-
alizations for the metrics were created by utilizing Jupyter notebooks, it remains
unclear whether the metrics can be visualized as expected with tools commonly
used by SOCs to publish and manage reporting dashboards. However, as the
measurements required for the metrics need to be collected from several sources
to create the visualizations for the metrics, SOCs should ensure their tooling and
other reporting capabilities can support the complex visualizations required to
present the information necessary to properly interpret the metric.

One of the limitations of this research is that the design methodology is not
followed rigorously, as the feedback loop between the "Evaluation" and the "De-
sign and development" activities are not completely enforced as per the design
science methodology as outlined by Peffers et al. (2007). The decision to limit the
number of iterations was done due to constraints related to the research schedule
and as a result, after the first metric was successfully created, the iteration back
to the "Design and development" stage was not performed. On a practical level,
this means that any improvements discovered after the successful creation of the
first metric are documented in this chapter and left out to be completed as a part
of future research.

Although the artifact was able to produce metrics that can be used to en-
hance the reporting capabilities of the technical performance of a SOC, the link
between the technical performance and the metric selection framework could
have been slightly more concrete. The framework itself does not directly enforce
the relationship between the metrics and technical performance. This does not
necessarily make the selection criteria to be less useful, but it leaves the determi-
nation of whether the resulting metric measures technical performance or not up
to the user of the artifact to decide. As an upside, the selection framework can be
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additionally used to create non-technical metrics as well.
The metrics created with the metric selection framework revolved quite

heavily around the detection capabilities provided by the detection engineer-
ing process as per the definitions by Knerler et al. (2022) and as a result, MITRE
ATT&CK tactics are used as a key dimension for the presentation of the metrics.
MITRE ATT&CK tactic was determined to be able to provide additional technical
context for the visualization of the current state of the metric, as it can provide
at a glance how the tactics are performing relative to others, which can be valu-
able information for the detection engineering team itself but might not be that
relevant for the SOC management or other teams. Other functions that could be
considered to be mostly about technical capabilities, such as threat hunting or cy-
ber threat intelligence, were not covered during the evaluation of the artifact. As
a result, additional research is required to validate the framework with functions
other than detection engineering, as it remains unknown whether the metric se-
lection framework can produce viable results when used in a context other than
detection engineering.

One of the fundamental principles when it comes to the definition of KPIs
according to Parmenter (2019) is to tie the indicators into critical success factors.
As a result, a relation to a success factor was included as a requirement within
the metric selection framework. However, the SOC-related literature does not
discuss in detail the SOC success factors, which means the success factors are
not properly taken into account when the metrics were constructed. There are
some publications (Abd Majid & Zainol Ariffin, 2021; Crowley & Filkins, 2022;
Vielberth et al., 2020) that discuss the success factors, but the success factors men-
tioned in the publications are too high-level to be able to contribute to the metric
selection framework as was originally intended. Additional research around the
low-level success factors for SOC, or more widely low-level success factors for cy-
ber defence capabilities on an overall level, would be needed to utilize the frame-
work as was originally expected. In addition to the success factors, the metrics
should on an overall level be better justified by scientific research. Despite the
lack of research on the area, organizations can and should identify their unique
success factors and justifications for the metrics, and design the performance met-
rics around the parameters they have identified.

The literature review did not establish a clear pattern when it comes to the
availability of SOC-related metrics, and as such, a conclusion was reached that
no such framework currently exists. Many of the more commonly used metrics
as summarized in table 3 are operative, and as a result, they cannot be used to
measure the technical performance of a SOC. Some of the metrics can be used
to partially measure the technical performance, such as the false-positive rate or
number of incidents handled automatically, but they are at best imperfect when
evaluated with the metric selection framework, due to lack of additional context
that causes the metric to become overly biased. For example, a high true-positive
rate, and subsequently a low false-positive rate, can be an indication of a well-
performing SOC but without understanding the detection strategy or level of au-
tomation, the metric alone can be misleading, since the SOC could automatically
close a majority of the false-positive and benign true-positive detections, and in-
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stead use them for threat hunting or to provide additional context in the form of
potentially related low-fidelity detections when investigating high-severity de-
tections. The metric selection framework can be used to enhance the reporting
capabilities provided by these technical metrics, as it can be used to reduce both
the bias and subjectivity as well as take into account the additional contextual
information required to properly interpret the metric.

It could be argued that most of the metrics are not inherently bad or insuf-
ficient for measuring technical performance, but rather they lack the necessary
characteristics and definitions that are needed to properly interpret the value of
the metric and thus reduce the objectivity and bias associated with the metric. Al-
though the number of SOC-related publications has steadily increased since 2014,
there are still several challenges that are needed to be solved to advance the level
of SOC-related research, among them being the ineffective capabilities to mea-
sure SOC performance (Vielberth et al., 2020). Based on the conclusion reached
within this research, the situation still appears to largely be the same, and thus,
the field would need a considerable amount of novelty research to increase the
maturity in terms of academic publications, which could be used as a basis to
construct proper metrics to measure the performance of a SOC.

Additionally, the lack of maturity in the SOC-related literature could also
be explained by the uncertain direction in which the SOC as a function should be
heading into. Most publications focus on the idea that SOC by design is mostly
a reactive function (Agyepong et al., 2020; Ahlm, 2021; Vielberth et al., 2020),
and although some are bringing up more proactive measures to enhance the SOC
operations (Knerler et al., 2022), the paradigm appears to revolve mostly around
reactive capabilities combined with some proactive elements, such as threat hunt-
ing and cyber threat intelligence augmented monitoring rules.

Is the current SOC paradigm enough to protect organizations against mod-
ern threats? Should SOCs be better integrated with the overall cyber defence ca-
pabilities and be more involved with the prevention of security incidents, rather
than just reacting and responding to them? How to determine the actual impact
the SOC has on the overall cyber defence capabilities? It would appear that none
of these questions is answered in the current SOC-related academic literature.
Therefore, additional research about the future of SOCs is required, as the an-
swers to these questions could cause a paradigm shift and change the role of the
SOC to focus more on the prevention of security incidents and thus, potentially
decrease the overall cost of cyber defence capabilities while simultaneously de-
creasing the costs associated with the practice. To accurately measure the techni-
cal performance of a reactive and a proactive SOC would likely require different
metrics as the incentives of the two SOCs are different from one another. The
lack of certainty in the direction where the SOC as an industry is heading and the
large variety of different SOC approaches, could be one explanation for the lack
of proper metrics to measure the performance of the SOC.
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9 CONCLUSION

The outcome of this research further emphasizes the need for better capabilities to
measure the technical performance of different types of SOCs, as the commonly
used metrics focus on operational activities, and as such, are inadequate to mea-
sure the technical performance of a SOC. Furthermore, the metrics observed in
the literature do not appear to be a result of a systematic development but rather
be loosely based on generic security metrics or otherwise based on industry best
practices without significant scientific justification.

This research resulted in a design science artifact, a novelty metric selection
framework, that can be used to construct relevant metrics to measure both the
technical and non-technical performance of a SOC. The literature reviewed dur-
ing this research contained some metrics that could be partially used to measure
the technical performance of a SOC, such as the false-positive rate or the number
of incidents handled by automation. However, these metrics were determined to
be invalid based on the metric selection framework, due to a lack of additional
context to decrease the bias to an acceptable level.

As a part of the demonstration of the artifact, five unique metrics were cre-
ated that can be as such used to improve the technical reporting capabilities re-
lated to the detection engineering and the incident analysis functions. The metrics
created with the artifact were the following:

1. Distribution of detections among the Unified Kill Chain
2. Number of verifiable monitoring rules
3. Distribution of detections by source
4. Technical accuracy of the analysis
5. Accuracy of automated containment

Out of the five metrics, four were considered to be valid in terms of the metric
selection framework. The invalid metric (number of verifiable monitoring rules)
ended up being overly biased, which means it cannot be applied as a general-
purpose metric to measure and compare different SOCs. Bias and subjectivity
were also a concern for other metrics, but with the addition of contextual infor-
mation, the bias and objectivity were reduced to an acceptable level, and as a
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result, the metrics were classified as valid in terms of the metric selection frame-
work. The metrics were validated by verifying that the measurements can be
collected within a SOC service provider that produces managed SOC services for
medium and large enterprises. The outcome of the validation of the measure-
ments was that all but one measurement was either already recorded or could
be made available with minor adjustments to the solutions used by the SOC.
The outcome of the measurement validation was influenced by the utilization of
a SOAR system to combine information from multiple sources and manage the
workflow related to the security incident management process, thus a SOC that
uses more than one system to manage its operation can have difficulties collecting
the required measurements and combine them to construct the metrics.

One of the key limitations of this study is the relatively narrow selection
of metrics that were used to demonstrate the framework, as the metrics created
with the framework are mostly related to the detection capabilities of the SOC,
and other functions, such as threat hunting or cyber threat intelligence, have not
been included in the metrics chosen for the demonstration. As such, it remains
unknown whether the framework is suitable for the creation of technical met-
rics for functions other than the ones that work closely with the security incident
management process. Furthermore, the design science principle was not rigor-
ously followed, and as a result, some of the iterative improvements for the metric
selection framework, in addition to the wider demonstration, were left to be re-
searched in the future.

Despite the minor limitations of the research, the framework and the met-
rics used for demonstration can be adopted by different types of SOCs to con-
struct metrics they can use to measure and demonstrate their technical capa-
bilities. Due to the lack of industry-standard reporting schema for the techni-
cal performance of SOCs, the SOC industry as a whole is encouraged, to enable
industry-driven development of the measurement capabilities, be open and share
the metrics they use to measure their technical capabilities, with the wider com-
munity. In addition to industry-backed development of the measurement of tech-
nical performance, additional academic research is needed on the subject.

Additional research is especially needed to better understand what makes
SOC successful, what is the actual impact of a well-functioning SOC within the
context of wider cyber defence capabilities of an organization, and if SOC as a
function should focus more on the prevention of security incidents rather than
responding to them, which appears to be the current standard approach for SOCs.
With the addition of such scientific research, better metrics could be constructed,
as the scientific research could be used to better justify the metrics constructed
with the metric selection framework.
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