
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Cargo-Cult Containerization : A Critical View of Containers in Modern Software
Development

© 2022, IEEE

Accepted version (Final draft)

Mikkonen, Tommi; Pautasso, Cesare; Systä, Kari; Taivalsaari, Antero

Mikkonen, T., Pautasso, C., Systä, K., & Taivalsaari, A. (2022). Cargo-Cult Containerization : A
Critical View of Containers in Modern Software Development. In SOSE 2022 : 16th IEEE
International Conference on Service-Oriented System Engineering. IEEE. Proceedings : IEEE
International Symposium on Service-Oriented System Engineering.
https://doi.org/10.1109/SOSE55356.2022.00017

2022

Cargo-Cult Containerization:
A Critical View of Containers

in Modern Software Development
Tommi Mikkonen1, Cesare Pautasso2, Kari Systä3, and Antero Taivalsaari3,4

1University of Jyväskylä, Jyväskylä, Finland, tommi.j.mikkonen@jyu.fi
2USI, Lugano, Swizerland, cesare.pautasso@usi.ch

3Tampere University, Tampere, Finland, kari.systa@tuni.fi
4Nokia Bell Labs, Tampere, Finland, antero.taivalsaari@nokia-bell-labs.com

Abstract—Software is increasingly developed and deployed
using containers. While the concept of a container is conceptually
straightforward, there are various issues to be considered while
using them, ranging from technical details inside containers to
the orchestration of containers that jointly form a meaningful
application. In recent years, the use of containers has become so
prevalent that developers have a tendency to resort to cargo-cult
containerization – ritual adherence to the use of containers just
because so many others are doing the same thing. In this paper,
we study advantages and downsides of containers in modern-
day software development. We foresee the use of containers to
spread into new areas, including IoT systems and embedded
devices. At the same time, we caution against indiscriminate use
of containers, since excessive containerization can have adverse
impacts on software maintenance and overall complexity of a
system architecture.

Index Terms—Software design, design principles, continuous
software engineering, DevOps, containerization, software con-
tainers, container orchestration

I. INTRODUCTION

A famous software engineering aphorism – usually at-
tributed to Butler Lampson or David Wheeler1 – says that
”all problems in computer science can be solved by adding
yet another level of indirection”. While this aphorism is not
entirely based in reality – after all, performance problems
in computing are usually better solved by removing layers
of indirection – the evolution of computing has undeniably
reflected this well known aphorism in the past decades.

After the advent of the World Wide Web in the 1990s
and the subsequent introduction of the Software as a Ser-
vice (SaaS) model, traditional shrink-wrapped software ap-
plications have been largely replaced by web-based software
services. Such services and applications can be used with-
out conventional installation or manual upgrading, making it
possible to deploy software effortlessly faster and on a much
larger scale than before. At the same time, computing has
become increasingly virtualized, with multiple layers of virtual
machines and abstraction levels layered on top of each other.
Even though personal computers such as laptops are still in
widespread use, they are more and more commonly used only

1https://quotes.yourdictionary.com/author/quote/585289

Hardware

Host Operating System

Hypervisor

Virtual Machine

Guest Operating System

Container Engine

Container

Programming Language Runtime

Application

Fig. 1. Layers of Indirection.

as a host platform for the web browser that allows us to ”peer
into” those numerous services that we use in our daily lives.
Most of those services are nowadays hosted in the cloud.

Today, a typical computing environment consists of a re-
markably large number of layers of indirection (Figure 1). For
instance, even if one is building a relatively simple backend
service, the common solution nowadays is to (1) write it in
a dynamic language that requires a virtual machine (such as
Python, Java or JavaScript/TypeScript when using Node.js).
This service is commonly (2) dockerized and then (3) hosted in
a container management system such as Kubernetes (K8s). The
entire system is then (4) run in virtual machines that are rented
from a third-party service provider, such as Amazon Web
Services or Microsoft Azure. Moreover, underneath the hood,
the third-party service provider may utilize multiple additional
levels of virtualization that are invisible to the developers of
the service.

In essence, this means that in modern backend services there
are at least four levels of virtualization until the software
actually meets bare metal, discounting the fact that there
may be additional virtualization layers also at the hardware

level [1]. While there is nothing inherently wrong in this –
after all, as long as ample computing power and network
capacity is available, those added layers do not have any
perceivable impact from the end user’s perspective [2] –
the developer implications of this approach deserve some
additional consideration. These implications have been largely
ignored in software engineering research so far.

The multi-layer stack described above – dynamic devel-
opment language, Docker and Kubernetes running on rented
virtual machines – has effectively become the de facto model
for software development and operations. In many ways, this
approach has become so prevalent that it exhibits the signs of
cargo-cult programming – ritual adherence to a certain way of
doing things model just because so many others are doing the
same thing, disregarding the original problem and context in
which the solution is meant to be applied [3]. According to our
industry observations and discussions with various people in
the industry and academia, this model is nowadays commonly
expected to be used even for simplest applications that might
otherwise be run or hosted directly on personal laptop or
desktop computers. We refer to such ritual behavior informally
as ”cargo-cult containerization”.

In this paper, we take a critical view of containerization. We
discuss the emergence of containerization so far, summarize
its benefits and take a look at the darker side of containers
as well. We caution against indiscriminate use of containers
since excessive containerization can have adverse impacts
on software architecture, maintenance and to some extent
also security and performance. The paper is based on our
collective experience of well over a hundred years in the
software industry and in the academia, as well as practical
hands-on development efforts while creating both academic
and industrial applications and services. While we consider
ourselves as ardent supporters of container-based software
development and deployment, we are increasingly baffled by
the fact that this approach is nowadays applied almost blindly
to use cases and systems that do not benefit from this approach.
To us, this seems like a classic ”if all you have is a hammer,
everything looks like a nail” scenario.

II. THE EMERGENCE OF THE CONTAINER ERA

A Brief History of Containerization. The early history of
containers began with the gradual development and evolution
of enabling technologies such as cgroups (control groups) in
20062 and namespaces that originated in the Linux operating
system in the 2.4.19 kernel beginning in 2002. These founda-
tional technologies were integrated within the Linux Container
runtime project (LXC)3 originally announced in 2008. LXC
version 1.0.0 was released in 2014. LXC provided a complete
system for lightweight virtualization.

The introduction of Docker Containers (https://docker.com)
in 2013 was a cornerstone in the adoption of the container
approach [4]. It introduced the integration of prior develop-
ments with a set of tools and common packaging format. The

2https://lwn.net/Articles/236038/
3https://linuxcontainers.org/

popularity of Docker made containers the de facto approach
for lightweight virtualization [5]. It should be noted that
Docker is not the only way to use containerization, though.
Alternative technologies include systems such as LXD (built on
top of LXC), Podman (daemon-less), Containerd/RunC, and
some others.

As the creation of lightweight virtual machines became
effortless, developers started to embrace this approach widely
to decompose their applications into containers. This led to in-
creasing popularity and extensive use of Docker orchestration
systems, including Docker Compose and Docker Swarm.

The introduction of the large-scale container orchestration
tool Kubernetes (https://kubernetes.io) in 2014 was another
important milestone in the evolution of containerization. The
origin of Kubernetes is at Google where it was introduced and
used for managing very large container-based systems.

As the popularity of containers increased, many cloud tech-
nology providers (such as OpenStack) strengthened their sup-
port for lightweight containers. Kubernetes has been included
in major cloud provider offerings: Amazon Web Services
provides Amazon Elastic Kubernetes Service (AWS EKS),
Microsoft Azure provides Azure Kubernetes Service (AKS),
and Google provides Google Kubernetes Engine (GKE).

Docker used to be one possible container technology sup-
ported by Kubernetes. However, in December 2020 Kuber-
netes announced the deprecation of the Docker runtime in
favor of containers that are compliant with the Container
Runtime Interface (CRI) (see https://kubernetes.io/blog/2020/
12/08/kubernetes-1-20-release-announcement/).

III. ADVANTAGES OF CONTAINERIZATION

The emergence of the container technologies has brought
various advantages. Below, we list the most important benefits
categorized under different technical viewpoints.

1) Architectural benefits: From an architectural viewpoint,
the key benefits of containerization include the increased
modularity and reduced dependency on traditional physical
computing architectures. In essence, in container-based sys-
tems the traditional computer as a target has disappeared.
Instead, the system is composed of a number of containers that
can be deployed flexibly into different types of environments.
As a result of this evolution, containers themselves have
effectively become the platform.

More broadly, virtualization provided by the containeriza-
tion has value of its own. The developers want to control
and freeze the used platform components. The runtimes,
middleware components and libraries often evolve so rapidly
that the developers need means to control the development,
deployment and runtime environments. Containers provide a
natural boundary for such architectural evolution.

Simply put, container systems allow distribution of the
application logic to several containers and provide scalability
by introducing concurrent instances of the containers. Con-
tainer technologies also provide means to organize of the
containers to sub-network with controlled interfaces to each
other. Furthermore, each of these can evolve and be deployed

independently of the other containers, provided that interfaces
remain unchanged.

2) Design benefits: In terms of design, containers can serve
as the natural scope for designing systems at team level, as
well as making it easier to split the development work among
different subteams pretty much independently of the final
deployment and computing architecture. Inside individual con-
tainers, (sub)teams or individual developers can flexibly decide
and choose the preferred development languages, frameworks,
libraries and tools. More broadly, containerization can reduce
the complexity of cloud-native applications and increase porta-
bility through well-established abstraction boundaries. This,
together with better support for automation, can increase the
efficiency of the development organizations and simplify the
development of distributed applications.

An additional important design benefit is that containers
serve as a platform for iterative (and portable) design. Since
it is easy to replicate container-based system deployments in
different contexts without major dependencies with specific
physical computing platforms, it is safer to perform experi-
mentation in the design phase or make experimental versions
of system components available to other team members or
external partners for further development and experimentation.

3) Benefits for data persistence: In container-based sys-
tems, each container is typically responsible for its own data.
Hence, it is easier to avoid inter-dependencies related to data
in different containers. Among other things, this makes it
possible for each container to recover from possible faults
more independently. Furthermore, in such a system there is
no need to agree on global data formats, apart from those
APIs/data formats that are used for interfacing with services
in other containers.

4) Benefits for testing: In container-based systems, contain-
ers are a natural subject for unit testing. Since the goal of
techniques often associated with containers is to produce sys-
tems that form meaningful operational entities or subsystems
on their own right, they can be tested meaningfully and in most
cases independently of each other. Furthermore, such testing
can be automated to a large degree.

5) Deployment benefits: Established trends – such as mi-
croservices [6] and continuous integration, delivery and de-
ployment [7] – encourage the use of separate containers to re-
move dependencies between the subteams [8]. In many ways,
containers are the natural mechanism to support microservice
development, continuous deployment and automation, and
DevOps more broadly. The ability of containers to isolate units
of deployment from specific physical computing architectures
and physical computers plays an essential role in enabling this
(Figure 2).

These capabilities have given rise to advanced orchestration
systems such as Kubernetes (https://kubernetes.io/). Kuber-
netes can be seen as a “Swiss army knife” that provides
automated policy-based scaling and fault tolerance. It also
supports global deployment approaches: scaling-out across dif-
ferent clusters and geographical locations. Hence, automated
container orchestration for scaling to unpredictable workloads

and fail-over clustering becomes possible. In traditional phys-
ical computing platforms, such flexible orchestration would
have been virtually (and quite literally) impossible.

Given the ability of containers to serve as a unifying
deployment mechanism across different types of physical
computing architectures, we foresee containers as an important
enabler for isomorphic IoT systems [9], i.e., Internet of Things
systems in which various elements in the end-to-end system
– devices, gateways and various cloud components – can be
developed and deployed with a consistent set of technologies.
Although containers can still be viewed as an overkill for
resource-constrained IoT devices built on low-power MCUs,
we anticipate the use of containers to spread also to the IoT
domain in the coming years.

6) Runtime benefits: Related to architectural and testing
benefits mentioned above, containers can also serve as a
meaningful unit for starting, stopping, resetting and restarting
various subsystems independently. This can simplify recovery
operations when something goes wrong in a particular subsys-
tem, as well as the rejuvenation of long-lived services [10].
In addition, this supports the deployment of new versions of
subsystems so that different versions can be tested and run
in parallel with different containers in order to check that the
new version is behaving correctly [11].

7) Performance benefits: Although containerization itself
usually reduces system performance to some extent (see Sec-
tion IV), containers make it possible to optimize the behavior
of the system as a whole in a fashion that would not have been
possible in traditional software architectures. Several proposals
have been made to optimize the behavior of a container-based
system as a whole – for example, monitoring both infras-
tructure and application-level key performance indicators [12].
Overall, containers (and associated orchestration systems) can
make it considerably easier to scale the system as the usage
of the system increases. In addition, policy-based optimization
allows automigration and automatic configuration changes.

8) Security benefits: Because containers are meant to be
self-contained, security and governance of cloud-native appli-
cations is increased when using containers. However, the use
of containers still requires careful consideration and awareness
of risks and certain best practices.

Ultimately, the popularity of containerization and container-
based software development is driven largely by developer
convenience. Containers make it easier for individual software
developers and small teams to create, deploy and maintain
large-scale software systems with considerably less manpower
than was required in traditional projects. Effectively, container-
ization is part of a larger phenomenon in which increased
virtualization has resulted in a considerably lesser role for
traditional IT departments, empowering individual developers
to accomplish tasks which traditionally required an entire IT
department.

IV. DOWNSIDES OF CONTAINERIZATION

So far, the march towards containerization has progressed
without much criticism. However, over-reaching use of con-

«boundary»
Context

«container»
API

[docker]

«container»
Microservice 1

[docker]

«container»
Microservice 2

[docker]

«container»
Database
[MySQL]

«component»
API Gateway

[Java]

«component»
Component 1a

[Python]

«component»
Component 1b

[Python]

«component»
Component 2a

[Node.js]

«component»
Microservice 1

State

«component»

«external_system»
Client

«person»

User

uses

HTTPS

Microservice 2
State

«external_system»
Dependency

Fig. 2. C4: Context, Containers, Components (and Classes) [13].

tainers can have negative effects on software development
and design. Below, we address these topics using the same
categorization as before.

1) Architectural disadvantages: Somewhat ironically, the
most significant architectural disadvantages of containerization
are not related to container technologies at all. Rather, con-
tainerization has become so successful and prevalent that it
has effectively become a substitute (or synonym) for software
architecture and design. According to our observations, many
developers (and especially managers) today assume that as
long as they use Docker and some orchestration solution such
as Kubernetes, they already have ”software architecture” in
place. However, in practice containers are only a lightweight
virtualization technology that by no means itself guarantees a
meaningful software architecture or design.

In general, only those applications that are designed to
run as a set of discrete microservices – with meaningful and
well-defined interfaces – stand to gain from containerization.
Otherwise, the only real benefit of Docker and similar tools
is that they can simplify application delivery and deployment
by providing an easy packaging mechanism and virtualization
from physical computing architectures. Furthermore, as sum-
marized in the design benefits paragraph earlier, one can easily
keep expanding one’s own container, using it as developer
team’s sandbox in which it is easy to experiment and add
things without negotiating with other teams or considering the
big picture of the architecture – in other words, which logical
components belong to which container.

2) Design disadvantages: The general design disadvan-
tages of containerization are closely aligned with the archi-
tectural observations above. It is important not to naively
equate the use of containers with good design, or assume that
containerization alone would yield great system designs.

At first sight the promise of containers providing design
encapsulation is indeed attractive – the development team can

find a solution of its own, and they are not bound by the
decisions of any other teams. However, this flexibility can
have its downsides, too. In particular, not having to know
the environment in which an individual subsystem runs or
its internals can spur opportunistic reuse [14]: an approach
in which software components are picked for reuse without
any deeper understanding of the components or the context
to which they were originally designed – just blindly pick
something seemingly applicable and amalgamate that into a
larger whole disregarding its origins and the possible depen-
dencies and legacy that this might introduce to the system.
While conflicts between dependencies do not have to be solved
globally, since each container isolates the necessary add-ons
within its boundaries, there is a lack for a global container
in which to place shared functionality that is common to the
entire system.

As teams gain increased control over their own containers,
in the long run such evolution can lead to design conventions
that are only associated with a particular team and the contain-
ers they work on. In the worst case, some of these conventions
and practices will drift apart and are no longer in line with
the design ideology of the rest of the system.

3) Disadvantages for data persistence: Because each con-
tainer is an independent subsystem, handling of permanent
storage requires special attention. By design, all of the data
inside an individual container will disappear forever when the
container shuts down unless the data have been saved exter-
nally somewhere. If an application is designed with containers,
container systems require the use of solutions such as Docker
volumes. However, Docker volumes can lead to complexities
when they are run in cloud environments, requiring the de-
velopers to worry about consistency/availability/performance
tradeoffs that are characteristic of distributed applications [15].

Additionally, partitioning the state of an application across
multiple containers can make it impossible to recover a con-
sistent snapshot of data unless all the containers are backed
up at the same time [16].

4) Disadvantages for testing: Because each container is a
distinct entity that can evolve independently of other contain-
ers, the eventual system that is constituted by all the latest
but compatible versions of its containers at a given time
can become very expensive to test in a dedicated staging
context. Instead, the most natural way to test end-to-end
system integration is to go live with the production system.
This requires that the system operates according to chaos
engineering principles [17] and that it can run a rapid fall-
back operation to recover from the introduction of a failing
container.

Testing of containerized systems is further hampered by the
fact that logs and system consoles can be much more tedious
to locate. This is especially true of those containers that are run
inside orchestration systems such as Kubernetes. In systems
that are deployed onto physical servers or traditional virtual
machines, system consoles and logs are almost trivial to access
in comparison.

5) Deployment disadvantages: One of the key benefits of
containers is the dramatically reduced dependence on specific
physical target platforms. With containerization, it is also
easier to automate deployment onto different types of target
environments. This has led to the demise of traditional IT
departments that were necessary for managing data centers
and physical computing infrastructure. The downside of this
phenomenon is the increased burden on developers them-
selves [18]. Containers are typically tied to build and deploy-
ment pipelines and managed by the development team instead
of the operations or IT department. This increases competency
requirements for the development team significantly [19].

Another complexity associated with container deployment
pertains to their orchestration. There are various orchestration
tools such as Docker Swarm, Kubernetes and Mesos; deciding
which is the best suited alternative for a particular use case is
not a straightforward selection [20].

While orchestration tools can help tame the complexity
of continuously evolving software systems, they can be too
powerful for slow-moving software developed and maintained
by small teams. In this context – due to lack of knowledge
and skills – a temptation emerges to pick some orchestration
strategy and settings in an opportunistic, cargo cult fashion,
without really understanding the impact and limitations on the
chosen deployment strategy.

6) Runtime disadvantages: To tame the complexity of
containers, it is crucial to monitor them for performance,
availability and security issues. A variety of monitoring tools
and external monitoring services and analytics can help ad-
dress this challenge. Considering the complex nature of the
cloud environments, in-depth monitoring of security issues is
important.

It should be noted that in the presence of orchestration
systems such as Kubernetes, mere knowledge of base oper-
ating system level performance and monitoring tools does not
suffice, since in orchestrated systems runtime components and
processes cannot be accessed directly. Rather, developers must
be familiar with tools that are specific to the orchestration
system. This further increases the educational needs for de-
velopers.

7) Performance disadvantages: Since containerized appli-
cations use underlying hardware directly, they are often as-
sumed not to use extra resources. This assumption has been
confirmed to be false, e.g., by measurements presented in [21],
[22] and [23]. These studies indicate that even lightweight
virtualization can have a noticeable effect on performance.

As such, container technologies do not increase memory
footprint. However, when the deployed containers introduce
different versions of the runtime and middleware from the host,
they do increase memory footprint rather significantly. In case
the systems are based on multiple containers, this problem is
multiplied.

8) Security disadvantages: Compared to traditional operat-
ing system virtualization, containers provide less security – but
still more security than with no virtualization [24]. Compared
to a traditional stack, containers require multi-level security

as they consist of multiple layers. In addition to the security
of the containerized app, the container registry, the Docker
daemon and the host operating system need to be secured as
well [25]. Moreover, the container image must be trusted, i.e.,
there must be assurances in place to guarantee that it has not
been subjected to a supply-chain attack.

9) Disadvantages on graphical applications: It should be
noted additionally that Docker was designed as a solution for
deploying server applications that do not require a graphical
interface. While there are some creative strategies (such as X11
video forwarding or VNC [26]) to run GUI applications inside
a container, these solutions are clunky at best. For UI-intensive
applications, containerization does not generally work well.

We have summarized the container advantages and down-
sides in Table I that presents our observations and key points
in condensed form.

V. CONCLUSIONS

In recent years, containers have emerged as a practical
solution for modular software design, development, deploy-
ment and operations. In fact, containerization has become so
successful and prevalent that it has effectively become a sub-
stitute or synonym for good software architecture and design.
Today, many developers and managers tend to assume that
as long as their projects use Docker and a popular container
orchestration system such as Kubernetes, they already have
the necessary ”software architecture” in place. The assump-
tion that containerization almost automatically provides good
software architecture has resulted in rather indiscriminate use
of containers and orchestration technologies even in contexts
where they really are not needed. We refer to this phenomenon
as ”cargo-cult containerization” – ritual adherence to a certain
way of developing software just because so many others are
doing the same thing.

In this short paper, we have taken a critical look at con-
tainerization. We provided a brief history of containerization
and container technologies, followed by an analysis of their
benefits and drawbacks. A forthcoming, more comprehensive
journal version of this short paper will provide a deeper
analysis of the tradeoff between the flexibility afforded by con-
tainers against the complexity that they inevitably introduce.
We are currently working on gathering concrete guidelines and
recommendations for distinguishing between merely ritual vs.
properly motivated use of containerization.

REFERENCES

[1] J. Frazelle, “Chip measuring contest: The benefits of purpose-
built chips,” Queue, vol. 19, no. 5, p. 5–21, oct 2021. [Online].
Available: https://doi.org/10.1145/3494834.3501254

[2] E. Casalicchio and S. Iannucci, “The state-of-the-art in container
technologies: Application, orchestration and security,” Concur-
rency and Computation: Practice and Experience, vol. 32,
no. 17, p. e5668, 2020.

[3] R. P. Feynman, E. Hutchings, and R. Leighton, Surely you’re
joking, Mr. Feynman! - Adventures of a curious character. W.
W. Norton, 1997.

[4] D. Bernstein, “Containers and cloud: From LXC to Docker to
Kubernetes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84,
2014.

Concern Advantages Disadvantages
Architecture Provides architecturally

meaningful ways to
delimit development and
deployment boundaries.

There is a requirement to
determine which logical
software components are
packaged and deployed in
which container

Provides a natural scope
for designing systems at
team level.

Can result in tangled de-
signs, where the contain-
ers get bloated because of
all the tasks allocated to a
container.

Design The team has all the con-
trol in its own hands in-
side each container.

Same functionality can be
implemented differently in
different containers.

Being the owner of the
container, the team can
usually decide about best
possible tools to use.

The team may create code
that is not well in line
with the container ideol-
ogy, just because they fol-
low their own guidelines
and practices.

Data
Persistency

Containers isolate data
with high granularity.

Storing persistent data
requires additional means,
usually copying data
across containers.

Testing Containers are a natural
subject for unit testing,
and this can be automated
to a large degree.

System-wide end-to-end
integration testing can
become problematic, if
and when containers
change constantly in a
parallel fashion. Logs
and system consoles not
always easy to access.

Containers are the
mainstream deployment
mechanism for continuous
software engineering and
DevOps. Additionally,
they can provide
isomorphism to systems
with heterogeneous
computing devices.

The use of containers can
introduce delays in build
and deployment phases.

Deployment Orchestration simplifies
deployment at container
level, and scales well to
different use cases.

Orchestration tools are of-
ten so complex that de-
velopers resort to cargo-
cult copying of parameters
and tools that are often
too complex for the task
at hand.

Runtime Containers can be
restarted to reset certain
subsystems.

Containers need continu-
ous monitoring for possi-
ble problems.

Performance Faster initialization and
shutdown, w.r.t. virtual
machines

Increased memory
consumption and non-
negligible inter-container
communication overheads

Security Provides a basic isolation
sandbox

Not as isolated as other
virtualization techniques

TABLE I
ADVANTAGES AND DISADVANTAGES OF CONTAINERS.

[5] K. Matthias and S. P. Kane, Docker: Up & Running: Shipping
Reliable Containers in Production. O’Reilly, 2015.

[6] S. Newman, Building microservices. O’Reilly, 2021.
[7] J. Humble and D. Farley, Continuous delivery: reliable soft-

ware releases through build, test, and deployment automation.
Pearson Education, 2010.

[8] C. Pahl, P. Jamshidi, and O. Zimmermann, “Microservices and
containers,” in Software Engineering 2020, M. Felderer, W. Has-
selbring, R. Rabiser, and R. Jung, Eds. Bonn: Gesellschaft für
Informatik e.V., 2020, pp. 115–116.

[9] T. Mikkonen, C. Pautasso, and A. Taivalsaari, “Isomorphic iot
architectures with web technologies,” IEEE Computer, vol. 54,
no. 7, pp. 69–78, 2020.

[10] M. Torquato and M. Vieira, “An experimental study of software
aging and rejuvenation in dockerd,” in 2019 15th European
Dependable Computing Conference (EDCC), 2019, pp. 1–6.

[11] D. Lübke, O. Zimmermann, C. Pautasso, U. Zdun, and
M. Stocker, “Interface evolution patterns: balancing compatibil-
ity and extensibility across service life cycles,” in Proceedings
of the 24th European Conference on Pattern Languages of
Programs (EuroPLoP), 2019, pp. 1–24.

[12] S. Taherizadeh and V. Stankovski, “Dynamic multi-level auto-
scaling rules for containerized applications,” The Computer
Journal, vol. 62, no. 2, pp. 174–197, 2019.

[13] S. Brown, Software architecture for developers. LeanPub,
2013.

[14] N. Mäkitalo, A. Taivalsaari, A. Kiviluoto, T. Mikkonen, and
R. Capilla, “On opportunistic software reuse,” Computing, vol.
102, no. 11, pp. 2385–2408, 2020.

[15] N. G. Bachiega, P. S. L. de Souza, S. M. Bruschi, and S. d.
R. S. de Souza, “Performance evaluation of container’s shared
volumes,” in 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), 2020,
pp. 114–123.

[16] G. Pardon, C. Pautasso, and O. Zimmermann, “Consistent
disaster recovery for microservices: the BAC theorem,” IEEE
Cloud Computing, vol. 5, no. 1, pp. 49–59, 2018.

[17] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE
Software, vol. 33, no. 3, pp. 35–41, 2016.

[18] L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s
perspective. Addison-Wesley Professional, 2015.

[19] A. Taivalsaari, T. Mikkonen, C. Pautasso, and K. Systä, “Full
stack is not what it used to be,” in Proc. of the 21st International
Conference on Web Engineering (ICWE 2021), ser. LNCS,
M. Brambilla, R. Chbeir, F. Frasincar, and I. Manolescu, Eds.
Springer, 2021, pp. 363–371.

[20] I. M. A. Jawarneh, P. Bellavista, F. Bosi, L. Foschini, G. Mar-
tuscelli, R. Montanari, and A. Palopoli, “Container orchestration
engines: A thorough functional and performance comparison,”
in Proc. of the 2019 IEEE International Conference on Com-
munications (ICC), 2019, pp. 1–6.

[21] S. Shirinbab, L. Lundberg, and E. Casalicchio, “Performance
evaluation of container and virtual machine running cassandra
workload,” in 2017 3rd International Conference of Cloud
Computing Technologies and Applications (CloudTech), 2017,
pp. 1–8.

[22] D. Beserra, E. D. Moreno, P. T. Endo, and J. Barreto, “Per-
formance evaluation of a lightweight virtualization solution for
hpc i/o scenarios,” in 2016 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2016, pp. 004 681–
004 686.

[23] A. Kovács, “Comparison of different Linux containers,” in
2017 40th International Conference on Telecommunications and
Signal Processing (TSP), 2017, pp. 47–51.

[24] X. Wang, J. Du, and H. Liu, “Performance and isolation
analysis of runc, gvisor and kata containers runtimes,” Cluster
Computing, pp. 1–17, 2022.

[25] A. Martin, S. Raponi, T. Combe, and R. Di Pietro, “Docker
ecosystem–vulnerability analysis,” Computer Communications,
vol. 122, pp. 30–43, 2018.

[26] V. Mittal, L.-H. Hung, J. Keswani, D. Kristiyanto, S. B. Lee, and
K. Y. Yeung, “GUIdock-VNC: using a graphical desktop sharing
system to provide a browser-based interface for containerized
software,” GigaScience, vol. 6, no. 4, 02 2017, giw013.
[Online]. Available: https://doi.org/10.1093/gigascience/giw013

