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ABSTRACT

Wang, Xiaoshuang
EEG-Based Detection and Prediction of Epileptic Seizures Using One-Dimensional
Convolutional Neural Networks
Jyväskylä: University of Jyväskylä, 2022, 65 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 584)
ISBN 978-951-39-9249-1 (PDF)

Seizure detection and prediction using electroencephalogram (EEG) signals is
still challenging. The accurate detection and prediction of seizures will improve
the quality of life and reduce the suffering for people with epilepsy. In this work,
deep learning (DL) related techniques are applied. Through the analysis of DL re-
lated techniques combined with EEG signals, this dissertation aims to explore the
efficient seizure detection and prediction methods or algorithms. Considering the
one-dimensional characteristics of EEG signals (time series), our work mainly fo-
cuses on the application of one-dimensional convolutional neural networks (1D-
CNN) for seizure detection and prediction. Moreover, since the combination of
channel selection and 1D-CNN is less studied in seizure prediction, the methods
of channel selection strategy combined with 1D-CNN are also proposed for the
analysis of seizure prediction.

In the first article, we analyzed a short-term EEG dataset for seizure detec-
tion. This work simultaneously used 1D-CNN and two-dimensional convolu-
tional neural networks (2D-CNN) to test the short-term Bonn EEG dataset and
achieved remarkable results. In the second article, we further studied the seizure
detection by using two long-term EEG datasets, the CHB-MIT sEEG and the
SWEC-ETHZ iEEG datasets. In this work, a stacked 1D-CNN model was applied
to test these two different datasets. In the third article, our goal was to study the
seizure prediction using EEG signals. Therefore, based on the long-term Freiburg
iEEG dataset, we proposed a novel method of 1D-CNN combined with channel
selection strategy for seizure prediction. Since the third article only considered
9 channel cases (total 63 channel cases) for the best channel case selection, the
fourth article further discussed channel selection strategy based on all channel
cases for seizure prediction. In the fifth article, a novel method of channel incre-
ment strategy-based 1D-CNN was proposed for seizure prediction based on the
same iEEG dataset.

In conclusion, our work successfully applied CNNs in the short- and long-
term sEEG and iEEG signals for the analysis of seizure detection and predic-
tion, and the methods of channel selection strategy combined with 1D-CNN also
showed remarkable performances in seizure prediction.

Keywords: Epilepsy, electroencephalogram (EEG), seizure detection, seizure predic-
tion, one-dimensional convolutional neural networks (1D-CNN).



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Wang, Xiaoshuang
EEG-pohjainen epileptisten kohtausten havaitseminen ja ennustaminen käyttä-
mällä yksiulotteisia konvoluutiohermoverkkoja
Jyväskylä: University of Jyväskylä, 2022, 65 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 584)
ISBN 978-951-39-9249-1 (PDF)

Aivosähkökäyrään (engl. electroencephalography, EEG) perustuva epileptisten
kohtausten havaitseminen ja ennustaminen on haastavaa. Täsmällisemmällä koh-
tausten havainnoinnilla voidaan parantaa epilepsiaa sairastavien elämänlaatua ja
vähentää epileptisten kohtausten haittoja. Viime aikoina tekoälyn piirissä on saa-
tu ensiluokkaisia tuloksia eri sovelluksissa, esimerkiksi kuvantunnistus- ja kone-
näkötehtävissä, käyttämällä niin kutsuttuja syväoppimismenetelmiä. Myös täs-
sä väitöskirjassa sovellettiin ja kehitettiin syväoppimismenetelmiä, joiden avul-
la EEG-aineistoista pystyttiin luotettavasti havaitsemaan epileptisiä kohtauksia.
Koska aivosähkökäyrät itsessään ovat yksiulotteisia aikasarjoja, paneuduttiin täs-
sä työssä erityisesti niin kutsuttujen yksiulotteisten konvoluutioneuroverkkojen
käyttöön. Lisäksi huomiota kiinnitettiin menetelmiin, joiden avulla eri mittauska-
navilta saatavia aikasarjoja pystyttiin valitsemaan ja hyödyntämään epileptisten
kohtausten paremman ennustustarkkuuden saavuttamiseksi.

Konvoluutioneuroverkkoja käytettäessä EEG-aineiston mallinnus aloitetaan
valitsemalla verkon rakenne. Tässä työssä rajoituttiin hyödyntämään päälaen ja
kallonsisäisäisiä EEG-mittauksia, joiden kestoajat vaihtelivat kymmenistä sekun-
neista aina satoihin tunteihin. Näiden avulla määriteltyjen konvoluutioverkko-
jen toimintaa verrattiin aikaisemmassa tutkimuksessa esitettyihin tuloksiin. Joh-
topäätös oli, että väitöskirjan sisältämissä artikkeleissa esitettyjen menetelmien
tarkkuus oli huomattavasti parempi kuin aikaisemmassa tutkimuksessa. Samoin
aktiivisten mittauskanavien lukumäärää pystyttiin vähentämään merkittävästi.
Kaiken kaikkiaan väitöskirja osoittaa, että konvoluutioneuroverkot soveltuvat se-
kä lyhyiden että pitkien EEG-aikasarjojen analysointiin ja epileptisten kohtausten
havaitsemiseen. Yhdistettynä parhaiden mittauskanavien valintaan saadaan ai-
kaiseksi syväoppimismenetelmiä, joiden ennustustarkkuus ja luotettavuus ovat
erinomaisella tasolla.

Avainsanat: Epilepsia, elektroenkefalogrammi (EEG), kohtausten havaitseminen,
kohtausten ennustaminen, yksiulotteiset konvoluutiohermoverkot (1D-
CNN)
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1 INTRODUCTION

1.1 Epilepsy and electroencephalogram (EEG)

Epilepsy is one of the most common brain diseases and affects people at any age.
Approximately 70 million people worldwide suffer from epilepsy, and nearly
70% of them can be free from seizures if properly diagnosed and treated (Kuhlmann
et al., 2018b; Elger and Hoppe, 2018). Epilepsy is characterized by recurrent
seizures, which can result in physical convulsions, loss of consciousness, injury,
death, etc. (Acharya et al., 2018a; Ridsdale et al., 2011). Therefore, epilepsy seri-
ously reduces the quality of life and affects both physical and mental health for
people with epilepsy.

Epileptic seizures originate from abnormal synchronous discharges of brain
cells. The excessive electrical discharges can lead to the dysfunction of brain ac-
tivities and the onset of seizures. For people with epilepsy, electroencephalogram
(EEG) is a significant tool in the diagnosis of epilepsy because EEG signals can
record and reflect the electrical activities of bran neurons (Pillai and Sperling,
2006; Faust et al., 2015). EEG can be recorded from the scalp and intracranial
of the brain, namely, scalp electroencephalogram (sEEG) and intracranial elec-
troencephalogram (iEEG). Normally, iEEG signals have higher signal-to-noise ra-
tio (SNR) (Baldassano et al., 2017). EEG signals generally contain five principal
frequency bands: delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-13 Hz), beta (β,
13-30 Hz) and gamma (γ, 30+ Hz) (Ergenoglu et al., 2004; Groppe et al., 2013).

During EEG acquisition from epileptic patients, EEG signals are commonly
recorded through multiple channels. Each channel corresponds to a different
brain zone and records different electrical activities of the brain. EEG signals
of each channel are also changing over time, such as, changes in amplitude and
frequency. Consequently, in the diagnosis of epilepsy, EEG has been widely used
to find epileptic focuses (Michel et al., 2004; Mégevand and Seeck, 2018), evalu-
ate therapeutic effects after treatment (Noachtar and Rémi, 2009), and detect or
predict seizures (Alotaiby et al., 2014; Ramgopal et al., 2014; Siddiqui et al., 2020;
Shoeibi et al., 2021).



1.2 EEG-based seizure detection and prediction

The visual assessment of EEG signals is an essential means in clinical epilepsy di-
agnosis. After collecting a period of epileptic EEG recordings, neurologists com-
monly try to find some abnormal electrical activities, such as seizures, epilepti-
form discharges, etc., by studying EEG. However, the manual seizure detection
by visual assessment is a time-consuming and labor-intensive task and leads to a
reduction in work efficiency. Thus, based on EEG signals, the exploration of au-
tomated seizure detection is significant and meaningful. This is because a timely
and accurate seizure detection can help neurologists quickly locate the onset of
seizures, and this can be regarded as an auxiliary means to support the diagnosis
of epilepsy. Since the automated detection of seizures can enable people to take
interventions in time, it can also reduce the suffering and improve the quality of
life for epileptic patients.

As shown in Fig. 1, epileptic EEG signals can be divided into four phases:
interictal (between seizures), preictal (a period of time before a seizure, between
interictal and ictal phases), ictal (during a seizure) and postictal (after a seizure)
(Fisher et al., 2014; Assi et al., 2017). EEG-based seizure detection is to detect the oc-
currence of seizures during the recording of EEG signals, and distinguish the ictal
phase from the other three phases (interictal, preictal and postictal phases can be
seen as one phase in seizure detection). During recording EEG signals, a seizure
commonly lasts from tens of seconds to several minutes among epileptic patients.
Therefore, in long-term (several hours or days) epileptic EEG recordings, the du-
ration of ictal phase is much shorter than that of the other three phases, and this
results in a problem of sample imbalance. For solving the problem of sample
imbalance in the analysis of seizure detection, appropriate data augmentation or
down sampling methods should be considered according to the actual situation
of EEG data (Lashgari et al., 2020).

EEG

Time

SPH SOP
Alarm

PreictalInterictal Ictal Postictal

FIGURE 1 Four phases of the epileptic EEG signals: interictal, preictal, ictal and postic-
tal, and definition of an accurate seizure prediction. When an alarm rings, a
seizure should occur after SPH and within SOP (Winterhalder et al., 2003).

Compared to seizure detection, a further exploration is focused on seizure
prediction. About 30% of epileptic patients are intractable to anti-epileptic drugs
(Kwan et al., 2011; Kuhlmann et al., 2018b). For people with drug-resistant epilepsy,
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the prediction of seizures may provide them with more treatment options. This
is because it can give people a time frame for taking interventions to suppress the
onset of seizures. Consequently, the study of seizure prediction has its unique
significance and is also more challenging.

EEG-based seizure prediction is an analysis about the classification of interic-
tal and preictal phases. In seizure prediction, a period of time before the onset of
seizures is regarded as the preictal phase (as shown in Fig. 1), and the length of
preictal phase needs to be determined. Before determining the length of preictal
phase, two basic concepts, namely seizure prediction horizon (SPH) and seizure
occurrence period (SOP), need to be explained. As shown in Fig. 1, SOP is de-
fined as the period during which a seizure is expected to occur. SPH is the period
from a prediction to the beginning of SOP (Winterhalder et al., 2003). For exam-
ple, when we make SOP = 30 min and SPH = 5 min, the duration of preictal phase
is therefore 35 min. Hence, in the analysis of seizure prediction, the durations of
SOP and SPH should be informed, and the determination of SOP and SPH dura-
tions can refer to the previous studies. Similar to seizure detection, the problem
of sample imbalance also exists and needs to be solved in the analysis of seizure
prediction.

1.3 EEG-based methodology for seizure detection and prediction

Fig. 2 shows a diagram of EEG-based methodology for seizure detection and pre-
diction. In conventional machine learning (ML) methods, the analysis process of
EEG signals for seizure detection and prediction commonly includes four steps:
(1) preprocessing, (2) feature extraction (and selection), (3) model construction
and training, and (4) classification for system evaluation (as shown in Fig. 2).
The second and third steps are normally regarded as one step in deep learning
(DL).

EEG

Feature Extraction & Selection

Preprocessing

Model Construction

& Training

Model Construction & Training

Reduce 

Dimensions

Time domain

Frequency domain

Time-frequency domain

Entropy

…

SVM, RF, KNN, …

& K-fold, …

CNN, LSTM, … & K-fold, …

(Automated Feature Extraction & Classification)

System 

Evaluation

System 

Evaluation

(optional)

Remove noise

Remove artifacts

…

Conventional ML Approach 

DL Approach 

FIGURE 2 Diagram of the EEG-based methodology for seizure detection and predic-
tion.
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First, according to the actual situation of EEG data and the actual needs
of analysis, we should preprocess EEG signals accordingly. For example, to im-
prove the SNR of EEG signals, the filtering of EEG signals can be performed in a
certain frequency range (Cong et al., 2015). To remove eye movement and blink
artifacts in EEG signals, the algorithm of independent component analysis (ICA)
can be used (Mennes et al., 2010; Cong et al., 2015). To solve the problem of sam-
ple imbalance, data augmentation (sliding windows with overlap, etc.) or down
sampling (random selection, etc.) approaches can be applied (Wang et al., 2020,
2021). In sum, the aim of preprocessing is to make EEG signals more suitable for
subsequent analysis, and a proper preprocessing may also improve the perfor-
mances of the proposed methods.

After preprocessing, the second step is about the feature extraction and se-
lection of EEG signals. EEG-based features are commonly extracted from the
following aspects: time domain, frequency or time-frequency domain, entropy
and complexity, etc. In time domain, minimum, maximum, mean, median, stan-
dard deviation, skewness, kurtosis and other temporal statistics can be calculated
(Boonyakitanont et al., 2020). In frequency or time-frequency domain, short-time
Fourier transform (STFT) (Bandarabadi et al., 2015), discrete wavelet transform
(DWT) (Alickovic et al., 2018) or other transform methods (Tzallas et al., 2009)
can be first used to transform EEG signals into frequency or time-frequency do-
main representations. Then, about frequency or time-frequency features, such as
absolute spectral power of sub-bands (δ, θ, α, β), relative spectral power of sub-
bands (δ/all power, θ/all power, etc.), power ratios (δ/θ, δ/α, etc.) and values
calculated from sub-bands of DWT, can be obtained. Next, in entropy and com-
plexity, spectral entropy (Das et al., 2018), wavelet entropy (Kumar et al., 2010),
sample entropy (Kumar et al., 2010; Song et al., 2012), approximate entropy (Ku-
mar et al., 2014), LZ-complexity (Hu et al., 2006), etc., can be achieved. Through
feature extraction, the obtained samples composed of feature vectors are used to
train and test models. If necessary, after feature extraction, the analysis of feature
selection can be performed for improving classification results. In conventional
ML methods, the process of feature extraction is significant because this is di-
rectly related to the training and testing of models. In DL methods, the process
of feature extraction can be skipped since DL models can automatically extract
features by the self-learning.

Next step comes to model construction and training. According to the prac-
tical analysis, one or more models can be constructed for classification or the
comparison of classification results. In conventional ML methods, Support Vector
Machine (SVM) (Alickovic et al., 2018; Cho et al., 2016; Zarei and Asl, 2021), Ran-
dom Forest (RF) (Wang et al., 2019), K-Nearest Neighbor (KNN) (Xue et al., 2020;
Liu et al., 2020), Artificial Neural Networks (ANN) (Qaisar and Hussain, 2021),
Decision Tree (DT) (Albaqami et al., 2021), Bayesian (Ozdemir and Yildirim, 2014;
Yuan et al., 2018), Extreme Learning Machine (ELM) (Kärkkäinen, 2019; Hämäläin
et al., 2020), etc., can be used as classifiers. In DL methods, Convolutional Neural
Networks (CNN) (Wang et al., 2021; Acharya et al., 2018b; Truong et al., 2018;
Hussein et al., 2021), Long-Short Term Memory (LSTM) (Hussein et al., 2019;
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Tsiouris et al., 2018; Liu and Richardson, 2021), Recurrent Neural Networks (RNN)
(Borhade and Nagmode, 2020), etc., can be used for classification. Then, model
training is performed, and the training strategy of K-fold cross validation (K-CV)
is generally carried out. For the methods of threshold analsis, time series analysis-
based threshold models can be used (Tong, 2011). In studies using threshold anal-
ysis for seizure detection and prediction, linear or non-linear features are first ex-
tracted, and then a proper threshold is set according to the trend of these features
over time.

The final step is about system evaluation. Classification results need to be
evaluated to show the performances of the proposed methods. Two evaluation
levels, the segment-based level and the event-based level, can be given. At the
segment-based level, it is from the perspective of the correct number of sample
classification. The metrics, such as sensitivity, specificity and accuracy, can be
calculated. The formulas of these three metrics are given as follows:

Sensitivity =
TP

TP + FN
,

Speci f icity =
TN

FP + TN
,

Accuracy =
TP + TN

TP + FP + FN + TN
,

where TP, FP, TN and TN indicate true positive, false positive, false negative and
true negative, respectively. Other parameters, such as algorithm running time,
model complexity, area under curve (AUC), etc., can also be used to evaluate
the performances of proposed methods in the analysis of seizure detection and
prediction.

A correct detection

Seizure onset

A false detection

Latency

Detection labels  …  0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0  …

Time

EEG

FIGURE 3 Evaluation of seizure detection at the event-based level. Example of a false
detection, a true detection and its latency for the evaluation of seizure detec-
tion at the event-based level.

As shown in Fig. 3, at the even-based level, it is from the perspective of
detecting or predicting an event (or a seizure). The metrics, such as event-based
sensitivity, false detection rate (FDR) and latency, can be given. The formulas of
even-based sensitivity and FDR are showed as follows:

Sensitivity =
number o f true detections

number o f all seizures
,
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FDR =
number o f f alse detections

hours o f interictal EEG
.

Latency is the time duration from the onset of a seizure to its detection (as shown
in Fig. 3).

1.4 Convolutional neural networks (CNN)

Recently, DL has shown powerful performances in pattern recognition and has
been widely applied in many research fields, such as, image recognition (Pak
and Kim, 2017; Ohri and Kumar, 2021; Li, 2022), computer vision (Voulodimos
et al., 2018; Chai et al., 2021), auxiliary diagnosis of diseases (Bakator and Ra-
dosav, 2018; Latif et al., 2019; Aggarwal et al., 2021), etc. CNN and RNN are two
main DL techniques. In this work, we focus on the use of CNN for the study of
seizure detection and prediction. Thus, this section briefly introduces the basic
information of CNN.

A CNN model is illustrated in Fig. 4. A CNN model mainly consists of con-
volutional layers, pooling layers (or subsampling layers) and fully connected lay-
ers. A convolutional layer contains a certain number of convolution kernels and
processes the inputs through convolution calculations for learning high-level rep-
resentations. The nonlinearization of convolution results are generally processed
simultaneously by activation functions, and the rectified linear activation unit
(ReLU) is commonly used in convolution layers. The outputs of convolutional
layers are usually fed into pooling layers for preserving higher-level representa-
tions. Pooling processes, including maxi-mum pooling, global average pooling,
etc., can be performed if needed. After convolution and pooling processes are
implemented several times, the high-level features are subsequently input into
fully connected layers for the final classification (LeCun et al., 1998; O’Shea and
Nash, 2015).

Input

Convolutions Subsampling SubsamplingConvolutions Full connection

C1 layer       S2 layer     C3 layer     S4 layer    F5 layer     F6 layer
    Output

FIGURE 4 Example of a CNN model consisting of convolutional layers, pooling layers
and fully connected layers.

CNN includes one-dimensional convolutional neural networks (1D-CNN),
two-dimensional convolutional neural networks (2D-CNN) and three-dimensional
convolu-tional neural networks (3D-CNN). According to data modalities, the cor-
responding models are selected for analysis, such as 1D-CNN for sequences, 2D-
CNN for images and 3D-CNN for videos (LeCun et al., 2015). EEG signals are
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1D arrays, and the time-frequency transform of EEG signals provides 2D repre-
sentations. Therefore, 1D-CNN and 2D-CNN are used for the analysis of seizure
detection and prediction in our work.

1.5 Thesis overview

This study aims to probe effective methods or approaches for seizure detection
and prediction through the analysis of DL techniques combined with EEG sig-
nals. The dissertation focuses on using CNN related techniques to analyze short-
and long-term EEG signals. We first study the problem of seizure detection. 1D-
CNN and 2D-CNN are used during the analysis of short- and long-term EEG (in-
cluding sEEG and iEEG) signals for seizure detection. Then, we further study the
problem of seizure prediction, 1D-CNN combined with channel selection strat-
egy is therefore proposed for EEG-based seizure prediction. It is hoped that the
new approaches may provide a reference for the clinical application of seizure
detection and prediction in the future.

The remaining parts of this dissertation are organized as follows. In Chapter
2, we first review several EEG datasets that have widely used in the analysis of
seizure detection and prediction. Then, we summarize the relevant seizure detec-
tion and prediction methods based on these datasets. In Chapter 3, we describe
the aim of this dissertation and the specific aim of each sub-study. In Chapter 4,
each publication, including datasets, methods, results and contributions, is sum-
marized and discussed. In Chapter 5, we conclude the entire work and discuss
the limitations and future directions of our work.
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2 MATERIALS AND RELATED WORK

This chapter first describes four relevant epileptic EEG datasets. The details of
each EEG dataset, including data size, number of patients, number of seizures,
number of channels, etc., are given. Then, based on these EEG datasets, the re-
lated seizure detection and prediction studies are briefly summarized. Given this,
further considerations about EEG-based seizure detection and prediction are dis-
cussed to highlight the novelties or contributions of this dissertation.

2.1 Epileptic EEG datasets

2.1.1 Bonn EEG dataset

The short-term Bonn EEG dataset (Andrzejak et al., 2001) consists of 500 single-
channel EEG segments (200 sEEG and 300 iEEG segments). Each segment is se-
lected from the continuous EEG recordings after visual inspection, and the dura-
tion of each segment is 23.6 seconds. The EEG data are recorded with the sam-
pling rate of 173.61 Hz and the band-pass filtering of 0.53-40 Hz. Two healthy and
three epileptic subjects provide the EEG signals, and the relevant EEG details for
each subject are summarized in Table 1. The Bonn EEG dataset is commonly used
in seizure detection studies.

TABLE 1 Details of the Bonn EEG dataset

Set Situation of subjects Data size EEG Phase
A healthy 100 segments sEEG eyes open
B healthy 100 segments sEEG eyes closed
C epileptic 100 segments iEEG interictal
D epileptic 100 segments iEEG interictal
E epileptic 100 segments iEEG ictal

Data link: http://epilepsy-database.eu/



2.1.2 CHB-MIT sEEG dataset

The long-term CHB-MIT sEEG dataset (Shoeb and Guttag, 2010) is collected from
children with intractable seizures. The pediatric subjects are monitored for sev-
eral days after stopping anti-seizure medication. The sEEG signals are recorded
with a sampling rate of 256 Hz, and these recordings from 23 subjects are grouped
into 24 cases. The first 23 cases contain EEG recordings from 22 subjects, includ-
ing 5 males among 3-22 ages and 17 females among 1.5-19 ages. The 24th case is
from the 23rd subject. Most of the sEEG recordings include 23 channels, and few
of them include 18 or 24 channels. This dataset totally consists of about 977 hours
of sEEG signals and 198 seizures, and details for each subject are given in Table
2. This dataset is usually used in seizure detection and prediction studies.

TABLE 2 Details of the CHB-MIT sEEG dataset.

Case # Channels Hours of sEEG # Seizures
1 23 41 7
2 23 35 3
3 23 38 7
4 23 156 4
5 23 39 5
6 23 67 10
7 23 67 3
8 23 20 5
9 23 68 4
10 23 50 7
11 23 35 3
12 23 21 40
13 18 33 12
14 23 26 8
15 24 39 20
16 18 18 10
17 23 20 3
18 23 35 6
19 23 29 3
20 23 28 8
21 23 33 4
22 23 31 3
23 23 27 7
24 23 21 16
Total – 977 198

Data link: https://archive.physionet.org/physiobank/database/chbmit/
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2.1.3 SWEC-ETHZ iEEG dataset

The long-term SWEC-ETHZ iEEG dataset (Burrello et al., 2019) totally contains
18 subjects, 2656 hours of iEEG and 116 leading seizures. The iEEG signals are
collected at a sampling rate of 512 or 1024 Hz. A band-pass filtering of 0.5-120
Hz is performed during recording iEEG signals. The number of iEEG channels
ranges between 18 and 128. The iEEG details of each subject are summarized in
Table 3. This iEEG dataset, in public from 2019, is mainly used for the analysis of
seizure detection.

TABLE 3 Details of the Long-term SWEC-ETHZ iEEG dataset.

Subject # Channels Sampling rate (Hz) Hours of iEEG # Seizures
1 88 512 294 2
2 66 512 235 2
3 64 512 158 4
4 32 1024 41 14
5 128 512 110 4
6 32 1024 146 8
7 75 512 69 54
8 61 1024 144 4
9 48 1024 41 23
10 32 1024 42 17
11 32 1024 212 2
12 56 1024 191 9
13 64 1024 104 7
14 24 1024 161 2
15 98 512 196 2
16 34 1024 177 5
17 60 1024 130 2
18 42 1024 205 5
Total – – 2656 116

Data link: http://ieeg-swez.ethz.ch

2.1.4 Freiburg iEEG dataset

The long-term Freiburg iEEG dataset (Maiwald et al., 2004) can be used to study
seizure prediction. This dataset includes 21 subjects, 87 seizures, about 509 h of
interictal and 73 h of preictal or ictal iEEG signals. Each subject is monitored using
6 recording electrodes (3 in-focus and 3 out-of-focus electrodes). The sampling
rate of the iEEG data is at 256 Hz. The 0.5-120 Hz band-pass filtering and the 50
notch filtering are performed during recording. The details of this iEEG dataset
are given in Table 4.
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TABLE 4 Details of the Freiburg iEEG dataset

Subject Gender Age Interictal (h) # Seizures
1 f 15 24 4
2 m 38 24 3
3 m 14 24 5
4 f 26 24 5
5 f 16 24 5
6 f 31 24 3
7 f 42 24.6 3
8 f 32 24.2 2
9 m 44 23.9 5
10 m 47 24.5 5
11 f 10 24.1 4
12 f 42 24 4
13 f 22 24 2
14 f 41 23.9 4
15 m 31 24 4
16 f 50 24 5
17 m 28 24.1 5
18 f 25 24.9 5
19 f 28 24.4 4
20 m 33 25.6 5
21 m 13 23.9 5
Total – – 508.1 87

Data link: http://epilepsy.uni-freiburg.de/database

2.1.5 Other epileptic EEG datasets

Several other EEG datasets, such as the American Epilepsy Society Seizure Pre-
diction Dataset (Brinkmann et al., 2016), the Melbourne University AES-MathWorks-
NIH Seizure Prediction Challenge dataset (Kuhlmann et al., 2018a), the TUH EEG
Corpus dataset (Shah et al., 2018), etc., can also be used for the study of seizure
detection and prediction or seizure type classification. Since these datasets are
not used in our work, more details of these datasets are not described in this
dissertation.

2.2 Seizure detection

In this section, the related seizure detection work, based on the Bonn EEG, the
CHB-MIT sEEG and the SWEC-ETHZ iEEG datasets, is briefly summarized.
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2.2.1 Seizure detection using the Bonn EEG dataset

The short-term Bonn EEG dataset is one of the most commonly used EEG datasets
in seizure detection over the past two decades. In related studies, many ML and
DL methods have been applied for seizure detection based on this dataset. An
overview of these studies is given as follows.

First, conventional ML methods, such as SVM, KNN, RF, ANN, etc., were
widely utilized. In studies (Kumar et al., 2014; Fu et al., 2014; Zarei and Asl, 2021;
Anuragi et al., 2021), researchers used the SVM to classify EEG samples in the
form of different features, such as DWT-based fuzzy approximate entropy (Ku-
mar et al., 2014), statistic values (mean, variance, skewness and kurtosis) com-
puted from Hilbert–Huang transform (HHT)-based time-frequency representa-
tions (Fu et al., 2014), fuzzy entropy, approximate entropy, sample entropy, etc.,
calculated from the DWT and orthogonal matching pursuit coefficients (Zarei
and Asl, 2021), and line-length, log-energy-entropy and norm-entropy values
based on the Fourier-Bessel series expansion-based empirical wavelet transform
method (Anuragi et al., 2021). Then, in studies (Chen, 2014; Liu et al., 2020; Xue
et al., 2020), the KNN was used as a classifier. Different EEG features, includ-
ing dual-tree complex wavelet–Fourier features (Chen, 2014), features calculated
from the method of unigram ordinal pattern and bigram ordinal pattern repre-
sentations (Liu et al., 2020), and features based on suing auto-weighted multi-
view discriminative metric learning method (Xue et al., 2020), were extracted
for seizure detection among these studies. For the use of RF, wang et al. first
extracted features by using STFT combined with principal component analysis
(PCA), and then constructed a RF model for classification (Wang et al., 2019).
Moreover, ANN was used in studies (Alam and Bhuiyan, 2013; Qaisar and Hus-
sain, 2021) for seizure detection. In these two studies, higher order statistics
(variance, skewness and kurtosis) in the empirical mode decomposition (EMD)
domain (Alam and Bhuiyan, 2013) and DWT based sub-bands statistics (Qaisar
and Hussain, 2021), were computed for feature extraction, respectively. In sum,
among the above studies, remarkable results (90%-100% accuracy) were finally
achieved, and conventional ML methods showed an excellent performance for
seizure detection based on the analysis of the Bonn EEG dataset.

Second, based on the same dataset, DL methods, including CNN, LSTM,
etc., were also used. In study (Acharya et al., 2018b), a 13-layer deep 1D-CNN
model was constructed to classify normal, interictal and ictal phases, and this
method obtained a sensitivity, specificity, and accuracy of 95.00%, 90.00% and
88.67%, respectively. Study (Ullah et al., 2018) proposed a seizure detection sys-
tem that is an ensemble of pyramidal 1D-CNN models, and this system achieved
an accuracy of 99.1±0.9%. Next, study (Zhang et al., 2020a) presented a multi-
scale non-local network, mainly consisting of a 1D-CNN with two special layers
(signal pooling layer and multi-scale non-local layer), for seizure detection, and
an accuracy of 94.01-99.93% was attained. Then, study (Sahani et al., 2021) ap-
plied the 1D-CNN and autoencoder techniques for seizure detection, and this
method achieved an accuracy of 95.94-100%. Moreover, Study (Pan et al., 2022)
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used a deep learning network that is a combination of 1D-CNN and 2D-CNN
models for classification, and this approach achieved an accuracy of 99.12%. Dif-
ferent from the above studies using CNN methods, study (Hussein et al., 2019)
constructed a LSTM model for classification. The proposed method obtained an
accuracy of 100% in seizure detection (Hussein et al., 2019). Among the above
studies, DL methods also attained remarkable results and showed an outstand-
ing performance for the same EEG dataset.

As mentioned above, many ML and DL methods have been successfully
applied in analyzing the short-term Bonn EEG dataset (500 single-channel EEG
segments of 23.6-s duration) for seizure detection. However, in the real world,
EEG signals recorded from epileptic patients usually last from several hours to
several weeks. Therefore, the analysis of long-term and continuous EEG data for
seizure detection may have more practical significance. In the next two subsec-
tions, we summarize the related work about using long-term EEG signals for the
analysis of seizure detection.

2.2.2 Seizure detection using the CHB-MIT sEEG dataset

In the research of seizure detection using long-term EEG signals, the long-term
CHB-MIT sEEG dataset was widely used in the past decade. In this subsection,
studies using the CHB-MIT sEEG dataset for seizure detection are summarized
as follows.

First, based on the CHB-MIT sEEG dataset, the use of conventional ML
methods for seizure detection is briefly summarized. SVM as a leading conven-
tional ML method was applied in studies (Zarei and Asl, 2021; Anuragi et al.,
2021; Li et al., 2021) for seizure detection. Study (Zarei and Asl, 2021) first ex-
tracted some non-linear features (fuzzy entropy, approximate entropy, etc.) and
some statistic features (mean, standard deviation, etc.) from sEEG signals, and
then SVM model was used for classification. This method achieved an aver-
aged accuracy, sensitivity, and specificity of 97.09%, 96.81% and 97.26%, respec-
tively. In study (Anuragi et al., 2021), line-length, log-energy-entropy and norm-
entropy were calculated from sub-band signals (based on the Fourier-Bessel se-
ries expansion-based empirical wavelet transform for obtaining sub-band sig-
nals) as EEG features. Then, the authors applied the relief-F feature ranking
method for feature selection and attained an accuracy of 99.84% using Least Squares
Support Vector Machine (LS-SVM) classifier (Anuragi et al., 2021). Different from
the above two studies only used one SVM for seizure detection, an SVM group
consisting of ten SVMs was utilized in study (Li et al., 2021). The authors used
DWT and EMD for preprocessing, common spatial pattern for dimension reduc-
tion, and the variance as the only feature. The proposed method finally achieved
an accuracy of 97.49% at the segment-based level, and a sensitivity of 98.47% with
the false detection rate (FDR) of 0.63/h at the event-based level (Li et al., 2021).

Alickovic et al. (2018) used four classifiers, including SVM, KNN, Multi-
layer Perceptron (MLP) and RF, for comparison in seizure detection and predic-
tion. In this study, DWT, EMD and wavelet packet decomposition (WPD) were
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utilized for feature extraction, and an accuracy of 100% was obtained. However,
this work specially selected 1000 interictal, 1000 ictal and 1000 preictal 8-s seg-
ments from the CHB-MIT sEEG dataset for the analysis of seizure detection and
prediction, which greatly damaged the integrity of the data (Alickovic et al., 2018)
. Moreover, seven classifiers (SVM, Ensemble, KNN, Linear Discriminant Analy-
sis, Logistic Regression, DT and Naive Bayes) were used simultaneously in study
(Ein Shoka et al., 2021) for seizure detection. This study extracted 11 features
(standard deviation, mean, variance, median, kurtosis, skewness, entropy, mo-
ment, power, maximum and minimum EEG signals) after using the channel se-
lection strategy, and an accuracy of 85% was finally achieved using SVM and
KNN.

Second, a brief summary of DL methods for seizure detection is given as
follows. Study (Hossain et al., 2019) used a 7-layer 2D-CNN to classify time-
channel sEEG maps for seizure detection. With the whole dataset of 23 patients
and the cross-patient validation, the proposed method attained an overall sensi-
tivity, specificity, and accuracy of 90.00%, 91.65% and 98.85%, respectively. Next,
study (Boonyakitanont et al., 2021) applied a deep 1D-CNN model for detect-
ing seizure onset and offset. With the post-processing strategy and the patient-
specific validation, the presented method achieved an averaged accuracy, sensi-
tivity, and specificity of 99.83%, 76.54% and 99.92%, respectively. Then, studies
(Hu et al., 2020; Chakrabarti et al., 2021) utilized LSTM techniques for seizure de-
tection. Study (Hu et al., 2020) combined two independent LSTM networks (Bi-
LSTM) with the opposite propagation directions for classification. An averaged
sensitivity of 93.61% and an averaged specificity of 91.85% were obtained based
on the patient-specific strategy. Study (Chakrabarti et al., 2021) proposed a sim-
ple LSTM model with one LSTM layer and two fully connected (FC) layers for the
analysis of the same dataset, and this method attained a result of 99.9% sensitivity
and 0.003/h FDR under the ten-fold cross validation. Different from the above
studies only used CNN or LSTM model, a hybrid model of 2D-CNN combined
with LSTM was used in study (Liang et al., 2020) for seizure detection. In this
2D-CNN-LSTM model, the 2D-CNN part was responsible for learning the high-
level representations of inputs, and the outputs of 2D-CNN were then fed into
the LSTM part for classification. An overall sensitivity, specificity, and accuracy
of 84.00%, 99.00% and 99.00% were attained under the cross-patient model train-
ing strategy (Liang et al., 2020). Moreover, except LSTM, other Recurrent Neural
Net-work (RNN) related methods were also applied. Study (Yao et al., 2019) pro-
posed a deep independently recurrent neural network (IndRNN) model, with a
dense structure and an attention mechanism, for seizure detection. This model
finally attained a result of 88.80% sensitivity, 88.86% specificity and 88.70% ac-
curacy based on the data of 10 patients (totally 24 patients). In study (Zhang
et al., 2022), the authors used a bidirectional gated recurrent unit (Bi-GRU) neu-
ral network for classification, and this method achieved an averaged sensitivity
of 93.89% and an averaged specificity of 98.49%.

Convolutional autoencoder methods were also used for seizure detection.
Study (Abdelhameed and Bayoumi, 2021) constructed a model of two-dimensional
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deep convolution autoencoder (2D-DCAE) combined with Bi-LSTM for classifi-
cation. With 4-sec sEEG segments as inputs and the ten-fold cross validation
scheme, this method achieved a result of 98.79% accuracy, 98.72% sensitivity and
98.86% specificity (Abdelhameed and Bayoumi, 2021). Then, study (Sahani et al.,
2021) proposed a novel method of reduced deep convolutional stack autoen-
coder combined with improved kernel random vector functional link network
(RDCSAE-IKRVFLN) for seizure detection., and this method obtained 100% sen-
sitivity, 99.96% specificity, 99.96% accuracy and 0.0391/h FDR under the patient-
specific scheme. In addition, Graph Convolution Network (GCN) methods were
also utilized. In study (Zhao et al., 2021), the researchers presented a Linear
Graph Convolution Network (LGCN) model for the analysis of the sEEG dataset,
and the proposed method attained a mean accuracy of 99.30% using the patient-
specific model training strategy. Besides the above DL methods, the seizure
detection comparison of several DL models was also discussed. In study (Liu
and Richardson, 2021), the authors used three DL models (deep neural network
(DNN), 1D-CNN and Bi-LSTM) at the same time for comparison in the analysis of
seizure detection. Three models achieved the sensitivity and FDR of 87.36%/0.169
h−1, 96.70%/0.102 h−1, and 97.61%/0.071 h−1 for DNN, 1D-CNN and Bi-LSTM,
respectively.

In short, based on the long-term CHB-MIT sEEG dataset, EEG-based seizure
detection using ML and DL methods showed a sustained progress, and these
methods will provide a significant reference for the practical application of seizure
detection in the future.

2.2.3 Seizure detection using the SWEC-ETHZ iEEG dataset

Since the long-term SWEC-ETHZ dataset was released online in 2019, there are
few studies using this dataset for the analysis of seizure detection. A brief overview
of the related studies is given as follows.

In study (Burrello et al., 2019), Burrello et al. first used this dataset and
proposed an energy-efficient and fast learning algorithm (named as Laelaps) for
seizure detection. The Laelaps used end-to-end binary operations by exploiting
symbolic dynamics and brain-inspired hyperdimensional computing. The pro-
posed method achieved a mean sensitivity of 85.5% and a mean FDR of 0/h (FDR
was computed only on 20 h of iEEG signals that were randomly selected from
interictal testing set per patient). This study also compared the LapLaps with
other three models, Linear SVM, LSTM and 2D-CNN, and these three models
attained 83.3% sensitivity with 0.31/h FDR, 88.4% sensitivity with 0.54/h, and
76.6% sensitivity with 0.36/h FDR, respectively (Burrello et al., 2019). Then, a
novel two-step feature ranking algorithm combined with channel selection strat-
egy is presented by Razi et al. for the patient-specific seizure detection. The
proposed method achieved a sensitivity, and specificity of 100% and 97.01%, re-
spectively (Razi and Schmid, 2022). However, this study only used 5 patients
from the long-term SWEC-ETHZ iEEG dataset (total 18 patients) for the analysis
of seizure detection.
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Based on the use of DL methods, study (Praveena et al., 2021) presented a
Reconstruction Independent Component Analysis-based Long Short-Term Mem-
ory (RICA-LSTM) model for the analysis of the same dataset. The presented
model obtained an accuracy of 98.92%, sensitivity of 99.01%, specificity of 98.68%.
Then, Sun et al. proposed a novel DL network based on the combination of
CNN and the transformer network for seizure detection. The proposed method
achieved a sensitivity of 92.3%, and specificity of 99.2% at the segment-based
level. At the event-based level, 97.5% sensitivity and 0,06/h FDR were achieved
(Sun et al., 2022). For this iEEG dataset, our work proposed a novel method of
1D-CNN combined with a random selection and data augmentation strategy for
seizure onset detection. More details of this work are given in the study 2 of
Chapter 4 in this dissertation.

2.2.4 Summary of seizure detection studies

In sum, we briefly summarized the related seizure detection work according to
the three EEG datasets (Bonn, CHB-MIT and SWEC-ETHZ). Although these stud-
ies showed remarkable performances in seizure detection, there are still several
considerations that need to be focused and discussed. First, sample imbalance
is a key problem in seizure detection, especially for the long-term EEG record-
ings. This is because a seizure usually lasts for ten of seconds to several minutes,
while the interictal phase commonly takes up most of the time in long-term EEG
recordings. Hence, in seizure detection, proper solutions can be taken to resolve
the problem of sample imbalance during the analysis of long-term EEG record-
ings. Second, classification results can be evaluated at the segment-based level
(sensitivity, specificity and accuracy) and the even-based level (event-based sen-
sitivity and FDR) simultaneously, rather than commonly at one level. By this way,
the evaluation of the proposed methods can be more comprehensive.

2.3 Seizure prediction

In this section, the related seizure prediction work using the Freiburg iEEG and
the CHB-MIT sEEG datasets is briefly summarized.

2.3.1 Seizure prediction using the Freiburg iEEG dataset

Over the past two decades, the long-term Freiburg iEEG dataset was one of the
most commonly used EEG datasets in seizure prediction studies. Many iEEG-
based seizure prediction methods have been used to analyze this dataset, and
these methods mainly includes threshold crossing analysis, conventional ML,
and DL. An overview of these methods is given as follows.

First, time series analysis-based threshold methods can be used (Tong, 2011).
In studies using the threshold crossing analysis, linear or non-linear iEEG fea-
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tures were first extracted. Then, according to the changing trend of these features
over time, a proper threshold was set to give an alarm. Based on the Freiburg
iEEG dataset, the extracted linear or non-linear iEEG features, such as dynamical
similarity index (Maiwald et al., 2004), phase coherence or synchronization (Win-
terhalder et al., 2006; Zheng et al., 2014), spike rate (Li et al., 2013), multiresolution
N-gram (Eftekhar et al., 2014), correlation dimension (Aarabi and He, 2017) and
fractal dimensions and intercept values (Zhang et al., 2020b), were combined with
the threshold crossing analysis to predict seizures, and a sensitivity of 42-92.9%
and a false prediction rate (FPR) of 0.04-1/h were attained among these studies.

Second, conventional ML methods, such as SVM and Bayes, were used for
seizure prediction based on the same iEEG dataset. In studies (Park et al., 2011;
Williamson et al., 2012; Ghaderyan et al., 2014; Wang and Lyu, 2014; Zhang and
Parhi, 2015; Parvez and Paul, 2016; Sharif and Jafari, 2017), the SVM was used as
a classifier. Different iEEG features, such as spectral power from nine frequency
bands (Park et al., 2011), correlation patterns both within and across channels
(Williamson et al., 2012), univariate linear features in eight frequency sub-bands
(Ghaderyan et al., 2014), amplitude and frequency modulation features (Wang
and Lyu, 2014), power spectral density and ratio of the spectral power (Zhang and
Parhi, 2015), fuzzy rules on Poincaré plane (Parvez and Paul, 2016) and fractal
dimensions and intercept values (Sharif and Jafari, 2017), were extracted among
these studies. Then, Bayes related methods were used in studies (Ozdemir and
Yildirim, 2014; Yuan et al., 2018) for seizure prediction. In these two studies,
HHT based iEEG features (Ozdemir and Yildirim, 2014) and iEEG featues from
diffusion distance (Yuan et al., 2018) were extracted, respectively. With the above
conventional ML methods, these studies achieved a sensitivity of 85.11-100% and
a FPR of 0.03-0.36/h.

Third, recently, DL-based methods, including CNN, Generative Adversarial
Networks (GAN), were also used for seizure prediction. In study (Truong et al.,
2018), a 2D-CNN model with three convolutional layers was first used on the
Freiburg iEEG dataset for seizure prediction. In this study, 30-sec iEEG segments
were transformed by STFT to attain time-frequency maps, and these maps were
fed into the 2D-CNN model for training and testing. With the analysis of 13
patients, the proposed method achieved an overall sensitivity and FPR of 81.4%
and 0.06/h, respectively. Then, study (Wang et al., 2020) also used a 2D-CNN
model with three convolutional layers for classification. Different from the study
(Truong et al., 2018) using STFT to obtain maps, the Directed Transfer Function
(DTF) was used on 10-sec segments to generate channel-frequency maps as the
inputs of 2D-CNN model. With the analysis of 19 patients, the presented method
attained an averaged sensitivity and FPR of 90.8% and 0.08/h, respectively (Wang
et al., 2020). Moreover, study (Truong et al., 2019) used a GAN-based DL method
for seizure prediction and attained the AUC of 75.35%.

As mentioned above, many iEEG-based data mining techniques have been
used on the Freiburg iEEG dataset for the analysis of seizure prediction and
achieved remarkable results. However, about using DL methods to analyze the
Freiburg iEEG dataset for seizure prediction, only 2D-CNN and GAN methods
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were utilized. Other DL methods, such as LSTM and 1D-CNN methods, were
not applied in this dataset. Therefore, in this thesis, 1D-CNN related methods are
used for seizure prediction, and the comparison of the proposed methods and
the previous studies are also discussed based on the Freiburg iEEG dataset. More
details of the related work are summarized in Chapter 3.

2.3.2 Seizure prediction using the CHB-MIT sEEG dataset

The CHB-MIT sEEG dataset was also widely utilized for seizure prediction in
recent years. sEEG-based methods, including conventional ML and DL methods,
were used to analyze this sEEG dataset for seizure prediction.

In studies with conventional ML methods, SVM (Zhang and Parhi, 2015;
Usman et al., 2017; Cho et al., 2016; Alickovic et al., 2018), Bayes (Behnam and
Pourghassem, 2016), Backpropagation Neural Network (BPNN) (Fei et al., 2017)
and MLP (Büyükçakır et al., 2020) were applied, and these studies attained an ac-
curacy of 83.17-99.70% in seizure prediction. Then, in studies using DL methods
for seizure prediction, 2D-CNN (Truong et al., 2018; Cao et al., 2019; Gao et al.,
2020; Hussein et al., 2021), 3D-CNN (Ozcan and Erturk, 2019; Prathaban and Bal-
asubramanian, 2021), LSTM (Tsiouris et al., 2018; Ryu and Joe, 2021), Deep Recur-
rent Neural Networks (DRNN) (Borhade and Nagmode, 2020) and Deep Convo-
lutional Generative Adversarial Networks (GCGAN) (Rasheed et al., 2021) were
used for classification. A sensitivity of 81.2-100%, accuracy of 92.50-99.72%, and
specificity of 93.65-99.60% were attained among these studies. Moreover, study
(Liu and Richardson, 2021) used three DL models (DNN, 1D-CNN and Bi-LSTM)
simultaneously for comparison in the analysis of seizure prediction, while study
(Usman et al., 2021) used an ensemble classifier consisting of three models (2D-
CNN, LSTM and SVM) for seizure prediction. In short, many sEEG-based ML
and DL methods were applied in the CHB-MIT sEEG dataset for seizure predic-
tion and showed remarkable performances. Since the CHB-MIT sEEG dataset is
not used for seizure prediction in this dissertation, a more detailed summary is
not given here.

2.3.3 Summary of seizure prediction studies

In sum, many ML and DL methods have been used on the above two EEG dataset
for seizure prediction and will provide an important reference value for the prac-
tical application of seizure prediction in the future work. However, we still need
to pay attention to the following considerations. One consideration is that many
previous studies commonly used EEG signals of all channels for seizure predic-
tion, and the combination of EEG channel selection and DL methods is less stud-
ied. EEG signals are complicated both in spatial and time domains. Feature se-
lection in the spatial domain (i.e., channel selection) can be further researched in
this field, especially in the combination with DL methods. Thus, whether EEG
channel selection is benefit to seizure prediction have not been well studied yet.
Second, sample imbalance is also a key problem in seizure prediction. A proper
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solution, such as down sampling, data augmentation or recording continuous
EEG signals with more seizures, is needed. Third, seizure prediction results can
also be evaluated at two levels (segment-based and even-based levels) simultane-
ously, rather than commonly at one level. Acording to the above considerations,
this dissertation combines 1D-CNN methods with channel selection strategy in
seizure prediction, and more details of the related work are given in Chapter 4.
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3 AIM OF THIS DISSERTATION

This dissertation aims to use CNN related techniques on epileptic EEG signals for
seizure detection and prediction. Hence, CNN techniques are applied to analyze
several commonly used EEG datasets for exploring effective seizure detection
and prediction approaches. In addition, for the problem of sample imbalance
and the less study of EEG channel selection combined with CNN, corresponding
strategies are also proposed to cooperate with CNN methods during the analysis
of EEG signals. The specific aim of each sub-study is given as follows.

1. The use of short-term EEG signals for seizure detection. This study applies
1D-CNN and 2D-CNN simultaneously in the short-term Bonn EEG dataset
for seizure detection. (Article I)

2. The use of long-term sEEG and iEEG signals for seizure onset detection.
This study presents a novel seizure onset detection method of 1D-CNN
combined with a random selection and data augmentation (RS-DA) strat-
egy for the analysis of the long-term CHB-MIT sEEG and SWEC-ETHZ
iEEG datasets. (Article II)

3. The use of long-term iEEG signals for seizure prediction. This study pro-
poses a novel seizure prediction method of 1D-CNN combined with chan-
nel selection strategy for the analysis of the long-term Freiburg iEEG dataset.
(Article III)

4. The further analysis of channel selection strategy in seizure prediction. Since
the Article III selects the best channel case for each patient only from 9 chan-
nel cases (total 63 channel cases), this study further discusses all channel
cases for seizure prediction based on the same iEEG dataset. (Article IV)

5. The further use of channel selection strategy on long-term iEEG signals for
seizure prediction. This study proposes a channel increment strategy-based
1D-CNN method for seizure prediction using the Freiburg iEEG dataset.
In addition, two model training strategies are performed for comparison.
(Article V)



4 SUMMARY OF STUDIES

This chapter gives a brief summary of each study, including objective, method,
result and discussion. The author contributions for each study are also presented.

4.1 Article I: One and Two Dimensional Convolutional Neural Net-
works for Seizure Detection Using EEG Signals

Article I: Xiaoshuang Wang, Tapani Ristaniemi & Fengyu Cong (2021, January).
One and Two Dimensional Convolutional Neural Networks for Seizure Detection
Using EEG Signals. In 2020 28th European Signal Processing Conference (EUSIPCO
2020) (pp. 1387-1391). IEEE.

Objective

CNN, as a leading DL method, has showed remarkable performances in image
recognition, etc. The use of EEG-based CNN methods for seizure detection has
attracted an increasing attention in recent years. Thus, in this work, 1D-CNN
and 2D-CNN were simultaneously used on the short-term EEG signals for the
analysis of seizure detection.

Methods

The short-term Bonn EEG dataset (mentioned in subsection 2.1.1) was utilized
in this work. First, 1-sec and 2-sec EEG segments were generated by using 1-
sec and 2-sec sliding windows to segment raw EEG signals, respectively. Next,
continuous wavelet transform (CWT) was used on the EEG segments to obtain
time-frequency representations. Then, EEG segments were fed into a 1D-CNN
model with three convolutional layers for model training and testing, while the
obtained time-frequency maps were fed into a 2D-CNN model with also three
convolutional layers 2D-CNN model for model training and testing (as shown in



Fig. 5). We studied the two-classification and the three-classification situations.
In the two-classification situation, three conditions, including set A (normal) vs.
set E (interictal), set C (interictal) vs. set E (ictal) and set A (normal) vs. set C
(interictal), were discussed. In the three-classification situation, two conditions,
including set A (normal) vs. set C (interictal) vs. set E (ictal) and sets AB (normal)
vs. sets CD (interictal) vs. set E (ictal), were discussed. About model training, the
ten-fold cross validation strategy was performed.
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FIGURE 5 Diagram of the used 1D-CNN and 2D-CNN models in seizure detection un-
der the preprocessing condition of 1-sec sliding windows. Abbr: convolu-
tional layers, C1, C2 and C3; Max-pooling layers, MP; Fully connected lay-
ers, FC; k, number and size of kernels; s, stride.

Results

In the two-classification situation: (1) Results of set A vs. set E, the 2D-CNN
model with the preprocessing of 1-sec sliding windows and the 1D-CNN model
with the preprocessing of 2-sec sliding windows achieved a same highest accu-
racy of 99.92%. (2) Results of set C vs. set E, the 2D-CNN model with the pre-
processing of 2-sec sliding windows attained a highest accuracy of 99.28%. (3)
Results of set A vs. set C, the 1D-CNN model with the preprocessing of 2-sec
sliding windows obtained a highest accuracy of 97.47%.

In the three-classification situation: (1) Results of set A vs. set C vs. set E,
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the 2D-CNN model with the preprocessing of 2-sec sliding windows achieved an
overall highest result of 99.55%% accuracy, 99.16% sensitivity and 99.75% speci-
ficity. (3) Results of sets AB vs. sets CD vs. set E, the 1D-CNN model with
the preprocessing of 2-sec sliding windows obtained an overall highest result of
99.41% accuracy, 97.80% sensitivity and 99.81% specificity.

Discussion

In this study, we applied 1D-CNN and 2D-CNN models simultaneously for seizure
detection, and both models achieved remarkable results based on the short-term
Bonn EEG dataset. In the two-classification and the three-classification situations,
the highest accuracy can reach at 99.92% and 99.55%, respectively. This showed
that our work was effective for the classification of EEG signals in seizure detec-
tion.

Author contributions

Xiaoshuang Wang presented the methods, performed the data analysis and wrote
the manuscript. Tapani Ristaniemi and Fengyu Cong supervised the study and
revised the manuscript.

4.2 Article II: One Dimensional Convolutional Neural Networks
for Seizure Onset Detection Using Long-term Scalp and In-
tracranial EEG

Article II: Xiaoshuang Wang, Xiulin Wang, Wenya Liu, Zheng Chang, Tommi
Kärkkäinen & Fengyu Cong (2021). One dimensional convolutional neural net-
works for seizure onset detection using long-term scalp and intracranial EEG.
Neurocomputing, 459, 212-222.

Objective

The first study only used a short-term EEG dataset for the analysis of seizure
detection. However, the use of long-term EEG signals may have more practical
significance. This is because EEG recordings of epileptic patients always last from
several hours to several days in the real world. Therefore, this study analyzed
two long-term EEG datasets (one sEEG and one iEEG) and applied CNN related
techniques for seizure detection based on these two datasets.

Methods

Two long-term EEG datasets, the CHB-MIT sEEG and the SWEC-ETHZ iEEG
(mentioned in subsections 2.1.2 and 2.1.3), were utilized for seizure onset detec-
tion in this work. First, 2-sec sliding windows were used to segment raw EEG

37



Features Concatenation

Block 1 Block 2

GAP

256

128

2

Labels    0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0  …

Alarm, L = ?

Postprocessing

512 (2-sec)

n (channels)EEG

FC

FC

Conv (32@n× 3, =2)

BN

MP ( =3, =1)

BN

Conv (128@3, =1)

MP ( =3, =1)

BN

Conv (64@3, =2)

MP ( =3, =1)

Conv (32@n× 5, =2)

BN

MP ( =3, =1)

BN

Conv (128@3, =1)

MP ( =3, =1)

BN

Conv (64@5, =2)

MP ( =3, =1)

…Training TrainingTraining Training

… Testing

1 2 3 K-1 K

Random selection

…Training TrainingTraining Training

1 2 3 K-1 K

… Testing

Data augmentation

…Training TrainingTraining Training

…Testing

1 2 3 K-1 K

Random selection

…Training TrainingTraining Training

1 2 3 K-1 K

…Testing

Data augmentation

Round 1

Interictal

Ictal

Interictal

Ictal

Round K

…

(A) (B)

FIGURE 6 Proposed 1D-CNN model and model training strategy for seizure predic-
tion. (A) A stacked 1D-CNN model with two convolutional blocks and two
fully connected layers was used for seizure detection. L is the number of
consecutive detection labels for an alarm at the event-based level (L=3 was
finally set in this work). (B) Event-based K-fold cross validation combined
with a RS-DA strategy was performed during model training.

signals. Then, 2-sec EEG segments as the input signals were fed into a stacked 1D-
CNN model (as shown in Fig. 6(A)) for model training and testing. In this work,
sample imbalance (interictal » ictal) is a key problem and needs to be resolved.
Hence, a RS-DA strategy combined with event-based K-fold cross validation (K
is the number of seizures per patient) was performed during model training (as
shown in Fig. 6(B)). The patient-specific model was trained for each patient. Fi-
nally, in system evaluation, we evaluated the classification results at two levels
simultaneously, namely the segment-based level and the event-based level. At
the segment-based level, the averaged sensitivity, specificity, and accuracy were
given. At the event-based level, even-based sensitivity, FDR and latency were
computed.

Results

1) Results of the CHB-MIT sEEG dataset As shown in Table 5, the classification
results of each patient were calculated and evaluated at the two levels. For the
CHB-MIT sEEG dataset, we achieved an overall sensitivity, specificity, and ac-
curacy of 88,14%, 99.62% and 99.54%, respectively. At the event-based level, we
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attained an overall event-based sensitivity, RDR, and latency of 99.31%, 0.20/h
and 8.1 s, respectively.

2) Results of the SWEC-ETHZ iEEG dataset As shown in Table 6, the classifica-
tion results of each patient were also computed and evaluated at the two levels.
For the SWEC-ETHZ iEEG dataset, an overall sensitivity of 90.09%, specificity of
99.81%, and accuracy of 99.73% were obtained at the segment-based level. At
the event-based level, an overall even-based sensitivity of 97.52%, FDR of 0.07/h,
and latency of 13.2 s were achieved.

TABLE 5 Results for each patient at two levels in the CHB-MIT sEEG dataset.

Patient #Seizures
K-Fold

Segment-based level Event-based level
Sen1 (%) Spe (%) Acc (%) Sen2 (%) FDR (/h) Lat (s)

1 7 98.00 99.82 99.81 100 0.04 6.3
2 3 91.73 99.90 99.88 100 0 8.7
3 7 99.00 99.84 99.84 100 0.08 6.3
4 4 85.89 99.78 99.73 100 0 8
5 5 97.05 99.91 99.89 100 0 7.2
6 10 86.46 99.73 99.71 100 0.04 8
7 3 92.65 99.93 99.89 100 0.04 7.3
8 5 91.99 98.91 98.77 100 0.6 7.6
9 3 95.10 99.91 99.90 100 0.08 8
10 7 92.45 99.88 99.84 100 0 6.3
11 3 99.02 99.92 99.90 100 0 6
12 10 81.06 98.69 98.17 100 1.42 10
13 8 76.41 99.09 98.92 100 0.79 9.8
14 7 70.16 99.46 99.39 100 0 8.6
15 14 94.98 99.36 99.25 100 0.33 7.7
16 6 69.96 99.56 99.50 83.33 0.08 7.6
17 3 85.02 99.61 99.55 100 0.17 8
18 5 81.15 99.65 99.58 100 0.17 7.6
19 3 92.31 99.91 99.89 100 0 6
20 6 82.58 99.64 99.59 100 0.17 9.7
21 4 97.48 99.66 99.65 100 0.17 6
22 3 89.94 99.95 99.93 100 0.04 14.7
23 5 96.53 99.62 99.59 100 0.61 6
24 14 68.43 99.19 98.82 100 0.08 12.6
Total 145 88.14 99.62 99.54 99.31 0.20 8.1

Abbreviations: Sen1, segment-based sensitivity; Spe, specificity; Acc, accuracy; Sen2, event-based sensitivity; FDR, false
detection rate; Lat, latency

Discussion

In this work, a novel method of 1D-CNN combined with a DS-DA strategy was
proposed for seizure onset detection. The proposed method was tested on two
long-term EEG datasets (CHB-MIT sEEG and SWEC-ETHZ iEEG) and achieved
remarkable seizure detection performances. This showed that our method was
effective for the analysis of two different datasets, sEEG and iEEG. It may provide
a reference value for the practical application of seizure detection in the future.
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TABLE 6 Results for each patient at two levels in the SWEC-ETHZ iEEG dataset.

Patient #Seizures
K-Fold

Segment-based level Event-based level
Sen1 (%) Spe (%) Acc (%) Sen2 (%) FDR (/h) Lat (s)

1 2 93.59 99.94 99.85 100 0 10
2 2 97.67 99.86 99.85 100 0.13 9
3 4 100 99.88 99.88 100 0.17 6
4 14 75.56 99.31 99.19 92.86 0.13 12.8
5 4 100 99.67 99.67 100 0.33 6
6 8 81.61 99.96 99.80 87.50 0 6.6
7 4 70.53 99.89 99.84 75.00 0.04 14
8 7 78.93 99.53 99.04 100 0.04 52.3
9 17 98.64 99.84 99.83 100 0 7.3
10 16 96.44 99.95 99.89 100 0 6.9
11 2 100 99.99 99.99 100 0 6
12 9 97.04 99.80 99.77 100 0 9.6
13 7 86.55 99.85 99.78 100 0 11.4
14 16 94.87 99.61 99.49 100 0 6.8
15 2 94.52 99.98 99.97 100 0 14
16 5 96.44 99.94 99.90 100 0 13.2
17 2 85.57 99.81 99.78 100 0.17 22
18 5 73.70 99.68 99.53 100 0.21 24.4
Total 126 90.09 99.81 99.73 97.52 0.07 13.2

Author contributions

Xiaoshuang Wang presented the methods, performed the data analysis and wrote
the manuscript. Xiulin Wang and Wenya Liu performed the data analysis and
revised the manuscript. Zheng Chang, Tommi Kärkkäinen and Fengyu Cong

supervised the study and revised the manuscript.

4.3 Article III: One-Dimensional Convolutional Neural Networks
Combined with Channel Selection Strategy for Seizure Predic-
tion Using Long-Term Intracranial EEG

Article III: Xiaoshuang Wang, Guanghui Zhang, Ying Wang, Lin Yang, Zhanhua
Liang & Fengyu Cong (2021). One-Dimensional Convolutional Neural Networks
Combined with Channel Selection Strategy for Seizure Prediction Using Long-
Term Intracranial EEG. International journal of neural systems, 32 (02), 2150048.

Objective

After the study of EEG-based seizure detection, a further study comes to the EEG-
based seizure prediction. EEG-based seizure prediction is still challenging be-
cause of complicated signals in time and spatial domains. Feature selection in the
spatial domain (i.e., channel selection) combined with DL methods is less studied
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in this field. Hence, this study proposed a novel method of 1D-CNN combined
with channel selection strategy for seizure prediction.
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FIGURE 7 Diagram of 1D-CNN combined with channel selection and model training
in seizure prediction. (A) Diagram of 1D-CNN combined with channel se-
lection for seizure prediction. (B) K-CV with data augmentation approach
during model training.

Methods

The long-term Freiburg iEEG dataset (mentioned in subsection 2.1.4) was utilized
for seizure prediction, and each patient had six iEEG channels, three in-focus
channels (marked as channels 1-3) and three out-of-focus channels (marked as
channels 4-6). First, we used 30-sec sliding windows to segment raw iEEG sig-
nals. Then, 30-sec segments with nine channel cases (1, 2, 3, 4, 5, 6, 1-3, 4-6 and
1-6) were sequentially fed into the constructed 1D-CNN model for model train-
ing and testing (as shown in Fig. 7(A)). The K-CV (K is the number of seizures
per patient) was performed during model training, and in each training round, a
data augmentation approach (sliding windows with overlap) was only used on
preictal signals which were selected as the training set (as shown in Fig. 7(B)).
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Patient-specific model was trained for each patient. Finally, the classification re-
sults of nine channel cases were calculated, and the channel case with the highest
classification rate was finally selected for each patient. In this work, we discussed
two preictal conditions: (1) SOP = 30 min and SPH = 5 min, (2) SOP = 60 min and
SPH = 5 min. We also compared our method with the random predictor by com-
puting statistical significance.

Results

1) Results of SOP = 30 min and SPH = 5 min After selecting the best channel
case for each patient, we summarized the correspond-ing results of all patients in
Table 7. As shown in Table 7, 86 out of 87 seizures (except one seizure in patient
13) were correctly predicted, and our method achieved an overall accuracy, event-
based sensitivity, and FPR of 98.60%, 98.85% and 0.01/h, respectively. From the
p−value (< 0.05) of each patient, our method was also statistically better than the
random predictor for all patients.

TABLE 7 Results of our method with SOP of 30 min and SPH of 5 min.

Patient Interictal (h) #seizures C∗
s Accuracy (%) Sensitivity (%) FPR (/h) p−value

1 24 4 1a 99.13±0.77 100±0.00 0.00±0.00 0.000
2 24 3 4b 99.66±0.02 100±0.00 0.00±0.00 0.000
3 24 5 1a 98.13±0.02 100±0.00 0.00±0.00 0.000
4 24 5 2a 99.21±0.00 100±0.00 0.00±0.00 0.000
5 24 5 1a 95.58±1.93 100±0.00 0.06±0.09 0.000
6 24 3 1a 99.08±0.05 100±0.00 0.00±0.00 0.000
7 24.6 3 4-6b 97.65±0.16 100±0.00 0.00±0.00 0.000
8 24.2 2 1-3a 99.64±0.09 100±0.00 0.00±0.00 0.000
9 23.9 5 5b 100±0.00 100±0.00 0.00±0.00 0.000
10 24.5 5 3a 99.41±0.00 100±0.00 0.00±0.00 0.000
11 24.1 4 2a 99.89±0.07 100±0.00 0.00±0.00 0.000
12 24 4 3a 99.84±0.18 100±0.00 0.00±0.00 0.000
13 24 2 5b 97.98±0.02 50±0.00 0.00±0.00 0.000
14 23.9 4 3a 99.89±0.07 100±0.00 0.00±0.00 0.000
15 24 4 4b 98.62±0.32 100±0.00 0.00±0.00 0.000
16 24 5 4-6b 99.32±0.42 100±0.00 0.00±0.00 0.000
17 24.1 5 4-6b 99.58±0.29 100±0.00 0.00±0.00 0.000
18 24.9 5 4b 92.80±2.65 100±0.00 0.25±0.06 0.000
19 24.4 4 1a 98.70±0.49 100±0.00 0.00±0.00 0.000
20 25.6 5 1-3a 98.20±0.19 100±0.00 0.00±0.00 0.000
21 23.9 5 2a 98.28±0.16 100±0.00 0.00±0.00 0.000
Total 508.1 87 – 98.60±0.38 98.85±0.00 0.01±0.01 –

The whole algorithm runs twice. The averaged results (accuracy, sensitivity and FPR) and the p−value are
summarized for each patient after selecting the best channel case.
∗ Cs means channel selected for the best classification; a Channels only from seizure onset zones
of the brain; b Channels only from seizure free zones of the brain.

2) Results of SOP = 60 min and SPH = 5 min Patients 2 and 6 were excluded be-
cause of the preictal phase of these two patients was less than 65 min. Therefore,
only 19 patients were considered. After selecting the best channel case for each
patient, we also summarized the corresponding results of 19 patients in Table 8.
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TABLE 8 Results of our method with SOP of 60 min and SPH of 5 min.

Patient Interictal (h) #seizures Cs∗ Accuracy (%) Sensitivity (%) FPR (/h) p−value

1 24 3 1a 97.27±0.85 100±0.00 0.00±0.00 0.000
3 24 4 1a 97.69±1.54 100±0.00 0.00±0.00 0.000
4 24 3 2a 99.26±0.00 100±0.00 0.00±0.00 0.000
5 24 2 5b 91.19±0.68 100±0.00 0.19±0.03 0.000
7 24.6 3 1a 98.21±0.44 100±0.00 0.00±0.00 0.000
8 24.2 2 1-3a 99.92±0.02 100±0.00 0.00±0.00 0.000
9 23.9 3 5b 99.57±0.00 100±0.00 0.00±0.00 0.000
10 24.5 5 3a 99.80±0.04 100±0.00 0.00±0.00 0.000
11 24.1 3 2a 99.64±0.11 100±0.00 0.00±0.00 0.000
12 24 3 4b 99.31±0.11 100±0.00 0.00±0.00 0.000
13 24 2 5b 96.12±0.05 50±0.00 0.00±0.00 0.000
14 23.9 3 3a 99.66±0.18 100±0.00 0.00±0.00 0.000
15 24 3 4b 97.89±0.55 100±0.00 0.00±0.00 0.000
16 24 5 4-6b 99.40±0.41 100±0.00 0.00±0.00 0.000
17 24.1 5 4-6b 97.75±0.14 100±0.00 0.04±0.00 0.000
18 24.9 5 4-6b 98.06±1.72 100±0.00 0.00±0.00 0.000
19 24.4 3 3a 99.80±0.06 100±0.00 0.00±0.00 0.000
20 25.6 5 1-3a 98.47±0.08 100±0.00 0.00±0.00 0.000
21 23.9 4 2a 99.05±0.25 100±0.00 0.00±0.00 0.000
Total 460.1 66 – 98.32±0.38 98.48±0.00 0.01±0.00 –

As shown in Table 8, 65 out of 66 seizures (except one seizure in patient 13) were
accurately predicted. Our method attained an overall accuracy, event-based sen-
sitivity, and FPR of 98.32%, 98.48% and 0.01/h, respectively. The performance of
our method was also statistically better than that of the random predictor accord-
ing to the p−value of each patient in Table 8.

Discussion

In this study, a novel method of 1D-CNN combined with channel selection strat-
egy was proposed for seizure prediction. The proposed method finally achieved
an accuracy, sensitivity, and FPR of 98.32-98.60%, 98.48-98.85% and 0.01/h, re-
spectively. Compared to most of the previous studies using the same iEEG dataset,
our method showed a better performance in seizure prediction. This showed that
our method was effective in seizure prediction, and the channel selection for each
patient was necessary.

Author contributions

Xiaoshuang Wang presented the methods, performed the data analysis and wrote
the manuscript. Guanghui Zhang performed the data analysis and revised the
manuscript. Ying Wang and Lin Yang revised the manuscript. Zhanhua Liang

and Fengyu Cong supervised the study and revised the manuscript.
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4.4 Article IV : Seizure Prediction Using EEG Channel selection Method

Article IV : Xiaoshuang Wang, Tommi Kärkkäinen & Fengyu Cong (2022). Seizure
Prediction Using EEG Channel selection Method. 32nd IEEE International Work-
shop on Machine Learning for Signal Processing (MLSP 2022), IEEE.

Objective

In Article III, we proposed a 1D-CNN combined with channel selection method
for seizure prediction, and the proposed method was tested on the Freiburg iEEG
dataset (21 patients, each patient has six iEEG channels). Consequently, there are
63 channel cases (|C1

6 | + |C2
6 | + |C3

6 | + |C4
6 | + |C5

6 | + |C6
6 | = 63) that can be ana-

lyzed. However, Article III only considered nine channel cases (1, 2, 3, 4, 5, 6, 1-3,
4-6, 1-6) for channel selection. Therefore, in this seizure prediction study, based
on the same iEEG dataset, we analyzed all channel cases for channel selection.
This work also discussed and compared the classification results under the con-
dition of two different sample sizes.

Methods

The used dataset was the same as that of Article III. First, 15-sec and 30-sec were
used to segment raw iEEG signals, respectively. Next, 15-sec iEEG segments with
an increasing number of channels (from one channel to six channels) were se-
quentially input into the 1D-CNN model for model training and testing. The
processing of 30-sec iEEG segments was the same as that of the 15-sec iEEG seg-
ments. Then, K-CV combined with a data augmentation approach (same as the
Study 3) was performed during model training. We evaluated the classification
results at the two levels (segment- and event-based levels) simultaneously for se-
lecting the best channel case for each patient. Patient-specific model was trained
per patient. In this work, we also discussed two preictal conditions: (1) SOP = 30
min and SPH = 5 min, (2) SOP = 60 min and SPH = 5 min. In each preictal con-
dition, the classification results of two different sample sizes (15-sec and 30-sec)
were also computed and compared.

Results

1) Results of SOP = 30 min and SPH = 5 min After selecting the best channel
case for each patient, we summarized the corresponding results in Table 9. For
the preprocessing of 15-sec sliding windows, we attained an averaged sensitiv-
ity, specificity, and accuracy of 89.21%, 99.73% and 98.99% at the segment-based
level. At the event-based level, an event-based sensitivity of 98.85 and an FPR of
0/h were achieved. For the preprocessing of 30-sec sliding windows, we obtained
an averaged sensitivity of 89.03%, specificity of 99.68%, and accuracy of 98.85% at
the segment-based level. At the event-based level, we achieved a same averaged
event-based sensitivity of 98.85% with an FPR of 0.01/h. About the channel case

44



TA
BL

E
9

Se
le

ct
ed

ch
an

ne
lc

as
es

an
d

co
rr

es
po

nd
in

g
re

su
lt

s
fo

r
ea

ch
pa

ti
en

ti
n

th
e

co
nd

it
io

n
of

SO
P

=
30

m
in

.

15
-s

ec
sl

id
in

g
w

in
do

w
s,

SO
P

=
30

m
in

30
-s

ec
sl

id
in

g
w

in
do

w
s,

SO
P

=
30

m
in

Se
gm

en
t-

ba
se

d
le

ve
l

Ev
en

t-
ba

se
d

le
ve

l
Se

gm
en

t-
ba

se
d

le
ve

l
Ev

en
t-

ba
se

d
le

ve
l

Pa
ti

en
t

In
te

ri
ct

al
(h

)
#S

ei
zu

re
s

C
s

Se
n 1

(%
)

Sp
e

(%
)

A
cc

(%
)

Se
n 2

(%
)

FP
R

(/
h)

p v
C

s
Se

n 1
(%

)
Sp

e
(%

)
A

cc
(%

)
Se

n 2
(%

)
FP

R
(/

h)
p v

1
24

4
3

70
.3

1
99

.7
9

97
.2

5
10

0
0.

00
0.

00
0

3
68

.1
3

99
.9

1
97

.4
7

10
0

0.
00

0.
00

0
2

24
3

46
97

.6
7

99
.9

1
99

.7
2

10
0

0.
00

0.
00

0
46

93
.3

3
99

.9
5

99
.5

6
10

0
0.

00
0.

00
0

3
24

5
1

84
.7

5
99

.8
9

98
.4

6
10

0
0.

00
0.

00
0

2
79

.0
0

96
.0

2
94

.4
2

10
0

0.
17

0.
00

0
4

24
5

1
91

.9
2

10
0

99
.2

4
10

0
0.

00
0.

00
0

1
91

.8
3

10
0

99
.2

3
10

0
0.

00
0.

00
0

5
24

5
16

91
.4

2
98

.2
2

97
.5

8
10

0
0.

00
0.

00
0

14
84

.8
3

99
.2

5
97

.8
9

10
0

0.
00

0.
00

0
6

24
3

12
85

.8
3

99
.9

7
99

.1
3

10
0

0.
00

0.
00

0
12

94
.4

4
99

.9
3

99
.6

1
10

0
0.

00
0.

00
0

7
24

.6
3

16
93

.1
9

99
.9

0
99

.5
1

10
0

0.
00

0.
00

0
16

83
.3

3
99

.9
2

98
.9

6
10

0
0.

00
0.

00
0

8
24

.2
2

12
35

95
.0

0
10

0
99

.8
0

10
0

0.
00

0.
00

0
12

35
99

.1
7

10
0

99
.9

7
10

0
0.

00
0.

00
0

9
23

.9
5

1
or

5
10

0
10

0
10

0
10

0
0.

00
0.

00
0

1
or

5
10

0
10

0
10

0
10

0
0.

00
0.

00
0

10
24

.5
5

3
96

.9
2

99
.7

7
99

.5
1

10
0

0.
00

0.
00

0
3

99
.1

7
99

.8
6

99
.8

0
10

0
0.

00
0.

00
0

11
24

.1
4

2
98

.5
4

99
.9

3
99

.8
2

10
0

0.
00

0.
00

0
2

99
.1

7
99

.9
8

99
.9

2
10

0
0.

00
0.

00
0

12
24

4
3

98
.6

5
99

.9
3

99
.8

3
10

0
0.

00
0.

00
0

3
98

.1
3

99
.9

0
99

.7
6

10
0

0.
00

0.
00

0
13

24
2

5
50

.0
0

99
.9

5
97

.9
5

50
0.

00
0.

00
0

5
50

.0
0

10
0

98
.0

0
50

0.
00

0.
00

0
14

23
.9

4
3

97
.7

1
99

.9
9

99
.8

1
10

0
0.

00
0.

00
0

3
99

.3
8

10
0

99
.9

5
10

0
0.

00
0.

00
0

15
24

4
2

97
.2

9
99

.2
7

99
.5

4
10

0
0.

00
0.

00
0

2
99

.1
7

99
.7

7
99

.7
3

10
0

0.
00

0.
00

0
16

24
5

45
96

.8
3

99
.8

4
99

.5
5

10
0

0.
00

0.
00

0
45

96
.5

0
99

.8
6

99
.5

4
10

0
0.

00
0.

00
0

17
24

.1
5

45
95

.3
3

10
0

99
.5

6
10

0
0.

00
0.

00
0

45
97

.6
7

99
.9

5
99

.7
3

10
0

0.
00

0.
00

0
18

24
.9

5
34

5
81

.8
3

99
.9

8
98

.3
3

10
0

0.
00

0.
00

0
24

5
78

.5
0

10
0

98
.0

4
10

0
0.

00
0.

00
0

19
24

.4
4

2
76

.4
6

99
.1

3
97

.4
1

10
0

0.
00

0.
00

0
2

77
.9

2
99

.6
1

97
.9

6
10

0
0.

00
0.

00
0

20
25

.6
5

35
87

.1
7

99
.8

8
98

.7
5

10
0

0.
00

0.
00

0
35

94
.0

0
99

.7
9

99
.2

7
10

0
0.

00
0.

00
0

21
23

.9
5

3
87

.6
7

99
.0

1
97

.9
4

10
0

0.
04

0.
00

0
3

86
.0

0
99

.6
3

98
.3

4
10

0
0.

00
0.

00
0

To
ta

l
50

8.
1

87
–

89
.2

1
99

.7
3

98
.9

9
98

.8
5

0.
00

–
–

89
.0

3
99

.6
8

98
.9

1
98

.8
5

0.
01

–

R
ed

nu
m

be
rs

:
in

-f
oc

us
ch

an
ne

ls
;

Bl
ue

nu
m

be
rs

:
ou

t-
of

-f
oc

us
ch

an
ne

ls
.

A
bb

r:
C

s,
th

e
se

le
ct

ed
ch

an
ne

ls
(r

ed
nu

m
be

rs
fo

r
th

e
in

-f
oc

us
ch

an
ne

ls
;

bl
ue

nu
m

be
rs

fo
r

th
e

ou
t-

of
-f

oc
us

ch
an

ne
ls

);
Se

n 1
,s

eg
m

en
t-

ba
se

d
se

ns
it

iv
it

y;
Sp

e,
sp

ec
ifi

ci
ty

;A
cc

,a
cc

ur
ac

y;
Se

n 2
,e

ve
nt

-b
as

ed
se

ns
it

iv
it

y;
FP

R
,f

al
se

pr
ed

ic
ti

on
ra

te
.

45



TA
BL

E
10

Se
le

ct
ed

ch
an

ne
lc

as
es

an
d

co
rr

es
po

nd
in

g
re

su
lt

s
fo

r
ea

ch
pa

ti
en

ti
n

th
e

co
nd

it
io

n
of

SO
P

=
60

m
in

.

15
-s

ec
sl

id
in

g
w

in
do

w
s,

SO
P

=
60

m
in

30
-s

ec
sl

id
in

g
w

in
do

w
s,

SO
P

=
60

m
in

Se
gm

en
t-

ba
se

d
le

ve
l

Ev
en

t-
ba

se
d

le
ve

l
Se

gm
en

t-
ba

se
d

le
ve

l
Ev

en
t-

ba
se

d
le

ve
l

Pa
ti

en
t

In
te

ri
ct

al
(h

)
#S

ei
zu

re
s

C
s

Se
n 1

(%
)

Sp
e

(%
)

A
cc

(%
)

Se
n 2

(%
)

FP
R

(/
h)

p v
C

s
Se

n 1
(%

)
Sp

e
(%

)
A

cc
(%

)
Se

n 2
(%

)
FP

R
(/

h)
p v

1
24

3
3

75
.6

9
99

.3
8

96
.7

5
10

0
0.

00
0.

00
0

3
78

.1
9

99
.9

3
97

.5
2

10
0

0.
00

0.
00

0
3

24
4

2
90

.7
3

86
.6

1
87

.2
0

10
0

0.
27

0.
00

0
2

88
.0

2
87

.7
3

87
.7

7
10

0
0.

38
0.

00
0

4
24

3
1

93
.4

7
10

0
99

.2
7

10
0

0.
00

0.
00

0
1

93
.0

0
10

0
99

.2
6

10
0

0.
00

0.
00

0
5

24
2

15
6

88
.6

5
99

.0
5

98
.2

5
10

0
0.

00
0.

00
0

15
6

93
.7

5
98

.9
4

98
.5

4
10

0
0.

04
0.

00
0

7
24

.6
3

16
86

.3
9

99
.9

0
98

.4
3

10
0

0.
00

0.
00

0
16

83
.1

9
99

.9
5

98
.1

3
10

0
0.

00
0.

00
0

8
24

.2
2

12
35

10
0

10
0

10
0

10
0

0.
00

0.
00

0
12

35
10

0
10

0
10

0
10

0
0.

00
0.

00
0

9
23

.9
3

5
96

.1
1

99
.9

8
99

.5
5

10
0

0.
00

0.
00

0
5

95
.9

7
10

0
99

.5
5

10
0

0.
00

0.
00

0
10

24
.5

3
3

98
.5

0
99

.7
9

99
.5

7
10

0
0.

00
0.

00
0

3
98

.1
7

99
.6

6
99

.4
1

10
0

0.
00

0.
00

0
11

24
.1

3
2

97
.6

4
99

.6
7

99
.4

5
10

0
0.

00
0.

00
0

2
99

.5
8

99
.2

5
99

.2
9

10
0

0.
00

0.
00

0
12

24
3

4
96

.9
4

99
.7

7
99

.4
5

10
0

0.
00

0.
00

0
4

94
.7

2
99

.7
9

99
.2

3
10

0
0.

00
0.

00
0

13
24

2
5

49
.7

9
99

.9
9

96
.1

3
50

0.
00

0.
00

0
5

50
.0

0
10

0
96

.1
5

50
0.

00
0.

00
0

14
23

.9
3

6
95

.7
6

99
.8

8
99

.4
2

10
0

0.
00

0.
00

0
6

99
.3

1
10

0
99

.9
2

10
0

0.
00

0.
00

0
15

24
3

4
82

.9
9

99
.0

5
97

.2
6

10
0

0.
00

0.
00

0
46

82
.5

0
99

.6
9

97
.7

8
10

0
0.

00
0.

00
0

16
24

5
12

98
.4

6
99

.8
3

99
.5

9
10

0
0.

00
0.

00
0

12
99

.9
2

99
.9

1
99

.9
1

10
0

0.
00

0.
00

0
17

24
.1

5
45

90
.4

2
99

.5
8

98
.0

1
10

0
0.

00
0.

00
0

45
93

.5
8

99
.6

2
98

.5
8

10
0

0.
00

0.
00

0
18

24
.9

5
13

45
91

.7
1

99
.9

7
98

.5
9

10
0

0.
00

0.
00

0
13

45
86

.4
2

99
.9

8
97

.7
1

10
0

0.
00

0.
00

0
19

24
.4

3
2

98
.1

3
99

.4
4

99
.3

0
10

0
0.

00
0.

00
0

2
98

.0
6

99
.6

4
99

.4
7

10
0

0.
00

0.
00

0
20

25
.6

5
23

5
93

.2
9

99
.6

7
98

.6
3

10
0

0.
00

0.
00

0
23

5
95

.5
0

99
.7

4
99

.0
5

10
0

0.
00

0.
00

0
21

23
.9

4
2

93
.7

5
99

.3
3

98
.5

3
10

0
0.

00
0.

00
0

2
95

.7
3

99
.4

4
98

.9
1

10
0

0.
00

0.
00

0
To

ta
l

46
0.

1
66

–
90

.4
4

98
.9

9
98

.0
7

98
.4

8
0.

02
–

–
90

.8
4

99
.1

2
98

.2
2

98
.4

8
0.

02
–

46



selected for each patient, most of patients (except patients 3, 5 and 18) had the
same channel cases for both preprocessing conditions. The performance of our
method was also statistically better than that of the random predictor for all pa-
tients according to the pv in Table 9.

2) Results of SOP = 60 min and SPH = 5 min Patients 2 and 6 were not considered
due to the preictal phase of less than 65 min. Table 10 summarized the classifi-
cation results of each patient after selecting the best channel case per patient. As
shown in Table 10, under the preprocessing of 15-sec sliding windows, an overall
90.44% sensitivity, 98.99% specificity, and 98.07% accuracy were achieved at the
segment-based level. An overall 98.48% event-based sensitivity and 0.02/h FPR
were obtained at the event-based level. Under the preprocessing of 30-sec sliding
windows, we attained an overall 98.84% sensitivity, 99.12% specificity and 98.22%
accuracy. At the event-based level, the overall results were the same as those of
the preprocessing of 15-sec sliding windows. For the selected channel case per
patient, each patient had the same channel case for both two preprocessing con-
ditions. From the pv in Table 10, our method also showed a better performance
than the random predictor.

Discussion

In this study, the method of 1D-CNN combined with the channel selection strat-
egy was further discussed for seizure prediction. Different from the Article III
only used nine channel cases, this work considered all channel cases for channel
selection per patient. Based on the same iEEG dataset, the proposed method fi-
nally achieved a high event-based sensitivity of 98.48-98.85% and a low FPR of
0-0.02/h at the event-based level. At the segment-based level, the overall sensi-
tivity of 89.03-90.84%, specificity of 98.99-99.73%, and accuracy of 98.07-98.99%
were obtained. From these results, we could see that our method had a remark-
able performance in seizure prediction.

Author contributions

Xiaoshuang Wang presented the methods, performed the data analysis and wrote
the manuscript. Tommi Kärkkäinen and Fengyu Cong supervised the study and
revised the manuscript.

4.5 Article V : Channel Increment Strategy-Based 1D Convolutional
Neural Networks for Seizure Prediction Using Intracranial EEG

Article V : Xiaoshuang, Wang, Chi Zhang, Tommi Kärkkäinen, Zheng Chang, &
Fengyu Cong (2022). Channel Increment Strategy-Based 1D Convolutional Neu-
ral Networks for Seizure Prediction Using Intracranial EEG. Accepted in IEEE
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Transactions on Neural Systems and Rehabilitation Engineering.

Objective

In this study, we also used the long-term iEEG dataset for the analysis of seizure
prediction. Our work proposed a channel increment strategy-based 1D-CNN
method for seizure prediction and discussed two model training strategies for
the comparison of classification results.

Methods

16 patients with at least 4 seizures were selected from the Freiburg iEEG dataset
(total 21 patients) for seizure prediction. For the selected iEEG signals, 4-sec
sliding windows without overlap were first used to segment raw iEEG signals.
Next, 4-sec segments with a varied number of channels (from one channel to
all channels) were fed into the 1D-CNN model in turn for classification. About
model training, two model training strategies (Stratrgy-1 and Strategy-2) were
discussed. (1) In the Strategy-1, a basic K-CV (as shown in Fig. 8(A)), the model
training was done K rounds, where K is the number of seizures per patient. (2) In
the Strategy-2, the difference from the Strategy-1 is that a trained model selection
is added during model training. (as shown in Fig. 8(B)). We first leaved one part
as a testing set, while the other parts were used as the training set (90%) for model
training and the validation set (10%) for selecting excellent trained models from
the all trained models (because there are 63 trained models corresponding to 63
channel cases, and the selection criteria of the trained models are based on the F1
score of the validation set). Then, the selected trained models were used to test
the testing set. Patient-specific model was trained for each patient. We evaluated
the classification results at two levels (segment- and event-based levels), and one
preictal condition of SOP = 30 min and SPH = 5 min was considered in this work.

Results

1) Results of the Strategy-1 The whole algorithm runs twice. The averaged sen-
sitivity (Sen1), specificity (Spe), and accuracy (Acc) are computed at the segment-
based level. At the event-based level, the averaged event-based sensitivity (Sen2),
and FPR are calculated. Then, from 63 channel cases (|C1

6 |+ |C2
6 |+ |C3

6 |+ |C4
6 |+

|C5
6 |+ |C6

6 | = 63), the best channel case is selected for each patient based on the
results of both levels simultaneously, and the corresponding classification results
are summarized. After selecting the best channel case for each patient, the cor-
respongding results of each patient are given in Table 11. As shown in Table 11,
at the segment-based level, an overall 90.18% sensitivity, 94.81% specificity, and
94.42% accuracy were attained. At the event-based level, the event-based sensi-
tivity of 100% (74 seizures are all predicted) with 0.12/h FPR was attained. Based
on the pv values in Table 11, the performance of the proposed method is better
than that of the random predictor for all patients.
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Training Validation

For the validation sets, 63 F1 scores corresponding to 63 channel cases are computed. 

The trained models with the F1 scores more than 0.97 are selected.   
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1 2 3 1 2 3

4 4

  Testing
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90% (preictal = interictal) 10%

For the validation sets, 63 F1 scores corresponding to 63 channel cases are computed. 

The trained models with the F1 scores more than 0.97 are selected.   

FIGURE 8 Two model training strategies based on the K-CV in seizure prediction. (A)
Example of the Strategy-1 combined with the data random selection ap-
proach (for solving sample imbalance) during mode training for patients
with 4 seizures. (B) Example of the Strategy-2 for patients with 4 seizures.
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TABLE 11 Selected channel cases and corresponding results for each patient in the
Strategy-1.

Segment-based level Event-based level
Patient #Seizure Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv
1 4 2 72.50±5.26 95.87±0.22 94.07±0.20 100±0.00 0.08±0.00 0.000
3 5 1 93.49±1.67 97.24±0.05 96.88±0.20 100±0.00 0.08±0.00 0.000
4 5 2 91.93±0.03 99.81±0.26 99.06±0.23 100±0.00 0.00±0.00 0.000
5 5 16 88.13±0.19 78.18±2.16 79.12±1.98 100±0.00 0.50±0.06 0.001
9 5 4 100±0.00 99.99±0.00 99.99±0.00 100±0.00 0.00±0.00 0.000
10 5 34 92.84±1.63 98.85±0.09 98.29±0.07 100±0.00 0.00±0.00 0.000
11 4 13 97.36±0.75 98.19±1.03 98.13±1.01 100±0.00 0.00±0.00 0.000
12 4 3 98.42±0.43 97.86±1.29 97.91±1.22 100±0.00 0.06±0.03 0.000
14 4 34 95.61±2.12 98.15±0.30 97.95±0.12 100±0.00 0.00±0.00 0.000
15 4 3 93.19±1.53 92.73±1.64 92.77±1.63 100±0.00 0.21±0.06 0.000
16 5 126 90.53±3.96 78.16±0.21 79.32±0.56 100±0.00 0.42±0.00 0.000
17 5 13 85.36±2.61 98.11±1.12 96.91±1.26 100±0.00 0.00±0.00 0.000
18 5 35 93.31±4.31 98.08±0.34 97.64±0.09 100±0.00 0.16±0.00 0.000
19 4 12 81.75±1.85 93.53±0.78 92.64±0.58 100±0.00 0.18±0.03 0.000
20 5 34 84.87±2.23 95.16±1.38 94.25±1.06 100±0.00 0.08±0.06 0.000
21 5 3 83.56±1.70 96.98±0.25 95.71±0.39 100±0.00 0.08±0.00 0.000
All 74 – 90.18±1.89 94.81±0.70 94.42±0.66 100±0.00 0.12±0.02 –

Cs: channel(s) selected; Red numbers: in-focus channels; Blue numbers: out-of-focus channels.

2) Results of the Strategy-2 Different from the Strategy-1, a trained model selec-
tion step is added in each round (as shown in Figure 8(B)). The whole algorithm
also runs twice. After running twice, one channel case can achieve an averaged
F1 score in one round. Consequently, one channel case has K averaged F1 scores
after K rounds. In this work, only when K averaged F1 scores of a channel case are
all greater than 0.97, the corresponding channel case is considered and selected
for the final best channel case selection. After some satisfactory channel cases are
first selected, the classification results of the testing sets from the selected channel
cases are then calculated for the final best channel case selection. After selecting
the best channel case for each patient, the corresponding results are summarized.
As shown in Table 12, we attained an overall sensitivity, specificity, and accu-
racy of 86.23%, 96.00%, and 95.13%, respectively, at the segment-based level. At
the event-based level, we achieved an overall event-based sensitivity, and FPR of
98.65% and 0.08/h, respectively. 73 out of 74 seizures were correctly predicted
(except one seizure in patient 5). According to the pv values in Table 12, the pro-
posed method also showed a better performance than the random predictor for
all patients.

Discussion

In this study, a channel increment strategy-based 1D-CNN method was proposed
for seizure prediction. In the Strategy-1, the proposed method predicted all seizures,
and a high event-based sensitivity of 100% and a low FPR of 0.12/h were achieved
at the event-based level. At the segment-based level, a sensitivity of 90.18%,
specificity of 94.81%, and accuracy of 94.42% were attained. In the Strategy-2,
73 out of seizures were predicted, and an event-based sensitivity of 98.65 and a
low FPR of 0.08/h were attained. A sensitivity of 86.23%, specificity of 96.00%,
and accuracy of 95.13% were obtained at the segment-based level. From these
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TABLE 12 Selected channel cases and corresponding results for each patient in the
Strategy-2.

Segment-based level Event-based level
Patient #Seizure F1 Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv
1 4 0.982 1 75.11±5.81 96.66±0.33 95.00±0.14 100±0.00 0.10±0.03 0.000
3 5 0.995 1 84.02±3.61 98.00±0.01 96.68±0.33 100±0.00 0.06±0.03 0.000
4 5 0.999 2 91.80±0.03 99.97±0.01 99.20±0.00 100±0.00 0.00±0.00 0.000
5 5 0.970 1235 53.82±2.77 89.86±1.86 86.46±1.42 80±0.00 0.19±0.03 0.000
9 5 0.999 34 99.84±0.03 99.94±0.04 99.93±0.04 100±0.00 0.00±0.00 0.000
10 5 0.989 34 93.67±0.47 98.78±0.34 98.31±0.35 100±0.00 0.00±0.00 0.000
11 4 0.987 16 96.47±0.59 97.60±0.14 97.51±0.18 100±0.00 0.00±0.00 0.000
12 4 0.999 3 98.19±1.53 99.54±0.49 99.44±0.57 100±0.00 0.00±0.00 0.000
14 4 0.991 3 94.92±0.59 98.12±0.33 97.87±0.35 100±0.00 0.02±0.03 0.000
15 4 0.982 23 91.64±0.67 94.03±1.53 93.85±1.36 100±0.00 0.08±0.06 0.000
16 5 0.993 126 96.56±2.11 79.24±1.06 80.87±1.16 100±0.00 0.42±0.00 0.000
17 5 0.991 13 88.96±2.61 98.47±0.06 97.57±0.30 100±0.00 0.02±0.03 0.000
18 5 0.997 56 86.49±3.90 99.17±0.39 98.02±0.71 100±0.00 0.10±0.03 0.000
19 4 0.990 12 79.47±2.40 93.88±0.80 92.79±0.92 100±0.00 0.18±0.03 0.000
20 5 0.981 34 91.56±2.51 95.20±0.49 94.88±0.67 100±0.00 0.06±0.03 0.000
21 5 0.999 1234 57.09±1.23 97.54±0.25 93.72±0.11 100±0.00 0.06±0.03 0.000
All 74 – – 86.23±1.93 96.00±0.51 95.13±0.54 98.65±0.00 0.08±0.02 –

results, we could see that our method had a remarkable performance in seizure
prediction with a minimal or reduced number of channels, and the selection of
channels for each patient was necessary. All of these may provide a reference
for the future clinical application of seizure prediction with a reduced number of
channels.
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5 DISCUSSION AND CONCLUSION

In this chapter, we first summarize this dissertation according to the mentioned
studies. Then, the limitations of this dissertation and the future directions are
discussed.

5.1 Summary of the dissertation

In this dissertation, CNNs were effectively applied in both sEEG and iEEG signals
for the analysis of seizure detection and prediction. Two articles (Articles I and II)
focused on using CNNs on sEEG and iEEG signals for seizure detection. Three
articles (Articles III, IV and V) focused on the combination of channel selection
and 1D-CNNs for seizure prediction using long-term iEEG signals.

In seizure detection studies, we explored the performances of CNNs on
seizure detection. Article I first used 1D-CNN and 2D-CNN simultaneously on
the short-term sEEG and iEEG signals for seizure detection. In this study, 12-
layer 1D-CNN and 2D-CNN models were constructed and tested on the short-
term Bonn EEG database for seizure detection. Both models finally achieved
remarkable results in seizure detection. Article II focused on the application of
1D-CNN in long-term sEEG and iEEG signals for the analysis of seizure detec-
tion. This study constructed a stacked 1D-CNN model and effectively evaluated
the proposed 1D-CNN model on two long-term EEG datasets (CHB-MIT sEEG
and SWEC-ETHZ iEEG). To solve the problem of sample imbalance, this study
also proposed a RS-DA strategy to balance samples during model training. The
above two studies successfully applied CNNs in short- and long-term sEEG and
iEEG signals for seizure detection, and the achieved results showed that CNNs
have remarkable performances in seizure detection.

From the research of seizure detection, seizure prediction using EEG sig-
nals was further researched in this dissertation. Considering the combination
of EEG channel selection and DL methods is less studied in seizure prediction,
the combination of EEG channel selection and DL methods was therefore fur-



ther explored. Articles III and IV proposed a novel method of 1D-CNN combined
with channel selection in seizure prediction. The proposed method was tested
on the Freiburg iEEG dataset and achieved commendable results. With the same
iEEG dataset, in Article V, an iEEG-based method of channel increment strategy
combined with 1D-CNN was presented to predict seizures. In this study, two
model training strategies based on the K-CV were also discussed to evaluate the
proposed method, and remarkable results were attained. The three mentioned
studies showed that the combination of channel selection and CNN is effective
in seizure prediction, and channel selection is an significant method when using
EEG signals for seizure prediction.

In conclusion, this dissertation systematically used both sEEG and iEEG sig-
nals for the study of seizure detection and prediction. With sEEG and iEEG sig-
nals, several different CNN models (1D-CNN and 2D-CNN) were constructed
and successfully tested, and channel selection also plays a significant role in
seizure prediction.

5.2 Limitations and future directions

As we mentioned in the dissertation, CNNs were well used on sEEG and iEEG
signals for the analysis of seizure detection and prediction, and the combination
of channel selection and CNNs was also effectively applied for seizure predic-
tion. However, there are several limitations or considerations that need to be
discussed. One limitation is about the use of EEG data. In this dissertation, the
analysis of seizure detection and prediction is based on four public EEG datasets.
About these four EEG databsets, two of them are from two decades ago, and
one of them is from ten years ago. Therefore, more new sEEG and iEEG signals
should be collected from epileptic patients for the research of seizure detection
and prediction in the future. Moreover, multi-model data, such EEG, electroen-
cephalogram (ECG), electromyography (EMG), video, etc., can be used together
for the robust and reliable seizure detection and prediction. The second limita-
tion is that the proposed methods focus on the analysis of offline classification,
ignoring the exploration of online classification. This is because the practical ap-
plication of seizure detection and seizure prediction is a real-time process in the
future. Thus, the further exploration of online classification is significant in the
field of seizure detection and prediction. The third limitation is that this disserta-
tion only focuses on the use of 1D-CNN and 2D-CNN for seizure detection and
prediction. Hence, other DL methods, such as 3D-CNN, LSTM, the combination
of CNN and LSTM, etc., can also be utilized for the analysis of seizure detection
and prediction. Moreover, DL-based feature extration combined with conven-
tional ML methods can also be further studied in this field.

According to above limitations or considerations, the future directions in
seizure detection and prediction are briefly given as follows.

1. The cooperation with hospitals for the collection of more new EEG signals
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is significant, and this can allow us to achieve more practical results in the
analysis of seizure detection and prediction. Moreover, the application of
multi-model data (EEG, ECG, EMG, etc.) is a trend for the robust and reli-
able seizure detection and prediction in the future.

2. The practical application of seizure detection and prediction is a significant
task, and this can improve the quality of life and reduce the suffering for
epileptic patients. Therefore, the exploration of seizure detection and pre-
diction algorithms not only focuses on the research of offline classification,
but also pays more attention to the exploration of online classification in the
future work.

3. DL methods are important techniques in seizure detection and prediction.
Thus, various DL methods, such CNN, LSTM, the combination of CNN
and LSTM, etc., should be analyzed and discussed to find the practical and
effective DL methods for the real application in the future study.

4. The source localization of epileptic focus is helpful for the diagnosis of
epilepsy using EEG signals. Hence, EEG-based seizure onset detection com-
bined with the source localization of epileptic focus is also a research direc-
tion in the future.
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YHTEENVETO (SUMMARY IN FINNISH)

Tässä väitöskirjassa sovellettiin konvoluutioneuroverkkoja (CNN) sekä sEEG- et-
tä iEEG-signaaleissa esiintyvien epileptisten kohtausten luotettavaan havaitsemi-
seen ja ennustamiseen. Kaksi ensimmäistä artikkelia (artikkelit I ja II) keskittyivät
nimenomaan tähän kun taas kolme jälkimmäistä artikkelia (artikkelit III, IV ja V)
tarkastelivat kanavan valinnan ja yksiulotteisten konvoluutioverkkojen yhdistä-
mistä pitkäaikaisten iEEG-signaalien analysoimiseksi.

Kohtausten havaitsemistutkimuksissa tarkasteltiin erityisesti konvoluutio-
verkkojen suorituskykyä ja tarkkuutta. Artikkelissa I käytettiin yksiulotteista kon-
voluutioverkkoa (1D-CNN) ja kaksiulotteista verkkoa (2D-CNN) samanaikaisesti
lyhytaikaisissa sEEG- ja iEEG-signaaleissa esiintyvien epileptisten kohtausten ha-
vaitsemiseen. Rakenteeltaan 12-kerroksisia 1D-CNN- ja 2D-CNN-malleja testat-
tiin avoimen Bonnin EEG-tietokannan avulla. Molemmat mallit antoivat tarkko-
ja tuloksia kohtausten havaitsemisessa. Artikkeli II keskittyi 1D-CNN:n sovelta-
miseen pitkäaikaisissa sEEG- ja iEEG-signaaleissa esiintyvien kohtausten havait-
semiseen. Ehdotettu 1D-CNN-malli toimi tehokkaasti kahdella pitkän aikavälin
EEG-tietojoukolla (CHB-MIT sEEG ja SWEC-ETHZ iEEG). Näytteiden epätasapaino-
ongelman ratkaisemiseksi tässä tutkimuksessa ehdotettiin myös RS-DA-strategian
käyttämistä mallien koulutuksen aikana. Edellä mainituissa kahdessa tutkimuk-
sessa sovellettiin onnistuneesti CNN:iä lyhyen ja pitkän aikavälin sEEG- ja iEEG-
signaaleissa esiintyvien kohtausten havaitsemiseen. Saavutetut tulokset osoitti-
vat, että CNN:illä saavutetaan erinomainen havaitsemistarkkuus.

EEG-kanavan valinnan ja konvoluutioverkkopohjaisen syväoppimisen yh-
distelmää on tutkittu vähemmän. Artikkeleissa III ja IV ehdotettiin uutta 1D-
CNN-menetelmää yhdistettynä kanavan valintaan. Ehdotettua menetelmää tes-
tattiin Freiburg iEEG -tietojoukolla, jolle saavutettiin erinomaiset tulokset. Tut-
kimuksessa käsiteltiin kahta erityyppistä ristiinvalidointiin perustuvaa oppimis-
strategiaa, joille molemmille saavutettiin ensiluokkaisia tuloksia. Kolme jälkim-
mäistä tutkimusta osoittivat, että kanavan valinnan ja CNN:n yhdistelmä on te-
hokas tapa nostaa kohtausten ennustamistarkkuutta.

Yhteenvetona voidaan todeta, että tässä väitöskirjassa käytettiin systemaat-
tisesti sekä sEEG- että iEEG-signaaleja kohtausten havaitsemisen ja ennustamisen
tutkimuksessa. SEEG- ja iEEG-signaaleille rakennettiin ja testattiin useita erilaisia
CNN-malleja (1D-CNN ja 2D-CNN), joiden yhteydessä EEG-kanavan valinnalla
todettiin olevan merkittävä rooli epileptisten kohtausten ennustamistarkkuudel-
le.
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Abstract—Deep learning for the automated detection of epilep-
tic seizures has received much attention during recent years. In
this work, one dimensional convolutional neural network (1D-
CNN) and two dimensional convolutional neural network (2D-
CNN) are simultaneously used on electroencephalogram (EEG)
data for seizure detection. Firstly, using sliding windows without
overlap on raw EEG to obtain the definite one-dimension time
EEG segments (1D-T), and continuous wavelet transform (CWT)
for 1D-T signals to obtain the two-dimension time-frequency
representations (2D-TF). Then, 1D-CNN and 2D-CNN model
architectures are used on 1D-T and 2D-TF signals for automatic
classification, respectively. Finally, the classification results from
1D-CNN and 2D-CNN are showed. In the two-classification and
three-classification problems of seizure detection, the highest
accuracy can reach 99.92% and 99.55%, respectively. It shows
that the proposed method for a benchmark clinical dataset can
achieve good performance in terms of seizure detection.

Index Terms—Electroencephalogram (EEG), seizure detection,
convolutional neural networks (CNN), deep learning, time-
frequency representation

I. INTRODUCTION

Epilepsy is a chronic noncommunicable disease of the brain,

which affects more than 50 million people worldwide. Clini-

cally intractable epilepsy is commonly associated with the risk

of fainting, injury, and death [1]. Electroencephalogram (EEG)

is a significant tool that has been widely used for the diagnosis

of epilepsy [2]. However, since the interpretation of EEG

signals by visual assessment is labor- and time-consuming, the

related research for EEG-based automatic seizure detection is

very active. Automated and accurate identification of epileptic

seizures based on EEG signals can improve work efficiency

and patient quality of life.

The data mining techniques with feature-based engineering

have been widely researched for the automated detection of

epileptic seizures. Most of them use hand-wrought features

extracted mainly from time domain [3], [4], time-frequency

domain [5], [6], nonlinear dynamics [7], [8], and sometime

in a combination of several domains [9] for seizures classi-

fication. However, these feature-based methods have several

main challenges. First, EEG is non-stationary signal and can

be susceptible to artifacts such as power-line interference,

This work was supported by the National Natural Science Foundation
of China (Grant No. 91748105 & 81471742), the Fundamental Research
Funds for the Central Universities [DUT2019] in Dalian University of
Technology in China and the scholarships from China Scholarship Council
(No. 201806060166).

electrooculogram (EOG), electromyography (EMG) and white

environment noise. All these noise sources can change the

authenticity of features and hence seriously affect the perfor-

mance of seizure detection systems. Second, feature extraction

and selection has always been a time-consuming engineering.

This is because the EEG data need to be processed, or further

selected, to obtain desired features for classification.

Deep learning has proved its ability in image and au-

dio recognition tasks [10], [11]. For solving the limitations

mentioned above, convolutional neural network is used for

the automated detection of seizures, and it is a machine

learning technology based on representation learning. The

system automatically learns and discovers the features needed

for classification by processing multi-level input data [11].

In this work, one and two dimensional convolutional neural

networks (1D-CNN and 2D-CNN) are used for seizure de-

tection. Firstly, through preprocessing and continuous wavelet

transform (CWT), we obtain the definite one-dimension time

segments (1D-T) and two-dimension time-frequency repre-

sentations (2D-TF), respectively. Then, two models are used

on 1D-T and 2D-TF signals for classification, respectively.

Finally, the classification results from two models are given.

Two-classification and three-classification problems are dis-

cussed with the proposed method for seizure classification.

II. DATA

The opening EEG data (http://epilepsy.uni-freiburg.de/

database) collected by Andrzejak et al. [12] are used in

this research. After removing EEG contaminated by artifacts

(eye movements or muscle activity) through visual inspection,

five sets (denoted A-E) of EEG data were selected. Each

set contained 100 single-channel EEG segments of 23.6-sec

duration. Sets A and B consisted of scalp EEG of five healthy

volunteers with eyes open (A) and closed (B), respectively.

The EEG signals in sets C and D were recorded from five

patients during the seizure free intervals. Set C contained the

EEG signals measured in the hippocampus, while the EEG

signals of set D were measured in the epileptogenic zone.

The EEG signals that are recorded during seizures in the

epileptogenic zone were collected in set E. The sampling

frequency is 173.61Hz with using 12bit resolution. A bandpass

filter between 0.53 and 40Hz was used in the processing of

recording. More details can be found in [12]. Fig. 1 shows the

exemplary EEG signals of five sets A-E.
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Fig. 1. Examples of EEG signals from each of the five sets of Bonn University
EEG database.

III. METHODOLOGY

A. Preprocessing

Firstly, the 100 single-channel EEG segments from each

set are integrated into one segment with length of 2360-

sec duration. For obtaining different sample sizes, we then

use two different sliding time windows (1-sec and 2-sec)

without overlap to cut out the integrated EEG segments for

attaining definite one-dimension time EEG fragments (1D-T)

with lengths of 1-sec and 2-sec, respectively. In total, five

integrated EEG segments A-E can obtain 11840 (1-sec) and

5920 (2-sec) samples, respectively.

B. Time-frequency representation

The changes of EEG signal are usually reflected in am-

plitude and frequency. Thus, time-frequency analysis is often

used in abnormal EEG signals for seizure detection [5],

[6]. Waveform transform is a commonly used time-frequency

analysis method. For a EEG fragment x(t), its time-frequency

representation can be generated by using continuous wavelet

transform (CWT), as follows:

TFRx = |CWTx(a, τ)|2

= | 1√
a

∫ +∞

−∞
x(t)ψ∗( t− τ

a
)dt|2 (1)

where ψ and ∗ are the mother wavelet and function of

complex conjugate, respectively. Parameters a and τ denote

the oscillatory frequency and shifting position of the wavelet,

respectively.

After attaining 1D-T signals by preprocessing, we then use

CWT on them to generate the scalograms in time-frequency

representation. In this paper, Morlet is used as mother wavelet

to generate EEG time-frequency representations [6]. The time-

frequency examples of EEG fragments from sets A-E are

showed in Fig. 2.

C. Convolutional neural networks (CNN)

Fig. 3 shows the whole process of the proposed seizure

detection system. Firstly, by preprocessing and time-frequency

transform, we obtain the 1D-T and 2D-TF signals, respec-

tively. Then, 1D-CNN is used for classifying 1D-T signals,

while 2D-CNN is used for classifying the 2D-TF signals.

Finally, the results from two CNNs are showed.

A CNN generally contains three types of layers: convolu-

tional layer, pooling layer and fully connected layer. For a

convolutional layer, it has a number of convolution kernels

(filters) which perform convolution calculations on the input

signals. Filtering results from convolution kernels are then

nonlinearized by activation functions, such as rectified linear

activation unit (ReLU) or Sigmoid functions. The output of

a convolutional layer is usually known as the feature maps.

Pooling layer is also called the down-sampling layer. Max-

pooling operation is currently often used on the output from

convolutional layer, it can preserve the most significant values

from feature maps and improve the distortion tolerance of the

model. After the operation of convolutional layers and pooling

layers, the output is entered into the full connected layer. The

results of classification are then achieved.

In this work, we use two different models (1D-CNN and

2D-CNN) and compare the results for exploring higher per-

formance of seizure classification. About 1D-CNN, it contains

three convolution blocks. Each convolution block consists of

a convolution layer with ReLU as activation function, a batch

normalization layer and a max-pooling layer. The three con-

volution layers have 16, 32 and 64 kernels, respectively, and

kernels of the three convolution layers with same size of 3×1

and same stride of 1. Each batch normalization layer follows

each convolution layer. Following each batch normalization

layer is the max-pooling layer, with pooling size of 2. After

the three convolution blocks, there are three fully connected

layers. The first and second fully connected layers have 128

and 60 neurons with ReLU activation functions, respectively.

The final layer is also known as output layer, and with 2 output

neurons (two classification problem) or 3 output neurons (three

classification problem). The Softmax activation function is

used in the final layer. As showed in Fig. 3(a).

For 2D-CNN, it also contains three convolution blocks.

Each convolution block also consists of a convolution layer

with ReLU as activation function, a batch normalization layer

and a max-pooling layer. The first convolution layer has 16

kernels with size of 3×3 and stride of 1×2. The second and

third convolution layers have 32 and 64 kernels, respectively,

and kernels of the two convolution layers with same size

of 3×3 and same stride of 1×1. Each batch normalization

layer follows each convolution layer. Following each batch
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Fig. 2. Time-frequency representations of 1-sec EEG fragments from each of the five sets with using continuous wavelet transform.
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Fig. 3. Schematic diagram of the overall seizure detection approach with the preprocessing of 1-sec sliding time window. For simplicity, the batch normalization
layers between the convolutional layers and the max-pooling layers are not shown. There are three convolution layers, named C1, C2, and C3. MP means
max-pooling layer, and FC means full connected layer. The convolution kernel and stride are expressed as k and s, respectively.

normalization layer is the max-pooling layer, with pooling size

of 2×2. Following the three convolution blocks are also three

fully connected layers. The first and second fully connected

layers also have 128 and 60 neurons with ReLU activation

functions, respectively. The third layer has 2 output neurons

or 3 output neurons with the Softmax activation function. As

showed in Fig. 3(b).

D. Training and testing of CNN models

The ten-fold cross-validation method is used. All samples

are first randomly divided into ten equal parts. Then, nine parts

out of ten are used to train the CNN, while the remaining one

is used to test the performance of trained CNN. This strategy

is repeated ten times by shifting the test and training dataset.



TABLE I
THE CONFUSION MATRIX OF A VS. E ACROSS ALL TEN-FOLDS

Normal (A) Ictal (E) Normal (A) Ictal (E)
Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%) Predicted (2D-CNN, 1s) ACC (%) SEN (%) SPE (%)

Original
2359 9

99.75 99.87 99.62
2368 0 99.92 99.83 100

3 2365 4 2364

Predicted (1D-CNN, 2s) Predicted (2D-CNN, 2s)
1184 0 99.92 99.83 100 1183 1

99.87 99.83 99.92
2 1182 2 1182

TABLE II
THE CONFUSION MATRIX OF C VS. E ACROSS ALL TEN-FOLDS

Interictal (C) Ictal (E) Interictal (C) Ictal (E)
Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%) Predicted (2D-CNN, 1s) ACC (%) SEN (%) SPE (%)

Original
2343 25

99.01 99.07 98.94
2352 16

99.16 98.99 99.32
22 2346 24 2344

Predicted (1D-CNN, 2s) Predicted (2D-CNN, 2s)
1179 5

98.94 98.31 99.58
1177 7 99.28 99.16 99.41

20 1164 10 1174

TABLE III
THE CONFUSION MATRIX OF A VS. C ACROSS ALL TEN-FOLDS

Normal (A) Interictal (C) Normal (A) Interctal (C)
Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%) Predicted (2D-CNN, 1s) ACC (%) SEN (%) SPE (%)

Original
2288 80

95.50 94.38 96.62
2243 125

93.69 92.65 94.72
133 2235 174 2194

Predicted (1D-CNN, 2s) Predicted (2D-CNN, 2s)
1161 23 97.47 96.88 98.06 1151 33

96.66 96.11 97.21
37 1147 46 1138

TABLE IV
THE CONFUSION MATRIX OF A VS. C VS. E ACROSS ALL TEN-FOLDS

Normal (A) Interictal (C) Ictal (E) Normal (A) Interictal (C) Ictal (E)
Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%) Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%)

Original

2292 76 0 96.26 96.79 95.99 2209 157 2 95.03 93.29 95.90
187 2171 10 95.99 91.68 98.14 191 2161 16 94.69 91.26 96.41
3 12 2353 99.65 99.37 99.79 3 13 2352 99.52 99.32 99.62

Predicted (1D-CNN, 2s) Predicted (2D-CNN, 2s)
1146 36 2 96.96 96.79 97.04 1148 36 0 96.93 96.96 96.92
70 1106 8 96.51 93.41 98.06 71 1107 6 96.59 93.50 98.14
0 10 1174 99.44 99.16 99.58 2 8 1174 99.55 99.16 99.75

TABLE V
THE CONFUSION MATRIX OF AB VS. CD VS. E ACROSS ALL TEN-FOLDS

Normal (AB) Interictal (CD) Ictal (E) Normal (AB) Interictal (CD) Ictal (E)
Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%) Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%)

Original

4550 183 3 96.12 96.07 96.16 4437 290 9 94.85 93.69 95.62
261 4446 29 95.18 93.88 96.04 299 4356 81 93.86 91.98 95.12
12 98 2258 98.80 95.35 99.66 12 57 2299 98.66 97.09 99.05

Predicted (1D-CNN, 2s) Predicted (2D-CNN, 2s)
2309 59 0 97.33 97.51 97.21 2283 83 2 96.96 96.41 97.33
93 2266 9 96.94 95.69 97.78 90 2260 18 96.28 95.44 96.85
6 20 1158 99.41 97.80 99.81 5 29 1150 99.09 97.13 99.58

IV. RESULTS

In this section, the results from two CNN models are

showed, and two-class classification problem and three-class

classification problem are discussed. For two-class classifi-

cation problem, there are three cases discussed, namely A

(normal) vs. E (ictal), C (interictal) vs. E (ictal), A (normal)

vs. C (interictal). For three-class classification problem, two

cases are discussed, namely A (normal) vs. C (interictal) vs.

E (ictal), AB (normal) vs. CD (interictal) vs. E (ictal). The

confusion matrix across all ten-folds in this paper is showed,

and the accuracy (ACC), sensitivity (SEN), and specificity



(SPE) values are calculated.

A. Two-classification problem

Table I reports the classification of A and E. As showed in

Table I, model 2D-CNN with preprocessing of 1-sec sliding

time window and model 1D-CNN with 2-sec sliding time win-

dow have the same top results that the accuracy, sensitivity and

specificity are 99.92%, 99.83% and 100%, respectively. For C

and E, Table II shows that model 2D-CNN with preprocessing

of 1-sec sliding time window has the best result with the

accuracy of 99.28%, sensitivity of 99.16% and specificity of

99.41%. Table III shows the top result from model 1D-CNN

with preprocessing of 1-sec sliding time window, it has the

accuracy of 97.47%, sensitivity of 96.88% and specificity of

98.06%, respectively. From the results, we can see that the

accuracy of A vs. E, C vs. E are all greater than 99%, while

A vs. C only has more than 97% accuracy.

B. Three-classification problem

We also study the performance of the proposed method in

classifying three distinct classes of EEG activities: normal,

interictal, and ictal. Table IV gives the results of A vs. C

vs. E. As it shows, the best overall classification result from

model 2D-CNN with preprocessing of 2-sec sliding time

window. It is observed that a high percentage of 96.96% of

normal EEG signals are correctly classified as normal EEG

signals with 3.04% of the EEG signals wrongly classified as

interictal (3.04%) and ictal (0%) classes. For interictal EEG

signals, only 93.50% of them are correctly classified as the

interictal EEG signals, and a small percentage of 6.00% and

0.50% of them are wrongly classified as normal and ictal,

respectively. Similarly, 99.16% of the ictal EEG signals are

correctly classified as ictal class with 0.84% wrongly classified

as normal (0.17%) and preictal (0.67%) classes.

The classification results of AB vs. CD vs. E are reported

in Table V. Unlike the three classifications mentioned above,

the normal (AB) and interictal (CD) groups have twice as

many samples as the ictal (E) group. Model 1D-CNN with

using 2-sec sliding time window for preprocessing has the

best overall performance. For the normal EEG signals, a high

percentage of 97.51% of them are accurately classified as

the normal class, and a small percentage of 2.49% and 0%
of them wrongly classified as the interictal and ictal classes,

respectively. It is also observed that 95.69% of the interictal

EEG signals are accurately classified as the interictal class

with 4.31% of them are wrongly classified as normal (3.93%)

and ictal (0.38%). Similarly, 97.80% of the ictal EEG signals

are accurately divided into the ictal class with 2.20% wrongly

classified as the normal (0.51%) and interictal (1.69%) classes.

V. DISCUSSION AND CONCLUSION

In this study, we discussed two-classification and three-

classification problems in seizure detection. For exploring

performance of classification, two models (1D-CNN and 2D-

CNN) were used as classifiers. About two-classification prob-

lem, three cases, namely A (normal) vs. E (ictal), C (interictal)

vs. E (ictal), A (normal) vs. C (interictal), were discussed.

About three-classification problem, two cases, namely A (nor-

mal) vs. C (interictal) vs. E (ictal), AB (normal) vs. CD

(interictal) vs. E (ictal), were discussed. For C vs. E and A

vs. C vs. E, the performance of 2D-CNN was better than that

of 1D-CNN, while for A vs. C and AB vs. CD vs. E, the

performance of 1D-CNN was better. For A vs. E, the two

models had the same best performance of classification. As

shown in the five tables, A vs. E had the highest accuracy

of 99.92% in two-classification problem, while A vs. C vs. E

had the best overall classification result in three-classification

problem.

Through preprocessing with using two different sliding

windows (1-sec and 2-sec) for changing sample sizes, the

results showed that two models have the good generalization

and robustness in working well with the benchmark clinical

dataset. The application of CNNs also has minimum feature

engineering. All of these give medical staff more opportunities

to efficiently and accurately detect the seizures, and help

patients to improve the quality of life.
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a b s t r a c t

Epileptic seizure detection using scalp electroencephalogram (sEEG) and intracranial electroencephalo-
gram (iEEG) has attracted widespread attention in recent two decades. The accurate and rapid detection
of seizures not only reflects the efficiency of the algorithm, but also greatly reduces the burden of manual
detection during long-term electroencephalogram (EEG) recording. In this work, a stacked one-
dimensional convolutional neural network (1D-CNN) model combined with a random selection and data
augmentation (RS-DA) strategy is proposed for seizure onset detection. Firstly, we segmented the long-
term EEG signals using 2-s sliding windows. Then, the 2-s interictal and ictal segments were classified by
the stacked 1D-CNN model. During model training, a RS-DA strategy was applied to solve the problem of
sample imbalance, and the patient-specific model was trained with event-based K-fold (K is the number
of seizures per patient) cross validation for detecting all seizures of each patient. Finally, we evaluated the
performances of the proposed approach in the two levels: the segment-based level and the event-based
level. The proposed method was tested on two long-term EEG datasets: the CHB-MIT sEEG dataset and
the SWEC-ETHZ iEEG dataset. For the CHB-MIT sEEG dataset, we achieved 88.14% sensitivity, 99.62%
specificity and 99.54% accuracy in the segment-based level. From the perspective of the event-based
level, 99.31% sensitivity, 0.2/h false detection rate (FDR) and mean 8.1-s latency were achieved. For the
SWEC-ETHZ iEEG dataset, in the segment-based level, 90.09% sensitivity, 99.81% specificity and 99.73%
accuracy were obtained. In the event-based level, 97.52% sensitivity, 0.07/h FDR and mean 13.2-s latency
were attained. From these results, we can see that our method can effectively use both sEEG and iEEG
data to detect epileptic seizures, and this may provide a reference for the clinical application of seizure
onset detection.
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Epilepsy is a chronic neurological disease, which results from
sudden abnormal and synchronous electrical activities of brain
neurons. It has affected nearly 1% of the world’s population, and
about 30% of people with epilepsy are resistant to antiepileptic
drugs [1]. Electroencephalogram (EEG) has become an effective
screening technique in diagnosing epilepsy. Since the manual

detection of seizures by reviewing long-term and continuous EEG
is a time-consuming and laborious task, the automated and timely
detection of seizures can greatly improve diagnostic efficiency and
reduce workload.

EEG-based analysis for the automated detection of seizures has
been widely explored in the last two decades. In the previous
researches about EEG-based seizure detection, the short-term
Bonn EEG dataset [2] and the long-term CHB-MIT scalp EEG (sEEG)
dataset [3] were the two most commonly used datasets [4]. For the
short-term Bonn EEG dataset, many conventional machine learn-
ing and deep learning methods, including Support Vector Machine
(SVM) [5–7], Random Forest (RF) [8], K-Nearest Neighbor (KNN)
[9,10], Artificial Neural Network (ANN) [11], Convolutional Neural
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Networks (CNN) [12–14] and Long-Short Term Memory (LSTM)
[15], have been applied to analyze this dataset for seizure detection
and obtained the accuracy ranging from 88.87% to 100%. Although
these methods achieved high performances on the short-term
Bonn EEG dataset, this benchmark clinical dataset was a small
and special-selected dataset. As stated in [2], the short-term Bonn
EEG dataset consisted of 500 single-channel EEG segments of 23.6-
s duration (200 sEEG segments and 300 intracranial EEG (iEEG)
segments), and each segment was cut out from continuous EEG
recordings after visual inspection. However, in the real world, the
EEG recordings of people with epilepsy usually last from several
hours to several weeks. Therefore, the analysis of long-term and
continuous EEG data for seizure detection may have more practical
significance.

For the long-term CHB-MIT sEEG dataset (24 patients, about
916 h and 198 seizures), an overview of works is briefly intro-
duced. In conventional machine learning methods, the studies
[7,16] used SVM classifiers for seizure detection and achieved the
sensitivity ranging from 96.81% to 97.34% and the specificity rang-
ing from 97.26% to 97.50%. In [17], seven classifiers, including SVM,
Ensemble, KNN, Linear Discriminant Analysis (LDA), Logistic
Regression (LR), Decision Tree (DT) and Naive Bayes (NBs), com-
bined with the strategy of channel selection were used for calssifi-
cation, and the KNN finally achieved the highest accuracy of 84.8%.
In [18], Alickovic et al. applied four classifiers (SVM, RF, Multilayer
perceptron (MLP) and KNN) simultaneously to classify the feature
samples that were extracted by Discrete Wavelet Transform
(DWT), empirical mode decomposition (EMD) and wavelet packet
decomposition (WPD), and an overall accuracy of 100% was finally
achieved in ictal vs. interictal sEEG. However, only 1000 interictal,
1000 ictal and 1000 preictal 8-s segments were specially selected
from the CHB-MIT sEEG dataset for the analysis of seizure detec-
tion, which greatly damaged the integrity of the data. Recently,
several leading deep learning techniques, including CNN, LSTM
and recurrent neural network (RNN), were also applied to the
CHB-MIT sEEG dataset. In [19], 1D-CNN was used to classify the
4-s raw sEEG segments, and it achieved 66.76% sensitivity,
99.63% specificity and 99.07% accuracy. Hossain et al. applied a
7-layer two-dimensional convolutional neural network (2D-CNN)
to classify the time-channel sEEG matrixes, and this approach
obtained an overall sensitivity, specificity and accuracy of 90.00%,
91.65% and 98.05%, respectively [20]. Different from the 2D-CNN
used in [20], Liang et al. achieved an accuracy of 99.00% by using
a 2D-CNN-LSTM model for seizure detection. In this model, 2D-
CNN was used as the feature extraction model for learning the
high-level representations of inputs. The outputs of 2D-CNN were
then fed into LSTM for classification [21]. In [22], a bidirectional
LSTM (Bi-LSTM) network was utilized for the classification of 4-s
sEEG epochs, and the method attained 93.61% sensitivity and
91.85% specificity. The RNNmodel was applied by Yao et al. for sei-
zure detection, and it achieved the averaged sensitivity, specificity
and accuracy of 88.80%, 88.60% and 88.69%, respectively [23].

As mentioned above, many conventional machine learning and
deep learning methods have been applied to the CHB-MIT sEEG
dataset for seizure detection, but many relevant studies only eval-
uated the performances in a segment-based level. In the segment-
based level, many studies concatenated all seizures of a patient
into one seizure, and then the ictal segments cut from the con-
catenated seizure were used for classification, ignoring the detec-
tion of each seizure (the event-based level). From the perspective
of the detection of a seizure or in the event-based level, when
detecting seizures during long-term EEG recoding, an excellent
system should alarm accurately with short latency and low false
detection rate (FDR). Therefore, both levels (the segment-based
level and the event-based level) should be evaluated simultane-

ously in the analysis of long-term EEG recordings for seizure
detection.

In this paper, the long-term sEEG and iEEG recordings are ana-
lyzed for the detection of seizures. In the long-term EEG record-
ings, most of the EEG recordings are in the interictal stage, while
the time duration of a seizure usually ranges from tens of seconds
to several minutes. Consequently, the problem of sample imbal-
ance should be considered and properly resolved in the analysis
of the long-term EEG recodings. The novelty and main contribu-
tions of this paper are summarized as follows:

� Two long-term datasets, the CHB-MIT sEEG dataset and the
SWEC-ETHZ iEEG dataset [24], are analyzed in this paper.
Therefore, the effectiveness of the proposed method in seizure
detection is tested with two different datasets, sEEG and iEEG.

� A stacked 1D-CNN model is proposed in this study. Two differ-
ent parallel 1D-CNNs with different calculation sizes are used to
learn the high-level representations simultaneously. Then, the
diverse features of these two 1D-CNNs are concatenated for
classification.

� Since sample imbalance is a key problem in the long-term EEG
recordings, a random selection and data augmentation (RS-DA)
strategy is proposed to balance samples during the model train-
ing phase.

� To better evaluate the performances of the proposed method,
we evaluate the classification results for each patient in the
two levels: the segment-based level and the event-based level.
In the segment-based level, sensitivity, specificity and accuracy
are calculated. In the event-based level, we calculate the sensi-
tivity, FDR and latency (time duration from the onset of a sei-
zure to its detection).

The remaining of this paper is organized as follows: Section 2
describes the materials and the proposed method. Results are
showed in Section 3. Discussion and conclusion are given in Sec-
tion 4 and Section 5, respectively.

2. Materials and methods

In this section, we first describe two long-term EEG datasets
(the sEEG dataset and the iEEG dataset). Then, we present the pro-
posed method including preprocessing, CNNmodel, model training
and system evaluation.

2.1. Data preparation

The CHB-MIT sEEG dataset (https://archive.physionet.org/phys-
iobank/database/chbmit/) [3] and the SWEC-ETHZ iEEG dataset
(https://ieeg-swez.ethz.ch) [24] were used for the analysis of sei-
zure detection.

The CHB-MIT sEEG dataset consists of 916 h of sEEG and 198
seizures. The sEEG recordings from 24 patients are recorded at a
sampling rate of 256 Hz, and most of recordings contain 23 chan-
nels [3]. In this study, 24 h of interictal sEEG data (all if less than
24 h) were selected for each patient. The selection criteria of sei-
zures were as follows: (1) If the time interval between two seizures
was short (less than 20 min), the two seizures were concatenated
into one seizure, (2) A concatenated seizure or a raw seizure lasting
more than 10 s was chosen, and so seizures which lasted less than
10 s were not considered. The details of the selected sEEG signals
were summarized in Table 1.

In the SWEC-ETHZ iEEG dataset, it contains 2565 h of iEEG and
116 leading seizures from 18 patients. The sampling rate is 512 or
1024 Hz, and the number of iEEG channels ranges from 24 to 128.
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More details of this dataset can be found in [24]. For this dataset,
we also selected 24 h of interictal iEEG for each patient. The selec-
tion criteria for seizures were the same as described in the CHB-
MIT sEEG dataset. Then, the selected iEEG signals were uniformly
down-sampled to 256 Hz (same sampling rate as the CHB-MIT
sEEG dataset). We summarized the details of the selected iEEG sig-
nals in Table 2.

2.2. Methodology

2.2.1. Preprocessing
Before training and testing the proposed model, we need to

generate a certain number of samples. In the preprocessing, 2-s
sliding windows were applied to segment the long-term EEG sig-
nals (as shown in Fig. 1). Since a seizure lasted from tens of seconds
to several minutes (as shown in Tables 1 and 2), the size of 2-s ictal

segments was very small. In order to generate more ictal segments,
2-s sliding windows with the corresponding overlap ratio were
used to segment the raw ictal EEG signals only during the model
training phase. The overlap ratio ranged from 0.75 to 0.9 (depend-
ing on the number and the time duration of seizures). For example,
the ictal segments from patients 6 and 16 in Table 1 and patient 5
in Table 2 were obtained with the overlap ratio of 0.9, while the
ictal segments from patient 15 in Table 1 and patient 1 in Table 2
were attained with the overlap ratio of 0.75. In obtaining 2-s inter-
ictal segments, we used 2-s sliding windows without overlap. The
preprocessing in obtaining the segments of interictal and ictal sig-
nals is illustrated in Fig. 1.

Due to the sampling rate of 256 Hz, one 2-s EEG segment can be
regarded as a matrix of n �512, where n is the number of channels
of each patient, and 512 is the number of sampling points. In this
study, the 2-s EEG segments were used as the direct inputs of
the proposed 1D-CNN model.

2.2.2. Convolutional neural networks (CNN)
CNN is generally composed of convolutional layers, pooling lay-

ers and fully connected layers. A convolutional layer contains a cer-
tain number of convolution kernels and performs convolution
calculations on the input signals. The convolution results are then
nonlinearized by activation functions. In our 1D-CNN model, the
rectified linear activation unit (ReLU) was used in convolutional
layers. The pooling layer is also called the down-sampling layer,
which performs pooling operations on the outputs of the convolu-
tional layer to preserve higher-level representations. Pooling pro-
cesses including maximum pooling and global average pooling
were used in our model. After the signals pass through convolu-
tional layers and pooling layers, the high-level features are usually
fed into fully connected layers for the final classification.

In this work, a stacked 1D-CNN model was proposed for seizure
detection. As shown in Fig. 2, it has two parallel blocks, and the
EEG segments are sent to both blocks at the same time. The two
blocks are named Block 1 and Block 2, respectively. The Block 1 con-
tains three convolutional blocks. The first convolutional block con-
sists of a convolutional layer (32 kernels with the size of n � 3 and
the stride of 2, where n is the number of channels), a batch normal-
ization (BN) layer and a max-pooling (MP) layer (the pooling size of
3 and the stride of 1). In the second convolutional block, it includes
a convolutional layer with 64 kernels (the size of 3 and the stride of
2), a BN layer and a MP layer with the pooling size of 3 and the
stride of 1. The third convolutional block also contains a convolu-
tional layer (128 kernels with the size of 3 and stride of 1), a BN
layer and a MP layer with the pooling size of 3 and the stride of
1. The structure of the Block 2 is the same as that of the Block 1,
and the only difference is the size of convolution kernels in the first
and second convolution layers. In the Block 2, the kernel sizes of
these two layers are n � 5 and 5, respectively. At the end of the
Block 1 and the Block 2, the learned high-level representations
are concatenated. Then, the concatenated features are globally
averaged as the inputs of two fully connected layers. The first fully

Table 1
Details of the selected sEEG singals from the CHB-MIT sEEG dataset.

Patient # Channels Interictal (h) # Seizures mean ± std (s)⁄

1 23 24 7 63 ± 30
2 23 24 3 57 ± 41
3 23 24 7 57 ± 8
4 23 24 4 94 ± 31
5 23 24 5 111 ± 9
6 23 24 10 15 ± 3
7 23 24 3 108 ± 30
8 23 15 5 184 ± 49
9 23 24 3 68 ± 9
10 23 24 7 64 ± 17
11 23 24 3 268 ± 418
12 23 12 10 96 ± 69
13 18 24 8 67 ± 55
14 23 19 7 24 ± 12
15 24 24 14 142 ± 98
16 18 13 6 14 ± 9
17 23 18 3 98 ± 15
18 23 24 5 63 ± 13
19 23 24 3 79 ± 2
20 23 23.3 6 49 ± 22
21 23 24 4 50 ± 28
22 23 24 3 68 ± 9
23 23 23 5 85 ± 60
24 23 12.3 14 36 ± 23

Total 518.6 145

⁄ Mean and standard deviation of the time duration of seizures per patient.

Table 2
Details of the selected iEEG signals from the SWEC-ETHZ iEEG dataset.

Patient # Channels Interictal (h) # Seizures mean ± std (s)

1 88 24 2 601 ± 17
2 66 24 2 88 ± 2
3 64 24 4 64 ± 4
4 32 24 14 41 ± 14
5 128 24 4 16 ± 1
6 32 24 8 45 ± 33
7 75 24 4 69 ± 38
8 61 24 7 219 ± 176
9 48 24 17 67 ± 47
10 32 24 16 75 ± 21
11 32 24 2 91 ± 11
12 56 24 9 146 ± 33
13 64 24 7 102 ± 61
14 24 24 16 96 ± 39
15 98 24 2 94 ± 35
16 34 24 5 190 ± 51
17 60 24 2 97 ± 1
18 42 24 5 199 ± 100

Total 432 126

Fig. 1. For interictal EEG signals, we used 2-s sliding windows without overlap. For
ictal EEG signals which were selected as the training set, we used 2-s sliding
windows with the corresponding overlap ratio (0.75–0.9).
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connected layer has 128 neurons with ReLU function. The second
fully connected layer is the output layer with 2 neurons with Soft-
max function. According to the 1D-CNN model, the number of cal-
culation parameters and the output shape in each layer are
summarized in Table 3.

For the outputs from the stacked 1D-CNN model, a simple post-
processing was performed for accurately detecting a seizure and
sounding an alarm (as shown in Fig. 2). In order to sound an alarm
accurately and reliably, it must meet a condition that L consecutive
detection labels were positive. The value of L ranged from 2 to 5,
and the final L value was determined according to the classification
results. In theory, when the L value increases, the FDR decreases
and the latency of an alarm becomes longer. To avoid unnecessary
repeated alarms, we should set the minimum time interval (MTI)
between two alarms. In this work, the averaged time duration of
seizures of each patient was set as the MTI between two alarms
for each patient. Therefore, when the first alarm sounded, in the
following MTI, the second alarm was prohibited.

2.2.3. Model training
The patient-specific model was trained for each patient. For

detecting all seizures of each patient, the approach of event-
based K-fold cross validation was used, where K was the number
of seizures per patient. If a subject has K seizures, the model train-
ing is performed K rounds. In each round, (K-1) seizures are
selected for training, and the remaining one is used for testing
(as shown in Fig. 3).

Since the time duration of interictal EEG is about 50 to 1300
times longer than that of ictal EEG among different patients (as
shown in Tables 1 and 2), the sample imbalance is a key problem
in this work. In order to solve the problem during model training,
we proposed a RS-DA strategy. As shown in Fig. 3, we augmented
(K-1) ictal seizures by using the oversampling technique men-
tioned in the preprocessing (Section 2.2.1). However, the size of
the augmented ictal segments was still much smaller than that
of interictal segments. Therefore, the random selection was per-
formed on interictal segments. We first divided interictal segments
into K equal parts. Then, an equal number of interictal segments
were randomly selected from (K-1) parts to make the size of the
selected interictal segments equal to that of the augmented ictal
segments. Finally, the selected interictal segments and the aug-
mented ictal segments were used to train (80%) and monitor
(20%) the model during model training. The remaining segments
(one interictal part and one seizure) were used to evaluate the
trained model. Through this way, all interictal segments and sei-
zures could be tested without repetition after K rounds.

During model training, the Early-Stopping technique was also
used to prevent overfitting, and the dropout rate of the second fully
connected layer was set to 0.25. Based on Keras 2.3.1 with
Tensorflow-1.15.0 backend, our model was implemented in Python
3.6, and one Nvidia Tesla P100 GPU was configured to run the pro-
posed model.

2.2.4. System evaluation
We evaluated the performances of the proposed method in the

two levels: the segment-based level and the event-based level.

� Segment-based level

In the segment-based level, sensitivity, specificity and accuracy
were calculated to evaluate the classification of EEG segments. The
three metrics can be expressed as follows:

Sensitivity ¼ TP
TP þ FN

ð1Þ

Specificity ¼ TN
TN þ FP

ð2Þ

Table 3
In the proposed 1D-CNN model, the number of calculation parameters and the output
shape in each layer are summarized as below. f � n is the size of the input matrix,
where f is equal to 512, and n (18 to 128) is the number of EEG channels.

Layer and type Output shape # Parameters

Input f � n 0
2 * Conva 2 * (f/2 � 32) 4672–32832b

2 * (BN + MP)a 2 * (f/2 � 32) 256
2 * Conv 2 * (f/4 � 64) 16512
2 * (BN + MP) 2 * (f/4 � 64) 512
2 * Conv 2 * (f/4 � 128) 49408
2 * (BN + MP) 2 * (f/4 � 128) 1024
GAP 256 0
Dense 128 32896
Dense 2 258

Total 105538–133698

a Two parallel layers.
b The number is related to the value of n (18 to 128).

Fig. 2. A stacked 1D-CNN model was proposed for seizure detection. M@n � k1 or
M@k2: M is the number of kernels, n � k1 and k2 are the sizes of convolutional
kernels. Abbreviations: Conv, convolution; BN, batch normalization; MP, max-
pooling; s1, pooling size; s2, stride; GAP, global average pooling; FC, fully connected.
L is the number of consecutive detection labels for an alarm.
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Accuracy ¼ TP þ TN
TP þ FN þ TN þ FP

ð3Þ

where TP is true positive, indicating the number of true detected
ictal segments from ictal segments; FN is false negative, indicating
the number of ictal segments which are wrongly classified as inter-
ictal segments; TN is true negative, indicating the number of true
detected interictal segments from interictal segments; FP is false
positive, indicating the number of interictal segments which are
wrongly classified as ictal segments. Sensitivity is the percentage
of true detected ictal segments to total ictal segments, and speci-
ficity is the percentage of true detected interictal segments to total
interictal segments. An excellent classifier should have high sensi-
tivity and specificity at the same time.

� Event-based level

In the event-based level, we calculated the three metrics: sensi-
tivity, FDR and latency. Sensitivity and FDR can be expressed by the
following two formulas:

Sensitiv ity ¼ number of correctly detected seizures
number of all seizures

ð4Þ

FDR ¼ number of incorrect detections
hours of interictal EEG

: ð5Þ

Latency is the time duration between the onset of a seizure and
its detection. Fig. 4 shows an example of a false detection, a correct
detection and its latency. An outstanding system should have high
sensitivity with short latency and low FDR.

3. Results

The results from the CHB-MIT sEEG dataset and the SWEC-ETHZ
iEEG dataset are given in this section. The performances of the pro-
posed method are evaluated in the two levels at the same time. In
the segment-based level, the averaged results (sensitivity, speci-
ficity and accuracy) are calculated for each patient. In the event-
based level, the sensitivity, the FDR and the averaged latency of
an alarm are calculated.

3.1. Results of CHB-MIT sEEG dataset

Table 4 shows the results of each patient in the two levels after
event-based K-fold cross validation. As shown in Table 4, in the
segment-based level, the overall sensitivity, specificity and accu-
racy are 88.14%, 99.62% and 99.54%, respectively. The accuracy of
most patients (except patients 8, 12, 13 and 24) is higher than
99%, and that of all patients is higher than 98%. In the event-
based level, 144 out of 145 seizures (except one seizure of patient
16) are accurately detected, with a sensitivity of 99.31%. The over-

Fig. 3. Event-based K-fold cross validation combined with a RS-DA strategy is applied during model training. If a subject has K seizures, the model training is performed K
rounds. In each round, one seizure and one interictal part are used as the testing sets, and the remaining (K-1) seizures and (K-1) interictal parts are used as the training sets.
After K rounds, all seizures and interictal EEG can be tested without repetition.
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all FDR is 0.2/h, and 7 patients (2, 4, 5, 10, 11, 14 and 19) have a
FDR of 0/h. The overall latency is 8.1 s, and the patient 22 has
the longest averaged latency of 14.7 s.

The value of L is related to sensitivity, FDR and latency in the
event-based level. We also calculate these three metrics under dif-
ferent L values. In this work, the value of L ranges from 2 to 5. As
shown in Fig. 5(a), we can see that, as the value of L increases,
the overall sensitivity and FDR show a decreasing trend, but the
overall latency of an alarm shows an increasing trend. When the
value of L is 5, the overall sensitivity and FDR are the lowest
(93.53% and 0.04/h, respectively), and the overall latency is the
longest, at 13 s.

3.2. Results of SWEC-ETHZ iEEG dataset

Based on the analysis of the SWEC-ETHZ iEEG dataset, Table 5
also gives the results of each patient in the two levels after
event-based K-fold cross validation. In the segment-based level,
the overall sensitivity of 90.09%, specificity of 99.81% and accuracy
of 99.73% are achieved. The accuracy of all patients is higher than
99%. In the event-based level, 123 out of 126 seizures (except one
seizure in patients 4, 6 and 7) are correctly detected, and its sensi-
tivity is 97.52%. The low overall FDR is 0.07/h, and the FDR of 10
patients (1, 6 and 9 to 16) is 0/h. The overall latency of an alarm
is 13.2 s, and the longest averaged latency is 52.3 s for patient 8.

The overall sensitivity, FDR and latency with different L values
are also calculated in the event-based level. In Fig. 5 (b), as the L
value increases from 2 to 5, the sensitivity and FDR also show a
general downward trend, but the overall latency has a upward
trend. When the L value is equal to 4 or 5, the overall sensitivity
and FDR are the lowest, at 96.41% and 0.02/h, respectively. The
longest overall latency is 18.1 s when the L value is 5.

4. Discussion

In this work, we proposed a stacked 1D-CNN model combined
with the RS-DA strategy for seizure detection. The details of previ-
ous studies and this work, including the number of patients, pro-
cessing and the corresponding metrics were summarized in
Table 6 (the segment-based level) and Table 7 (the event-based
level). Since the long-term SWEC-ETHZ iEEG dataset was available
from 2019[24], we compared the results only based on the CHB-
MIT sEEG dataset.

As shown in Table 6, the conventional machine learning meth-
ods, including LDA [25], Extreme Learning Machine (ELM) [26],
SVM [7,16,27], RF [28], ANN [29] and KNN [17,30], were appiled
for seizure detection. The accuracy obtained by these methods ran-
ged from 84.8% to 99.41 %, and the highest accurcy of 99.41% was
achived by the RF in [28]. The deep learning methods, such as CNN
[19,20,31–33], autoencoders [34–37], LSTM [21,22] and RNN [23],
achieved the accuracy ranging from 84.00 % to 99.33%, and the
stacked 2D-CNN used in [33] attained the highest accuracy of

99.33%. In this work, the proposed approach achieved the accuracy
of 99.54% and 99.73% for the CHB-MIT sEEG dataset and the SWEC-
ETHZ iEEG dataset, respectively. Therefore, from the perspective of
the accuracy, the performance of our method was better than that
of most previous studies in Table 6, and this proved that the pro-
posed stacked 1D-CNN was effective.

From the perspective of the sensitivity (in the segment-based
level), although the studies [7,16] attained higher sensitivities at
96.81% and 97.34%, respectively, the time-consuming and complex
feature extraction and selection engineering was applied. The
other three studies [28,30,32] achieved the high sensitivity of
97.91%, 96.66% and 98.84%, respectively, but one reason for the
high sensitivity was that it used the oversampling technique to
generate more ictal samples for classification. Because of the over-
lapping information between these augmented ictal samples, in
some sense, their classification was a repeated classification of
similar samples. Therefore, in [28,32,30], the high sensitivity was
overestimated. Different from the studies [28,32,30], in our work,
the oversampling technique was only used during the model train-
ing phase, and the ictal samples that were selected as the testing
set were obtained without oversampling. In fact, the number of
raw ictal samples is small (it can be seen from Tables 1 and 2 min-
imal amount of misclassification can greatly reduce the sensitivity.
Hence, as shown in Table 6, the 88.14% sensitivity of our work was
relatively high.

In the event-based level, the results of this work and previous
studies using the CHB-MIT sEEG dataset were summarized in
Table 7. The threshold method [38] and the conventional machine
learning methods including SVM [3,16,39], Neural Network Classi-
fier based on Improved Particle Swarm Optimization (IPSONN)
[40], Relevance Vector Machine (RVM) [41] and Adaptive
Distance-based Change-point Detector (ADCD) [42] were applied
for the detection of seizures. These methods achieved the sensitiv-
ity of 88.5% to 98.47% and the FDR of 0.08/h to 0.63/h, and the high-
est sensitivity of 98.47% was obtained using an SVM group with ten
SVMs in [16]. Deep learning methods, including CNN [31,43], Deep
Recurrent Neural Network (DRNN) [44] and AE [45], were used to
analyze the same dataset for seizure detection, and the sensitivity
ranging from 86.29% to 100% and the FDR ranging from 0.08/h to
0.74/h were achieved. Our method also showed the high perfor-
mances: (1) the sensitivity of 99.31% and the FDR of 0.2/h for the
CHB-MIT sEEG dataset; (2) 97.52% sensitivity and 0.07/h FDR for
the SWEC-ETHZ iEEG dataset. Hence, under the event-based level,
our method also performed better than most of the methods in
Table 7.

In [44], a sensitivity of 100% was attained, but only 5 out of 24
patients were used for the detection of seizures. The detection of
seizures with short latency (less than 20 s) can early eliminate
symptoms of the seizures [46,47]. Although the averaged latencies
(8.1 s and 13.2 s) of the CHB-MIT and the ETHZ-SWEC EEG datasets
were slightly longer than those in Table 7, they were still in the
acceptable range.

Fig. 4. Event-based level: the example of a false detection, a correct detection and its latency.
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As the results shown in Tables 6 and 7, our method showed
high performances in the two levels, and it performed better
than most of the methods in Tables 6 and 7. Moreover, the pro-
posed method was effective for both datasets, the sEEG and the
iEEG. According to our work, there are several highlights that
need to be emphasized. Firstly, a 1D-CNN model is used in this
study, which can be directly applied for the classification of raw
EEG signals without additional preprocessing of EEG signals,
such as frequency domain analysis and time–frequency domain

analysis. Secondly, in order to obtain more different high-level
representations for a better classification, we proposed a stacked
1D-CNN model consisting of two parallel 1D-CNN blocks. The
two parallel 1D-CNN blocks with different calculation sizes can
learn different high-level representations at the same time, and
the diverse features of these two 1D-CNN blocks are then con-
catenated for the further analysis. Thirdly, the RS-DA strategy
is first utilized to solve the problem of sample imbalance during
model training.

Table 4
In the CHB-MIT sEEG dataset, results of each patient are given in the two levels. L = 3 is finally selected for the event-based level.

Patient # Seizures K-Fold Segment-based level Event-based level

Sen1 (%) Spe (%) Acc (%) Sen2 (%) FDR (/h) Lat (s)

1 7 98.00 99.82 99.81 100 0.04 6.3
2 3 91.73 99.90 99.88 100 0 8.7
3 7 99.00 99.84 99.84 100 0.08 6.3
4 4 85.89 99.78 99.73 100 0 8
5 5 97.05 99.91 99.89 100 0 7.2
6 10 86.46 99.73 99.71 100 0.04 8
7 3 92.65 99.93 99.89 100 0.04 7.3
8 5 91.99 98.91 98.77 100 0.6 7.6
9 3 95.10 99.91 99.90 100 0.08 8
10 7 92.45 99.88 99.84 100 0 6.3
11 3 99.02 99.92 99.90 100 0 6
12 10 81.06 98.69 98.17 100 1.42 10
13 8 76.41 99.09 98.92 100 0.79 9.8
14 7 70.16 99.46 99.39 100 0 8.6
15 14 94.98 99.36 99.25 100 0.33 7.7
16 6 69.96 99.56 99.50 83.33 0.08 7.6
17 3 85.02 99.61 99.55 100 0.17 8
18 5 81.15 99.65 99.58 100 0.17 7.6
19 3 92.31 99.91 99.89 100 0 6
20 6 82.58 99.64 99.59 100 0.17 9.7
21 4 97.48 99.66 99.65 100 0.17 6
22 3 89.94 99.95 99.93 100 0.04 14.7
23 5 96.53 99.62 99.59 100 0.61 6
24 14 68.43 99.19 98.82 100 0.08 12.6

Total 145 88.14 99.62 99.54 99.31 0.20 8.1

Abbreviations: Sen1, segment-based sensitivity; Spe, specificity; Acc, accuracy; Sen2, event-based sensitivity; FDR, false detection rate; Lat, latency.

Fig. 5. In the event-based level, the value of L ranges from 2 to 5. (a) For the CHB-MIT sEEG dataset, the overall sensitivity, FDR and latency are showed. (b) For the SWEC-
ETHZ iEEG dataset, the overall sensitivity, FDR and latency are showed. L = 3 is finally selected for the event-based level in this work.
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However, one limitation of this study is that only a 1D-CNN
model is applied. Other deep learning models, such as 2D-CNN
and LSTM, combined with the RS-DA strategy can also be applied
to the same datasets for more detailed comparisons. Another lim-
itation is that we ignore the use of epilepsy-related EEG features
for seizure detection. The EEG features, including statistical param-
eters, frequency or time–frequency domain features, entropies,
etc., can be extracted and incorporated as the input to the 1D-
CNN model. By this method, it may improve the results of seizure
detection. In the future work, this highlight can be further analyzed
and discussed.

5. Conclusion

In this paper, we presented a stacked 1D-CNN model for the
detection of seizure onset. In this model, two parallel 1D-CNN
blocks with different calculation sizes were used to learn the
high-level representations of the EEG inputs simultaneously. The
outputs of these two parallel 1D-CNN blocks were then concate-
nated for the final classification. Since the sample imbalance was
a key issue in the long-term epileptic EEG recordings, a RS-DA
strategy combined with the event-based K-fold cross validation
was proposed for balancing samples during model training. In this

Table 5
In the SWEC-ETHZ iEEG dataset, results of each patient are given in the two levels. L = 3 is finally selected for the event-based level.

Patient # Seizures K-Fold Segment-based level Event-based level

Sen1 (%) Spe (%) Acc (%) Sen2 (%) FDR (/h) Lat (s)

1 2 93.59 99.94 99.85 100 0 10
2 2 97.67 99.86 99.85 100 0.13 9
3 4 100 99.88 99.88 100 0.17 6
4 14 75.56 99.31 99.19 92.86 0.13 12.8
5 4 100 99.67 99.67 100 0.33 6
6 8 81.61 99.96 99.80 87.50 0 6.6
7 4 70.53 99.89 99.84 75.00 0.04 14
8 7 78.93 99.53 99.04 100 0.04 52.3
9 17 98.64 99.84 99.83 100 0 7.3
10 16 96.44 99.95 99.89 100 0 6.9
11 2 100 99.99 99.99 100 0 6
12 9 97.04 99.80 99.77 100 0 9.6
13 7 86.55 99.85 99.78 100 0 11.4
14 16 94.87 99.61 99.49 100 0 6.8
15 2 94.52 99.98 99.97 100 0 14
16 5 96.44 99.94 99.90 100 0 13.2
17 2 85.57 99.81 99.78 100 0.17 22
18 5 73.70 99.68 99.53 100 0.21 24.4

Total 126 90.09 99.81 99.73 97.52 0.07 13.2

Table 6
Segment-based level: list of previous studies and this work using the CHB-MIT sEEG dataset for seizure detection.

Author Year Dataset Processing # Patients Sen (%) Spe (%) Acc (%)

Khan et al. [25] 2012 CHB-MIT Multiple wavelet scales + LDA 5 83.6 100.0 91.8
Ammar et al. [26] 2016 CHB-MIT DWT + ELM 3 – – 94.85
Janjarasjitt et al. [27] 2017 CHB-MIT Wavelet based features + SVM 24 72.99 98.13 96.87
Yuan et al. [34] 2017 CHB-MIT STFT + SSDA 9 – – 93.82
Bhattacharyya et al. [28] 2017 CHB-MIT Channel selection, EWT + RF 23 (177 h) 97.91 99.57 99.41
Yuan et al. [35] 2018 CHB-MIT STFT, ChannelAtt + SSDA 9 – – 96.61
Wen et al. [36] 2018 CHB-MIT Channel selection + CNN-AE 24 – – 92
Boonyakitanont et al. [19] 2019 CHB-MIT DWT, feature extraction, normalization + 1D-CNN 24 records+ 66.76 99.63 99.07
Yuan et al. [37] 2019 CHB-MIT Data augmentation, STFT + CNN-AE 24 – – 94.37
Hossain et al. [20] 2019 CHB-MIT 2D array (time * channels) + 2D-CNN 23 90.00 91.65 98.05
Liang et al. [21] 2019 CHB-MIT 2D array (time * channels) + 2D-CNN-LSTM 24 84.00 99.00 99.00
Wei et al. [31] 2019 CHB-MIT MIDS, WGANs + 1D-CNN 24 72.11 95.89 84.00
Tian et al. [32] 2019 CHB-MIT Oversampling, FFT, WPD + 2D-CNN, 3D-CNN 24 96.66 99.14 98.33
Yao et al. [23] 2019 CHB-MIT Windowing + IndRNN 24 88.80 88.60 88.69
Cao et al. [33] 2019 CHB-MIT STFT, MAS, AWF + S-2D-CNN 24 – – 99.33
Zabihi et al. [29] 2020 CHB-MIT Phase space, nullcline + LDA-ANN 23 (171 h) 91.15 95.16 95.11
Li et al. [30] 2020 CHB-MIT Channel selection, NMD, FCM, + KNN 24 98.40 99.01 98.61
Hu et al. [22] 2020 CHB-MIT LMD, statistical feature extraction + Bi-LSTM 24 93.61 91.85 –
Zarei et al. [7] 2021 CHB-MIT OMP, DWT, Non-linear features + SVM 23 96.81 97.26 97.09
Li et al. [16] 2021 CHB-MIT EMD, CSP + an SVM group consisting of ten SVMs 24 97.34 97.50 97.49
Shoka et al. [17] 2021 CHB-MIT Variance channel selection + KNN 23 – – 84.8
This work 2021 CHB-MIT 2D array (time * channels), RS-DA strategy + S-1D-CNN 24 88.14 99.62 99.54
This work 2021 SWEC-ETHZ 2D array (time * channels), RS-DA strategy + S-1D-CNN 18 90.09 99.81 99.73

STFT, short-time Fourier transform; SSDA, stacked sparse denoising autoencoders; EWT, empirical wavelet transform; ChannelAtt, channel-aware attention mechanism;
CNN-AE, convolutional autoencoder; MIDS, merger of the increasing and decreasing sequences; WAGNs, wasserstein generative adversarial nets; FFT, fast Fourier transform;
3D-CNN, three-dimensional CNN; IndRNN, independently RNN; MAS, mean amplitude of spectrum map; AWF, adaptive and discriminative feature weighting fusion; S-2D-
CNN, stacked 2D-CNN; S-1D-CNN, stacked 1D-CNN; NMD, nonlinear mode decomposition; FCM, fractional central moment; LMD, local mean decomposition; OMP,
orthogonal matching pursuit; CSP, common spatial pattern.
+The CHB-MIT sEEG dataset contains a total of 686 records, while one record of each patient is selected.
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way, we tested all samples of the selected EEG without abandoning
the interictal samples. The proposed method was evaluated on two
long-term EEG datasets (the CHB-MIT sEEG dataset and the SWEC-
ETHZ iEEG dataset) at the same time. To better evaluate the perfor-
mances of the proposed method, two kinds of evaluation levels
(the segment-based level and the event-based level) were calcu-
lated. For the CHB-MIT sEEG dataset, in the segment-based level,
an accuracy of 99.54% was achieved. In the event-based level,
144 out of 145 seizures were accurately detected with 0.2/h FDR
and 8.1-s latency. For the SWEC-ETHZ iEEG dataset, an accuracy
of 99.73% was obtained in the segment-based level. In the event-
based level, 123 out of 126 seizures were correctly detected with
0.07/h FDR and 13.2-s latency. Moreover, the selection of the L
value was significant in the event-based level, and L = 3 was finally
selected in this work. Based on the results obtained, the proposed
method showed that it could perform well in the seizure detection
with both sEEG and iEEG data. The theoretical contribution of our
work may provide more epilepsy patients with the opportunity to
possess a seizure detection device in clinical applications.
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Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention

during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous

studies generally used the iEEG signals of all channels to predict seizures, ignoring the consideration of

channel selection. In this study, a method of one dimensional convolutional neural networks (1D-CNN)

combined with channel selection strategy was proposed for seizure prediction. Firstly, we used 30-sec

sliding windows to segment the raw iEEG signals. Then, the 30-sec iEEG segments, which were in three

channel forms (single channel, channels only from seizure onset or free zone and all channels from seizure

onset and free zones), were used as the inputs of 1D-CNN for classification, and the patient-specific

model was trained. Finally, the channel form with the best classification was selected for each patient.

The proposed method was evaluated on the Freiburg Hospital iEEG dataset. In the situation of seizure

occurrence period (SOP) of 30 min and seizure prediction horizon (SPH) of 5 min, 98.60% accuracy,

98.85% sensitivity and 0.01/h false prediction rate (FPR) were achieved. In the situation of SOP of 60

min and SPH of 5 min, 98.32% accuracy, 98.48% sensitivity and 0.01/h FPR were attained. Compared

with the many existing methods using the same iEEG dataset, our method showed a better performance.

Keywords: Epilepsy; Seizure prediction; Intracranial electroencephalogram (iEEG); Convolutional neural
network (CNN); Channel selection.

1. Introduction

Epilepsy is a chronic neurological disease, which pre-

disposes a person to recurrent seizures. About 50

million people suffer from epilepsy, and 30% of them

are resistant to anti-epileptic drugs.1,2 Clinical refrac-

tory epilepsy is commonly associated with the risks

††Corresponding authors
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of fainting, injury and death.3 Electroencephalogram

(EEG) has become a powerful technique in epilepsy

diagnosis,4–6 and many EEG-based methods, includ-

ing threshold analysis,7,8 Support Vector Machine

(SVM),9,10 k-Nearest Neighbor (KNN),11 Random

Forest (RF),12 Linear Classifier13 and deep learn-

ing,14–16 have been successfully applied for seizure

detection. However, seizure prediction using EEG

remains one of the main challenges. The accurate

prediction of seizures and timely interventions can

greatly reduce the suffering of epilepsy patients.

The previous EEG-based seizure prediction methods

mainly consisted of threshold analysis, conventional

machine learning and deep learning.

Firstly, the methods of linear or nonlinear fea-

tures combined with threshold analysis were applied

to the seizure prediction. Maiwald et al. used the dy-

namical similarity index as the nonlinear feature and

evaluated the approach on the Freiburg Hospital in-

tracranial electroencephalogram (iEEG) dataset.17A

sensitivity of 42% and a false prediction rate (FPR)

of less than 0.15/h were achieved.17 With the same

iEEG dataset, Winterhalder et al. combined phase

and lag synchronization measure to evaluate the

changes of iEEG synchronization and obtained a

result of 60% sensitivity and 0.15/h FPR.18 Based

on the combination of bivariate empirical mode de-

composition and Hilbert transformation, Zheng et

al. calculated the mean phase coherence from mul-

tiple iEEG channels. This method achieved a sen-

sitivity of more than 70% and a FPR of less than

0.15/h.19 Then, Eftekhar et al. combined symbol dy-

namics methodologies with an N-gram algorithm for

seizure prediction and obtained 90.95% sensitivity

and 0.06/h FPR.20 Aarabi et al. extracted correlation

dimension, correlation entropy, noise level, Lempel-

Ziv complexity, largest Lyapunov exponent and non-

linear interdependence as the features, and the rule-

based decision making technique was used for clas-

sification. The proposed method obtained a better

result of 92.9% sensitivity and 0.096/h FPR in the

situation of seizure occurrence periods (SOP) of 50

min and seizure prediction horizon (SPH) of 10 s.21

Although the performances of the threshold analysis

methods have been improved to some extent, there

is still room for the further improvement.

Secondly, the conventional machine learning

methods were also used for seizure prediction. Park

et al. used the SVM to classify the feature samples

extracted from nine frequency bands of iEEG signals.

The method was evaluated on the Freiburg Hospital

iEEG dataset, and a sensitivity of 97.5% and a FPR

of 0.27/h were achieved.22 Williamson et al. calcu-

lated the principal components from the eigenspec-

tra of space-delay correlation and covariance matrices

for feature extraction. The SVM finally predicted 71

out of 83 seizures (85.54% sensitivity) with a FPR of

0.03/h using the same iEEG dataset.23 Ozdemir et al.

used Hilbert-Huang transform for feature extraction

and Bayesian network for classification. A result of

96.55% sensitivity and 0.21/h FPR was obtained.24

Then, Parvez et al. extracted phase-match error, de-

viation and fluctuation as the features and used Least

Square-Support Vector Machine (LS-SVM) for classi-

fication. The method attained a result of 95.4% sen-

sitivity and 0.36/h FPR.25 Based on the analysis of

ictal rules on Poincaré plane for feature extraction,

Sharif et al. applied the SVM for classification and

achieved a sensitivity of 91.8% to 96.6% and a FPR

of 0.05/h to 0.08/h.26 Although the conventional ma-

chine learning methods were used in the seizure pre-

diction, the feature extraction and selection of iEEG

signals was a time-cosuming engineering, and it also

had the low generalization. Therefore, the feature en-

gineering techniques were commonly complex in the

analysis of iEEG signals for seizure prediction.

Recently, deep leaning techniques have shown ex-

cellent performances in image recognition,27,28 image

retrieval,29 multi-object tracking30,31 and foreground

detection,32,33 and iEEG-based deep learning tech-

niques have also been applied for seizure prediction.

Truong et al. used Short-Time Fourier Transform

(STFT) to attain the iEEG time-frequency input

maps and utilized Two Dimensional Convolutional

Neural Networks (2D-CNN) with three convolution

blocks for classification. Three datasets, the Freiburg

Hospital iEEG dataset,17 the CHB-MIT scalp elec-

troencephalogram (sEEG) dataset34 and the Amer-

ican Epilepsy Society Seizure Prediction Challenge

iEEG dataset,35 were evaluated with the proposed

method. This method finally achieved 81.4%, 81.2%

and 75% sensitivity and 0.06/h, 0.16/h and 0.21/h

FPR, respectively.36 Truong et al. also applied Gen-

erative Adversarial Networks (GAN) for the seizure

forecasting and attained the operating characteristic

curve (AUC) of 75.47 % using the Freiburg Hospital

iEEG dataset.37 Based on the same iEEG dataset,

Wang et al. used a 2D-CNN with three convolution
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iEEG

PreictalInterictal Ictal Postictal

Time
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Fig. 1. The four stages of epileptic iEEG: interictal, preictal, ictal and postictal, and the definition of an accurate seizure
prediction. When an alarm rings, a seizure must occur after SPH and within SOP.

blocks to classify the channel-frequency input maps

that were obtained by using Directed Transfer Func-

tion (DTF). The method attained 90.8%sensitivity

and 0.08/h FPR.38 Daoud et al. used four deep learn-

ing models, including Multi-Layer Perceptron (MLP),

Deep Convolutional Neural Network (DCNN) + MLP,

DCNN + Bidirectional Long Short-Term Memory

and Deep convolutional Autoencoder (DCAE) + Bi-

LSTM, for the analysis of seizure prediction. The

DCNN + Bi-LSTM model and the DCAE + Bi-

LSTM model finally obtained the highest accuracy

of 99.6% and the lowest FPR of 0.004/h, but the

sEEG signals of only eight patients from the CHB-

MIT sEEG dataset were used.39

Although the many previous studies used the

iEEG to explore the prediction of seizures, most of

them used all channel iEEG signals, ignoring the con-

sideration of iEEG channel selection. Whether iEEG

signals of all channels are conducive to the seizure

prediction has not been studied well. iEEG signals

are commonly recorded in the form of multiple chan-

nels (or electrodes), and the electrodes usually record

iEEG signals from multiple zones of the brain, in-

cluding seizure onset zones and seizure free zones.

Therefore, the iEEG channel selection is needed and

significant for a better prediction of seizures. Based

on the above considerations, in this work, we explored

the seizure prediction with a iEEG channel selec-

tion strategy. Three channel cases (single channel,

channels only from seizure onset or free zone and all

channels from seizure onset and free zones) combined

with the corresponding One Dimensional Convolu-

tional Neural Networks (1D-CNN) were studied and

discussed. Then, the channel case with the best clas-

sification was finally selected for each patient. In the

seizure prediction, the time duration of iEEG signals

before seizure onset is needed to be defined as the

preictal period. After defining two different preictal

periods, the proposed method was evaluated on each

preictal period.

2. Materials and Methods

2.1. Data preparation

The Freiburg Hospital iEEG dataset (http://epilepsy.

uni-freiburg.de/) was used for the analysis of seizure

prediction in this work . The iEEG dataset consisted

of 21 patients, with a total of 87 seizures, 509 h of

interictal and 73 h of preictal or ictal iEEG signals.

Each patient contained at least 24 h of interictal and

50 min of preictal iEEG signals. The iEEG signals

were recorded with the sampling rate of 256 Hz, and

a bandpass filter between 0.5 and 120 Hz and a 50

Hz notch filter were used to eliminate the possible

noise.17 More details about this iEEG dataset were

described in [17].

In the seizure prediction, it is to explore the dis-

tinction between interictal stage and preictal stage

(as shown in Fig. 1). It means that the time durations

of SPH and SOP need to be defined. SOP is defined

as the period during which a seizure is expected to

occur. SPH is the period between the alarm and the

beginning of SOP.40 The SPH is also called the in-

tervention time.41 In real-world conditions, the time

duration of SPH should be long enough for potential

interventions to prevent seizure onset. In this work,

the time duration of SPH was set to 5 min,36,38,42,43

while we discussed two different durations of SOP,

namely 30 min and 60 min. According to the two

different durations of SOP, the final selected iEEG

signals and their details were summarized in Table 1.

http://epilepsy.uni-freiburg.de/
http://epilepsy.uni-freiburg.de/
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Table 1. The details of the selected iEEG signals for each patient

Patient Gender Age Interictal (h) #seizures (SOP = 30 min) #seizures (SOP = 60 min)+

1 f 15 24 4 3
2 m 38 24 3 –
3 m 14 24 5 4
4 f 26 24 5 3
5 f 16 24 5 2
6 f 31 24 3 –
7 f 42 24.6 3 3
8 f 32 24.2 2 2
9 m 44 23.9 5 3
10 m 47 24.5 5 5
11 f 10 24.1 4 3
12 f 42 24 4 3
13 f 22 24 2 2
14 f 41 23.9 4 3
15 m 31 24 4 3
16 f 50 24 5 5
17 m 28 24.1 5 5
18 f 25 24.9 5 5
19 f 28 24.4 4 3
20 m 33 25.6 5 5
21 m 13 23.9 5 4

Total 508.1 87 66
+ When SOP = 60 min and SPH = 5 min are defined, preictal iEEG signals with the time duration of at least 65 min can be selected.

Case 1:
iEEG (One channel)

Case 2:

iEEG (Three channels)

Case 3:

iEEG (Six channels)

1D-CNN

1D-CNN

1D-CNN Classification

Classification

Classification

Best case selected

Fig. 2. The architecture of the proposed method for seizure prediction. The iEEG signals of three channel cases (one
channel, three channels and six channels) are classified using the 1D-CNN model. Then, the channel case with the best
classification is finally selected for each patient.

2.2. Methodology

In the Freiburg Hospital iEEG dataset, the iEEG sig-

nals of each patient are recorded using six recording

channels, three of which are in-focus channels (from

seizure onset zones of the brain, denoted channels

1-3), and the other three are out-of-focus channels

(from seizure free zones of the brain, denoted chan-

nels 4-6). Based on the iEEG dataset, we discuss

three cases about the use of different iEEG channels.

The proposed method based on the channel-based

1D-CNN for seizure prediction is showed in Fig. 2.

Case 1 shows that only one channel (channel 1 to 6,

each channel in turn) is used for the prediction of

seizures. Case 2 shows that three channels (in-focus

channels 1-3 or out-of-focus channels 4-6) are used at

the same time. Case 3 shows that all channels (chan-

nels 1-6) are used simultaneously. The best channel

case is finally selected for each patient according to

the classification results.

2.2.1. Preprocessing

We used 30-sec sliding widows to segment the long-

term raw iEEG signals. For one 30-sec iEEG segment

with the sampling rate of 256 Hz, it can be seen as a
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vector or matrix of n×7680, where n (n = 1, 3 and

6) is the number of the selected channels. The 30-sec

iEEG segments are used as the inputs of the proposed

1D-CNN.

As shown in Table 1, the time duration of in-

terictal iEEG signals is about 24 hours, while that

of preictal iEEG signals ranges from about 2 to 5

hours (depending on the number of seizures of each

patient). It means that the sample imbalance is a key

problem in this work. In order to solve the problem

during the model training phase, an overlapped slid-

ing window technique was used.36,38 We used 30-sec

sliding windows without overlap to segment interic-

tal iEEG signals. However, for preictal iEEG signals

that were selected as the training set, we used 30-sec

sliding windows with the corresponding overlap rate

to generate more preictal segments. Fig. 3 shows the

details of the oversampling technique.

2.2.2. Convolutional neural network (CNN)

CNNs have achieved the remarkable results in the

seizure detection,44–47 the seizure control48 and the

detection of interictal epileptiform discharges.49 A

CNN model generally consists of convolution layers,

pooling layers and fully connected layers. A convolu-

tion layer performs convolution calculations on input

signals, and the convolution results are then nonlin-

earized by activation functions. In this work, the rec-

tified linear activation unit (ReLU) function was used

in the convolution layers. A pooling layer commonly

performs pooling operations on the outputs of a con-

volution layer to preserve higher-level representations.

In our 1D-CNN model, pooling processes, including

maximum pooling and global average pooling, were

used. After passing through convolutional layers and

pooling layers, the outputs are usually fed into fully

connected layers for the final classification.

In this work, the proposed 1D-CNN model is

showed in Fig. 4. Our model has four convolution-

block layers and two fully connected layers. The first

two convolution-block layers contain four convolution

blocks. For the two convolution blocks on the left, the

first convolution block contains a convolution layer

(32 kernels with the size of n×3 and the stride of 2),

a batch normalization (BN) layer and a max-pooling

(MP) layer (the pooling size of 3 and the stride of

2), and the second convolution block also contains a

convolution layer with 32 kernels with the size of 3

Interictal

Preictal

30 s30 s 30 s30 s

30 s
30 s

30 s
30 s

Fig. 3. For interictal iEEG signals, we use 30-sec sliding
windows without overlap. For preictal iEEG signals that
were selected as the training set, we use 30-sec sliding
windows with the corresponding overlap rate.

Features Concatenation

Conv (32@n× 3, =2)

BN

MP ( =3, =2)

Conv (32@3, =2)

BN

MP ( =3, =2)

Conv (32@n× 5, =2)

BN

MP ( =3, =2)

Conv (32@5, =2)

BN

MP ( =3, =2)

Conv (128@3, =1)

BN

MP ( =3, =1)

Conv (256@3, =1)

BN

MP ( =3, =1)

GAP

256

256

2

Labels    0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0  …

Alarm, L = 4

channels 

(n=1, 3, 6)

30 sec

FC

FC

iEEG

Fig. 4. The proposed 1D-CNN is showed. M@n×k1 or
M@k2: M is the number of kernels, n×k1 and k2 are the
sizes of kernels. Abbreviations: Conv, convolution; BN,
batch normalization; MP, max-pooling; s1, pooling size;
s2, stride; GAP, global average pooling; FC, fully con-
nected. L is the number of consecutive prediction labels
for an alarm.
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and the stride of 2, a BN layer and a MP layer with

the pooling size of 3 and the stride of 2. The struc-

ture of the two convolution blocks on the right is the

same as that of the two convolution blocks on the left.

The only difference is that the size of convolution ker-

nels in the first and sencond convolution layers. The

kernel sizes of these two convolution layers are n×5

and 5, respectively. The first two convolution-block

layers can process the input signals in parallel and

extract different feature maps with different kernel

sizes. The outputs of the first two convolution-block

layers are then concatenated. For extracting deeper

feature information, the concatenated feature maps

are sent into the third and fourth convolution-block

layers successively. The third convolution-block layer

has one convolution block with a convolutional layer

with 128 kernels (the size of 3 and the stride of 1),

a BN layer and a MP layer with the pooling size of

3 and the stride of 1. The fourth convolution-block

layer also has one convolution block including a con-

volutional layer (256 kernels with the size of 3 and

the stride of 1), a BN layer and a MP layer (the pool-

ing size of 3 and the stride of 1). The outputs of the

fourth convolution-block layer are globally averaged

as the inputs of the two fully connected layers. The

first and the second fully connected layers have 256

neurons with ReLU function and 2 output neurons

with Softmax function, respectively.

In order to accurately predict seizures and issue

alarms, the postprocessing for the outputs of 1D-CNN

was performed (as shown in Fig. 4). The condition for

an alarm to sound is that L consecutive predicted la-

bels are positive. In this work, the L value was finally

set to 4 after many tests. For avoiding unnecessary

repetitive alarms, when the first alarm sounds, the

second alarm can only sound after the end of SOP.

Hence, the second alarm in the period from the mo-

ment the first alarm sounds to the end of SOP is

prohibited by the system.

2.2.3. Model training

The patient-specific model was trained for each pa-

tient. In order to predict all seizures of each patient,

the approach of leave-one-out cross validation was ap-

plied. It means if a patient has K seizures, the model

training is performed K rounds. In each round, (K-

1) seizures are used for training, and the remaining

one is used for testing. All seizures can be predicted

after K rounds. Fig. 5 shows the details of the leave-

one-out cross validation. As shown in Fig. 5, in each

round, we also increased the preictal training sam-

ples by using the oversampling technique mentioned

in the preprocessing (Section 2.2.1), and the num-

ber of segments reserved for training and testing was

summarized in Table 2.

During model training, the Early-Stopping tech-

nique was also applied to prevent overfitting, and the

dropout rate of second fully connected layer was set

to 0.25. Based on Keras 2.3.1 with the Tensorflow

1.15.0 backend, our model was established and imple-

mented in Python 3.6, and two Nvidia Tesla P100

GPUs were configured to run the proposed model.

Training Training … TrainingTestingInterictal Training

1 2 3 K-1 K

Preictal …

Training Training… TrainingTraining

Data augmentation 

1 2 3 K-1 K

Testing

Training Training … TrainingTrainingInterictal Testing

1 2 3 K-1 K

Preictal …

Training Training … TrainingTraining

Data augmentation 

1 2 3 K-1 K

Testing

Round 1

Round K

…

Fig. 5. Leave-one-out cross validation: in each round,
(K-1) seizures are used for training, and the remaining
one is used for testing. All seizures can be predicted after
K rounds. In each round, the oversampling technique is
also applied to increase the preictal training samples.

2.2.4. System evaluation

We evaluated the performances of the proposed

method in the two levels (the segment-based level

and the event-based level) at the same time. Combin-

ing the results of the two levels, we finally selected

the best channel case for each patient.

• Segment-based level

In the segment-based level, the accuracy of sample

classification is calculated. The accuracy is expressed

as following:

Accuracy =
TP + TN

Total number of segments
, (1)
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Table 2. During model training with the leave-one-out cross validation, in each round, the number of
segments reserved for training and testing is summarized as below.

SOP = 30 min and SPH = 5min SOP = 60 min and SPH = 5 min

Training Testing Training Testing

Patient #Seizures Interictal Preictal Interictal Preictal #Seizures Interictal Preictal Interictal Preictal

1 4 2160 2160 720 60 3 1920 1920 960 120
2 3 1920 1920 960 60 – – – – –
3 5 2304 2304 576 60 4 2160 2160 720 120
4 5 2304 2304 576 60 3 1920 1920 960 120
5 5 2304 2304 576 60 2 1440 1440 1440 120
6 3 1920 1920 960 60 – – – – –
7 3 1968 1968 984 60 3 1968 1968 984 120
8 2 1452 1452 1452 60 2 1452 1452 1452 120
9 5 2292 2292 573 60 3 1912 1912 956 120
10 5 2352 2352 588 60 5 2352 2352 588 120
11 4 2169 2169 723 60 3 1928 1928 964 120
12 4 2160 2160 720 60 3 1920 1920 960 120
13 2 1440 1440 1440 60 2 1440 1440 1440 120
14 4 2151 2151 717 60 3 1912 1912 956 120
15 4 2160 2160 720 60 3 1920 1920 960 120
16 5 2304 2304 576 60 5 2304 2304 576 120
17 5 2312 2312 578 60 5 2312 2312 578 120
18 5 2388 2388 597 60 5 2388 2388 597 120
19 4 2196 2196 732 60 3 1952 1952 976 120
20 5 2456 2456 614 60 5 2456 2456 614 120
21 5 2292 2292 573 60 4 2151 2151 717 120

where TP is true positive, indicating the number of

true predicted preictal segments from preictal seg-

ments, and TN is true negative, indicating the num-

ber of true predicted interictal segments from inter-

ictal segments.

• Event-based level

In the event-based level, sensitivity and FPR are cal-

culated, and the definitions of them are proposed in

[40]. The sensitivity and the FPR are expressed by

the following formulas:

Sensitivity =
number of correct predictions

number of all seizures
,

(2)

FPR =
number of incorrect predictions

hours of interictal iEEG
. (3)

An excellent system is supposed to sound alarms with

higher sensitivity and lower FPR.

For testing statistical significance of the pro-

posed method, it needs to be compared with the ran-

dom predictior. The probability of a random alarm

can be defined as:50,51

p1 ≈ 1 − e−FPR·SOP , (4)

where FPR and SOP are false prediction rate and

seizure occurrence period, respectively. Therefore, the

probability of randomly predicting at least k out of K

independent seizures can be expressed as following:

p−value =
∑
j≥k

(
K

j

)
pj1(1 − p1)K−j , (5)

where k is the number of the predicted seizures, and

K is the number of all seizures. In this study, the

significance level is set to 0.05. It means when the

calculated p−value is less than 0.05, our method is

better than the random prediction.

3. Results

The proposed method with three channel cases (single

channel, three channels and all channels) is evaluated

on two different preictal periods: (1) SOP of 30 min

and SPH of 5 min; (2) SOP of 60 min and SPH of 5

min. The whole algorithm runs twice, and the aver-

aged results of the two levels are calculated for the

further analysis.

According to the results of the segment-based

level and the event-based level, the selection criteria

for the best channel case are defined as following: (1)

We first select the best channel situation according

to the sensitivity and FPR (the event-based level);

(2) If a patient has the same sensitivity and FPR

under several channel situations, we then combine

the accuracy (the segment-based level) of these chan-
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Fig. 6. In the event-based level with SOP of 30 min and SPH of 5 min, each subfigure shows the averaged sensitivity
and FPR of each patient under the nine channel situations (1, 2, 3, 4, 5, 6, 1-3, 4-6 and 1-6). The best channel situation is
selected for each patient. The left blue Y-axis and the right red Y-axis represent the FPR and the sensitivity, respectively.

Table 3. The results of our method with SOP of 30 min and SPH of 5 min. The whole
algorithm runs twice. After selecting the best channel situation, the averaged results
(accuracy, sensitivity and FPR) and the p−value are given for each patient.

Patient Interictal (h) #seizures Cs Accuracy (%) Sensitivity (%) FPR (/h) p−value

1 24 4 1a 99.13±0.77 100±0.00 0.00±0.00 0.000

2 24 3 4b 99.66±0.02 100±0.00 0.00±0.00 0.000
3 24 5 1a 98.13±0.02 100±0.00 0.00±0.00 0.000
4 24 5 2a 99.21±0.00 100±0.00 0.00±0.00 0.000
5 24 5 1a 95.58±1.93 100±0.00 0.06±0.09 0.000
6 24 3 1a 99.08±0.05 100±0.00 0.00±0.00 0.000

7 24.6 3 4-6b 97.65±0.16 100±0.00 0.00±0.00 0.000
8 24.2 2 1-3a 99.64±0.09 100±0.00 0.00±0.00 0.000

9 23.9 5 5b 100±0.00 100±0.00 0.00±0.00 0.000
10 24.5 5 3a 99.41±0.00 100±0.00 0.00±0.00 0.000
11 24.1 4 2a 99.89±0.07 100±0.00 0.00±0.00 0.000
12 24 4 3a 99.84±0.18 100±0.00 0.00±0.00 0.000

13 24 2 5b 97.98±0.02 50±0.00 0.00±0.00 0.000
14 23.9 4 3a 99.89±0.07 100±0.00 0.00±0.00 0.000

15 24 4 4b 98.62±0.32 100±0.00 0.00±0.00 0.000

16 24 5 4-6b 99.32±0.42 100±0.00 0.00±0.00 0.000

17 24.1 5 4-6b 99.58±0.29 100±0.00 0.00±0.00 0.000

18 24.9 5 4b 92.80±2.65 100±0.00 0.25±0.06 0.000
19 24.4 4 1a 98.70±0.49 100±0.00 0.00±0.00 0.000
20 25.6 5 1-3a 98.20±0.19 100±0.00 0.00±0.00 0.000
21 23.9 5 2a 98.28±0.16 100±0.00 0.00±0.00 0.000

Total 508.1 87 98.60±0.38 98.85±0.00 0.01±0.01

Cs means channel selected for the best classification; a Channels only from seizure onset zones of the brain; b Channels only from seizure
free zones of the brain.

nel situations to finally determine the best channel situation.
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Fig. 7. In the event-based level with SOP of 60 min and SPH of 5 min, each subfigure shows the averaged sensitivity
and FPR of each patient under the nine channel situations (1, 2, 3, 4, 5, 6, 1-3, 4-6 and 1-6). The best channel situation is
selected for each patient. The left blue Y-axis and the right red Y-axis represent the FPR and the sensitivity, respectively.

Table 4. The results of our method with SOP of 60 min and SPH of 5 min. The whole
algorithm runs twice. After selecting the best channel situation, the averaged results
(accuracy, sensitivity and FPR) and the p−value are given for each patient.

Patient Interictal (h) #seizures Cs∗ Accuracy (%) Sensitivity (%) FPR (/h) p−value
1 24 3 1a 97.27±0.85 100±0.00 0.00±0.00 0.000
3 24 4 1a 97.69±1.54 100±0.00 0.00±0.00 0.000
4 24 3 2a 99.26±0.00 100±0.00 0.00±0.00 0.000

5 24 2 5b 91.19±0.68 100±0.00 0.19±0.03 0.000
7 24.6 3 1a 98.21±0.44 100±0.00 0.00±0.00 0.000
8 24.2 2 1-3a 99.92±0.02 100±0.00 0.00±0.00 0.000

9 23.9 3 5b 99.57±0.00 100±0.00 0.00±0.00 0.000
10 24.5 5 3a 99.80±0.04 100±0.00 0.00±0.00 0.000
11 24.1 3 2a 99.64±0.11 100±0.00 0.00±0.00 0.000

12 24 3 4b 99.31±0.11 100±0.00 0.00±0.00 0.000

13 24 2 5b 96.12±0.05 50±0.00 0.00±0.00 0.000
14 23.9 3 3a 99.66±0.18 100±0.00 0.00±0.00 0.000

15 24 3 4b 97.89±0.55 100±0.00 0.00±0.00 0.000

16 24 5 4-6b 99.40±0.41 100±0.00 0.00±0.00 0.000

17 24.1 5 4-6b 97.75±0.14 100±0.00 0.04±0.00 0.000

18 24.9 5 4-6b 98.06±1.72 100±0.00 0.00±0.00 0.000
19 24.4 3 3a 99.80±0.06 100±0.00 0.00±0.00 0.000
20 25.6 5 1-3a 98.47±0.08 100±0.00 0.00±0.00 0.000
21 23.9 4 2a 99.05±0.25 100±0.00 0.00±0.00 0.000

Total 460.1 66 98.32±0.38 98.48±0.00 0.01±0.00
∗ Cs means channel selected for the best classification; a Channels only from seizure onset zones of the brain; b Channels only from seizure
free zones of the brain.

3.1. SOP of 30 min and SPH of 5 min

In the event-based level, the averaged results (sensitiv-

ity and FPR) are reported in Fig. 6. Each subfigure in

Fig. 6 shows the sensitivity and FPR of each patient

under nine channel situations (1, 2, 3, 4, 5, 6, 1-3, 4-6

and 1-6). For example, patient 20 obtains the same

sensitivity and FPR from channels 3, 4, 5, 1-3, 4-6
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and 1-6 (as shown in Fig. 6). Based on the selection

criteria for the best channel case, we then calculate

the accuracy of these channel situations, and the best

channel situation (channels 1-3) is determined due to

the highest accuracy of 98.20±0.19% (as shown in

Fig. 8(a)). After selecting the best channel situation

for each patient, we summarize the corresponding

sensitivity, FPR and accuracy in Table 3.
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Fig. 8. The example of patient 20 includes both event-
based and segment-based results for the selection of the
best channel situation. According to the results in the
conditions of SOP = 30 min and SOP = 60 min, the best
channel situation of channels 1-3 is finally selected.

As shown in Table 3, in the event-based level,

86 out of 87 seizures are accurately predicted, with

a sensitivity of 98.85%. The FPR is low at 0.01/h.

From the p−value of each patient, we can see that the

performance of the proposed method is much better

than that of the random prediction. In the segment-

based level, the accuracy of 19 patients is higher than

97%. The accuracy rates of the other two patients

(patients 5 and 18) are at 95.58% and 92.80%, re-

spectively. The averaged accuracy of 21 patients is

98.60%, which shows that our method can classify

interictal and preictal segments well.

3.2. SOP of 60 min and SPH of 5 min

In this preictal period, patients 2 and 6 are excluded,

and so total 19 patients are analyzed. Fig. 7 shows

the averaged sensitivity and FPR of 19 patients. Each

subfigure in Fig. 7 also shows the sensitivity and FPR

of each patient under nine channel situations. Ac-

cording to the selection criteria for the best channel

case, the best channel situation is selected for each

patient. For example, patient 20 attains the best re-

sult also with the channel situation of 1-3 (as shown

in Fig. 8(b)). For each patient, the best channel sit-

uation and the corresponding sensitivity, FPR and

accuracy are summarized in Table 4.

As shown in Table 4, 65 out of 66 seizures are

accurately predicted by the proposed method. The

high sensitivity of 98.48% and the low FPR of 0.01/h

are obtained (the event-based level). According to

the calculated p−value of each patient, our method

is much better than the random prediction in the

seizure prediction. In the segment-based level, 17 pa-

tients have an accuracy of more than 97%, and the

accuracy rates of patients 5 and 13 are 91.19% and

96.12%, respectively. The averaged accuracy of 19

patients is 98.32%.

3.3. Channel selection

Based on the results in Table 3 and Table 4, there

are several points that we need to explain. Firstly,

none of the 21 patients achieves the best result using

all channel (channels 1-6) iEEG signals. From this

point, we can see that the channel selection for each

patient is necessary. Secondly, most patients attain

the best results when only using single-channel rather

than multi-channel iEEG signals. Thirdly, under two

preictal periods, namely SOP of 30 min and SOP of

60 min with the same SPH of 5 min, most patients

have the same channel selection in obtaining the best

results, and so it shows the reliability of the results

and the stability of the proposed method.

According to the results in Table 3 (SOP of 30

min and SPH of 5 min) and Table 4 (SOP of 60 min

and SPH of 5 min), we also count the number of

patients corresponding to two types of channel condi-

tions. As shown in Fig 9, the number of patients with

channels selected only from the seizure onset zones is

slightly more than that of patients with channels se-

lected only from the seizure free zones. However, the

number of patients with channels selected from both
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zones is zero. Based on the findings, we can have

the following two thoughts: (1) The iEEG signals

recorded from the seizure free zones are important

in the seizure prediction, and their predictive perfor-

mance is sometimes better than the iEEG signals

recorded from the seizure onset zones; (2) In the pre-

diction of seizures, all channel iEEG signals are not

necessarily valid and channel selection is necessary.

The number of patient in each channel situation

13

11

SOP of 30 min and SPH of 5 min SOP of 60 min and SPH of 5 min
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channels selected only from the seizure free zone

88

Fig. 9. In two different preictal periods, the number of
patients with the different channel conditions.

4. Discussion

CNNs have been used for the prediction of seizures

in [36], [38] and [56], while the studies used all chan-

nel iEEG signals, ignoring the channel selection. Al-

though the channel selection strategies have been ap-

plied in [57–60] for seizure prediction, these studies

mainly focused on the conventional machine learn-

ing methods.57–60 Hence, in this work, we proposed a

method of 1D-CNN combined with channel selection

strategy for seizure prediction. From the perspective

of incremental learning, the iEEG signals with a chan-

nel increase strategy (from single channel to multiple

channels, and then to all channels) were used as the

inputs of 1D-CNNs with the same structure. The

patient-specific model was then trained, and the best

channel case was selected for each patient according

to the classification results. From the results in Ta-

ble 3 and Table 4, we achieved high accuracy (98.60%

and 98.32%), high sensitivity (98.85% and 98.48%)

and low FPR (0.01/h and 0.01/h). It indicated that

our method was effective and had well performance in

using the long-term iEEG signals to predict seizures.

We also compared the results of this work and

the previous studies using the Freiburg Hospital

iEEG dataset. The details of the previous studies and

this work, including the total number of seizures, fea-

ture extraction methods and classifiers, were given in

Table 5. The four significant metrics related to seizure

prediction, namely sensitivity, FPR, SOP and SPH,

were also given in Table 5. As shown in Table 5, the

methods of threshold analysis combined with linear

or nonlinear features achieved the sensitivity ranging

from 42% to 92.9% and the FPR ranging from 0.06/h

to 0.15/h.17–21,52,55 The highset sensitivity (92.9%)

was attained in the study [21], but the study only

used 10 patients for the analysis of seizure prediction.

The conventional machine learning methods, includ-

ing SVM,22,23,26,53,54 LS-SVM25 and Bayesian24 ,

were used for the prediction of seizures. The sensitiv-

ity and the FPR obtained by these methods ranged

from 85.5% to 100% and 0.03/h to 0.36/h, respec-

tively. The SVM in the study [54] achieved the high-

est sensitivity of 100% with the FPR of 0.0324/h.

The deep learning methods, including 2D-CNN36,38

and GAN,37 combined with the preprocessing tech-

niques (STFT and DTF) were used to analyze the

same iEEG dataset, and the sensitivity ranging from

81.4% to 90.8% and the FPR ranging from 0.03/h

to 0.08/h were attained. The 2D-CNN used in the

study [38] achieved the highest sensitiivty of 90.8%

with the FPR of 0.08/h.

Compared with the results in Table 5, our

method achieved high sensitivity (98.85% and

98.48%) and low FPR (0.01/h and 0.01/h), which

showed that the performances of our method were

better than that of most previous studies. Although

the sensitivity of 100% and the FPR of 0.03 were

obtained in the study [54], the authors ignored the

actual clinical considerations by setting SPH to zero,

and they also used the time-consuming and complex

feature selection for each patient.

In this work, the Freiburg Hospital iEEG dataset

is recorded with three in-focus channels (channels 1-3)

and three out-of-focus channels (channels 4-6). Con-

sequently, the number of the combinations of chan-

nels is 63 (C1
6 + C2

6 + C3
6 + C4

6 + C5
6 + C6

6 ). One

limitation of this work is that our method discusses

nine channel combinations (1, 2, 3, 4, 5, 6, 1-3, 4-6

and 1-6) for seizure prediction. Therefore, more sub-

sets of channels can to be selected and tested. In the

future work, all the channel combinations combined

with deep learning approaches will be further ana-

lyzed and discussed. The second limitation is that

our work only uses a 1D-CNN model combined with

the channel selection strategy for the classification of
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Table 5. The list of previous studies and this work using the Freiburg Hospital iEEG dataset for seizure
prediction.

Authors #Patients #Seizures Feature Classifier SEN (%) FPR (/h) SOP SPH

Maiwald et al.
(2004)17

21 88 Dynamical simi-
larity index

Threshold
crossing

42 0.15 30 min 2 min

Winterhalder
et al. (2006)18

21 88 Phase coherence,
lag synchroniza-
tion

Threshold
crossing

60 0.15 30 min 10 min

Park et al.
(2011)22

18 80 Spectral power of
nine bands

SVM 97.5 0.27 30 min 0c

Williamson et
al. (2012)23

19 83 Correlation pat-
terns

SVM 85.5 0.03 30 min 0c

Li et al.
(2013)52

21 87 Spike rate Threshold
crossing

75.8 0.09 50 min 10 sec

Zheng et al.
(2014)19

10 50 phase
synchronization

Threshold
crossing

>70 <0.15 30 min 10 min

Eftekhar et al.
(2014)20

21 87 Multiresolution
N-gram

Threshold
crossing

90.95 0.06 20 min 10 min

Ozdemir et al.
(2014)24

21 87 Hilbert-Huang
transform

Bayesian 96.55 0.21 35 min 5 min

Wang et al.
(2014)53

19 83 Amplitude and
frequency modu-
lation features

SVM 98.55 0.054 50 min 0c

Zhang et al.
(2016)54

18 80 Power spectral
density ratio

SVM 100 0.0324 50 min 0c

Parvez et al.
(2017)25

21 87 Phase-
match error, devi-
ation, fluctuation

LS-SVM 95.4 0.36 30 min 0c

Sharif et al.
(2017)26

19 83 Fuzzy rules on
Poincaré plane

SVM 91.8-96.6 0.05-0.08 15 min 2-42 min

Aarabi et al.
(2017)21

10 28 Univariate and
bivariate nonlin-
ear features

Rule-based
decision
making

92.9 0.096 50 min 10 sec

Truong et al.
(2018)36

13 59 STFT 2D-CNN 81.4 0.03 30 min 5 min

Truong et al.
(2019)37

13 59 STFT GAN – – 30 min 5 min

Wang et al.
(2020)38

19 82 DTF 2D-CNN 90.8 0.08 30 min 5 min

Zhang et al.
(2020)55

20 65 Fractal dimen-
sion, intercept

Gradient boos-
ting classifier

90.42 0.12 30 min 2 min

20 65 91.67 0.10 50 min 2 min

This work 21 87 30-sec iEEG seg-
ments

Channel-based
1D-CNN

98.85 0.01 30 min 5 min

19 66 98.48 0.01 60 min 5 min

Abbreviations: SEN, sensitivity; FPR, false prediction rate; SOP, seizure occurrence period; SPH, seizure prediction horizon; SVM, support
vector machine; LS-SVM, least square-SVM; STFT, short-time Fourier transform; DTF, directed transfer function; 2D-CNN, two dimensional
convolutional neural network; GAN, generative adversarial networks; 1D-CNN, one dimensional convolutional neural network
c SPH is also called the intervention time. When SPH is set to zero, it means that the time left for clinical intervention is zero, ignoring
actual clinical considerations.

the iEEG signals. Other deep learning and machine

learning algorithms, such as 2D-CNN and LSTM, En-

hanced Probabilistic Neural Network,61 Neural Dy-

namic Classification Algorithm,62 Dynamic Ensemble

Learning Algorithm63 and Finite Element Machine,64

combined with the channel selection strategy can also

be applied to the same iEEG dataset for seizure pre-

diction.
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5. Conclusion

In this paper, a novel method of 1D-CNN combined

with channel selection strategy was proposed for the

prediction of seizures. Different from the many previ-

ous studies only using all channel iEEG signals, the

iEEG signals of single channel, multiple channels and

all channels were classified using a 1D-CNN model

with four convolution-block layers. Then, according

to the results of classification, the channel case with

the best classification result was finally selected for

each patient.

The proposed method was evaluated on the

Freiburg Hospital iEEG dataset recorded with three

in-focus channels (channels 1-3) and three out-of-

focus channels (channels 4-6), and the iEEG signals

of nine channel situations (1, 2, 3, 4, 5, 6, 1-3, 4-6 and

1-6) were analyzed to select the channel case with

the best classification for each patient. Our method

successfully predicted 86 out of 87 seizures (except

one seizure in patient 13). The overall results, (1)

98.60% accuracy, 98.85% sensitivity and 0.01/h FPR

in the SOP of 30 min and SPH of 5 min; (2) 98.32%

accuracy, 98.48% sensitivity and 0.01/h FPR in the

SOP of 60 min and SPH of 5 min, were achieved.

Compared with the many previous studies using the

same iEEG dataset, our method showed a better per-

formance in the seizure prediction. Our method was

also statistically better than the random prediction

for all patients in the Freiburg Hospital iEEG dataset.
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ABSTRACT

Seizure prediction using intracranial electroencephalogram
(iEEG) is still challenging because of complicated signals in
spatial and time domains. Feature selection in the spatial do-
main (i.e., channel selection) has been largely ignored in this
field. Hence, in this paper, a novel approach of iEEG channel
selection strategy combined with one-dimensional convolu-
tional neural networks (1D-CNN) was presented for seizure
prediction. First, 15-sec and 30-sec iEEG segments with an
increasing number of channels (from one channel to all chan-
nels) were sequentially fed into 1D-CNN models for training
and testing. Then, the channel case with the best classification
rate was selected for each participant. We tested our method
on the Freiburg iEEG dataset. A sensitivity of 89.03-90.84%,
specificity of 98.99-99.73%, and accuracy of 98.07-98.99%
were achieved at the segment-based level. At the event-based
level, we attained a sensitivity of 98.48-98.85% and a false
prediction rate (FPR) of 0-0.02/h.

Index Terms— Epilepsy, intracranial electroencephalo-
gram (iEEG), seizure prediction, channel selection, one-
dimensional convolutional neural networks (1D-CNN),

1. INTRODUCTION

Epilepsy affects nearly 50 million people worldwide. Since
the onset of seizures originates from abnormal synchronous
discharges of brain cells, electroencephalogram (EEG) is a
powerful technique in the diagnosis of epilepsy. However,
epileptic seizures have the characteristics of recurrence and
uncertainty, which makes epileptic patients miserable. Hence,
the prediction of seizures is significant becuase this can allow
people to take interventions to suppress the onset of seizures.

In the past two decades, many EEG-based data mining
techniques have been used for the analysis of seizure pre-
diction. In conventional machine learning methods, Support
Vector Machine (SVM) [1–4], Bayesian [5, 6], Backpropaga-
tion Neural Network [7], Multi-layer Perceptron (MLP) [8],
etc., were applied in seizure prediction and achieved remark-
able results. Recently, deep learning techniques have also
been widely used for seizure prediction. Deep learning meth-

ods, including One-Demensional Convolutional Neural Net-
works (1D-CNN) [9], Two-Dimensional Convolutional Neu-
ral Networks (2D-CNN) [10–13], Three-Dimensional Convo-
lutional Neural Networks (3D-CNN) [14], Long Short-Term
Memory (LSTM) [15–17], Deep Recurrent Neural Network
(DRNN) [18] and Generative Adversarial Networks (GAN)
[19], were utilized to effectively predict seizures.

In our previous study [9], we mentioned that many seizure
prediction studies commonly used EEG signals of all chan-
nels, ignoring the consideration of channel selection. Fea-
ture selection in the spatial domain (i.e., channel selection)
has been largely ignored in this field. Hence, our previous
study [9] presented a method of channel selection strategy
combined with 1D-CNN to forecast seizures, and the pro-
posed method was tested on the Freiburg intracranial elec-
troencephalogram (iEEG) dataset [20], in which each patient
has six channels. There are 63 channel cases (|C1

6 | + |C2
6 | +

|C3
6 |+ |C4

6 |+ |C5
6 |+ |C6

6 | = 63) that can be analyzed for each
patient. However, we only considered 9 channel cases for the
anlysis of seizure prediction for each patient in the study [9].
Consequently, in this study with the same dataset, all channel
cases are analyzed and discussed to select the best channel
case with the best classification rate for each patient. Then,
the best channel case can be applied for the seizure prediction
of the patient in the future. Another contribution of this work
is that, in preprocessing, iEEG segments are generated using
sliding windows of two different lengths (15-sec and 30-sec).
Therefore, the results of two different sample sizes are also
discussed in this study.

The rest of this paper is given as follows: materials and
methods in Section 2, results in Section 3, discussion and con-
clusion in Section 4.

2. MATERIALS AND METHODS

2.1. Data

The Freiburg iEEG dataset contained 21 patients, 87 seizures,
509 h of interictal and 73 h of preictal or ictal iEEG signals.
iEEG signals were recored at a sampling rate of 256 Hz, with
the 50 Hz notch filtering and the 0.5-120 Hz bandpass filter-



ing. Each patient had six channels: channels 1-3 (in-focal)
and channels 4-6 (out-of-focal) [20].

In EEG-based seizure prediction, two basic concepts,
namely seizure prediction horizon (SPH) and seizure oc-
currence period (SOP), need to be explained. SOP is defined
as the period during which a seizure is expected to occur. SPH
is the period from an alarm to the beginning of SOP [21]. In
this work, we discuss two preictal conditions: (1) SOP =
30 min and SPH = 5 min; (2) SOP = 60 min and SPH = 5
min. For the first preictal condition, seizures with at least
35-min preictal phase are selected. Seizures with at least
65-min preictal phase are selected for the second preictal
condition. The details of the selected iEEG signals for two
preictal conditions are summarized in Table 1.

Table 1. Details of the selected iEEG signals for each patient
in two preictal conditions
Patient Age Gender Interictal (h) #Seizuresa #Seizuresb

1 15 f 24 4 3
2 38 m 24 3 –
3 14 m 24 5 4
4 26 f 24 5 3
5 16 f 24 5 2
6 31 f 24 3 –
7 42 f 24.6 3 3
8 32 f 24.2 2 2
9 44 m 23.9 5 3
10 47 m 24.5 5 5
11 10 f 24.1 4 3
12 42 f 24 4 3
13 22 f 24 2 2
14 41 f 23.9 4 3
15 31 m 24 4 3
16 50 f 24 5 5
17 28 m 24.1 5 5
18 25 f 24.9 4 5
19 28 f 24.4 4 3
20 33 m 25.6 5 5
21 13 m 23.9 5 4
Total – – 508.1 87 66
a Preictal condition of SOP = 30 min and SPH = 5 min.
b Preictal condition of SOP = 60 min and SPH = 5 min.

2.2. Methodology

2.2.1. Preprocessing

In preprocessing, we used 15-sec and 30-sec sliding windows
to segment iEEG signals, respectively. Then, the iEEG seg-
ments were used as the inputs of 1D-CNN model. Since the
number of 15-sec iEEG segments is twice that of 30-sec iEEG
segments. Hence, our work also discusses the comparison of
results under two different sample sizes.

The problem of sample imbalance is a key issue that needs
to be solved during model training in this work. As shown in
Table 1, the number of seizures ranges from 2 to 5, and so the

duration of preictal iEEG signals is about 2 to 5 hours. How-
ever, the duration of interictal iEEG signals is about 24 hours
for each patient. To generate more preictal iEEG segments
and solve the problem of sample imbalance during model
training, sliding windows with the corresponding overlap ra-
tio are only used to segment the preictal iEEG signals which
are selected as the training set. The preictal iEEG signals
which are selected as the testing set and the interictal iEEG
signals are segmented by sliding windows without the over-
lap ratio. Fig. 1 shows the details of this preprocessing.

Preictal (training)

15 s OR 30 s 15 s OR 30 s

Interictal AND Preictal (testing)

15 s OR 30 s 15 s OR 30 s

iEEG

iEEG

Fig. 1. Preictal iEEG signals which are selected as the testing
set and interictal iEEG signals are segmented by sliding win-
dows without the overlap ratio. Preictal iEEG signals which
are selected as the training set are segmented by sliding win-
dows with the corresponding overlap ratio.

2.2.2. CNN

As shown in Fig. 2, the model architecture of 1D-CNN
consists of two parallel blocks (Block-1 and Block-2) and
two fully connected (FC) layers. Each block has the same
structure and includes four convolutional parts. Moreover,
each convolutional part contains a convolutional layer with
rectified linear activation unit (ReLU), a batch-normalization
(BN) layer and a max-pooling (MP) layer.

The parameters of the 1D-CNN model are given as fol-
lows. In Block-1, the four convolutional layers contain 32
kernels (size = n×3, where n ranges from 1 to 6, and stride
= 2), 32 kernels (size = 3 and stride = 2), 64 kernels (size
= 3 and stride = 2) and 128 kernels (size = 3 and stride =
1), respectively. The four MP layers have the same pooling
size of 3 and the same stride of 2. Compared to Block-1, the
differences in Block-2 are the kernel sizes of the four convo-
lutional layers. In Block-2, the kernels sizes are n×5, 5, 5
and 5, respectively (as shown in Fig. 2). Two blocks used in
this work are to learn more different features for classifica-
tion. Then, the outputs of these two blocks are concatenated
and globally averaged as the inputs of two FC layers. The first
FC layer has 128 neurons (ReLU). The second has 2 neurons
using Softmax activation function for classification. During
model training, the dropout rate in second FC layer is 0.25.



Channels 

(n = 1 to 6)

3840 (15 s) OR 7680 (30 s)

iEEG
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GAP
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256
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Prediction Labels    0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0   …

Fig. 2. Architecture of the 1D-CNN model. M1@n×k1 or
M2@k2: M1 and M2 are the number of kernels, k1 and k2
are the sizes of kernels. s1 means pooling size and s2 means
stride. For the inputs, iEEG segments of 63 channel cases
(|C1

6 |+ |C2
6 |+ |C3

6 |+ |C4
6 |+ |C5

6 |+ |C6
6 | = 63) are fed into

the 1D-CNN model in turn.

Training Training … TrainingTestingInterictal Training

1 2 3 K-1 K

Training Training… TrainingTraining

Data augmentation 

Training Training … TrainingTrainingInterictal Testing

1 2 3 K-1 K

…

Training Training … TrainingTraining

Data augmentation 

1 2 3 K-1 K

Preictal Testing

1 2 3 K-1 K

Preictal …Testing

Round 1

…

Round K

Fig. 3. The K-CV approach combined with the data augmen-
tation technique is applied during model training.

2.2.3. Model training

In this work, patient-specific model is trained for each patient.
K-fold cross validation (K-CV) is done during model training
(as shown in Fig. 3). In K-CV approach, model training is
performed K rounds, where K is the number of seizures per
patient. In each round, (K-1) preictal and (K-1) interictal parts
are used for training, and the remaining segments (one preic-
tal and one interictal part) are used for testing. As shown in
Fig. 3, during model training in each round, the size of pre-
ictal iEEG segments is augmented to balance samples using
sliding windows with overlap mentioned in preprocessing.

2.2.4. System evaluation

1) Segment-based level Sensitivity (Sen1), specificity (Spe)
and accuracy (Acc) are used to evaluate the classification
results. The three metrics are given as follows, Sen1 =

TP
TP+FN , Spe = TN

TN+FP , Acc = TP+TN
TP+FP+TN+FN , where

TP, FP, TN and FN indicate ture positive, false positive, true
negative and false negative, respectively.

2) Event-based level Event-based sensitivity (Sen2) and
false prediction rate (FPR) are calculated. The two metrics
are given as follows, Sen2 = Number of True Predictions

Number of Seizures ,

FPR = Number of False Predictions
Hours of Interictal iEEG . At the event-based

level, the condition to sound an alarm is that prediction la-
bels within 90 seconds are all positive. It means that six con-
secutive labels (for 15-sec iEEG segments) or three consec-
utive labels (for 30-sec segments) are all positive to satisfy
the requirement of sounding an alarm. We also compare our
method to the random predictor. The probability of random
predicting at least k out of K seizures can be expressed as fol-
lows, pv =

∑K
i≥k p

i(1− p)K−i, where p ≈ 1− e−FPR·SOP

(the probability of a random alarm) [22], k and K are the num-
ber of true predictions and all seizures, respectively. In this
work, the significance level is set at 0.05, and our method is
better than the random predictor if the pv is less than 0.05.

3. RESULTS

The whole algorithm runs twice, and the averaged results un-
der 63 channel cases (|C1

6 |+|C2
6 |+|C3

6 |+|C4
6 |+|C5

6 |+|C6
6 | =

63) are computed. At the segment-based level, an averaged
Sen1, Spe, and Acc are obtained. An averaged Sen2, and FPR
are given at the event-based level.

3.1. SOP = 30 min and SPH = 5 min

The results of two different preprocessing conditions (15-sec
and 30-sec sliding windows) are discussed in the situation of
SOP = 30 min and SPH = 5 min. For example, as shown
in Fig. 4, the averaged results of 63 channel cases for pa-
tient 1 are given at both levels (segment- and even-based lev-
els) under two different preprocessing conditions. The case of
channel 3 is finally selected for two preprocessing conditions
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Fig. 4. In preictal condition of SOP = 30 min, the averaged results for patient 1 are showed after the whole algorithm runs twice.
In preprocessing of 15-sec sliding widows, classification results of 63 channel cases are given at the segment-based level (A1)
and the event-based level (A2). In preprocessing of 30-sec sliding widows, classification results of 63 channel cases are given
at the segment-based level (B1) and the event-based level (B2). The case of channel 3 is finally selected and the corresponding
results are summarized in Table 2.

Table 2. In the condition of SOP = 30 min, the selected channel cases and corresponding results for each patient.
15-sec sliding windows, SOP = 30 min 30-sec sliding windows, SOP = 30 min

Segment-based level Event-based level Segment-based level Event-based level
Patient Interictal (h) #Seizures Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv

1 24 4 3 70.31 99.79 97.25 100 0.00 0.000 3 68.13 99.91 97.47 100 0.00 0.000
2 24 3 46 97.67 99.91 99.72 100 0.00 0.000 46 93.33 99.95 99.56 100 0.00 0.000
3 24 5 1 84.75 99.89 98.46 100 0.00 0.000 2 79.00 96.02 94.42 100 0.17 0.000
4 24 5 1 91.92 100 99.24 100 0.00 0.000 1 91.83 100 99.23 100 0.00 0.000
5 24 5 16 91.42 98.22 97.58 100 0.00 0.000 14 84.83 99.25 97.89 100 0.00 0.000
6 24 3 12 85.83 99.97 99.13 100 0.00 0.000 12 94.44 99.93 99.61 100 0.00 0.000
7 24.6 3 16 93.19 99.90 99.51 100 0.00 0.000 16 83.33 99.92 98.96 100 0.00 0.000
8 24.2 2 1235 95.00 100 99.80 100 0.00 0.000 1235 99.17 100 99.97 100 0.00 0.000
9 23.9 5 1 or 5 100 100 100 100 0.00 0.000 1 or 5 100 100 100 100 0.00 0.000
10 24.5 5 3 96.92 99.77 99.51 100 0.00 0.000 3 99.17 99.86 99.80 100 0.00 0.000
11 24.1 4 2 98.54 99.93 99.82 100 0.00 0.000 2 99.17 99.98 99.92 100 0.00 0.000
12 24 4 3 98.65 99.93 99.83 100 0.00 0.000 3 98.13 99.90 99.76 100 0.00 0.000
13 24 2 5 50.00 99.95 97.95 50 0.00 0.000 5 50.00 100 98.00 50 0.00 0.000
14 23.9 4 3 97.71 99.99 99.81 100 0.00 0.000 3 99.38 100 99.95 100 0.00 0.000
15 24 4 2 97.29 99.27 99.54 100 0.00 0.000 2 99.17 99.77 99.73 100 0.00 0.000
16 24 5 45 96.83 99.84 99.55 100 0.00 0.000 45 96.50 99.86 99.54 100 0.00 0.000
17 24.1 5 45 95.33 100 99.56 100 0.00 0.000 45 97.67 99.95 99.73 100 0.00 0.000
18 24.9 5 345 81.83 99.98 98.33 100 0.00 0.000 245 78.50 100 98.04 100 0.00 0.000
19 24.4 4 2 76.46 99.13 97.41 100 0.00 0.000 2 77.92 99.61 97.96 100 0.00 0.000
20 25.6 5 35 87.17 99.88 98.75 100 0.00 0.000 35 94.00 99.79 99.27 100 0.00 0.000
21 23.9 5 3 87.67 99.01 97.94 100 0.04 0.000 3 86.00 99.63 98.34 100 0.00 0.000
Total 508.1 87 – 89.21 99.73 98.99 98.85 0.00 – – 89.03 99.68 98.91 98.85 0.01 –
Abbr: Cs, the selected channels (red numbers for the in-focus channels; blue numbers for the out-of-focus channels); Sen1, segment-based sensitivity; Spe, specificity;
Acc, accuracy; Sen2, event-based sensitivity; FPR, false prediction rate.



Table 3. In the condition of SOP = 60 min, the selected channel cases and corresponding results for each patient.
15-sec sliding windows, SOP = 60 min 30-sec sliding windows, SOP = 60 min

Segment-based level Event-based level Segment-based level Event-based level
Patient Interictal (h) #Seizures Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv

1 24 3 3 75.69 99.38 96.75 100 0.00 0.000 3 78.19 99.93 97.52 100 0.00 0.000
3 24 4 2 90.73 86.61 87.20 100 0.27 0.000 2 88.02 87.73 87.77 100 0.38 0.000
4 24 3 1 93.47 100 99.27 100 0.00 0.000 1 93.00 100 99.26 100 0.00 0.000
5 24 2 156 88.65 99.05 98.25 100 0.00 0.000 156 93.75 98.94 98.54 100 0.04 0.000
7 24.6 3 16 86.39 99.90 98.43 100 0.00 0.000 16 83.19 99.95 98.13 100 0.00 0.000
8 24.2 2 1235 100 100 100 100 0.00 0.000 1235 100 100 100 100 0.00 0.000
9 23.9 3 5 96.11 99.98 99.55 100 0.00 0.000 5 95.97 100 99.55 100 0.00 0.000
10 24.5 3 3 98.50 99.79 99.57 100 0.00 0.000 3 98.17 99.66 99.41 100 0.00 0.000
11 24.1 3 2 97.64 99.67 99.45 100 0.00 0.000 2 99.58 99.25 99.29 100 0.00 0.000
12 24 3 4 96.94 99.77 99.45 100 0.00 0.000 4 94.72 99.79 99.23 100 0.00 0.000
13 24 2 5 49.79 99.99 96.13 50 0.00 0.000 5 50.00 100 96.15 50 0.00 0.000
14 23.9 3 6 95.76 99.88 99.42 100 0.00 0.000 6 99.31 100 99.92 100 0.00 0.000
15 24 3 4 82.99 99.05 97.26 100 0.00 0.000 46 82.50 99.69 97.78 100 0.00 0.000
16 24 5 12 98.46 99.83 99.59 100 0.00 0.000 12 99.92 99.91 99.91 100 0.00 0.000
17 24.1 5 45 90.42 99.58 98.01 100 0.00 0.000 45 93.58 99.62 98.58 100 0.00 0.000
18 24.9 5 1345 91.71 99.97 98.59 100 0.00 0.000 1345 86.42 99.98 97.71 100 0.00 0.000
19 24.4 3 2 98.13 99.44 99.30 100 0.00 0.000 2 98.06 99.64 99.47 100 0.00 0.000
20 25.6 5 235 93.29 99.67 98.63 100 0.00 0.000 235 95.50 99.74 99.05 100 0.00 0.000
21 23.9 4 2 93.75 99.33 98.53 100 0.00 0.000 2 95.73 99.44 98.91 100 0.00 0.000
Total 460.1 66 – 90.44 98.99 98.07 98.48 0.02 – – 90.84 99.12 98.22 98.48 0.02 –

simultaneously according to the results of both levels. Then,
the results of channel 3 for patient 1 are summarized in Table
2. Hence, after channel selection, Table 2 finally summarizes
the results of the best channel cases for each patient.

As shown in Table 2, after selecting the best channel cases
per patient, the results of two different preprocessing condi-
tions for each patient are given. (1) With the preprocessing
of 15-sec sliding windows, an overall 89.21% sensitivity,
99.73% specificity, and 98.99% accuracy are achieved at the
segment-based level. At the event-based level, 86 out of 87
seizures are finally predicted (except one seizure in patient
13). An event-based sensitivity of 98.85% and a FPR of 0/h
are obtained. (2) With the preprocessing of 30-sec sliding
windows, we achieve an overall 89.03% sensitivity, 99.68%
specificity, and 98.91% accuracy at the segment-based level.
We attain a same event-based sensitivity of 98.85% with a
FPR of 0.01/h at the event-based level. About the channel
case selected for each patient, most of patients (except pa-
tients 3, 5 and 18) have the same channel cases for both
preprocessing conditions. Moreover, the performance of our
method is better than that of the random predicting for each
patient according to the pv values in Table 2.

3.2. SOP = 60 min and SPH = 5 min

In the situation of SOP = 60 min and SPH = 5 min, patients
2 and 6 are removed because the duration of preictal phase
is less than 65 min. The results of two different preprocess-
ing conditions are also discussed. As shown in Table 3, we
summarize the results of two different preprocessing condi-
tions for each patient after the best channel cases selected.
(1) Under the preprocessing of 15-sec sliding windows, at the
segment-based level, an overall sensitivity, specificity, and ac-
curacy are 90.44%, 98.99% and 98.07%, respectively. At the
event-based level, 65 out of 66 seizures are correctly predicted

(except one seizure in patient 13). An overall event-based
sensitivity and a FPR are 98.48% and 0.02/h, respectively.
(2) Under the preprocessing of 30-sec sliding windows, an
overall 90.84% sensitivity, 99.12% specificity, and 98.22%
accuracy are attained at the segment-based level. A same
98.48% sensitivity with 0.02/h FPR is achieved at the event-
based level. For the selected channel case per patient, each
patient has the same channel case for both two preprocessing
conditions. According to the pv values in Table 3, our method
also shows a better performance than the random predicting
for each patient.

4. DISCUSSION AND CONCLUSION

With the same iEEG dataset, the results of our work and pre-
vious studies using deep learning techniques are given and
compared in Table 4. As shown in Table 4, the studies [10]
and [11] used 2D-CNNs for the analysis of seizure prediction
and attained a sensitivity of 81.4-90.8% with a FPR of 0.03-
0.08/h. Our previous work [9] used 1D-CNN for the predic-
tion of seizures and achieved a sensitivity of 98.48-98.85%
with 0.01/h FPR. In this work, 1D-CNN was also used for
the analysis of the same iEEG dataset. In the situation of
SOP = 30 min and SPH = 5 min, an event-based sensitivity of
98.85% and a FPR of 0-0.01/h were obtained. In the situation
of SOP = 60 min and SPH = 5 min, an event-based sensitivity
of 98.48% and a FPR of 0.02/h were attained. Compared to
the results of previous studies in Table 4, we could see that
our method shows remarkable performances.

In this paper, the method of channel selection combined
with 1D-CNN was further analyzed for seizure preidction.
Based on the Freiburg iEEG dataset (21 patients, 87 seizures),
our method finally predicted 86 seizures (except one seizure
in patient 13) and achieved a high event-based sensitivity of
98.48-98.85% with a low FPR of 0-0.02/h. A segment-based



Table 4. List of previous studies using deep learning methods for seizure prediction based on the Freiburg iEEG dataset.
Authors Features Classifier #Patients #Seizures SOP SPH Sen2 (%) FPR (/h)
Truong et al. (2018) [10] STFT time-frequency maps 2D-CNN 13 59 30 min 5 min 81.4 0.03
Truong et al. (2019) [19] STFT time-frequency maps GAN 13 59 30 min 5 min – –
Wang et al (2020) [11] DTF channel-frequency maps 2D-CNN 19 82 30 min 5 min 90.8 0.08
Wang et al (2021) [9] 30-sec time-channel iEEG maps 1D-CNN 21 87 30 min 5 min 98.85 0.01

19 66 60 min 5 min 98.48 0.01
This work 15-sec or 30-sec time-channel iEEG maps Channel-based 1D-CNNs 21 87 30 min 5 min 98.85 0.00-0.01

19 66 60 min 5 min 98.48 0.02

sensitivity of 89.03-90.84%, specificity of 98.99-99.73%, and
accuracy of 98.07-98.99% were attained at the segment-based
level. The proposed method also showed a better performance
better than the random predictor for all patients. From these
results, we could see that our method had a remarkable per-
formance in seizure prediction, and the channel selection for
each patient was meaningful.

5. REFERENCES

[1] Babak Sharif and Amir Homayoun Jafari, “Prediction of epileptic
seizures from EEG using analysis of ictal rules on Poincaré plane,”
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Abstract—The application of intracranial electroen-
cephalogram (iEEG) to predict seizures remains challeng-
ing. Although channel selection has been utilized in seizure
prediction and detection studies, most of them focus on
the combination with conventional machine learning meth-
ods. Thus, channel selection combined with deep learning
methods can be further analyzed in the field of seizure pre-
diction. Given this, in this work, a novel iEEG-based deep
learning method of One-Dimensional Convolutional Neural
Networks (1D-CNN) combined with channel increment strat-
egy was proposed for the effective seizure prediction. First,
we used 4-sec sliding windows without overlap to segment
iEEG signals. Then, 4-sec iEEG segments with an increas-
ing number of channels (channel increment strategy, from
one channel to all channels) were sequentially fed into
the constructed 1D-CNN model. Next, the patient-specific
model was trained for classification. Finally, according to
the classification results in different channel cases, the
channel case with the best classification rate was selected
for each patient. Our method was tested on the Freiburg
iEEG database, and the system performances were evalu-
ated at two levels (segment- and event-based levels). Two
model training strategies (Strategy-1 and Strategy-2) based
on the K-fold cross validation (K-CV) were discussed in our
work. (1) For the Strategy-1, a basic K-CV, a sensitivity of
90.18%, specificity of 94.81%, and accuracy of 94.42% were
achieved at the segment-based level. At the event-based
level, an event-based sensitivity of 100%, and false predic-
tion rate (FPR) of 0.12/h were attained. (2) For the Strategy-
2, the difference from the Strategy-1 is that a trained model
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selection step is added during model training. We obtained
a sensitivity, specificity, and accuracy of 86.23%, 96.00%
and 95.13% respectively at the segment-based level. At the
event-based level, we achieved an event-based sensitivity
of 98.65% with 0.08/h FPR. Our method also showed a
better performance in seizure prediction compared to many
previous studies and the random predictor using the same
database. This may have reference value for the future
clinical application of seizure prediction.

Index Terms—Epilepsy, seizure prediction, intracranial
electroencephalogram (iEEG), Convolutional Neural Net-
works (CNN), channel increment strategy.

I. INTRODUCTION

EPILEPSY is one of the most common neurological dis-

eases and seriously affects the health of epileptic patients.

There are an estimated 70 million people with epilepsy, and

approximately 30% of them are intractable to anti-epileptic

drugs [1], [2]. For patients with drug-resistant epilepsy, the

prediction of seizures may provide them with more treatment

options. This is because it can give people a time frame for

taking interventions to suppress the onset of seizures.

Electroencephalogram (EEG), as a significant tool, has been

widely utilized in the diagnosis of epilepsy [3], [4] and the

source localization of epileptic focus [5], [6]. However, EEG-

based seizure prediction remains a challenging task. Conse-

quently, EEG-based seizure prediction has attracted an increas-

ing attention in recent years as accurate seizure prediction

will greatly reduce the suffering and improve the quality of

life for epileptic patients. Seizure prediction using intracranial

electroencephalogram (iEEG) and scalp electroencephalogram

(sEEG) has been widely studied over the past two decades. The

Freiburg iEEG [7] and the CHB-MIT sEEG [8] databases are

commonly used in iEEG-based and sEEG-based studies for

seizure prediction, respectively. An overview of the related

researches is briefly introduced as follows.

First, in studies using the Freiburg iEEG database for seizure

prediction, the methods mainly consist of threshold crossing,

conventional machine learning, and deep learning. In studies

featuring threshold crossing analysis, linear or non-linear fea-

tures, such as dynamical similarity index [7], phase coherence

or synchronization [9], [10], spike rate [11], multiresolution N-

gram [12], correlation dimension [13] and fractal dimensions

and intercept values [14], were first extracted from iEEG
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signals. Then, the appropriate threshold was set according

to the trend of these features over time. A sensitivity of

42-92.9%, and false prediction rate (FPR) of 0.04-1/h were

achieved among these studies. In studies using conventional

machine learning methods, Support Vector Machine (SVM)

[15]–[20], Least Square-SVM (LS-SVM) [21] and Bayesian

[22], [23] were applied in seizure prediction and obtained a

sensitivity of 85.11-100% and a FPR of 0.03-0.36/h. In recent

studies with deep learning methods for seizure prediction,

One-Dimensional Convolutional Neural Networks (1D-CNN)

[24], Two-Dimensional Convolutional Neural Networks (2D-

CNN) [25], [26], and Generative Adversarial Networks (GAN)

[27] were used, and a sensitivity of 81.4-98.85% and a FPR

of 0.01-0.08/h were attained.
Second, in studies based on the CHB-MIT sEEG database

for the prediction of seizures, the conventional machine learn-

ing and deep learning methods were also widely applied. In

studies using conventional machine learning methods, SVM

[19], [28]–[30], Bayesian [31], Backpropagation Neural Net-

work (BPNN) [32] and Multi-layer Perceptron (MLP) [33]

were used as classifiers, and these studies achieved a sen-

sitivity of 86.87-98.68% and a accuracy of 83.17-99.70%.

In studies with deep learning methods, Long Short-Term

Memory (LSTM) [34]–[36], 2D-CNN [25], [37]–[39], three-

dimensional Convolutional Neural Networks (3D-CNN) [40],

[41] and Deep Recurrent Neural Network (DRNN) [42] were

utilized for classification. Among these studies, a sensitivity

of 81.2-100%, accuracy of 92.50-99.72%, and specificity of

93.65-99.60% were attained.
EEG channel selection, as an important feature selection

method in the spatial domain, was also effectively applied in

seizure detection [43]–[47], seizure prediction [48]–[52] and

other fields [53]. However, most of these studies focused on the

combination of channel selection and conventional machine

learning methods. There are few studies on the combination

of channel selection and deep learning methods to predict

seizures. Therefore, channel selection combined with deep

learning methods can be further explored and discussed in

the field of seizure prediction.
As mentioned above, many conventional machine learn-

ing and deep learning methods have been used to achieve

remarkable results in seizure prediction. However, there are

still several considerations for focus and discussion. The first

consideration is that the combination of channel selection and

deep learning methods is less studied and should be further

analyzed in seizure prediction. Second, it should be noted that,

for many previous studies using the Freiburg iEEG database

for seizure prediction, performance is commonly evaluated at

the event-based level (event-based sensitivity and FPR), while

for many previous studies employing the CHB-MIT sEEG

database for seizure prediction, performance is commonly

evaluated at the segment-based level (sensitivity, specificity

and accuracy), thus, both levels can be considered at the same

time. Third, consider that LSTM, 2D-CNN have been widely

used for the prediction of seizures, while the use of 1D-CNN is

low. According to these considerations, the main contributions

or novelties of this work are summarized as follows:

1) A novel method of channel increment strategy-based

1D-CNN is presented for seizure prediction. In the

channel increment strategy, iEEG signals with the varied

number of channels (from one channel to all channels)

are used in turn as the inputs of 1D-CNN model for

classification. Then, the channel case with the best

classification rate is selected for each patient.

2) For better evaluating the performances of our method,

classification results are simultaneously evaluated at the

two levels (segment- and event-based levels). The two

levels are also flexibly applied together to select the best

channel case. For example, if several channel cases show

the same high performance at the event-based level for

a patient, the segment-based performance can be used

to assist in selecting the best channel case.

3) Two model training strategies (Strategy-1 and Strategy-

2) based on the K-fold cross validation (K-CV) are dis-

cussed, and they also correspond to two sets of channel

selection processes. The Strategy-1 is a basic K-CV,

and the best channel case selection is only performed

after the K-CV. For the Strategy-2, the difference from

the Strategy-1 is that we add a trained model selection

step during model training as a preliminary selection of

channel cases. Then, the best channel case is selected

from these preliminary selected channel cases after the

K-CV.

The remaining sections of this paper include the materials

in Section II, the methodology in Section III, the results of the

proposed method in Section IV, and the discussion in Section

V. Section VI presents our conclusion.

II. DATA

The Freiburg iEEG database is utilized and analyzed for the

prediction of seizures. The iEEG database is recorded at the

sampling rate of 256 Hz, with the notch filtering of 50 Hz and

the bandpass filtering of 0.5-120 Hz. It contains 21 patients,

87 epileptic seizures, 509 h of interictal, and 73 h of preictal

or ictal iEEG signals [7]. For each patient, there are at least

24 h of interictal and 50 min of preictal iEEG signals. More

details of this database can be found in [7].

iEEG

Time

SPH SOP
Alarm

PreictalInterictal Ictal Postictal

Fig. 1. Example of an accurate seizure prediction. When an alarm rings,
a seizure must occur after SPH and within SOP.

In the study of seizure prediction, the seizure occurrence

period (SOP) is defined as the period during which a seizure is

expected to arise. The seizure prediction horizon (SPH) is the

period from an alarm to the beginning of SOP [54] (as shown

in Fig. 1). SPH is also regarded as the period of interventions

to prevent seizure onsets [55]. In this work, we discuss the

preictal condition of SPH = 5 min and SOP = 30 min (35 min

preictal duration before a seizure) based on studies [25] and

[26]. Our work only considers patients with at least 4 seizures
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The channel case with the

best classification is finally

selected

…

1 channel

6 channels

2 channels

5 channels

Classification

Classification

Classification

Classification

…

1D-CNN

1D-CNN

1D-CNN

1D-CNN

…

Fig. 2. Overall diagram of the 1D-CNN combined with channel increment strategy for the epileptic seizure prediction.

for ensuring the number of samples during model training.

The details of the selected iEEG signals are summarized in

Table I.

TABLE I
DETAILS OF THE SELECTED IEEG SIGNALS FOR EACH PATIENT

Patient Age Gender Interictal (h) #Seizures

1 15 f 24 4
3 14 m 24 5
4 26 f 24 5
5 16 f 24 5
9 44 m 23.9 5
10 47 m 24.5 5
11 10 f 24.1 4
12 42 f 24 4
14 41 f 23.9 4
15 31 m 24 4
16 50 f 24 5
17 28 m 24.1 5
18 25 f 24.9 5
19 28 f 24.4 4
20 33 m 25.6 5
21 13 m 23.9 5
Total – – 387.3 74

III. METHODOLOGY

The overall framework of the 1D-CNN combined with

channel increment strategy is showed in Fig. 2. For the iEEG

database used in this work, each patient has six iEEG channels,

including three in-focal channels (marked as channels 1-3) and

three out-of-focal channels (marked as channels 4-6). Hence,

iEEG signals with an increasing number of channels (from

one channel to six channels) are sequentially fed into the 1D-

CNN models for classification, and this process is regarded as

the channel increment strategy. Then, the best channel case is

selected according to the classification results (as shown in Fig.

2). The next five parts of this section include preprocessing,

channel increment strategy, 1D-CNN model, model training

and system evaluation.

A. Preprocessing
In preprocessing, 4-sec sliding windows without overlap are

used to segment the raw iEEG signals (as shown in Fig. 3).

Since the iEEG signals are recorded at the sampling rate of 256

Hz, each 4-sec iEEG segment is a matrix of n×1024, where

n (n = 1 to 6) is the number of channels, and 1024 is the

number of points. Then, the 4-sec iEEG segments are used

as the inputs of the 1D-CNN models. For each patient, the

number of the 4-sec iEEG segments is summarized in Table

II.

4 s 4 s4 s 4 s

iEEG

Fig. 3. The raw iEEG signals (interictal and preictal) are segmented by
the 4-sec sliding windows without overlap.

TABLE II
NUMBER OF THE 4-SEC SEGMENTS

Interictal (23.9∼25.6 h) Preictal (30 min)∗

Patients with 4 seizures 21510∼21960 1800 (450×4)
Patients with 5 seizures 21510∼23040 2250 (450×5)

∗Due to SOP = 30 min and SPH = 5 min, preictal signals from -35 min to -5 min (total
30 min) before the onset point of a seizure are selected and used for analysis.

B. Channel increment strategy
The iEEG signals of each patient contain six channels:

channels 1-3 (in-focal) and channels 4-6 (out-of-focal). In

the channel increment strategy, when iEEG segments of one

channel are used as the inputs of the 1D-CNN model, there are

six channel cases (|C16 | = 6). By analogy, there are cases of

two channels, three channels and all the way to six channels.

Consequently, there are 63 channel cases (|C16 |+|C26 |+|C36 |+
|C46 | + |C56 | + |C66 | = 63) in total. All channel cases are

summarized in Table III.

TABLE III
ALL CASES (|C1

6 |+ |C2
6 |+ |C3

6 |+ |C4
6 |+ |C5

6 |+ |C6
6 | = 63) IN

THE CHANNEL INCREMENT STRATEGY.

|C1
6 | 1 2 3 4 5 6

|C2
6 | 12 13 23 14 15 16 24 25

26 34 35 36 45 46 56

|C3
6 | 123 124 125 126 134 135 136 234

235 236 145 245 345 146 246 346
156 256 356 456

|C4
6 | 1234 1235 1236 1245 1246 1256 1345 1346

1356 2345 2346 2356 1456 2456 3456

|C5
6 | 12345 12346 12356 12456 13456 23456

|C6
6 | 123456

Red numbers: in-focus channels; Blue numbers: out-of-focus channels.

C. 1D-CNN model
Since the 4-sec iEEG segments are directly used as the

inputs of the classifier, a 1D-CNN model is constructed in

this study. As shown in Fig. 4, the framework of the proposed

1D-CNN model includes two parallel blocks (Block 1 and

Block 2), one convolution portion and two fully connected
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(FC) layers. Each block has the same structure and contains

three convolution portions. Moreover, each convolution portion

is composed of a convolutional layer with the rectified linear

activation unit (ReLU), a batch-normalization (BN) layer,

and a max-pool (MP) layer. In this work, the two parallel

blocks with different kernel sizes used in the model aim to

learn more different representations from the input signals

for classification. The function of a convolutional layer is to

process the input signals with the convolution calculation and

nonlinearization, and the convolution results are commonly fed

into a pooling layer for preserving higher-level representations.

channels 

(n = 1 to 6)

1024 (4 s)

iEEG

Block 1 Block 2

Feature Concatenation

GAP

2

FC

FC

256

128

Conv (256@3, =1)

BN

MP ( =3, =2)

Prediction Labels    0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0   …

Conv (32@n× 3, =2)

BN

MP ( =3, =2)

Conv (32@n× 5, =2)

BN

MP ( =3, =2)

Conv (64@3, =2)

BN

MP ( =3, =2)

Conv (64@5, =2)

BN

MP ( =3, =2)

Conv (128@3, =1)

BN

MP ( =3, =2)

Conv (128@5, =1)

BN

MP ( =3, =2)

Fig. 4. Framework of the proposed 1D-CNN model. M1@n×k1 or
M2@k2 : M1 and M2 are the number of kernels; k1 and k2 are the
sizes of kernels. Abbr: Conv, convolution; BN, batch normalization; MP,
max-pooling; s1 , pooling size; s2 , stride; GAP, global average pooling;
FC, fully connected.

The details or parameters of the proposed 1D-CNN model

are described as follows. In the Block 1, the three convolu-

tional layers contain 32 kernels (size = n×3, where n is an

integer ranging from 1 to 6, and stride = 2), 64 kernels (size

= 3 and stride = 2) and 128 kernels (size = 3 and stride =

1), respectively. The three MP layers have the same pooling

size of 3 and the same stride of 2. Compared to the Block 1,

the differences in the Block 2 are the kernel sizes of the three

convolutional layers (as shown in Fig. 4). In the Block 2, the

kernels sizes of the three convolutional layers are n×5, 5, and

5, respectively. Then, the diverse representations from the two

blocks are concatenated as the inputs of the last convolution

portion. It consists of a convolutional layer (256 kernels, size

= 3 and stride = 1), a BN layer, and a MP layer (size = 3 and

stride = 2). Finally, the outputs of the last convolutional portion

are globally averaged and fed into the two FC layers. The first

FC layer has 128 neurons, and the second has 2 neurons for

the output of classification. The activation functions of these

two FC layers are ReLU and Softmax, respectively.

During the model training phase, the dropout rate in second

FC layer is set at 0.25. The maximum number of iterations

is 60, and the early stopping technique (monitor = ”val-loss”,

patience = 8) is also used to prevent overfitting during model

training. The proposed 1D-CNN model is implemented in

Python 3.6 based on the Keras-2.3.1 with the Tensorflow-

1.15.0 backend, and three parallel Nvidia Tesla P100 GPUs

are configured to run the model.

D. Model training
In this work, the patient-specific model is trained for each

patient. Two strategies (Strategy-1 and Strategy-2) based on

the K-fold cross validation (K-CV) are performed for model

training.

1) Strategy-1
The Strategy-1 is a basic K-CV. For the Strategy-1, the

model training is implemented for K rounds, where K is the

number of seizures of each patient. In each round, (K-1) parts

are used for training, and the remaining one is used for testing.

For example, Fig. 5 shows the Strategy-1 for the patients

with 4 seizures. First, the interictal segments are sequentially

divided into 4 equal parts. Since the number of the interictal

segments is much larger than that of the preictal segments, a

down-sampling approach is then used before model training.

As shown in Fig. 5, the same number of interictal segments

are randomly selected from 3 interictal parts in each round.

Consequently, the size of the selected interictal segments is

equal to that of the preictal segments during model training,

while the remaining one (one interictal and one preictal part) is

used for testing. Finally, all segments are tested after 4 rounds.

Training

1 2 3 1 2 3 4 4

Testing

Training

2 3 4 2 3 4 1 1

Testing

Round 1

Round 4

Random selection

Random selection

Random sorting

Random sorting

…

Fig. 5. Example of the Strategy-1 combined with a data down-sampling
technique during model training for the patients with 4 seizures.

2) Strategy-2
For the Strategy-2, the difference from the Strategy-1 is

that a trained model selection step is added in each round (as

shown in Fig. 6). The selection criterion of the trained models

is based on the F1 score. F1 score can be calculated as follows:

F1 = 2 · precision · recall
precision+ recall

,

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,
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where TP indicates the number of true predicted preictal

segments, FP indicates the number of false predicted preictal

segments, and FN indicates the number of false predicted

interictal segments. In this work, only when F1 scores are

more than 0.97, the corresponding trained models are selected

from 63 trained models (because of there are 63 channel cases)

in each round.

For example, Fig. 6 shows the Strategy-2 for the patients

with 4 seizures. First, the sample balance solution is the same

as that stated in the Strategy-1. Then, in each round, we leave

one part as a testing set, while 90% of the samples from the

other three parts are used to train models, and the remaining

10% of the samples are used as the validation set for the

selection of trained models (a preliminary selection of channel

cases). The trained models with F1 scores more than 0.97 are

selected in each round, and the selected models are used again

to test the testing set.

Training                Validation

For the validation set, 63 F1 scores corresponding to 63 channel cases are computed. 

The trained models with the F1 scores more than 0.97 are selected from 63 trained models.   

The selected trained models

1 2 3 1 2 3

4 4

  Testing

Training                Validation

90% (preictal = interictal) 10%

2 3 4 2 3 4

1 1

  Testing

Round 1

Round 4

Random selection

Random sorting

…

The selected trained models

Random selection

Random sorting

90% (preictal = interictal) 10%

For the validation set, 63 F1 scores corresponding to 63 channel cases are computed. 

The trained models with the F1 scores more than 0.97 are selected from 63 trained models.   

Fig. 6. Example of the Strategy-2 combined with a data down-sampling
technique during model training for the patients with 4 seizures.

E. System evaluation
In seizure prediction, the system performance is commonly

evaluated at the even-based level. However, in this work, the

performances of our method are evaluated at the two levels

(segment- and event-based levels) simultaneously for two

reasons. One reason is that the segment-based performance can

be utilized to assist in selecting the best channel case if several

channel cases have the same high event-based performance

for a patient. Another reason is that the performances at

two levels can also make the classification evaluation more

comprehensive.

1) Segment-based level
At the segment-based level, the sensitivity, specificity, and

accuracy are calculated. The formulas of these three metrics

are given as follows:

Sensitivity =
TP

P
,

Specificity =
TN

N
,

Accuracy =
TP + TN

P +N
,

where TP indicates the number of true predicted preictal

segments, P indicates the number of all preictal segments, TN

indicates the number of true predicted interictal segments, and

N indicates the number of all interictal segments.

2) Event-based level
At the event-based level, the event-based sensitivity and the

FPR are computed. The formulas of the two metrics are given

as follows:

Sensitivity =
number of true predictions

number of seizures
,

FPR =
number of false predictions

hours of interictal iEEG
.

To give an accurate alarm in the prediction of seizures, a

simple postprocessing for prediction labels is performed. In

our work, the condition for an alarm to sound is that prediction

labels within 32 seconds are all positive (as shown in Fig. 7).

It means that eight consecutive labels must be all positive to

meet the requirement of an alarm. Since unnecessary repeated

alarms need to be avoided, the time interval between two

alarms is the sum of SOP and SPH. Consequently, the second

alarm in the duration from the first alarm to the end of SOP

is prohibited in the system.

At the event-based level, we also compare the proposed

method with the random predictor. The probability of the

random predictor predicting at least k out of K seizures is

expressed as follows:

pv =
K∑

i≥k

p
i
1(1− p1)

K−i
,

where p1 ≈ 1 − e−FPR·SOP [56], p1 is the probability of a

random alarm, FPR and SOP are the false prediction rate and

the seizure occurrence period, respectively. k is the number

of true predictions, and K is the number of all seizures. The

significance level is set to 0.05 in our work, and it means that

the proposed method is better than the random predictor when

the pv is less than 0.05.

IV. RESULTS

A. Results of The Strategy-1
The whole algorithm runs twice. For each channel case

(total 63 channel cases, |C16 |+|C26 |+|C36 |+|C46 |+|C56 |+|C66 | =
63) at the segment-based level, the averaged sensitivity (Sen1),

specificity (Spe), and accuracy (Acc) are achieved. For each

channel case at the event-based level, the averaged event-based

sensitivity (Sen2), and FPR are attained. Then, from 63 chan-

nel cases, based on the results of both levels simultaneously,

the best channel case is selected for each patient, and the

corresponding classification results are summarized.

For example, as shown in Fig. 8, the averaged results in

each channel case for patient 19 are given at the segment-

based level (Fig. 8(A)) and the event-based level (Fig. 8(B)).

The case of channels 12 is finally selected according to the

results of both levels at the same time. And then, the results

of channels 12 for patient 19 are summarized in Table IV.

Hence, Table IV summarizes the best channel cases with the

corresponding classification results for all patients.

As shown in Table IV, the results of each patient are

provided after selecting the best channel case. The overall

90.18% sensitivity, 94.81% specificity, and 94.42% accuracy
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A true predictionA false prediction

Time

Seizure onset
Prediction labels  …  0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 … 

PreictalInterictal

iEEG

32 s 32 s

Fig. 7. At the event-based level, a simple postprocessing for prediction labels is performed to accurately sound an alarm. In this work, 32-sec
duration is the requirement for sounding an alarm robustly. This means that 8 consecutive labels of 4-sec iEEG segments must be positive.
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Fig. 8. In the Strategy-1, the averaged results of each channel case for patient 19 are showed after the whole algorithm runs twice. (A) Classification
results at the segment-based level. (B) Classification results at the event-based level. The best case of channels 12 is finally selected, and the
corresponding results are summarized in Table IV.

TABLE IV
IN THE STRATEGY-1, THE SELECTED CHANNEL CASES AND THE CORRESPONDING RESULTS FOR EACH PATIENT.

Segment-based level Event-based level
Patient #Seizure Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv
1 4 2 72.50±5.26 95.87±0.22 94.07±0.20 100±0.00 0.08±0.00 0.000
3 5 1 93.49±1.67 97.24±0.05 96.88±0.20 100±0.00 0.08±0.00 0.000
4 5 2 91.93±0.03 99.81±0.26 99.06±0.23 100±0.00 0.00±0.00 0.000
5 5 16 88.13±0.19 78.18±2.16 79.12±1.98 100±0.00 0.50±0.06 0.001
9 5 4 100±0.00 99.99±0.00 99.99±0.00 100±0.00 0.00±0.00 0.000
10 5 34 92.84±1.63 98.85±0.09 98.29±0.07 100±0.00 0.00±0.00 0.000
11 4 13 97.36±0.75 98.19±1.03 98.13±1.01 100±0.00 0.00±0.00 0.000
12 4 3 98.42±0.43 97.86±1.29 97.91±1.22 100±0.00 0.06±0.03 0.000
14 4 34 95.61±2.12 98.15±0.30 97.95±0.12 100±0.00 0.00±0.00 0.000
15 4 3 93.19±1.53 92.73±1.64 92.77±1.63 100±0.00 0.21±0.06 0.000
16 5 126 90.53±3.96 78.16±0.21 79.32±0.56 100±0.00 0.42±0.00 0.000
17 5 13 85.36±2.61 98.11±1.12 96.91±1.26 100±0.00 0.00±0.00 0.000
18 5 35 93.31±4.31 98.08±0.34 97.64±0.09 100±0.00 0.16±0.00 0.000
19 4 12 81.75±1.85 93.53±0.78 92.64±0.58 100±0.00 0.18±0.03 0.000
20 5 34 84.87±2.23 95.16±1.38 94.25±1.06 100±0.00 0.08±0.06 0.000
21 5 3 83.56±1.70 96.98±0.25 95.71±0.39 100±0.00 0.08±0.00 0.000
All 74 – 90.18±1.89 94.81±0.70 94.42±0.66 100±0.00 0.12±0.02 –

Cs: channel(s) selected; Red numbers: in-focus channels; Blue numbers: out-of-focus channels.

are achieved at the segment-based level. At the event-based

level, 74 seizures are all predicted, and the event-based sensi-

tivity of 100% with 0.12/h FPR is attained. According to the

pv values in Table IV, the performance of our method is better

than that of the random predictor for all patients.

B. Results of The Strategy-2

Different from the Strategy-1, we add a model selection

step in each round (as shown in Fig. 6). The whole algorithm

also runs twice. After running twice, one channel case can
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Fig. 9. In the Strategy-2, the averaged results for patient 19 are showed after the whole algorithm runs twice. (A) 30 channel cases (marked
with green points) are first selected because of the F1 scores of these 30 channel cases are all more than 0.97 in all rounds (marked with green
rectangles). (B) Classification results of the testing set from the 30 selected channel cases at the segment-based level. (C) Classification results of
the testing set from the 30 selected channel cases at the event-based level. The best case of channels 12 is finally selected according to (B) and
(C), and the corresponding results are summarized in Table V.

TABLE V
IN THE STRATEGY-2, THE SELECTED CHANNEL CASES AND THE CORRESPONDING RESULTS FOR EACH PATIENT.

Segment-based level Event-based level
Patient #Seizure F1 Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv
1 4 0.982 1 75.11±5.81 96.66±0.33 95.00±0.14 100±0.00 0.10±0.03 0.000
3 5 0.995 1 84.02±3.61 98.00±0.01 96.68±0.33 100±0.00 0.06±0.03 0.000
4 5 0.999 2 91.80±0.03 99.97±0.01 99.20±0.00 100±0.00 0.00±0.00 0.000
5 5 0.970 1235 53.82±2.77 89.86±1.86 86.46±1.42 80±0.00 0.19±0.03 0.000
9 5 0.999 34 99.84±0.03 99.94±0.04 99.93±0.04 100±0.00 0.00±0.00 0.000
10 5 0.989 34 93.67±0.47 98.78±0.34 98.31±0.35 100±0.00 0.00±0.00 0.000
11 4 0.987 16 96.47±0.59 97.60±0.14 97.51±0.18 100±0.00 0.00±0.00 0.000
12 4 0.999 3 98.19±1.53 99.54±0.49 99.44±0.57 100±0.00 0.00±0.00 0.000
14 4 0.991 3 94.92±0.59 98.12±0.33 97.87±0.35 100±0.00 0.02±0.03 0.000
15 4 0.982 23 91.64±0.67 94.03±1.53 93.85±1.36 100±0.00 0.08±0.06 0.000
16 5 0.993 126 96.56±2.11 79.24±1.06 80.87±1.16 100±0.00 0.42±0.00 0.000
17 5 0.991 13 88.96±2.61 98.47±0.06 97.57±0.30 100±0.00 0.02±0.03 0.000
18 5 0.997 56 86.49±3.90 99.17±0.39 98.02±0.71 100±0.00 0.10±0.03 0.000
19 4 0.990 12 79.47±2.40 93.88±0.80 92.79±0.92 100±0.00 0.18±0.03 0.000
20 5 0.981 34 91.56±2.51 95.20±0.49 94.88±0.67 100±0.00 0.06±0.03 0.000
21 5 0.999 1234 57.09±1.23 97.54±0.25 93.72±0.11 100±0.00 0.06±0.03 0.000
All 74 – – 86.23±1.93 96.00±0.51 95.13±0.54 98.65±0.00 0.08±0.02 –

attain an averaged F1 score in one round. Thus, for K rounds,

one channel case has K averaged F1 scores. In this work,

only when K averaged F1 scores of a channel case are all

more than 0.97, the corresponding channel case is selected as

the pre-selected channel case. After some pre-selected channel

cases are obtained, the classification results of the testing sets

from these pre-selected channel cases are then calculated for

the final best channel case selection. After selecting the best

channel case for each patient, the corresponding results are

summarized.

For example, as shown in Fig. 9(A), for the patient 19 with

4 seizures, after the whole algorithm runs twice, each channel

case has 4 averaged F1 scores. 30 channel cases are first

selected because of the F1 scores of these 30 channel cases are

all more than 0.97 in all rounds. Then, the classification results

of the testing sets from these 30 selected channel cases are

showed in Fig. 9(B) and (C). According to the results in Fig.

9(B) and (C), the best case of channels 12 is finally selected

from the 30 selected channel cases, and the corresponding

results are summarized in Table V.

As shown in Table V, at the segment-based level, the overall

sensitivity, specificity, and accuracy are 86.23%, 96.00%, and
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95.13%, respectively. At the event-based level, 73 out of

74 seizures are correctly predicted (except one seizure in

patient 5). The overall event-based sensitivity, and FPR are

98.65% and 0.08/h, respectively. This method also shows a

better performance than the random predictor for all patients

according to the pv values in Table V.

V. DISCUSSION

A. Compared to the studies using the Freiburg database
for seizure prediction

Based on the same iEEG database, the results of this

work and previous studies are also compared. The comparison

details, including features, classifiers, number of patients,

number of seizures, SOP, SPH, number of the used channels,

sensitivity and FPR, are summarized in Table VI.

As shown in Table VI, the methods of previous studies

mainly focus on three aspects: threshold analysis, conventional

machine learning, and deep learning. (1) For the methods of

threshold analysis combined with linear or non-linear features,

the studies [7], [9]–[14] achieve a sensitivity of 42% to 92.9%
and a FPR of 0.04/h to 1/h. In these studies, the study [13]

attains a highest sensitivity of 92.9% with a FPR of 0.096/h,

but only 10 out of 21 patients are used. (2) For the conventional

machine learning methods, the SVM in the studies [15]–[20],

the LS-SVM in the study [21], the Bayesian in the studies [22],

[23], and the linear classifier in the study [57] are used for the

analysis of seizure prediction, and a sensitivity of 85.11% to

100% and a FPR of 0.03/h to 0.36/h are achieved. A highest

sensitivity of 100% and a low FPR of 0.0324/h are obtained

by using the SVM in the study [19]. (3) For the deep learning

methods, the 1D-CNN [24] and 2D-CNN [25], [26] models

are utilized, and these studies attain sensitivities ranging from

81.4% to 98.85% and FPRs ranging from 0.01/h to 0.08/h. The

study [24] achives highest sensitivity at 98.85% and lowest

FPR at 0.01/h. In our work, the deep learning techniques

are also used for the analysis of the same iEEG database,

and an event-based sensitivity of 98.65-100% and a FPR of

0.08-0.12/h are obtained. Compared to the results of previous

studies in Table VI, the performances of our work are better

than that of most of previous studies.

Although the studies [18], [19], [57] achieve a sensitivity

of 100%, the time of interventions to suppress seizure onsets

is ignored (SPH = 0). Moreover, the highest sensitivity of

our work can also reach 100% with a reduced number of

channels (as shown in Table IV). Compared to the studies [12],

[16], [19], [24], [25], our work attains a little higher FPR of

0.08-0.12/h, but it still meets the requirement that FPR should

be less than 0.15/h [54]. For the sensitivity performance, the

sensitivity of our work is 98.65-100%, which is higher than

that of the studies [12], [16], [25] and is also commendable

when compared with that of the studies [19], [24]. In this

work, another highlight needs to be emphasized. For the

Freiburg iEEG database, most of prior studies only evaluate

the performances of seizure prediction at the event-based level

(as shown in Table VI), without considering the performances

at the segment-based level. Different from these studies, our

work evaluates the performances of seizure prediction from

both levels (as shown in Tables IV and V), thus, it is more

comprehensive.

B. Compared to the studies using channel selection for
seizure prediction

Table VII summarizes the studies using channel selection

strategy (CSS) for seizure prediction. As shown in Table VII,

three CSS, including the pre-specified, the statistical criteria

and the sequential search, are applied in seizure prediction.

In studies [9], [24] and [48] using the pre-specified strat-

egy, a sensitivity of 60-98.85%, and FPR of 0.01-0.15/h are

achieved. For the pre-specified strategy, some channel cases

are predefined (the other channel cases are ignored), and the

best channel case is only selected from these pre-specified

channel cases. Therefore, one drawback of the pre-specified

strategy is that the ignored channel cases may contain the real

best channel case. In studies [49]–[52] using the statistical

criteria strategy, the authors finally attain a sensitivity of 70.9-

97.83% with a FPR of 0.031-0.076/h. For the statistical criteria

strategy, extracted features or classification rates from single

or multiple channels are statistically evaluated to select the

significant channels. Then, these selected channels are used

for seizure prediction. However, feature extraction is a time-

consuming task, and complex feature extraction and selection

approaches may also result in a low generalization. In our

work, we use the sequential search strategy (the number of

channels ranges from one to all) for channel selection, and

the best channel case is selected from all the channel cases

according to the performance of each channel case, without

discarding some channel cases in advance. Combined with

deep learning method, our method achieves a result of 98.65-

100% sensitivity and 0.08-0.12/h FPR, and this also shows a

remarkable performance compared to the studies in Table VII.

VI. CONCLUSION

In this paper, a novel method of 1D-CNN combined with

channel increment strategy was proposed for the prediction

of seizures. In the channel increment strategy, iEEG signals

with an increasing number of channels (from one channel

to all channels) were sequentially used as the inputs of 1D-

CNN model for finding the best classification. The proposed

method was tested on the Freiburg iEEG database with six

channels per patient. Finally, 74 seizures were all predicted.

A high event-based sensitivity of 98.65-100% and a low FPR

of 0.08-0.12/h were achieved at the event-based level. At the

segment-based level, a segment-based sensitivity of 86.23-

90.18%, specificity of 94.81-96.00%, and accuracy of 94.42-

95.13% were attained. Compared to the performance of the

random predictor, our method was also statistically better than

the random predictor for all patients. From these results, we

could see that our method had a remarkable performance

in seizure prediction with a minimal or reduced number of

channels, and the selection of channels for each patient was

necessary in this work. All of these may provide a reference

for the clinical application of seizure prediction with a reduced

number of channels in the future.
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TABLE VI
LIST OF THE STUDIES USING THE FREIBURG IEEG DATABASE FOR SEIZURE PREDICTION.

Authors Features Classifier #Pat #Sei SOP SPH #Ch+ Sen (%) FPR (/h)

Maiwald et al.(2004) [7] Dynamical similarity index Threshold crossing 21 87 30 min 2 min 6 42 0.15
Winterhalder et al.(2006) [9] Phase synchronization Threshold crossing 21 87 30 min 10 min 2 60 0.15
Park et al.(2011) [15] Spectral power from nine frequency bands SVM 18 80 30 min 0∗ 6 97.5 0.27
Williamson et al.(2012) [16] Correlation patterns both within and across channels SVM 19 83 30 min 0∗ 6 85.54 0.03
Li et al.(2013) [11] Spike rate Threshold crossing 21 66 50 min 10 sec 6 75.8 0.09
Zheng et al.(2014) [10] Mean phase coherence Threshold crossing 10 50 30 min 10 min 6 55-90 0.04-1
Ozdemir et al.(2014) [22] HHT based features Bayesian 21 87 35 min 5 min 6 96.55 0.21
Wang et al.(2014) [17] Amplitude and frequency modulation features SVM 19 83 50 min 0∗ 6 98.8 0.054
Ghaderyan et al.(2014) [18] Univariate linear features in eight frequency sub-bands SVM 18 80 30 min 0∗ 6 100 0.13
Eftekhar et al.(2014) [12] Multiresolution N-gram Threshold crossing 21 87 20 min 10 min 6 90.95 0.06
Bedeeuzzaman et al.(2014) [57] Mean absolute deviation and inter quartile range A linear classifier 18 73 51-96 min 0∗ 6 100 ≤0.30
Zhang et al.(2016) [19] spectral powers and spectral power ratios SVM 18 80 ≤60 min 0∗ 6 100 0.0324
Parvez et al.(2016) [21] Phase correlation, fluctuation, and deviation LS-SVM 21 87 30 min 0∗ 6 95.4 0.36
Aarabi et al.(2017) [13] A set of six univariate and bivariate features Rule-based decision 10 28 50 min 10 sec 6 92.9 0.096
Sharif et al.(2017) [20] Fuzzy rules on Poincaré plane SVM 19 83 15 min 2-42 min 6 91.8-96.6 0.05-0.08
Yuan et al.(2018) [23] Diffusion distance Bayesian 21 87 30 min 10 sec 6 85.11 0.08

50 min 10 sec 6 93.62 0.08
Truong et al.(2018) [25] STFT time-frequency maps 2D-CNN 13 59 30 min 5 min 6 81.4 0.03
Wang et al.(2020) [26] DTF channel-frequency maps 2D-CNN 19 82 30 min 5 min 6 90.8 0.08
Zhang et al.(2020) [14] Fractal dimensions and intercept values Threshold crossing 20 65 30 min 2 min 6 90.42 0.12

50 min 2 min 6 91.67 0.10
Wang et al.(2021) [24] 30-sec time-channel iEEG maps 1D-CNNs 21 87 30 min 5 min 1,3 98.85 0.01

19 66 50 min 5 min 1,3 98.48 0.01
This work 4-sec time-channel iEEG maps 1D-CNNs 16 74 30 min 5 min 1-4 98.65-100 0.08-0.12
∗SPH = 0 means that the time of interventions to suppress seizure onsets is zero, ignoring practical clinical considerations.
+#Ch indicates the number of channels used in seizure prediction.

TABLE VII
LIST OF THE STUDIES USING CHANNEL SELECTION FOR SEIZURE PREDICTION.

Authors Features Classifier CSS Database #Pat #Sei SOP SPH #Ch+ Sen (%) FPR (/h)

Winterhalder et al.(2006) [9] Phase synchronization Threshold crossing Pre-specified Freiburg 21 87 30 min 10 min 2 60 0.15
Chang et al.(2012) [48] Synchrony features SVM Pre-specified Freiburg 21 66 – – 2-6 69.7 –

CHB-MIT, NTUH 7 36 – – 3-6 85.0 –
Ibrahim et al.(2019) [49] Probability density functions Threshold crossing Statistical criteria CHB-MIT 5 31 90 min 0∗ – 93.55 0.054
Coşgun et al.(2021) [50] Variance difference, WAS Rusboosted Tree Statistical criteria European-Epilepsy 10 69 50-75 min 0∗ 1-19 71.8 0.031
Ra et al.(2021) [51] Permutation entropy SVM Statistical criteria CHB-MIT 22 131 10 min 0∗ 3-8 92.42 –
Jana et al.(2021) [52] Time-channel iEEG maps 2D-CNN Statistical criteria CHB-MIT 23 – 10 min 0∗ 6 97.83 0.076
Wang et al.(2021) [24] 30-sec time-channel iEEG maps 1D-CNNs Pre-specified Freiburg 21 87 30 min 5 min 1,3 98.85 0.01

19 66 50 min 5 min 1,3 98.48 0.01
This work 4-sec time-channel iEEG maps 1D-CNNs Sequential search Freiburg 16 74 30 min 5 min 1-4 98.65-100 0.08-0.12
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