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Abstract

In this thesis we describe the dynamics of solvency level in life insurance contracts.
We do this by representing the underlying sources of risk and the solvency level as the
solution to a forward-backward stochastic differential equation system. We start by
introducing Brownian motion, stochastic integration, stochastic differential equations,
and backward stochastic differential equations. With these notions described we can
start constructing the model for solvency risk. Afterwards we also give a link to
partial differential equation theory and a Monte Carlo example for obtaining explicit
representations for the processes involved.

We will denote the net value of the contract by a process N , which will depend on
underlying economic and demographic variables. We say that the contract is solvent
at time t if Nt ≥ 0. We can express the change in solvency probability at the expiry
time T as

P(NT ≥ 0|Ft)− P(NT ≥ 0|F0) =

∫ t

0

U⊤
r dM

X
r =

∫ t

0

Z⊤
r dBr,

where the filtration (Ft)t≥0 describes the information available at time t, MX
r is the

martingale part from Doob’s decomposition of the process X. Furthermore, the pro-
gressively measurable processes U and Z represent the contributions of the aforemen-
tioned underlying variables to the overall solvency risk, and the effects the Brownian
driver B has on the solvency level, respectively.

More technically, the forward-backward system we study is of the form{
d(Xs, V

−
s )⊤ = µ̃(s,Xs, V

−
s )ds+ σ̃(s,Xs)dBs, (Xt, V

−
t )⊤ = (v, x)⊤

−dYs = −Z⊤
s dBs, YT = Ψ

(
X

(t,x)
T , V

−(t,x,v)
T

)
,

where µ̃ and σ̃ are used in defining the process X and contain the information on
actuarial assumptions, V − is the retrospective reserve, which describes the present
value of assets that belong to the insurance contract at each time t, and Ψ is a ter-
minal condition, which in our case is not continuous. Under some Lipschitz, bound-
edness and continuity conditions it will yield a unique, square integrable solution
(Xs, V

−
s , Ys, Zs)s∈[t,T ] which we use for the description of solvency level in two differ-

ent viewpoints; one considering the effects of the underlying demographic variables
and the other studying the contributions of the Brownian driver.
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Tiivistelmä

Tässä tutkielmassa tutkimme henkivakuutussopimuksen solvenssiriskin dynamiik-
kaa esittämällä taustalla vaikuttavat riskitekijät sekä solvenssistatuksen ratkaisuina
etu-takaperoiseen stokastiseen differentiaaliyhtälösysteemiin (forward-backward stoc-
hastic differential equation system). Solvenssitaso kuvaa tilanteessamme vakuutusyh-
tiön kykyä hoitaa vastattavansa minä tahansa aikana, toisin sanottuna yhtiön kykyä
maksaa myymänsä vakuutusten korvaukset.

Ensiksi esittelemme stokastisen prosessin, stokastisen integraalin, stokastisen dif-
ferentiaaliyhtälön sekä takaperoisen stokastisen differentiaaliyhtälön käsitteet. Näi-
den avulla rakennamme mallin solvenssiriskin analysoimiselle. Lopuksi yhdistämme
solvenssiriskin laskemisen osittaisdifferentiaaliyhtälöteoriaan sekä esittelemme Monte
Carlo -esimerkin, jonka avulla voimme löytää eksplisiittiset muodot mallissa käytet-
täville prosesseille.

Kuvaamme henkivakuutuksen arvoa prosessilla N , joka määritellään siten, että se
riippuu taustalla vaikuttavista ekonomisista ja demograafisista muuttujista. Sanom-
me, että sopimus on vakavarainen (solvent) ajassa t, jos Nt ≥ 0; toisin sanottuna
sopimuksen arvo on positiivinen ajanhetkessä t. Voimme ilmaista muutoksen solvens-
sitodennäköisyydessä vakuutussopimuksen päättymishetkellä T muodossa

P(NT ≥ 0|Ft)− P(NT ≥ 0|F0) =

∫ t

0

U⊤
r dM

X
r =

∫ t

0

Z⊤
r dBr,

jossa filtraatio (Ft)t≥0 kuvaa ajanhetkellä t saatavilla olevaa informaatiota, MX
r on

Doobin dekomposition mukainen martingaaliosa prosessista X, jolla kuvataan taus-
talla vaikuttavia muuttujia. Lisäksi prosessit U ja Z ovat progressiivisesti mitalliset;
U kuvailee taustamuuttujien vaikutusta solvenssiriskiin ja Z kuvailee stokastisen inte-
graation taustalla olevan Brownin liikkeen B vaikutusta sopimuksen solvenssitasoon.
Prosessin Z voidaan katsoa jakautuvan vielä eteenpäin kahteen osaan, joista toinen
kuvailee prosessin X heilahteluja ja toinen kuvailee niiden vaikutusta solvenssiriskiin.

Etu-takaperoinen systeemi, jota tutkimme, on muodossa{
d(Xs, V

−
s )⊤ = µ̃(s,Xs, V

−
s )ds+ σ̃(s,Xs)dBs, (Xt, V

−
t )⊤ = (v, x)⊤

−dYs = −Z⊤
s dBs, YT = Ψ

(
X

(t,x)
T , V

−(t,x,v)
T

)
,

missä X on edellä mainittu prosessi, joka määritellään funktioiden µ̃ ja σ̃ avulla,
jotka kuvailevat taustalla vaikuttavia aktuaarisia oletuksia, prosessi V − kuvailee so-
pimukseen liittyvien varojen arvoa kullakin ajanhetkellä t ja satunnaismuuttuja Ψ
on prosessin Y päätearvo hetkellä T . Tietyillä Lipschitz-, rajoittuneisuus- ja jatku-
vuusehdoilla systeemi saa yksikäsitteisen, neliöintegroituvan ratkaisun, jonka avulla
pystymme kuvailemaan solvenssiriskiä kahdelta eri näkökulmalta. Nämä näkökulmat
ovat prosessien U ja Z määrittelytapojen mukaiset.
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4.2. Itô’s Formula 12
5. Stochastic Differential Equations 14
5.1. The One-Dimensional Case 14
5.2. The Multidimensional Case 15
6. Backward Stochastic Differential Equations 17
7. BSDE results needed for the main result 21
8. The actuarial setting; application of Backward Stochastic Differential

Equations in life insurance solvency risk 29
8.1. A forward-backward system for the prospective liabilities 32
8.2. A link between the BSDE and a PDE 36
8.3. An SDE for the economic variables and the retrospective reserve 37
8.4. A forward-backward system for the net value 38
8.5. Numerical methods 41
References 46
Appendix A. 47

3



Backwards Stochastic Differential Equations in Life Insurance Solvency Risk
Dynamics

1. Introduction

The main focus of this thesis is to study the dynamics of solvency status of a
life insurance contract with the help of Backward Stochastic Differential Equation
theory. We will use the shorthand BSDE for these equations. The goal is to describe
the change in solvency probability at expiry as

P(NT ≥ 0|Ft)− P(NT ≥ 0|F0) =

∫ t

0

U⊤
r dM

X
r =

∫ t

0

Z⊤
r dBr, (1.1)

where the martingale MX
r describes the effects of the random fluctuations of underly-

ing monetary and demographic assumptions, U represents the contributions of these
variables on the risk, and the process Z describes the effects the Brownian motion
has on the solvency level. In our context, solvency level describes the ability of the
insurance company to pay out its liabilities at any given time. This is regulated on the
portfolio level by the European Union’s ’Solvency II’ regime. However, the viewpoint
of a single contract is also valuable.

To this end, we start by laying out the notation used in the thesis. After that, in
Section 3 we introduce the basic notions of probability theory, such as the stochastic
basis, and stochastic processes with some examples. One of the most important class
of these processes is the martingale. We will be working with a time set I = [0, T ]
with a finite terminal time T , since the setting lends itself naturally to our focus
on BSDEs, which are usually introduced with a terminal condition on a finite time
horizon.

One other very important process is the Brownian motion, which will also be
introduced in this section. It is the fundamental stochastic process on which we
build the notion of stochastic integrals, Stochastic Differential Equations and BSDEs.
We also introduce the usual conditions and augmentation of the natural filtration of
stochastic processes, since they will be of technical importance on the later theory.
We will only state their importance and not focus on the counterexamples for cases
when these conditions fail.

Stochastic integration is a way to generalize the Rieman-Stieltjes integral to a
setting with random fluctuations. We introduce this generalization in Section 4. Here
both the integrator and the integrand will be a stochastic process. The main focus will
be the case where one integrates over the Brownian motion. We will focus on a certain
space of suitable integrands, namely L2, although other spaces can be considered as
well.

After this, we are ready to start working towards the Stochastic Differential Equa-
tion, SDE in short, in Section 5. It is a natural extension of the deterministic dif-
ferential equation to the setting where we have stochastic integrals. Similarly to the
’usual’ differential equation, the SDEs have a starting value and will consider a sto-
chastic process which describes the randomness with respect to the time variable. The
random behaviour shall include two terms, both a Lebesgue integral and a stochastic
integral. One can model particular random behaviour with the help of an SDE, and
by solving the SDE, one may find an explicit form for the modeled behaviour.

The famous Itô formula is also introduced in this section. It is analogous to the
chain rule in Leibnitz-Newtonian calculus. It is of enormous help in solving SDEs and
BSDEs and will be applied numerously throughout the thesis.
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In Section 6 the definition and a uniqueness and existence result will be presented
for the general BSDE. The concept was first introduced by Bismut in [2]. The theory
was built on later by multiple mathematicians including Pardoux and Peng in [16]
and [17], El Karoui, Peng and Quenez in [6] and Pardoux in [15]. The aforementioned
section only holds a few results, since everything we necessitate for our main goal is
introduced in Section 7. There we state the assumptions for our setting and prove
the results we need later on.

Lastly, we concentrate on the actuarial view of BSDEs in Section 8. We will
construct the forward-backward stochastic differential equations needed to model
prospective liabilities and retrospective reserve of a life insurance contract. After
that, we prove the solutions are unique and yield an explicit formula which we can
use to study the dynamics of solvency risk in said contract. We also link the study of
backward stochastic differential equations and partial differential equations in a spe-
cific case with the help of the Thiele equation for life insurance and the Feynman-Kac
formula.

2. Notation

Fix a filtered probability space (Ω,F ,P;F). We will use the following notation in
the thesis for p, q ∈ (1,∞):

• L0 the space of simple processes,
• L0(F) the space of F-progressively measurable processes,

• Lp,q(F) the space of processes X with X ∈ L0(F) and E
[(∫ T

0
|Xs|pds

) q
p

]
<

∞, where we abbreviate Lp(F) := Lp,p(F),
• Lloc

p (F) := {X ∈ L0(F) :
∫ T

0
|Xs|pds < ∞, a.s.},

• a ∧ b := min{a, b},
If the process takes values in, say Rd, and we want to emphasize the dimension, we
will use the notations Lp(F,Rd) for each of the spaces stated above. If the filtration
or the sigma-algebra is obvious, it may be omitted.
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3. Stochastic Processes

In this section we will introduce the notion of a stochastic process and some defi-
nitions concerning stochastic processes. We will define a significant class of processes,
the martingale. Martingales are processes for which the conditional expectation of
the next value in the sequence at a particular time is equal to the present value. This
means, in essence, that the expectation of the sequence of random variables does
not depend on its history. This property is used, for example, in fair game theory,
mathematical finance, risk theory and many other fields of study. Later we will take
a look at an important stochastic process, the Brownian Motion. It is used widely in
stochastic analysis and forms the basis of the stochastic integral, which we will define
later.

Definition 3.1. Let I = [0, T ] for some 0 < T < ∞. We call a family of random
variables X := (Xt)t∈I := (X(t, ω))t∈I,ω∈Ω with X : I × Ω → R a stochastic process
with an index set I.

We only choose the finite time horizon, since our main focus is in Backward Stochastic
Differential Equations which have a finite terminal time. One can choose other sets
of time, for instance I = [0,∞) or I = N for discrete processes. We will, however,
not pursue this further.

Definition 3.2. Let (Ω,F ,P) be a probability space. A family of sigma-algebras
F = (Ft)t∈I is called a filtration, if for all 0 ≤ s ≤ t; s, t ∈ I it holds that Fs ⊂ Ft ⊂ F .
We call the quadruplet (Ω,F ,P;F) a stochastic basis.

Definition 3.3. Let I = [0, T ] and (Ω,F ,P;F) be a stochastic basis. We say it satisfies
the usual conditions, if

(i) the probability space (Ω,F ,P) is complete,
(ii) all null-sets of F are contained in F0,
(iii) the filtration F is right-continuous, i.e.,

⋂
ϵ>0 Ft+ϵ = Ft for all t, t+ϵ ∈ [0, T ].

Definition 3.4. Let X = (Xt)t∈I be a stochastic process on the stochastic basis
(Ω,F ,P;F). The process X is said to be

• measurable, if the function X : I × Ω → R, X(t, ω) := Xt(ω) is
(B(I)⊗ F ,B(R))-measurable,

• progressively measurable with respect to the filtration F, or F-measurable,
provided that for all s ∈ I the function X : [0, s] × Ω → R with X(t, ω) :=
Xt(ω), is (B([0, s])⊗ Fs,B(R))-measurable,

• adapted with respect to the filtration F given that for all t ∈ I it holds that
Xt is Ft-measurable,

• a modification of a process Y = (Yt)t∈I provided that

P(Xt = Yt) = 1 for all t ∈ I.

Proposition 3.5. An adapted process such that all trajectories are left-continuous (or
right-continuous) is progressively measurable.

Proof. The idea of the proof is to check the measurability for step stochastic
processes approximating the process itself and then use pointwise convergence. For
technical details, see eg. [9, Proposition 2.1.11] □
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Definition 3.6. Let X = (Xt)t∈[0,T ] be a F-progressively measurable stochastic process
on a stochastic basis (Ω,F ,P;F), FXt be the natural sigma-algebra generated by Xt

and FX
t := σ(FXs : s ∈ [0, t]) be a sigma-algebra. Now FX := (FX

t )0≤t≤T is the
natural filtration generated by the stochastic process X.

Definition 3.7. Let (Ω,F ,P;F) be a stochastic basis. The process M = (Mt)t∈I is
called a martingale if the following properties hold:

(i) M is adapted to the filtration F,
(ii) M is integrable, i.e.,

E|Xt| < ∞ for all t ∈ I,

(iii) E[Mt|Fs] = Ms a.s. for all 0 ≤ s ≤ t ≤ T .

Definition 3.8. LetM = (Mt)t∈I be a martingale. It belongs to the space of continuous
and square integrable martingales starting at zero, denoted by Mc,0

2 , if

(i) E(Mt)
2 < ∞ for all t ∈ I, i.e. M is square integrable,

(ii) the paths t 7→ Mt(ω) are continuous for all ω ∈ Ω,
(iii) M0 = 0.

3.1. Brownian Motion.

In this subsection we introduce the Brownian motion. The definitions and propo-
sitions follow [9]. The proofs can be read there. They have been omitted from the
thesis due to not being the main focus.

The Brownian motion can intuitively be thought to be the limit of a (scaled)
random walk. It has some important properties, such as normally distributed and in-
dependent increments. The Brownian motion has continuous paths which are nowhere
differentiable. It is also a Markov process and a martingale.

Definition 3.9 (Brownian motion). Let (Ω,F ,P) be a probability space. A stochastic
process B = (B(t, ω))t≥0,ω∈Ω is called a (standard) Brownian motion provided that
the following conditions hold:

(i) P(B(0) = 0) = 1,
(ii) All paths t → B(t, ω) are continuous,
(iii) The random variable B(t) − B(s) is normally distributed with mean 0 and

variance t− s for all 0 ≤ s < t < ∞. That means for all A ∈ B(R) we have

P(B(t)−B(s) ∈ A) =
1√

2π(t− s)

∫
A

e−
x2

2(t−s)dx,

(iv) B(t) has independent increments, i.e., for any n ∈ N, 0 ≤ t1 < t2 < · · · < tn
and A1, A2, . . . An ∈ B(R) one has

P(B(t1) ∈ A1, B(t2)−B(t1) ∈ A2, . . . , B(tn)−B(tn−1) ∈ An) =

P(B(t1) ∈ A1)P(B(t2)−B(t1) ∈ A2) · · ·P(B(tn)−B(tn−1) ∈ An).

Proposition 3.10. Let B = (B(t))t≥0 be a stochastic process for which all paths are
continuous and B0 = 0. Then the following assertions are equivalent:

(i) The process B is a standard Brownian motion
(ii) The process B is a Gaussian process with EBt = 0 and EBtBs = min{t, s}
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Definition 3.11 (F-Brownian motion). Let (Ω,F ,P;F) be a stochastic basis and
B = (Bt)t∈I , Bt : Ω → R be an adapted stochastic process. The process is called
a (standard) (Ft)t∈I-Brownian motion, if the following conditions hold:

(i) B0 = 0,
(ii) the paths t → B(t, ω) are continuous for all ω ∈ Ω,
(iii) for all 0 ≤ s < t such that s, t ∈ I we have Bt −Bs ∼ N (0, t− s),
(iv) for all 0 ≤ s < t the random variable Bt − Bs is independent from the

sigma-algebra Fs.

Proposition 3.12. Let B = (Bt)t∈I be a Brownian motion as defined in Definition 3.9
and (FB

t )t∈I be its natural filtration given by (FB
t )t∈I := σ(Bs : s ∈ [0, t]). Now B is

a (FB
t )t∈I-Brownian motion in the sense of Definition 3.11.

Proposition 3.13 ([21] Corollary 2.1.10). The augmented natural filtration of a Brow-
nian motion satisfies the usual conditions.

Definition 3.14 (Multidimensional Brownian motion).

(i) We call B = (B1, . . . , Bd)
⊤ a (standard) d-dimensional Brownian motion if

B1, . . . , Bd are independent, one-dimensional Brownian motions.
(ii) Let B = (Bt)t∈I with Bt = (B1

t , . . . , B
d
t )

⊤. We call this a (standard) d-
dimensional F-Brownian motion provided that (B1

t )t≥0, . . . , (B
d
t )t≥0 are inde-

pendent processes, each of which is also a (Ft)t≥0-Brownian motion.
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4. Stochastic Integration

Stochastic integrals were originally introduced by Kiyosi Itô in 1944 in his paper
’Stochastic Integral’ in the Proceedings of the Imperial Academy (Tokyo). The sto-
chastic integral, or Itô integral, is a generalization of the Rieman-Stieltjes integral for
random functions, such as the Brownian motion. In the stochastic integral the inte-
grand and the integrator are stochastic processes. It has a wide range of applications
in every area of science involving random fluctuations.

In the aforementioned paper, Itô also proved a theorem, later dubbed Itô’s lemma
or Itô’s formula. It is another very important tool in stochastic analysis, mathematical
finance and virtually every field utilizing the stochastic integral. It is analogous to
the chain rule in Leibnitz-Newtonian calculus.

We construct the stochastic integral in the same way Itô did, as a limit of simple
stochastic processes. We state the existence and uniqueness of the integral in an
appropriate space and hint at an extension, which will not be pursued further. Later
we introduce the famous Itô’s lemma.

From this section onwards we always assume that the stochastic basis (Ω,F ,P;F)
satisfies the usual conditions, since it is integral to the Itô integral, and that the
process B = (Bt)t∈I is an F-Brownian motion.

4.1. The Stochastic Integral. We start by constructing the stochastic integral for
simple processes.

Definition 4.1. A stochastic process L = (Lt)t∈I is a simple process or a step stochastic
process if we find for any n ∈ N

(i) a time net 0 = t0 < t1 < · · · < tn = T ,
(ii) Fti-measurable random variables ξi : Ω → R, i = 0, 1, . . . , n − 1 with

supi,ω |ξi(ω)| < ∞,

such that

Lt(ω) =
n∑

i=1

ξi−1(ω)1[ti−1,ti)(t).

We shall denote the space of simple processes by L0.

Definition 4.2. Let L ∈ L0 and t ∈ I. We define the stochastic integral at time t by

It(L) :=
n∑

i=1

ξi−1(Bti∧t −Bti−1∧t). (4.1)

Note that the integral itself is a stochastic process.

Proposition 4.3 (Linearity). Let L,K ∈ L0 and a, b ∈ R. One has that

It(aL+ bK) = aIt(L) + bIt(K).

Proof. Without loss of generality, we can assume the representations Lt =∑n
i=1 ξi−11[ti−1,ti) and Kt =

∑n
i=1 ηi−11[ti−1,ti) for L and K, respectively. We get

9
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from the definition of simple processes that aL+ bK = (aLt + bKt)t∈I with

aLt + bKt = a
n∑

i=1

ξi−1(ω)1[ti−1,ti)(t) + b

n∑
i=1

ηi−1(ω)1[ti−1,ti)(t)

=
n∑

i=1

aξi−1(ω)1[ti−1,ti)(t) + bηi−1(ω)1[ti−1,ti)(t)

=
n∑

i=1

(aξi−1(ω) + bηi−1(ω))1[ti−1,ti)(t),

where ξi and ηi are the random variables for L and K, respectively. Now for the
integral it holds

It(aL+ bK) =
n∑

i=1

(aξi−1 + bηi−1)(Bti∧t −Bti−1∧t)

= a
n∑

i=1

ξi−1(Bti∧t −Bti−1∧t) + b
n∑

i=1

ηi−1(Bti∧t −Bti−1∧t)

= aIt(L) + bIt(K),

which concludes the proof. □

Lemma 4.4. Let L ∈ L0 and It(L) be its integral. Then EIt(L) = 0 and

E(|It(L)|2) =
∫ t

0

E(|Ls|2)ds,

where t ∈ I.

The proof of the Lemma is given in [12, Lemma 4.3.2].

Definition 4.5. Let L2 be the space of all progressively measurable processes L =

(Lt)t∈I with E
∫ T

0
L2
tdt < ∞.

Lemma 4.6. Let L ∈ L2. There exist a sequence (Ln)∞n=0 of simple processes in L0

such that

lim
n→∞

E
∫ T

0

|Lt − Ln
t |2dt = 0.

We say that Ln → L with respect to the L2 mean.

The proof of the above Lemma can be found in [12, Lemma 4.3.3].
Now we can construct the stochastic integral for processes in L2. Let L ∈ L2 and

(Ln)∞n=0 be the sequence on simple processes as in Lemma 4.6. For each n the integral
is defined by Definition 4.2. By Lemma 4.4 we have that

E(|It(Ln)− It(L
m)|2) =

∫ t

0

E(|Ln
s − Lm

s |2)ds

→ 0, as n,m → ∞.

Thus (It(L
n))∞n=0 is a Cauchy sequence in probability. Because of this the limit is

unique and we can define
10
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It(L) := lim
n→∞

It(L
n). (4.2)

Next we show that It(L) is well-defined. Let (Kn)∞n=0 be another sequence such
that Kn → L. Now by the linearity of I and Lemma 4.4

E(|It(Ln)− It(K
m)|2) = E(|It(Ln −Km)|2)

=

∫ t

0

E(|Ln
s −Km

s )|2)ds

=

∫ t

0

E|(Ln
s − Ls)− (Km

s − Ls)|2ds

≤ 2

∫ t

0

E[|Ln
s − Ls|2 + |Km

s − Ls|2]ds

→ 0 as n,m → ∞,

where we also use the inequality (x − y)2 ≤ 2(x2 + y2). From this it follows that
limn→∞ It(L

n) = limm→∞ It(K
m). Hence the limit It(L) is well-defined.

Definition 4.7. A continuous modification of the limit defined in (4.2) is called the

stochastic integral or the Itô integral at time t. It is denoted by
∫ t

0
LsdBs.

Theorem 4.8. Let L ∈ L2 and X = (Xt)t∈I with

Xt =

∫ t

0

LsdBs, t ∈ I.

Now there exists a modification of the stochastic process
(∫ t

0
LsdBs

)
t∈I

, which has

continuous paths on the interval I.

Proof. Cf. [12, Theorem 4.6.2]. □

Let us introduce some properties of the integral, mainly linearity, martingality and
Itô isometry.

Proposition 4.9. Let L,K ∈ L2 and a, b ∈ R. Now
(i) It(aL+ bK) = aIt(L) + bIt(K) a.s. for all t ∈ I,
(ii) (It(L))t∈I ∈ Mc,0

2 ,

(iii) E|It(L)|2 = E
∫ t

0
L2
sds for all t ∈ I.

The proof is given in [21, Theorem 2.2.7].

Remark 4.10. The property (iii) is called Itô isometry.

Since the Itô integral I is linear, we get the next Corollary.

Corollary 4.11. For any L,K ∈ L2 we get the following equality

E
∫ t

0

KsdBs

∫ t

0

LsdBs = E
∫ t

0

KsLsds.

The stochastic integral can be uniquely (up to indistinguishability) extended to the
space Lloc

2 and sustain mostly the same properties. Notably, the stochastic integral
in the space is a local martingale, cf. Proposition 4.9 (ii). This extension is, however,
not needed in the thesis and will remain a curiosity in the context of this thesis.
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4.2. Itô’s Formula. We are ready to introduce the celebrated Itô formula. To this
end, we first introduce Itô processes and then introduce the formula. No examples
will be given in this section since it will be utilized heavily later.

Definition 4.12. A continuous and adapted process X = (Xt)t≥0, Xt : Ω → R is called
an Itô process if there exists a process L ∈ L2, a progressively measurable process a

with
∫ T

0
|as|ds < ∞ a.s., and an F0-measurable random variable X0 such that

Xt = X0 +

∫ t

0

LsdBs +

∫ t

0

asds.

Definition 4.13. Let f(t, x) : [0,∞) × R → R be a continuous function with contin-

uous partial derivatives ∂f
∂t
, ∂f
∂x

and ∂2f
∂x2 . We denote the space of these processes by

C1,2([0,∞)× R).

Theorem 4.14. Let X = (Xt)t≥0 be an Itô process with

Xt = X0 +

∫ t

0

LsdBs +

∫ t

0

asds, t ∈ [0,∞),

f ∈ C1,2 and E
∫ T

0
|∂f
∂x
(s,Xs)Ls|2ds < ∞ for all T > 0. Then f(t,Xt) is also an Itô

process and

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs)asds

+

∫ t

0

∂f

∂x
(s,Xs)LsdBs +

1

2

∫ t

0

∂2f

∂x2
L2
sds.

The proof is given in [21, Theorem 2.3.2]. Next we introduce the multidimensional
Itô formula in the spirit of [21].

Theorem 4.15. Let B be a d-dimensional F-Brownian motion. Furthermore, let ai

be progressively measurable processes for which
∫ T

0
|ais|ds < ∞ a.s., Li,j ∈ L2, 1 ≤

i ≤ d1, 1 ≤ j ≤ d. Define a := (a1, . . . , ad1)T and L := (Li,j)1≤i≤d1,1≤j≤d, which take
values in Rd1 and Rd1×d respectively. Let X = (X1, . . . , Xd1)T be a d1-dimensional
Itô process, i.e.

X i
t = X i

0 +
d∑

j=1

∫ t

0

Li,j
s dBj

s +

∫ t

0

aisds, i = 1, . . . , d1.

Now for a function f ∈ C1,2(I × Rd1) with E
∫ T

0
| ∂f
∂Xi

(s,Xs)L
i,j
s |2ds < ∞ for all

1 ≤ i ≤ d1, all 1 ≤ j ≤ d and all T > 0, it holds that

f(t,Xt) = f(0, X0) +

∫ t

0

[
∂f

∂t
(s,Xs) +

d1∑
i=1

∂f

∂xi

(s,Xs)a
i
s +

1

2

d1∑
i,j=1

d∑
k=1

∂2f

∂xi∂xj

(s,Xs)L
i,k
s Lj,k

s

]
ds

+

d1∑
i=1

d∑
j=1

∫ t

0

∂f

∂xi

(s,Xs)L
i,j
s dBj

s .

12
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It is noteworthy to state that there are many formulations of the famous lemma,
these are just two examples. One can derive the lemma for different time intervals,
backward processes et cetera.
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5. Stochastic Differential Equations

Again, a Stochastic Differential Equation is an analogue to the Leibnitz-Newtonian
calculus’ differential equation. It plays an important role in stochastic modeling,
economics, biology and other fields of study. The perturbation by the Brownian
motion proves to be useful in many applications. The theory of stochastic differential
equations was originally motivated by K. Itô’s desire to construct diffusion processes
by solving stochastic differential equations.

5.1. The One-Dimensional Case. In this section we focus on stochastic differential
equations (SDE) of the form

dXt = σ(t,Xt)dBt + λ(t,Xt)dt, Xa = ξ. (5.1)

Equation (5.1) can be understood as a Stochastic Integral Equation (SIE)

Xt = ξ +

∫ t

a

σ(s,Xs)dBs +

∫ t

a

λ(s,Xs)ds, 0 ≤ a ≤ t ≤ T, (5.2)

Definition 5.1. Let ξ ∈ R, σ, λ : I×R → R be measurable functions. Now the process
X = (Xt)t∈I is a solution to the SDE (5.1) provided that

(i) X is jointly measurable, i.e. (B(I)⊗ F ,B(R))-measurable,

(ii) (σ(s,Xs))s∈I ∈ L2 so that
∫ t

a
σ(s,Xs)dBs is an Itô integral,

(iii) For almost all sample paths of λ(t,Xt) it holds that
∫ T

0
|λ(s,Xs)|ds < ∞ a.s.,

(iv) Equation (5.2) holds almost surely for all t ∈ I.

We need to impose more restrictions to the functions σ and λ if we want to ensure
unique solutions.

Definition 5.2. Let g(t, x) : I × R → R be a measurable function. It satisfies the
Lipschitz condition in the variable x if there exists a constant K > 0 such that

|g(t, x)− g(t, y)| ≤ K|x− y| for all t ∈ I;x, y ∈ R.

Definition 5.3. Let g(t, x) : I × R → R be a measurable function. It satisfies the
linear growth condition in the variable x if there exists a constant K > 0 such that

|g(t, x)| ≤ K(1 + |x|), for all t ∈ I;x ∈ R.

Proposition 5.4. Let σ(t, x), λ(t, x) : I × R → R be measurable functions that satisfy
the Lipschitz and linear growth conditions. Let ξ be an Fa-measurable random variable
such that E(|ξ|2) < ∞. Then the Equation (5.2) has a unique continuous solution X.

The proof is given in [12, Theorem 10.3.5]. Let us proceed with an example of solving
a linear SDE.

Example 5.5. Let x0, λ1, λ2, σ1, σ2 ∈ R. Let us consider the SDE

dXt = (σ1Xt + σ2)dBt + (λ1Xt + λ2)dt.

Clearly both the integrands satisfy the Lipschitz and linear growth conditions and
x0 is a constant, hence by Proposition 5.4 we get a unique solution. Define the

14
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process Y = (Yt)t∈I , Yt := Xt exp{(σ
2
1

2
− λ1)t − σ1Bt} and the function f(t, x, y) :=

x exp{(σ
2
1

2
− λ1)t− σ1y}. Now we can use the Itô formula (4.15) for two processes:

Yt = x0 +

∫ t

0

(
σ2
1

2
− λ1)Ysds

+

∫ t

0

(σ1Xs + σ2)
Ys

Xs

dBs

+

∫ t

0

(λ1Xs + λ2)
Ys

Xs

ds

+

∫ t

0

(−σ1)YsdBs

+
1

2

∫ t

0

σ2
1Ysds

+

∫ t

0

(σ1Xs + σ2)
−σ1Ys

Xs

ds

= x0 +

∫ t

0

σ2Ys

Xs

dBs +

∫ t

0

λ2 − σ1σ2

Xs

Ysds

= x0 +

∫ t

0

σ2 exp{(
σ2
1

2
− λ1)s− σ1Bs}dBs

+

∫ t

0

(λ2 − σ1σ2) exp{(
σ2
1

2
− λ1)s− σ1Bs}ds

for all t ∈ I almost surely. From the definition of Yt we get Xt = Yt exp{(λ1 − σ2
1

2
)t+

σ1Bt} and thus we have found the solution Xt.

5.2. The Multidimensional Case. Here we fix a stochastic basis (Ω,F ,P;F) (which
we recall was assumed to satisfy the usual conditions) and a d-dimensional F-Brownian
motion B. Now the SDE can be stated as

Xt = η +

∫ t

0

σ(ω, s,Xs)dBs +

∫ t

0

λ(ω, s,Xs)ds, 0 ≤ t ≤ T, a.s. (5.3)

where X is d1-dimensional, η is (F0,B(Rd1))-measurable and the restrictions of the
functions λ : [0, T ]×Ω×Rd1 → Rd1 and σ : [0, T ]×Ω×Rd1 → Rd1×d on [0, t] are, for ev-
ery t ∈ [0, T ],

(
B([0, t])⊗ Ft ⊗ B(Rd1),B(Rd1)

)
and

(
B([0, t])⊗ Ft ⊗ B(Rd1),B(Rd1×d)

)
measurable, respectively. We say that a progressively measurable (d1-dimensional)
process X is the solution to the SDE (5.3) if σ(·, ·, X) ∈ Lloc

2 (F,Rd1×d) and λ(·, ·, X) ∈
Lloc

1 (F,Rd1) for all (ω, t) and the equation (5.3) holds almost surely, where Lloc
p (F,Rd)

stands for the space of F-progressively measurable processesX for which
∫ T

0
|Xs|pds <

∞ a.s.
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Definition 5.6. For the rest of the thesis let

(i) Lp,q(F,Rd) be the space of progressively measurable processes X which take

values in Rd with and E
[(∫ T

0
|Xs|pds

) q
p

]
< ∞, where we abbreviate Lp(F) :=

Lp,p(F),
(ii) Lp(F0,Rd) be the space of random variables X with E|X|p < ∞.

Assumption 5.7. Let the following hold:

• σ and λ are uniformly Lipschitz continuous, i.e. there exists a constant L ≥ 0
such that, for (t, ω),

|σt(x1)− σt(x2)|+ |λt(x1)− λt(x2)| ≤ L|x1 − x2|, for all x1, x2 ∈ Rd1 , λ⊗ P− a.s.,

where λ, by abuse of notation, denotes the Lebesgue measure.
• η ∈ L2(F0,Rd1), σ(·, ·, 0) ∈ L2(F,Rd1×d) and λ(·, ·, 0) ∈ L1,2(F,Rd1) for all
(ω, t).

Theorem 5.8 ([21] Theorem 3.3.1). Under Assumption 5.7, there exists a unique so-
lution X to the SDE (5.3) for which X ∈ L2(F,Rd1). With these assumptions there
also exists a continuous modification of X.
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6. Backward Stochastic Differential Equations

Backward Stochastic Differential Equations, BSDEs in short, are, in contrast to
SDEs, defined by not a starting value, but a terminal one. The history of the theory
is rich, despite its rather short existence, from linear BSDEs used in the model behind
the Black and Scholes formula, according to [18], to more general, multidimensional
nonlinear BSDEs. The first published paper on the latter appeared in 1990, see [16].

We shall present an existence and uniqueness result in this section that is somewhat
limited in generality. In the later sections we will go more into detail about the setting
needed for the main results of the thesis. For more complete and general BSDE theory,
see e.g. [21] and [18].

Let us look at a BSDE of the form

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs, 0 ≤ t ≤ T, (6.1)

and call a pair of processes (Y, Z) a solution, if they are progressively measurable
and satisfy some conditions introduced below. The function f is called the generator
of the BSDE and the random variable ξ the terminal condition.

Assumption 6.1. Let the generator f : [0, T ]× Ω× R× R → R be a function and let
the following assumptions hold

(i) ξ ∈ L2(P).
(ii) f(·, ·, y, z) is progressively measurable for all y, z ∈ R.
(iii) There exists a constant L > 0 such that

|f(t, ω, y1, z1)− f(t, ω, y2, z2)| ≤ L(|y1 − y2|+ |z1 − z2|)
for all y1, y2, z1, z2 ∈ R and all (t, ω) ∈ [0, T ]× Ω.

(iv) E
∫ T

0
f 2(t, 0, 0)dt < ∞.

Theorem 6.2 ([9] Theorem 5.3.2). Let S2 be the space of adapted and continuous
processes X such that E sup0≤t≤T |Xt|2 < ∞ and the Assumptions 6.1 hold. Then the
BSDE (6.1) has a unique solution (Y, Z) ∈ S2 × L2.

Let us examine an illustrative example before introducing multidimensional
BSDEs.

Example 6.3. Assume the linear BSDE

Yt = ξ +

∫ T

t

(as + bsYs + cs)ds−
∫ T

t

ZsdBs, t ∈ [0, T ], (6.2)

where (bs)s∈[0,T ] and (cs)s∈[0,T ] are bounded and F-progressively measurable, (as)s∈[0,T ] ∈
L2 and ξ ∈ L2(P). Let

Γt = 1 +

∫ t

0

Γsbsds+

∫ t

0

ΓscsdBs. (6.3)

We claim that the BSDE (6.2) has a unique solution and that for the Y -process it
holds that

Yt = E
[
ΓT

Γt

ξ +

∫ T

t

Γs

Γt

asds|Ft

]
.
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First we check that Assumption 6.1 holds. Let us denote the driver by f(s, y, z) =
as + bsy + csz.

(i) By assumption ξ ∈ L2(P).
(ii) We have that the processes a, b and c are progressively measurable. Hence f

is progressively measurable.
(iii) Since the processes b and c are bounded, we find an upper bound for which

f is uniformly Lipschitz.

(iv) For the function f we have E
∫ T

0
f 2(t, 0, 0)dt = E

∫ T

0
a2tdt < ∞ by assumption.

Since all the assumptions hold, Theorem 6.2 yields the unique solution. Next, we
have

Yt − Y0 = ξ +

∫ T

t

(as + bsYs + csZs)ds−
∫ T

t

ZsdBs

− ξ −
∫ T

0

(as + bsYs + csZs)ds+

∫ T

0

ZsdBs

= −
∫ t

0

(as + bsYs + csZs)ds+

∫ t

0

ZsdBs

for all t ∈ [0, T ] a.s., which implies

Yt = Y0 −
∫ t

0

(as + bsYs + csZs)ds+

∫ t

0

ZsdBs

for all t ∈ [0, T ] a.s. Now, let us apply Itô’s formula 4.15 for g(t, x, y) := xy,

g(t,Γt, Yt) = Y0 +

∫ t

0

YsbsΓsds−
∫ t

0

Γs(as + bsYs + csZs)ds

+

∫ t

0

YscsΓsdBs +

∫ t

0

ΓsZsdBs +

∫ t

0

csΓsZsds

= Y0 −
∫ t

0

asΓsds+

∫ t

0

Γs(csYs + Zs)dBs

for all t ∈ [0, T ] a.s., hence we obtain

ΓtYt − ΓTYT = g(t,Γt, YT )− g(T,ΓT , YT )

= Y0 −
∫ t

0

asΓSds+

∫ t

0

Γs(csYs + Zs)dBs

− Y0 +

∫ T

0

asΓSds−
∫ T

0

Γs(csYs + Zs)dBs

=

∫ T

t

asΓsds−
∫ T

t

Γs(csYs + Zs)dBs

for all t ∈ [0, T ] a.s. from which we deduce

ΓtYt = ΓTYT +

∫ T

t

asΓsds−
∫ T

t

Γs(csYs + Zs)dBs

18
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for all t ∈ [0, T ] a.s. Now we can take conditional expectation w.r.t. Ft on both sides
to get

ΓtYt = E
[
ΓTYT +

∫ T

t

asΓsds

∣∣∣∣Ft

]
. (6.4)

for all t ∈ [0, T ] a.s. This holds because E[ΓtYt|Ft] = ΓtYt and because the conditional
expectation of the Itô integral is zero since the integral is a martingale. For this we

show that we can take the conditional expectation of
∫ T

t
asΓsds. By [9, Theorem

4.3.2] we have for the process Γ that E sup0≤t≤T |Γt|p < ∞ for p ≥ 2, so especially

E
∫ T

0
|Γt|2dt < ∞. Now we can use Hölder’s inequality A.3 to attain

E
∫ T

t

|asΓs|ds ≤
(
E
∫ T

0

a2sds

) 1
2
(
E
∫ T

0

Γ2
sds

) 1
2

< ∞

from which we derive the ability to take the conditional expectation. This also implies
the Itô integrals are local martingales. Next, to show that the conditional expecta-
tion of the Itô integral is zero, we use Burkholder-Davis-Gundy inequalities A.5 and

Lemma A.4. Let us treat the integrals
∫ T

t
ΓsZsdBs and

∫ T

t
ΓsYscsdBs separately. We

get for the first integral

E sup
t∈[0,T ]

∣∣ ∫ t

0

ΓsZsdBs

∣∣ ≤ α1E

√∫ T

0

Γ2
sZ

2
sds

≤ α1E

 sup
t∈[0,T ]

|Γt|

√∫ T

0

Z2
sds


≤ α1

√
E sup

t∈[0,T ]

|Γt|2
√

E
∫ T

0

Z2
sds < ∞,

hence by Lemma A.4 the integral is a martingale. The proof is similar for the other
integral. Finally, we divide both sides of (6.4) by Γt to get

Yt = E
[
ΓT

Γt

ξ +

∫ T

t

Γs

Γt

asds|Ft

]
.

This is allowed since Γt ̸= 0. This holds because (6.3) is a forward SDE, and from
Example 5.5 we deduce that Γ is not zero.

Next we introduce a more general uniqueness and existence result for a multidimen-
sional (nonlinear) BSDE and the assumptions required to obtain well-posedness.

Theorem 6.4 ([21] Theorem 4.3.1). Let (Ω,F ,P;F) be a stochastic basis, B be a d-
dimensional Brownian motion on it, where we assume the filtration F is the augmented
natural filtration generated by the Brownian motion. Consider the following nonlinear
BSDE:

Yt = ξ +

∫ T

t

fs(Ys, Zs)ds−
∫ T

t

ZsdBs, 0 ≤ t ≤ T, a.s. (6.5)

Here we recall L2(F,Rs) is the space of F-progressively measurable processes X taking

values in Rs with E
∫ T

0
|Xs|2ds < ∞. In addition, let the following assumptions hold:
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(i) f : [0, T ]×Ω×Rd2×Rd2×d → Rd2 is
(
B([0, t])⊗ Ft ⊗ B(Rd2)⊗ B(Rd2×d),B(Rd2)

)
-

progressively measurable for all t ∈ [0, T ],
(ii) |f(t, ω, y1, z1) − f(t, ω, y2, z2)| ≤ L(|y1 − y2| + |z1 − z2|) for every y1, y2 ∈

Rd2 , z1, z2 ∈ Rd2×d and all (t, ω) ∈ [0, T ]× Ω,
(iii) ξ ∈ L2(FT ,Rd2) and f(·, ·, 0, 0) ∈ L2(F,Rd2).

Now the BSDE (6.5) has a unique solution (Y, Z) ∈ L2(F,Rd2)× L2(F,Rd2×d).
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7. BSDE results needed for the main result

In this section we will collect the necessary conditions and results on which the
main result of this thesis is built.

Proposition 7.1 ([16] Lemma 2.1). ξ ∈ L2(Ω,F1,P;Rd), f ∈ L2(F,Rd) and g ∈
L2(F,Rd×k). There exists a unique solution (Y, Z) ∈ L2(F,Rd) × L2(F,Rd×k) for
the BSDE

Yt = ξ −
∫ 1

t

f(s)ds−
∫ 1

t

[g(s) + Zs]dBs, 0 ≤ t ≤ 1. (7.1)

Proof. Let us define

Yt = E
[
Y1 −

∫ 1

t

f(s)ds

∣∣∣∣Ft

]
, 0 ≤ t ≤ 1.

Now it follows from the Martingale Representation Theorem A.6 that there exists a
process Z̄ ∈ L2(F) such that

E
[
Y1 −

∫ 1

t

f(s)ds

∣∣∣∣Ft

]
= Y0 +

∫ 1

0

Z̄dBs. (7.2)

Finally, let Zt = Z̄t − g(t), 0 ≤ t ≤ 1. One can easily see that the pair (Y, Z) solves
(7.1) and is of the constructed form. □

Next we want to consider a similar BSDE of more general form. To obtain unique-
ness, we need to impose some stricter restrictions.

Proposition 7.2 ([16] Proposition 2.2). Let ξ ∈ L2(Ω,F1,P;Rd), g ∈ L2(F,Rd×k) and
f : Ω× (0, 1)× Rd×k → Rd be a mapping for which the following hold:

(i) P is the sigma-algebra of F-progressively measurable subsets of Ω× (0, 1),
(ii) f is (P ⊗ B(Rd×k),B(Rd))-measurable,
(iii) f(·, 0) ∈ L2(F,Rd),
(iv) |f(t, y1) − f(t, y2)| ≤ c|y1 − y2| for some c > 0 and all y1, y2 ∈ Rd×k, and

(t, ω) a.e.

Then there exists a unique pair (Y, Z) ∈ L2(F,Rd) × L2(F,Rd×k) which solves the
following BSDE:

Yt = ξ −
∫ 1

t

f(s, Zs)ds−
∫ 1

t

[g(s)− Zs]dBs. (7.3)

Before the proof we note that the conditions (iii) and (iv) together imply that
f(·, y(·)) ∈ L2(F,Rd) whenever y ∈ L2(F ,Rd×k).
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Proof. Uniqueness. Let us first look at the one-dimensional case, the multidi-
mensional case follows. Let (Y1, Z1) and (Y2, Z2) be two solutions to the BSDE. Now,
by applying Itô’s formula to the function h(t, x, y) = |x− y|2, we get

|Y1(t)− Y2(t)|2 = −2

∫ 1

t

(Y1(s)− Y2(s))f(s, Z1(s))ds

− 2

∫ 1

t

(Y1(s)− Y2(s))(g(s) + Z1(s))dBs

+ 2

∫ 1

t

(Y1(s)− Y2(s))f(s, Z2(s))ds

+ 2

∫ 1

t

(Y1(s)− Y2(s))(g(s) + Z2(s))dBs

−
∫ 1

t

[g(s) + Z1(s)]
2 + [g(s) + Z2(s)]

2 − 2[g(s) + Z1(s)][g(s) + Z2(s)]ds

= −2

∫ 1

t

(Y1(s)− Y2(s))(Z1(s)− Z2(s))dBs

− 2

∫ 1

t

(f(s, Z1(s))− f(s, Z2(s)))(Y1(s)− Y2(s))ds

−
∫ 1

t

|Z1(s)− Z2(s)|2ds,

where ∂h
∂t

= 0 and h(1, Y1, Y2) = 0. Next we show that sup0≤t≤1 |Y1(t) − Y2(t)|2 is
P-integrable. To this end, from the above application of Itô’s formula we deduce

|Y1(t)− Y2(t)|2 ≤ 2 sup
0≤t≤1

∣∣∣∣∫ 1

t

(Y1(s)− Y2(s))(Z1(s)− Z2(s))dBs

∣∣∣∣
+ 2 sup

0≤t≤1

∣∣∣∣∫ 1

t

(f(s, Z1(s))− f(s, Z2(s))) (Y1(s)− Y2(s))ds

∣∣∣∣
+ 2 sup

0≤t≤1

∣∣∣∣∫ 1

t

|Z1(s)− Z2(s)|2ds
∣∣∣∣
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Here we take the supremum and the expectation:

E sup
0≤t≤1

|Y1(t)− Y2(t)|2 ≤ 2E sup
0≤t≤1

∣∣∣∣∫ 1

t

(Y1(s)− Y2(s))(Z1(s)− Z2(s))dBs

∣∣∣∣
+ 2E sup

0≤t≤1

∣∣∣∣∫ 1

t

(f(s, Z1(s))− f(s, Z2(s))) (Y1(s)− Y2(s))ds

∣∣∣∣
+ 2E sup

0≤t≤1

∣∣∣∣∫ 1

t

|Z1(s)− Z2(s)|2ds
∣∣∣∣

≤ 4E sup
0≤t≤1

∣∣∣∣∫ t

0

(Y1(s)− Y2(s))(Z1(s)− Z2(s))dBs

∣∣∣∣
+ 2E

∫ 1

t

| (f(s, Z1(s))− f(s, Z2(s))) (Y1(s)− Y2(s))|ds

+ 2E
∫ 1

0

|Z1(s)− Z2(s)|2ds

≤ 4α1E

√∫ 1

0

(Y1(s)− Y2(s))2(Z1(s)− Z2(s))2ds

+ 2cE
∫ 1

0

|Y1(s)− Y2(s)||Z1(s)− Z2(s)|ds

+ 2E
∫ 1

0

|Z1(s)− Z2(s)|2ds

≤ 4α1

(
E sup

0≤t≤1
|Y1(s)− Y2(s)|2

) 1
2
(
E
∫ 1

0

|Z1(s)− Z2(s)|2ds
) 1

2

+ 2c

(
E sup

0≤t≤1
|Y1(s)− Y2(s)|2

) 1
2
(
E
∫ 1

0

|Z1(s)− Z2(s)|2ds
) 1

2

+ 2E
∫ 1

0

|Z1(s)− Z2(s)|2ds.

Note that for B(t) :=
∫ 1

t
(Y1(s)− Y2(s))(Z1(s)− Z2(s))dBs it holds that

sup
0≤t≤1

|B(t)| ≤ sup
0≤t≤1

|B(0)−B(t)|+ |B(0)| ≤ 2 sup
0≤t≤1

|B(0)−B(t)|.

Thus we use the BDG inequality, since (B(0) − B(t))t∈[0,1] is a local martingale,

and Hölder’s inequality. We now set x :=
(
E sup0≤t≤1 |Y1(s)− Y2(s)|2

) 1
2 and A :=(

E
∫ 1

0
|Z1(s)− Z2(s)|2ds

) 1
2
and simplify to x2 ≤ (4α1 + 2c)xA + 2A2. Furthermore,

we can solve the second order inequality for x and deduct that x < ∞, since α1, c < ∞
and from our assumption concerning Z, we have that A < ∞.

We still need to show measurability. From (7.3) we see that Y1 and Y2 have
continuous paths:

t 7→
∫ 1

t

f(s, Zs)ds
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is a.s. continuous since E
∫ 1

0
|f(s, Zs)|ds < ∞ and

t 7→
∫ 1

t

(g(s)− Zs)dBs (7.4)

is a.s. continuous as well, since E
∫ 1

0
|g(s)−Zs|2ds < ∞. Then, by continuity, we get

sup
0≤s≤1

|Y1(s)− Y2(s)|2 = sup
s∈[0,1]∩Q

|Y1(s)− Y2(s)|2,

which is measurable. Furthermore, we have Z1 − Z2 ∈ L2(F), hence the Itô integral
above is P-integrable and its expectation is zero. Rearranging and using the linearity
of expectation, the properties of the map f and the inequality −2ab ≤ a2 + b2 we get

E|Y1(t)− Y2(t)|2 + E
∫ 1

t

|Z1(s)− Z2(s)|2ds

= −2E
∫ 1

t

1√
2
(f(s, Z1(s))− f(s, Z2(s)))

√
2(Y1(s)− Y2(s))ds

≤ 2E
∫ 1

t

1√
2
c|Z1(s)− Z2(s)|

√
2|Y1(s)− Y2(s)|ds

= 2E
∫ 1

t

1√
2
|Z1(s)− Z2(s)|

√
2c|Y1(s)− Y2(s)|ds

≤ 1

2
E
∫ 1

t

|Z1(s)− Z2(s)|2ds+ 2c2E
∫ 1

t

|Y1(s)− Y2(s)|2ds,

which we rearrange again to obtain

E|Y1(t)− Y2(t)|2 +
1

2
E
∫ 1

t

|Z1(s)− Z2(s)|2ds ≤ 2c2
∫ 1

t

E|Y1(s)− Y2(s)|2ds, (7.5)

where we also use Fubini’s theorem to change the order of integration, and especially

E|Y1(t)− Y2(t)|2 ≤ 2c2
∫ 1

t

E|Y1(s)− Y2(s)|2ds.

We may now apply Grönwall’s lemma A.7 for ϕ(t) = E|Y1(t)− Y2(t)|2 and B = 0 to
obtain

E|Y1(t)− Y2(t)|2 ≤ B exp

(∫ 1

t

2c2
)

= 0.

Finally we apply this to (7.5) to see the uniqueness of Z as well. Hence the solution
is unique.

Existence. Let Z0(t) ≡ 0. By defining an approximating sequence
{(Yn(t), Zn(t)); 0 ≤ t ≤ 1}n≥1 in L2(F,Rd) × L2(F,Rd×k), with the help of Lemma
7.1, recursively by

Yn(t) = ξ −
∫ 1

t

f(s, Zn−1(s))ds−
∫ 1

t

[g(s) + Zn(s)]dBs, (7.6)

one can use a kind of Picard iteration. Lemma 7.1 is useful here, since every iteration
of (7.6) is of the form required in the Lemma. By using Itô’s formula and the same
inequalities as above we obtain
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E(|Yn+1(t)− Yn(t)|2) + E(
∫ 1

t

|Zn+1(s)− Zn(s)|2ds)

≤ KE
∫ 1

t

|Yn+1(s)− Yn(s)|2ds+
1

2
E
∫ 1

t

|Zn(s)− Zn−1(s)|2ds,

where K = 2c2. Let un(t) = E
∫ 1

t
|Yn(s) − Yn−1(s)|2ds and vn(t) = E

∫ 1

t
|Zn(s) −

Zn−1(s)|2ds for n ≥ 1 and Y0(t) ≡ 0. Since it holds that

− d

dt
(un+1(t)e

Kt) = eKtE|Yn+1(t)− Yn(t)|2 −KeKtun+1(t),

we get from the previous inequality

− d

dt
(un+1(t)e

Kt) + eKtvn+1 ≤
1

2
eKtvn(t). (7.7)

Integrating from t to 1, we get

−un+1(1)e
K + un+1(t)e

Kt +

∫ 1

t

eKsvn+1(s)ds ≤
1

2

∫ 1

t

eKsvn(s)ds, (7.8)

where we notice un+1(1) ≡ 0 and by dividing by the factor eKt we obtain

un+1(t) +

∫ 1

t

eK(s−t)vn+1(s)ds ≤
1

2

∫ 1

t

eK(s−t)vn(s)ds.

We have by setting t = 0 that∫ 1

0

eKtvn+1(t)dt ≤
1

2

∫ 1

0

eKtvn(t)dt, (7.9)

where we also omit the term un+1(t). By iterating the previous inequality we have
that ∫ 1

0

eKtvn+1(t)dt ≤ eK2−nc̄, (7.10)

where c̄ = E
∫ 1

0
|Z1(t)|2dt = sup0≤t≤1 v1(t). Also,

un+1(0) ≤ eK2−nc̄. (7.11)

From (7.7) and the fact that (d/dt)un+1(t) ≤ 0 we obtain

vn+1(0) ≤ Kun+1(0) +
1

2
vn(0) ≤ 2−nK̄ +

1

2
vn(0),

where K̄ = c̄KeK . Iterating, it follows that

vn+1(0) ≤ 2−n(nK̄ + v1(0)). (7.12)

Since the square roots of the right hand sides of (7.11) and (7.12) are bounded by
a constant times 2−δn ≥ 2−

n
2 with δ < 1

2
, we get

∑∞
n=1 2

−δn < ∞. For (7.12) this is

because n2−n ≤ b2−2δn ≤ b2−δn for some b which depends on the choice of δ. From
this we conclude that (Yn)n≥1 and (Zn)n≥1 are Cauchy sequences in L2(F,Rd) and
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L2(F,Rd×k), respectively. Then, from (7.6) we get that (Yn)n≥1 is also a Cauchy
sequence in L2(Ω;C(0, 1;Rd)), since

E sup
0≤t≤1

|Yn(t)− Ym(t)|2

= E sup
0≤t≤1

∣∣∣∣∫ 1

t

f(s, Zm−1(s))− f(s, Zn−1(s))ds+

∫ 1

t

Zm(s)− Zn(s)dBs

∣∣∣∣2
≤ 2E sup

0≤t≤1

∣∣∣∣∫ 1

t

f(s, Zm−1(s))− f(s, Zn−1(s))ds

∣∣∣∣2
+ 2E sup

0≤t≤1

∣∣∣∣∫ 1

t

Zm(s)− Zn(s)dBs

∣∣∣∣2
≤ 2E sup

0≤t≤1

[∫ 1

t

|f(s, Zm−1(s))− f(s, Zn−1(s))| ds
]2

+ 4α2
1E

∫ 1

0

|Zm(s)− Zn(s)|2 ds

< ϵ

for some ϵ and all n,m ≥ Nϵ, since Z is a Cauchy sequence in L2(F,Rd×k) and f
is Lipschitz. For the second inequality we used Burkholder-Davis-Gundy inequality
once again with the same idea as in the uniqueness part of this proof. By passing to
the limit in (7.6) as n tends to infinity, one can show that the pair (Y, Z) defined by

Y = lim
n→∞

Yn, Z = lim
n→∞

Zn,

where the limit is taken in L2(Ω;C(0, 1;Rd)) and L2(F,Rd×k), respectively, solves the
equation (7.3).

□

We are now ready to study the (still) more general BSDE

Yt = ξ −
∫ 1

t

f(s, Ys, Zs)ds−
∫ 1

t

[g(s, Ys) + Zs]dBs. (7.13)

Theorem 7.3 ([16] Theorem 3.1). Let the following hold:

(i) ξ ∈ L2(Ω,F1,P;Rd) ,
(ii) P is the sigma-algebra of F-progressively measurable subsets of Ω× (0, 1),
(iii) f : Ω×(0, 1)×Rd×Rd×k → Rd is (P⊗B(Rd)⊗B(Rd×k),B(Rd))-measurable,
(iv) g : Ω× (0, 1)× Rd → Rd×k is (P ⊗ B(Rd),B(Rd×k))-measurable,
(v) f(·, 0, 0) ∈ L2(F,Rd), g(·, 0, 0) ∈ L2(F,Rd×k),
(vi) There exists c > 0 such that |f(t, x1, y1)−f(t, x2, y2)| ≤ c(|x1−x2|+|y1−y2|),

|g(t, x1)− g(t, x2)| ≤ c|x1 − x2| for all x1, x2 ∈ Rd, y1, y2 ∈ Rd×k, (t, ω)− a.e.

There exists a unique pair (Y, Z) ∈ L2(F,Rd) × L2(F,Rd×k) which solves the BSDE
(7.13).

Again, before the proof, we note that the conditions (iv) and (v) imply that
f(·, Y (·), Z(·)) ∈ L2(F,Rd) and g(·, Y (·), Z(·)) ∈ L2(F,Rd×k) when Y ∈ L2(F,Rd)
and Z ∈ L2(F,Rd×k), which will be used to apply Proposition 7.2.
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Proof. Uniqueness. Consider again the one-dimensional case first, the multidi-
mensional case follows. Let (Y1, Z1), (Y2, Z2) be two solutions. Applying Itô’s formula
in the same way as in Proposition 7.3 and taking expectations on both sides we acquire

E|Y1(t)− Y2(t)|2 + E
∫ 1

t

|Z1(s)− Z2(s)|2ds

= −2E
∫ 1

t

(Y1(s)− Y2(s))(f(s, Y1(s), Z1(s))− f(s, Y2(s), Z2(s)))ds

− E
∫ 1

t

|g(s, Y1(s))− g(s, Y2(s))|2ds (7.14)

− 2E
∫ 1

t

(Z1(s)− Z2(s))(g(s, Y1(s))− g(s, Y2(s)))ds

≤ ĉE
∫ 1

t

|Y1(s)− Y2(s)|2ds+
1

2
E
∫ 1

t

|Z1(s)− Z2(s)|2ds

for some ĉ. The result follows.
Existence. We use again a type of Picard iteration similarly to when we proved
Proposition 7.3. Let Y0(t) ≡ 0 and {(Yn(t), Zn(t)); 0 ≤ t ≤ 1}n≥1 be a sequence in
L2(F,Rd)× L2(F,Rd×k) defined recursively by

Yn(t) = ξ −
∫ 1

t

f(s, Yn−1(s), Zn(s))ds−
∫ 1

t

[g(s, Yn−1(s)) + Zn(s)]dBs, 0 ≤ t ≤ 1.

(7.15)
By applying Itô’s lemma in the same way, using some inequalities, the properties of
the maps f and g and Grönwall’s lemma, one can get

E|Yn+1(s)− Yn(s)|2 + E
∫ 1

t

|Zn+1(s)− Zn(s)|ds (7.16)

≤ c̃

(
E
∫ 1

t

|Yn+1(s)− Yn(s)|2ds+ E
∫ 1

t

|Yn(s)− Yn−1(s)|2ds
)

for some c̃. Define un(t) = E
∫ 1

t
|Yn(s)− Yn−1(s)|2ds. It follows from (7.16) that

− d

dt
un+1(t)− c̃un+1(t) ≤ c̃un(t), un+1(1) = 0,

or

un+1(t) ≤ c̃

∫ 1

t

ec̃(s−t)un(s)ds.

Iterating yields

un+1(0) ≤
(c̃ec̃)n

n!
u1(0).

This together with (7.16) implies that (Yn)n≥1 and (Zn)n≥1 are Cauchy sequences in
L2(F,Rd) and L2(F,Rd×k), respectively. Then, from (7.15) we get that (Yn)n≥1 is
also a Cauchy sequence in L2(Ω;C(0, 1;Rd)), and by passing to the limit in (7.15) as
n tends to infinity, we are given that the pair (Y, Z) defined by

Y = lim
n→∞

Yn, Z = lim
n→∞

Zn,
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where the limit is taken in L2(Ω;C(0, 1;Rd)) and L2(F,Rd×k), respectively, solves the
equation (7.13). The proof of the sequence being Cauchy in the corresponding L2

space would be similar to what was done in the proof of Proposition 7.2 and will thus
be omitted.

□
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8. The actuarial setting; application of Backward Stochastic Differential
Equations in life insurance solvency risk

In this section the goal is to describe the dynamics of solvency probability of a life
insurance contract. The section is largely based on [4]. We want to show that the
change in solvency probability of the contract at expiry at time T can be expressed
as

P(NT ≥ 0|Ft)− P(NT ≥ 0|F0) =

∫ t

0

U⊤
r dM

X
r =

∫ t

0

Z⊤
r dBr, (8.1)

where MX
r is the martingale part, according to Doob’s decomposition, of a diffusion

process X that describes the underlying economic and demographic variables such
as mortality rate, interest rate as well as medical and lifestyle assumptions. The
process U will be progressively measurable and vector valued and will represent the
contribution of different economic and demographic variables to the solvency risk.
The process Z, which will be the control process of a BSDE, will describe the effects
the underlying Brownian motion has on the solvency level.

An insurance company’s solvency level describes its ability to meet its long-term
debts and financial obligations. It is a measurement of the company’s financial health.
For an insurer, the solvency level depends on, among other things, the portfolio and
the risks of the contracts provided.

Understanding the solvency level of a contract is vital for an insurer since the
European solvency regime ’Solvency II’ imposes a minimum solvency probability for
the insurer’s portfolio. This section focuses on a single contract, which still grants
some insight on the whole portfolio.

We will introduce the process N for the net value of a contract, which will be
defined by the difference in prospective liabilities and retrospective reserve, in a time-
continuous framework. The process will depend on underlying demographic and eco-
nomic variables, modeled as a diffusion process. Liabilities can be understood as
assets or contracts for which the company has a monetary duty to others, e.g. debts
or insurance contract benefits to be paid. In our case, we focus on the liabilities of
the insurance contract. Thus, prospective liabilities describe the liabilities in the fu-
ture, which are affected by future events that may or may not happen. Retrospective
reserve describes the present value of assets that belong to the insurance contract.

One can usually describe the prospective liabilities of a life insurance contract at
time t with

V +
t = f(XT )e

−
∫ T
t k(u,Xu)du +

∫ T

t

g(s,Xs)e
−

∫ s
t k(u,Xu)duds, (8.2)

where the time horizon T > 0 is finite and the functions f, g, k are suitable. Here

the factor exp{−
∫ T

t
k(u,Xu)du} describes the discounts given and the functions f

and g correspond to the terminal payment at time T and the continuous payments
in the time interval (0, T ), respectively, both to the policy holder. Furthermore, the
process X describes the underlying actuarial assumptions, and it will be assumed to
be n-dimensional and of the form

Xt = x0 +

∫ t

0

σ(s,Xs)dBs +

∫ t

0

λ(s,Xs)ds, t ∈ (0, T ] (8.3)
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with x0 ∈ Rn. The process V +
t is now the pathwise solution to the SDE

dV +
t =

(
k(t,Xt)V

+
t − g(t,Xt)

)
dt, t ∈ [0, T ) (8.4)

with V +
T = f(XT ). Since V +

t depends on the future of the process X, it is in general
not adapted to the natural filtration generated by X.

Example 8.1 (Prospective reserve of a life insurance). Let us assume that Xt =

(X1
t , X

2
t )

T
where X1

t = ϕ(t) and X2
t = µ(a + t) are stochastic processes that de-

scribe interest rate and mortality intensity of a policyholder at age a at contract
inception t = 0, respectively. The process X is a stochastic process and its random-
ness describes uncertainties on returns on investments and changes in life expectancy.
Let us denote with T > 0 the termination time of the contract, b(t) the annuity
payment rate, c(t) the death benefit at time t and BT the lump sum survival benefit
at time T . By letting

k(t, x1, x2) = x1 + x2,

g(t, x1, x2) = b(t) + c(t)x2,

f(x1, x2) = BT

one gets for the process V + the form

V +
t = BT e

−
∫ T
t (ϕ(u)+µ(a+u))du +

∫ T

t

(b(s) + c(s)µ(a+ s))e−
∫ s
t (ϕ(u)+µ(a+u))duds.

One calls V +
t the prospective reserve at time t in state alive in classical life insurance,

where ϕ and µ are modeled deterministically. However, when ϕ and µ are stochastic
processes, the term prospective reserve might be misleading, since V +

t is not in general
adapted to the filtration Ft, so that the value of the process in the future is unknown
and reserving capital cannot be done at time t.

Let us instead solve the SDE (8.4) with initial value v0 instead of the terminal
value;

dV −
t =

(
k(t,Xt)V

−
t − g(t,Xt)

)
dt, t ∈ (0, T ], V −

0 = v0.

One obtains a stochastic process V − for which

V −
t = v0e

∫ t
0 k(u,Xu)du −

∫ t

0

g(s,Xs)e
∫ t
s k(u,Xu)duds.

This process is, unlike V +, adapted to the natural filtration generated by X.

Example 8.2 (Retrospective reserve of a life insurance). Using the notation from the
previous example, let the initial value be the lump sum premium that the policy
holder pays at time 0, i.e. v0 = −B0, where the negative sign is because the payment
goes in the other direction than the annuity payments, the death benefit and the
survival benefit. In equation form this means

V −
t = −B0e

∫ t
0 (ϕ(u)+µ(a+u))du −

∫ t

0

(b(s) + c(s)µ(a+ s))e
∫ t
s (ϕ(u)+µ(a+u))duds.

Here V − represents the retrospective reserve of the contract at time t in state alive
and, as previously stated, is, in contrast to V +, adapted to the natural filtration
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generated by X. It corresponds to the present value of the assets belonging to the
contract at time t.

Because one can interpret V +
t as prospective liabilities of the insurance contract

and V −
t as the accrued assets, both at time t, the following definition can be made:

Definition 8.3. Let the processes V + and V − be defined as above. One calls

Nt := V −
t − V +

t , t ∈ [0, T ]

the net value of the life insurance contract at time t.

Lemma 8.4. Nt = N0e
∫ t
0 k(u,Xu)du for all t ∈ [0, T ]. Furthermore, the random variable

N0 is not F0-measurable.

Proof. One has by definition that

N0 = v0 − f(XT )e
−

∫ T
0 k(u,Xu)du −

∫ T

0

g(s,Xs)e
−

∫ s
0 k(u,Xu)duds

so that

N0e
∫ t
0 k(u,Xu)du = v0e

∫ t
0 k(u,Xu)du − e

∫ t
0 k(u,Xu)duf(XT )e

−
∫ T
0 k(u,Xu)du

− e
∫ t
0 k(u,Xu)du

∫ T

0

g(s,Xs)e
−

∫ s
0 k(u,Xu)duds

= v0e
∫ t
0 k(u,Xu)du − f(XT )e

−
∫ T
t k(u,Xu)du

−
∫ T

0

g(s,Xs)e
∫ t
0 k(u,Xu)due−

∫ s
0 k(u,Xu)duds

= v0e
∫ t
0 k(u,Xu)du − f(XT )e

−
∫ T
t k(u,Xu)du

−
∫ t

0

g(s,Xs)e
∫ t
s k(u,Xu)duds−

∫ T

t

g(s,Xs)e
−

∫ s
t k(u,Xu)duds

= V −
t − V +

t =: Nt.

The second assertion follows from the fact that N0 depends on the path of the process
Xt from time t = 0 to time t = T . □

Because Nt describes the value of the contract at time t, the interesting part is
whether it is positive or negative.

Example 8.5 (Solvency level). The insurance regulation Solvency II states that the
insurer’s assets shall be greater than or equal to the insurer’s liabilities over a one-
year period with at least probability 99.5%. Let us set the time horizon as T = 1
and use the notation from before, interpreting v0 as the insurer’s equity at time zero
and f(X1) as the value of the insurer’s liabilities at time 1 on the timeline [0,∞), the
solvency rule can be written as

P(N1 ≥ 0|X0) ≥ 0.995.

It is worthwhile to note that the probability restrictions are imposed on the port-
folio level, but observing the contract-level dynamics helps us understand how each
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contract contributes to the overall solvency level. This thesis is focused on the equa-
tion (8.1). Here X is a solution to an SDE and as such it is a diffusion process and
therefore a Markov process. Due to this nature, we obtain

P(NT ≥ 0|Ft) = P(NT ≥ 0|Xt, V
−
t ) (8.5)

by [7, Thm. 2.3]. Subsequently we obtain the following Corollary.

Lemma 8.6. The distribution function of V +
t conditional on Xt is given by

P(V +
t ≤ v|Xt = x) = P(NT ≥ 0|Xt = x, V −

t = v)

for all t ∈ [0, T ], x ∈ R.

Proof. From the representation of the process N from Lemma 8.4 we see that
the sign of the process only depends on the value N0. Hence it follows that the events
{NT ≥ 0} and {Nt ≥ 0} are equal. Furthermore, the events {Nt ≥ 0} and {V +

t ≤ v}
are equal, conditional on V −

t = v by Definition 8.3. Moreover, we have by [7, Theorem
2.3] that

P(V +
t ≤ v|Xt = x) = P(V +

t ≤ v|Xt = x, V −
t = v)

= P(Nt ≥ V −
t − v|Xt = x, V −

t = v)

= P(Nt ≥ 0|Xt = x, V −
t = v),

since the events {V +
t ≤ v} and {Nt ≥ V −

t − v} are equal, {Xt = x} ∈ σ(Xt) and
{Xt = x, V −

t = v} ∈ Ft.
□

The previous Lemma gives an additional motivation to calculate (8.1), in our case
by solving a BSDE, since the conditional distribution is important in accounting when
evaluating the prospective liabilities. Hence our results can be used in calculating the
conditional distribution as well.

In the following subsections, the behaviour of the solvency probability P(NT ≥
0|Ft) will be formulated as the solution of a forward-backward system. First, the
forward-backward system for the prospective liabilities will be given, after which an
SDE for the pair (Xt, V

−
t ) will be given. Lastly, a BSDE with the terminal condition

1(NT ≥ 0) will be constructed to study the solvency process.

8.1. A forward-backward system for the prospective liabilities. For complete-
ness, we describe first the evolution of prospective liabilities by a forward-backward
system. Let us introduce the BSDE in our context. The general BSDE is of the form

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs, 0 ≤ t ≤ T,P-a.s. (8.6)

Now the solution to (8.6) is a pair of adapted processes (Y, Z) with a terminal con-
dition YT = ξ. We recall that the function f is called the driver and the process Z
is known as the control process of the BSDE. Note that we are working with multi-
dimensional processes X,B and Z. In our scope, we can view the process Ys as the
value of the contingent claim at time s and Z represents the portfolio process of the
hedging strategy.
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Firstly, for the rest of the thesis, by a solution of a BSDE we mean a pair of
processes (Ys, Zs) for which (Ys)s∈[0,T ] is a continuous R-valued adapted process and
(Zs)s∈[0,T ] is a square-integrable Rn-valued progressively measurable process.

Secondly, let us state the assumptions for this section, which differ from the as-
sumptions set out in the previous sections. Hereafter we consider a probability space
(Ω,F ,P) with an n-dimensional Brownian motion denoted by B = (B1

t , . . . , B
n
t )

⊤

with the corresponding augmented natural filtration F. The functions µ, σ, k and g
are the functions introduced before.

Assumption 8.7. Let µ : [0, T ] × Rn → Rn and σ : [0, T ] × Rn → Rn×n be globally
Lipschitz, Borel measurable functions that are at most of linear growth:

|µ(s, x)− µ(s, y)|+ |σ(s, x)− σ(s, y)| ≤ L|x− y|,
|µ(s, x)|2 + |σ(x)|2 ≤ L2(1 + |x|2),

for every s ∈ [0, T ] and x, y ∈ Rn and for some L > 0.

Assumption 8.8. Let k and g be Borel measurable functions for which it holds that

|k(s, x)− k(s, y)|+ |g(s, x)− g(s, y)| ≤ L|x− y|,
|g(s, x)| ≤ L(1 + |x|),
|k(s, x)| ≤ L,

for all s ∈ [0, T ], x, y ∈ Rn and for some L > 0.

Here Assumption 8.7 concerns the process X from (8.3) which describes the actuarial
assumptions and Assumption 8.8 is used for the functions with which the prospective
and retrospective liabilities are defined.

We recall that the process for prospective liabilities is given by

V +(t,x)
s = f(X

(t,x)
T )e−

∫ T
s k(u,X

(t,x)
u )du +

∫ T

s

g(r,X(t,x)
r )e−

∫ r
s k(u,X

(t,x)
u )dudr, (8.7)

where the superscript (t, x) means that the process X begins at x at time t. The

BSDE for V
+(t,x)
s is given by

Ys = f(XT ) +

∫ T

s

(−k(r,Xr)Yr + g(r,Xr))dr −
∫ T

s

Z⊤
r dBr, (8.8)

where we let Ys := V
+(t,x)
s . This combined with the process X is commonly referred

to as an uncoupled forward-backward system.

Proposition 8.9. Under Assumptions 8.7, 8.8 and for functions f ∈ L2 the forward-
backward system{

dXs = µ(s,Xs)ds+ σ(s,Xs)dBs, Xt = x, t ≤ s ≤ T

−dYs = (−k(s,Xs)Ys + g(s,Xs))ds− Z⊤
s dBs, YT = f(XT ), t ≤ s ≤ T

admits a unique square-integrable solution
(
X

(t,x)
s , Y

(t,x)
s , Z

(t,x)
s

)
. Furthermore, the

prospective liabilities are given by
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V +(t,x)
s = Y (t,x)

s +

∫ T

s

e−
∫ r
s k(u,X

(t,x)
u )duZ(t,x)

r

⊤
dBr. (8.9)

Lastly, the random variable Y
(t,x)
t is deterministic and can be represented by

v(t, x) := Y
(t,x)
t = E

(
Y

(t,x)
t

)
= E

(
V

+(t,x)
t

)
.

Proof. The functions h(s, y, z) = −k(s, x(s))y + g(s, x(s)) and m(s, y, z) = −z
implement the measurability and boundedness conditions as functions of y and z
required in Theorem 7.3. Thus there exists a unique solution to the BSDE part of the
forward-backward system. The process X is a unique solution to the forward SDE

due to Proposition 5.4. Therefore the triplet
(
X

(t,x)
s , Y

(t,x)
s , Z

(t,x)
s

)
is unique. The

statement regarding the form of the solution stems from [18, Remark 5.38] and is a

consequence of the linearity of the BSDE. The fact that Y
(t,x)
t is deterministic is given

by [6, Proposition 4.2]. □

The control process Z can be obtained from the Martingale Representation The-
orem A.6, however, the form will not be explicit:

f
(
X

(t,x)
T

)
= E

(
f
(
X

(t,x)
T

))
+

∫ T

t

Z(t,x)⊤

s dBs.

With a little stricter assumptions, however, we will be able to get a deterministic
representation of the control process Z because of the Markovian nature of the setting.
To prove this, we give the following Lemma, without proof. Before this, however, we
introduce a few definitions and assumptions set out in [20]. In the following we
consider a forward-backward system of the form{
dX

(t,x)
s = µ(s,X

(t,x)
s )ds+ σ(s,X

(t,x)
s )dBs, Xt = x, t ≤ s ≤ T

−dY
(t,x)
s = h(s,X

(t,x)
s , Y

(t,x)
s , Z

(t,x)
s )ds− Z

(t,x)
s

⊤
dBs, Y

(t,x)
T = f(X

(t,x)
T ), t ≤ s ≤ T,

(8.10)
where we omit the starting value (t, x) for convenience. We make these stricter
assumptions because we could not verify the validity of the results with the more
relaxed assumptions made in [4].

Assumption 8.10.

(i) Let σ(t, x) > 0 for all (t, x),
(ii) µ, σ are bounded and belong to C0,1

b ([0, T ]× Rk),
(iii) σ is uniformly Hölder-α continuous in t for α > 1

2
,

(iv) For the driver h ∈ [0, T ]×R3 it holds that h(t, x, y, z) = h1(t, x, y)+h2(t, x)z,
where h1, h2 are continuous and uniformly Lipschitz continuous in x, y.
Moreover, h2 is bounded,

(v) f is Lebesgue measurable and |f(x)| ≤ Φ(x) := K(1+|x|p0) for some constant
K and some p0 ≥ 1.
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We introduce the following notation.

Definition 8.11. Let O be an open subset on [0, T ]× Rk for some k.

• C0,1(O) is the space of all continuous ϕ : O → R that are continuously
differentiable in the space variable in O,

• C0,1
b (O) is the space of those ϕ ∈ C0,1(O) such that all the partial derivatives

in O are uniformly bounded,

• Γn := {(t, x) : maxt≤s≤T |σ(s, η(t,x)s )| ≥ 1
n
}, where η(t,x) is the solution to the

integral equation

η(t,x)s = x+

∫ s

t

µ(s, η(t,x)s )ds

and n ≥ 0,

• u(t, x) := Y
(t,x)
t , ux(t, x) = ∇Y

(t,x)
t .

Lemma 8.12. [[20] Theorem 5.2 (see also [8])] Consider a FBSDE of the form (8.10).
Let Assumption 8.10 hold. Then:

(i) u ∈ C0,1(Γn)
(ii) u is locally Lipschitz continuous in x and there exists a constant Cn depending

on K, t, α,Φ and n such that

|ux(t, x)| ≤
CnΦ(x)√
T − t

∀(t, x) ∈ Γn.

Here ux(t, x) is understood to be a general derivative if u is not differentiable
in x at (t, x).

(iii) Understanding ux as in (ii) we have

Zt = ux(t,Xt)σ(t,Xt).

For the rest of the thesis we shall use the notation d(r, x) := ux(r, x) to be consistent
with the source material.

Remark 8.13. Let us have a BSDE of the form{
−dYs = h(s,X

(t,x)
s , Ys, Zs)ds− Z⊤

s dBs

YT = f(X
(t,x)
T ),

where X is the diffusion and f gives us the terminal condition. If h only depends on
the time and the diffusion, i.e. h(s, x, y, z) = h(s, x), we get that

Y (t,x)
s = E

[
f(X

(t,x)
T ) +

∫ T

s

h(r,X(t,x)
r )dr

∣∣∣∣Fs

]
,

since E
∫ T

s
ZrdBr = 0. The last claim follows from [20, Subsections 5.1.1 and 5.1.2;

especially equation (5.1.8)].

We can now interpret (8.9) in an actuarial scope. Let us now apply Lemma 8.12 and
assume that the probability measure corresponds to a (risk-neutral) market measure.
Viewing (8.9) as
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V +(t,x)
s︸ ︷︷ ︸

prospective liabilities

= Y (t,x)
s︸ ︷︷ ︸

present value of the
prospective liabilities

+

∫ T

s

e−
∫ r
s k(u,X

(t,x)
u )dud

(
r,X(t,x)

r

)⊤︸ ︷︷ ︸
hedging strategy

σ
(
r,X(t,x)

r

)
dBr︸ ︷︷ ︸

market price changes
in the underlyings

,

or under the real world probability measure as

V +(t,x)
s︸ ︷︷ ︸

prospective liabilities

= Y (t,x)
s︸ ︷︷ ︸

best estimate for the
prospective liabilities

+

∫ T

s

e−
∫ r
s k(u,X

(t,x)
u )du︸ ︷︷ ︸

discounting factor

d
(
r,X(t,x)

r

)⊤︸ ︷︷ ︸
sensitivity factor

σ
(
r,X(t,x)

r

)
dBr︸ ︷︷ ︸

random fluctuations
in the underlyings

.

This interpretation of Y
(t,x)
s as the best estimate for the prospective liabilities at

time s makes sense, since it holds that Y
(t,x)
s = E(V +(t,x)

s |Fs) (remember that the
expectation of an Itô integral is zero). The Itô integral describes the randomness
around the best estimate. The parts can be understood as follows:

• The discounting factor e−
∫ r
s k(u,X

(t,x)
u )du, which can include biometric and fi-

nancial discounting.

• A sensitivity factor d
(
r,X

(t,x)
r

)
which describes the effects that the random

fluctuations of the process X have on the prospective liabilities.

• The martingale part σ
(
r,X

(t,x)
r

)
dBr of the integrator dXr describing the

random fluctuations of the process X, according to Doob’s decomposition.

Example 8.14. We can now view Example 8.1 in a new light with the help of the
previous remark. We obtain

V +(t,x)
s = E(V +(t,x)

s |Fs)

+

∫ T

s

e−
∫ r
s ϕ(u)du︸ ︷︷ ︸

financial discounting

e−
∫ r
s µ(a+u)du︸ ︷︷ ︸

survival rate

d
(
r,X(t,x)

r

)⊤︸ ︷︷ ︸
sensitivity factor

d

(
Mµ(a+ r)

Mϕ(r)

)
︸ ︷︷ ︸
random fluctuations
in the underlyings

,

where Mµ(a + r) and Mϕ(r) denote the martingale parts of the diffusion processes
µ(a+ r) and ϕ(r) according to Doob’s decomposition.

This decomposition has similarities to the classical surplus decomposition formula.
These similarities are discussed in detail in [4, Subsection 3.2].

8.2. A link between the BSDE and a PDE. For completeness, in this subsection
we want to link the BSDE (8.8) to a corresponding partial differential equation, the
Thiele differential equation (for more in-depth deliberation cf. [14] and [19]), which
describes the reserve the insurer must provide and is given in our case by{

∂tu(t, x) +Au(t, x) + (−k(t, x)u(t, x) + g(t, x)) = 0

u(T, x) = f(x),
(8.11)
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where u, k, g and f are the functions used in the last subsection, with the partial
differential operator A being defined as

A =
1

2

n∑
i,j=1

[
σσ⊤]

ij
(t, x)∂xi

∂xj
+

n∑
i=1

µi(t, x)∂xi
.

Here ∂t =
∂
∂t

and ∂xi
= ∂

∂xi
for i = 1, . . . , n.

This link is of interest because one can study the regularity of the functions u
and d given in the last subsection with the tools of partial differential equations
and functional analysis, or vice versa study (some) partial differential equations by
simulating random paths of a stochastic process.

We may now link the BSDE (8.8) and the PDE (8.11) with BSDE theory. For the
definition of a viscosity solution, see Definition A.8.

Proposition 8.15. Under Assumptions 8.7 and 8.8 hold, the following holds.

(i) The function u is continuous in (t, x) ∈ [0, T ] × Rn and it is the unique
viscosity solution of the partial differential equation (8.11) which grows at
most polynomially at infinity.

(ii) If the coefficients σ, µ, k, g and the terminal condition f are three times con-
tinuously differentiable with bounded derivatives, then u is a classical solution
of (8.11) and belongs in C1,2([0, T ]× Rn).

(iii) When (ii) holds, the solution of the BSDE (8.8) is given by Y
(t,x)
s =

u
(
s,X

(t,x)
s

)
and Z

(t,x)
s = σ

(
s,X

(t,e)
s

)⊤
∇u

(
s,X

(t,x)
s

)
for any t ≤ s ≤ T

where ∇u = (∂x1 , . . . , ∂xn) is the gradient.

Proof. The assertion (i) is [18, Theorem 5.37]. Assertion (ii) is [17, Theorem
3.2]. Assertion (iii) is a special case of Lemma 8.12. It is also proved in [6, Corollary
4.1]. □

Corollary 8.16. Vice versa, if u ∈ C1,2([0, T ] × Rn) is a classical solution

of (8.11), we get from Itô’s lemma that Y
(t,x)
s = u(s,X

(t,x)
s ) and Z

(t,x)
s =

σ
(
s,X

(t,x)
s

)⊤
∇u

(
s,X

(t,x)
s

)
. We have at time t, i.e. at the inception of the contract,

that Y
(t,x)
t = u(t, x) and Z

(t,x)
t = σ(t, x)⊤∇u(t, x) by the definition of the process X.

Proof. See [6, Proposition 4.3] for the application of Itô’s lemma. The form at
the inception of the contract is obvious due to x being the initial value of the process
X. □

From this link we recover the Feynman-Kac formula in the form

V
+(t,x)
t = E

[
f
(
X

(t,x)
T

)
e
−

∫ T
t k

(
u,X

(t,x)
u

)
du

+

∫ T

t

g
(
r,X(t,x)

r

)
e
−

∫ T
t k

(
u,X

(t,x)
u

)
du
dr

]
,

at the inception of the contract, cf. [18, Remark 5.38 and Subsection 3.8.1].

8.3. An SDE for the economic variables and the retrospective reserve. We can
now represent the evolution of the retrospective reserve with a (forward) SDE. This
is the forward component of our forward-backward system which is to be constructed
later on.
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Proposition 8.17. Under Assumptions 8.7 and 8.8, for every initial condition
(t, x, v) ∈ [0, T ]× Rn × R the SDE(

Xs

V −
s

)
=

(
x

v

)
+

∫ s

t

(
µ(u,Xu)

k(u,Xu)V −
u − g(u,Xu)

)
du+

∫ t

s

(
σ(u,Xu)

0

)
dBu (8.12)

with 0 ≤ t ≤ s ≤ T has a unique, square integrable strong solution
(
X

(t,x)
s , V

−(t,x,v)
s

)⊤
.

Proof. This follows directly from Proposition 5.8. For an alternate proof, see
[10, Chapter 5, Theorem 2.9]. □

Here we can use differential notation for (8.12) as{
d(Xs, V

−
s )⊤ = µ̃(s,Xs, V

−
s )ds+ σ̃(s,Xs)dBs, 0 ≤ t ≤ s ≤ T

(Xt, V
−
t )⊤ = (x, v)⊤

with

µ̃(s, x, v) =

(
µ(s, x)

k(s, x)v − g(s, x)

)
∈ Rn+1,

σ̃(s, x) =

(
σ(s, x)

0

)
∈ R(n+1)×n.

We note that the function u(t, x, v) = Y
(t,x,v)
t is the natural candidate for a viscosity

solution to the degenerate terminal value problem{
∂tw(t, x, v) +Aw(t, x, v) + (k(t, x)v − g(t, x))∂vw(t, x, v) = 0

w(T, x, v) = Ψ(x, v),
(8.13)

where

Au(t, x) =
n∑

i=1

µi(t, x)∂xi
u(t, x) +

1

2

n∑
i,j=1

[
σ(t, x)σ(t, x)⊤

]
ij
∂xixj

u(t, x).

8.4. A forward-backward system for the net value. Now we are ready to combine
the forward and backward components to acquire the forward-backward system which
describes the evolution of the equity position P(NT ≥ 0|Xt = x, V −

t = v). The
backward element is given by{

−dYs = −Z⊤
s dBS

YT = Ψ
(
X

(t,x)
T , V

−(t,x,v)
T

)
,

(8.14)

where the terminal condition Ψ(x, v) = 1(v− f(x)) defined by 1 := 1[0,∞) is bounded
and Borel-measurable but not continuous, the driver of the BSDE is zero and the
process X describes the actuarial assumptions.

Proposition 8.18. Suppose that Assumptions 8.7 and 8.8 hold. These com-
bined with the boundedness of Ψ yield a unique, square-integrable solution
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((
X

(t,x)
s , V

−(t,x)
s

)
, Y

(t,x,v)
s , Z

(t,x,v)
s

)
to the forward-backward system{

d(Xs, V
−
s )⊤ = µ̃(s,Xs, V

−
s )ds+ σ̃(s,Xs)dBs, (Xt, V

−
t )⊤ = (v, x)⊤

−dYs = −Z⊤
s dBs, YT = Ψ

(
X

(t,x)
T , V

−(t,x,v)
T

)
.

(8.15)

Proof. The statement follows directly from Proposition 8.17 and Theorem 7.3.
The forward part and the backward part are unique according to the above proposition
and theorem, so the triplet is unique as well. □

Once again, the process Z will be given by the martingale representation theorem as
the unique square-integrable process for which

Ψ(XT , V
−
T ) = E(Ψ(XT , V

−
T )) +

∫ T

t

Z⊤
s dBs,

since EΨ2 ≤ 1 for all (x, v). Let us formulate a theorem which helps us understand
the role of the process Z in our context.

Theorem 8.19 ([4] Theorem 3.13). Assume the Assumptions 8.7 and 8.8 hold and
Ψ = 1(v − f(x)). Then the following holds.

(i) The solvency probability given the information at time s is given by the pro-

cess Y
(t,x,v)
s :

Y (t,x,v)
s = P(NT ≥ 0|Fs)

for every t ≤ s ≤ T ;
(ii) The change in this probability between times s1 and s2 is dependent only on

the control process Z(t,x,v):

P(NT ≥ 0|Fs2)− P(NT ≥ 0|Fs1) =

∫ s2

s1

Z(t,x,v)⊤

r dBr

for every t ≤ s1 ≤ s2 ≤ T .

Proof.

(i) We can use Proposition 7.1 to see that, since the driver of the BSDE is zero
and EΨ2 < ∞, we get a unique solution (Y, Z), for which the process Y takes
the form

Y (t,x,v)
s = E

[
Ψ(X

(t,x)
T , V

−(t,x,v)
T )

∣∣∣Fs

]
,

which we can interpret as the probability P(NT ≥ 0|Fs), since V
−(t,x,v)
T −

f(X
(t,x)
T ) = V −

T − V +
T = NT by Lemma 8.4, hence Ψ(X

(t,x)
T , V

−(t,x,v)
T ) =

1(NT ≥ 0). For this we recall V +
T = f(XT ).

(ii) From the integral version of (8.14) we see that

Y (t,x,v)
s = Ψ(X

(t,x)
T , V

−(t,x,v)
T )−

∫ T

s

Z(t,x,v)⊤

r dBr
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for every t ≤ s ≤ T , hence

Y (t,x,v)
s2

− Y (t,x,v)
s1

=

(
Ψ(X

(t,x)
T , V

−(t,x,v)
T )−

∫ T

s2

Z(t,x,v)⊤

r dBr

)
−

(
Ψ(X

(t,x)
T , V

−(t,x,v)
T )−

∫ T

s1

Z(t,x,v)⊤

r dBr

)
=

∫ s2

s1

Z(t,x,v)⊤

r dBr,

which was the assertion.

□

Similarly to the previous subsection, we acquire deterministic functions u and d,
under stricter assumptions, such that we can rephrase Theorem 8.19 as follows.

Corollary 8.20. Under Assumption 8.10 in addition to the assumptions of Theorem
8.19 we have

(i) There exists a measurable, continuous and deterministic function u : [0, T ]×
Rn×R → R for which the solvency probability given the information at time
s is given by

P(NT ≥ 0|Fs) = u
(
s,X(t,x)

s , V −(t,x,v)
s

)
for every t ≤ s ≤ T .

(ii) There exists a measurable, continuous and deterministic function d : [0, T ]×
Rn × R → Rn+1 for which the change in probability between times s1 and s2
has the representation

P(NT ≥ 0|Fs2)− P(NT ≥ 0|Fs1) =

∫ s2

s1

d
(
r,X(t,x)

r , V −(t,x,v)
r

)⊤
σ̃
(
r,X(t,x)

r

)
dBr

for every t ≤ s1 ≤ s2 ≤ T , where we recall that σ̃(s, x) =
(
σ(s,x)

0

)
.

(iii) One can interpret u as giving the probability that the terminal theoretical
equity position is non-negative given the information at time s:

u(s, x′, v′) = P
(
NT ≥ 0|X(t,x)

s = x′, V −(t,x,v)
s = v′

)
.

(iv) Additionally, one can view u as the distribution function of the prospective
liabilities V +

t conditional on the information at time s:

u(s, x′, v′) = P
(
V

+(t,x,v)
t ≤ v′|X(t,x)

s = x′
)
.

Proof. (i) and (ii) follow straight from Lemma 8.12. From Lemma 8.6 we see
that (iii) and (iv) are equal. To obtain (iii) from (i) we use (8.5). □

Corollary 8.21. From the previous theorem and corollary we instantly obtain (8.1),
which we recall to be

P(NT ≥ 0|Ft)− P(NT ≥ 0|F0) =

∫ t

0

U⊤
r dM

X
r =

∫ t

0

Z⊤
r dBr,

by letting s1 = 0, s2 = t and by setting Ur = d
(
r,X

(t,x)
r , V

−(t,x,v)
r

)
and dMX

r =

σ̃
(
r,X

(t,x)
r

)
dBr. This was the main focus of the section.
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Since we have P(NT ≥ 0|FT ) = E [1(NT ≥ 0)|FT ] = 1(NT ≥ 0) a.s., we can
rearrange (ii) from Corollary 8.20 to obtain

1(NT ≥ 0)︸ ︷︷ ︸
solvency status

= P (NT ≥ 0|Fs)︸ ︷︷ ︸
estimate for the
solvency status

+

∫ T

s

d
(
r,X(t,x)

r , V −(t,x,v)
r

)⊤︸ ︷︷ ︸
sensitivity factor

σ̃
(
r,X(t,x)

r

)
dBr︸ ︷︷ ︸

random fluctuations
in the underlyings

.

Here the solvency status at time T is a Bernoulli random variable that is FT -
measurable, where 1 means solvent and 0 means nonsolvent. The second term is
an estimate of the solvency status at the end of the monitoring period made with
information available at time s and the Itô integral describes the dynamics of solvency
status and can be viewed as having been decomposed to the following parts, similarly
to Subsection 8.1:

• The integrator σ̃
(
r,X

(t,x)
r

)
dBr corresponds to the martingale part of dX

(t,x)
r

and describes the random fluctuations of the process X, once again according
to Doob’s decompostion.

• The sensitivity factor d
(
r,X

(t,x)
r , V

−(t,x,v)
r

)⊤
describes the effects the afore-

mentioned fluctuations have on the solvency risk.

Thus the measurable, continuous and deterministic function d contains all the
information on the risk of not having a positive balance at contract expiration. Addi-
tionally, since the expected value of the Itô integral is zero, the estimate P (NT ≥ 0|Fs)
for solvency status is unbiased. The measurable, continuous and deterministic func-
tion u describes both the solvency level at time s and the distribution of the prospec-
tive liabilities at time s, both conditional to the process X. Once again, these are
only existence results not yielding any information on how to find these processes.

8.5. Numerical methods. In this subsection we present two numerical methods
for the study of the control process, one of which is a PDE method and the other one
based on Malliavin calculus. These methods will be presented without the utmost
rigor since they are not the main scope of this thesis. We will work with Assumptions
8.7, 8.8 and 8.10, which were the strictest made.

8.5.1. The PDE method. In the case that the PDE (8.13) has a classical solution
and the terminal condition Ψ is continuously differentiable, one would be able to
apply Itô’s lemma to show that Ys = u(s,Xs, V

−
s ) and Zs = σ̃(s,Xs)

⊤∇u(s,Xs, V
−
s )

is the solution to the BSDE (8.15). This connection would allow one to use PDE-
based methods to analyze the control process Z. In our setting, however, the terminal
condition Ψ is not differentiable as it is not even continuous, so this approach is futile.
This is because applying Itô’s lemma would require the differentiability of Ψ since it
relies on the Taylor expansion of u(s, x, v) − u(0, x, v). Because of this reason, the
connection in this case is more delicate.

In our case we require that the process (Xs, V
−
s )⊤ has a probability density. This

existence is nontrivial, however. In general, we consider the differential operator
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L =
1

2

n∑
i,j=1

[σ(t, x)σ(t, x)⊤]ij∂xixj
+

n∑
i=1

µi(t, x)∂xi
u(t, x)+(k(t, x)v−g(t, x))∂v, (8.16)

with the same coefficients, mainly the ones with the strictest assumptions, as in the
previous subsection. It acts on C∞(Rn × R) and can be continuously extended to
other function spaces. Now we can rewrite the PDE (8.13) as

−∂tu = Lu. (8.17)

Next we recall the notion of a fundamental solution, as one does in [4] where it is
based on [10, Chapter 5.7].

Definition 8.22. A fundamental solution to our PDE is a (nonnegative) function
p(t, x, v; s, ξ, η) defined for 0 ≤ t < s ≤ T , x, ξ ∈ Rn and v, η ∈ R such that for
every f ∈ C(Rn × R) with compact support, and t ∈ (0, T ] the function

u(t, x, v) =

∫
Rn+1

p(t, x, v; s, ξ, η)f(ξ, η)dξdη

is bounded, belongs to the class C1,2, satisfies (8.17) and

lim
t↑s

u(t, x, v) = f(x, v)

for any x ∈ Rn and v ∈ R.

Furthermore, we require that for fixed (t, x, v) the map (s, ξ, η) 7→ p(t, x, v; s, ξ, η) and
that for fixed (s, ξ, η) the map (t, x, v) 7→ p(t, x, v; s, ξ, η), both belong to the class
C1,2. Lastly, we assume boundedness of the first-order spatial derivatives with respect
to x and v in the sense that

|∂xj
p(t, x, v; s, ξ, η)|, |∂vp(t, x, v; s, ξ, η)| ≤ (s− t)αΓ(t, x, v; s, ξ, η) (8.18)

for some α < 0 and a function Γ for which
∫
Rn+1 |Γ(t, x, v; s, ξ, η)|dξdη < ∞ uniformly

in x, v and in t, s. This condition can be acquired via Aronson-type estimates, c.f.
[13, Corollary 3.25].

When defined this way, the function p can be thought as the transition density of
the process (X, V −) in the sense that

P
((
X(t,x)

s , V −(t,x,v)
s

)
∈ A

)
=

∫
A

p(t, x, v; s, ξ, η)dξdη

for Borel measurable sets A ⊆ Rn × R.
Next we give the following theorem for the density p. The proof can be read in [4].

Theorem 8.23 ([4] Theorem 4.1). Assume that (8.17) has a fundamental solution p
such that the conditions (8.18) are fulfilled. Furthermore, let u ∈ C1,2([t, T ) × Rn ×
R) ∩ L∞([t, T ] × Rn × R) be a classical solution to the PDE (8.17) with a terminal

condition Ψ ∈ L∞(Rn × R). Then, Y
(y,x,v)
s = u

(
s,X

(t,x)
s , V

−(t,x,v)
s

)
for s ∈ [t, T ] and

Z
(t,x,v)
s = σ̃⊤

(
s,X

(t,x)
s

)
∇u

(
s,X

(t,x)
s , V

−(t,x,v)
s

)
for s ∈ [t, T ).

This theorem is substantial since it gives us an opportunity to use PDE theory to
study the functions that give us the solvency risk.
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8.5.2. The Malliavin method. Like in the previous section, if we had a continuous
terminal condition and continuous coefficients for the BSDE, there would be well-
established numerical methods for simulating the solution (Y, Z) cf. [5, Chapter
5]. However, the details are more intricate in our setting. We are also particularly
interested in the control process Z so applying methods based on viscosity solutions
are not of great use. For a discussion on these methods, we refer the reader to [1]
for a seminal paper. We shall modify the Mϵ-method set out in [3, Section 5]. In
addition to the previous assumptions, let σ be uniformly positive definite for the rest
of the thesis.

The goal is to find a representation of Zs that is easy to simulate. The challenge
in our case stems from the fact that there are two sources of degeneracy: the terminal
condition Ψ is discontinuous and the diffusion coefficient σ̃ is not positive definite.
The idea is to regularize the diffusion coefficient and find a representation of the
control process Z in the form

Z(t,x)
s = σϵ

(
t,Xϵ,(t,x)

s

)⊤ E
(
Ψ
(
X

ϵ,(t,x)
T , V

−ϵ,(t,x,v)
T

)
U

ϵ,s,(t,x,v)
T

)
,

where U is a suitable, easy to simulate process. The processes (Xϵ, V −ϵ) are approx-
imations of (X, V −) and σϵ is an approximation of σ.

Let us sketch the construction we use, without technical details. For the details
we refer the reader to [4].

(i) Augmented Brownian motion. Let (B′
s)t≤s≤T be a one-dimensional Brownian

motion that is independent of (Bs)t≤s≤T and defined on the probability space

(Ω,F ,P). Define an (n+1)-dimensional Brownian motion by B̃s =
(
Bs

B′
s

)
and

denote the corresponding filtration by (F̃s)t≤s≤T .
(ii) Regularization of the diffusion coefficients. Let

σ0(t, x) =

(
σ(t, x) 0

0 0

)
∈ R(n+1)×(n+1)

and

σϵ(t, x) =

(
σ(t, x) 0

0 ϵ

)
,

where ϵ > 0. We have that σϵ(t, x) is positive definite for any (t, x) ∈ [0, T ]×
Rn, since we assumed σ(t, x) is positive definite. Furthermore, σϵ(t, x) →
σ0(t, x) uniformly.

(iii) Perturbation of the BSDE. Consider the perturbed version of the forward-
backward system{
(Xϵ

s, V
−,ϵ
s )⊤ = (x, v)⊤ +

∫ s

t
µ̃(u,Xϵ

u, V
−,ϵ
u )du+

∫ s

t
σϵ(u,X

ϵ
u)dB̃u

Y ϵ
s = Ψ(Xϵ

T , V
−,ϵ
T )−

∫ T

s
Zϵ⊤

u dB̃u.
(8.19)

In order to simplify the notation, we omit the initial condition (t, x, v) and
denote the solution of (8.19) by (Xϵ, Y ϵ, Zϵ). Also introduce the forward-
backward system{
(X0

s , V
−,ϵ
s )⊤ = (x, v)⊤ +

∫ s

t
µ̃(u,X0

u, V
−,0
u )du+

∫ s

t
σ0(u,X

0
u)dB̃u

Y 0
s = Ψ(X0

T , V
−,0
T )−

∫ T

s
Z0⊤

u dB̃u

(8.20)

43



Backwards Stochastic Differential Equations in Life Insurance Solvency Risk
Dynamics

with solution (X0, Y 0, Z0). We write Zϵ =
(
Zϵ,1

Zϵ,2

)
with Zϵ,1 ∈ Rn and Zϵ,2 ∈ R.

(iv) Limit behaviour. We have that, when ϵ → 0,

E
(

sup
t≤s≤T

∣∣∣∣Xϵ
s −X0

s

∣∣∣∣2) → 0,

E
(

sup
t≤s≤T

∣∣∣∣Y ϵ
s − Y 0

s

∣∣∣∣2)+ E
(

sup
t≤s≤T

∣∣∣∣Zϵ
s − Z0

s

∣∣∣∣2) → 0.

The first limit follows from classical SDE continuity results as X corresponds
to the forward component of the system and the second limit stems from
analogous BSDE results, e.g. [18, Theorem 5.11]. Since σ0(t,X

0
s )dB̃s =

σ(t,X0
s )dBs as well as SDE solutions being unique in our setting, we must

have that Xs = X0
s for t ≤ s ≤ T almost surely. The solutions of the BSDE

are unique, hence it must hold that Z0 is of the form Z0
s =

(
Zs

0

)
, where Zs

is the solution to (8.14). This means that (8.20) is actually the same as{
(Xs, V

−
s )⊤ = (x, v)⊤ +

∫ s

t
µ̃(u,Xu, V

−
u )du+

∫ s

t
σ(u,Xu)dBu

Ys = Ψ(XT , V
−
T )−

∫ T

s
Z⊤

u dBu

which is precisely the same as the formulation in Proposition 8.18.
(v) Approximation of Zs. The following convergence stems from our construc-

tion, as ϵ → 0,

E
(∫ T

t

∣∣∣∣Zϵ,1
s − Zs

∣∣∣∣2ds) → 0.

In concrete applications we would need to find precise convergence estimates.
(vi) Computation of Zϵ,1. With help from Malliavin calculus, one can represent

the process Zϵ,1 in a way that lends itself well to numerical calculation. We
find the following formulae:

Zϵ,1
s = σϵ(s,X

ϵ
s)

⊤E(Ψ(Xϵ
T , V

−ϵ
T )U ϵ,s

T |Fs), (8.21)

where

U ϵ,s
T = (∇Xϵ

s)
−1⊤

[
1

T − s

∫ T

s

(
[σϵ(u,X

ϵ
u)]

−1∇Xϵ
u

)⊤
dB̃u

]
(8.22)

and∇Xϵ = (∇1X
ϵ, . . . ,∇n+1X

ϵ) ∈ R(n+1)×(n+1) with column vectors∇iX
ϵ ∈

Rn+1 for i = 1, . . . , n + 1. Each of these column vectors satisfy the linear
SDE

∇iX
ϵ
s = ei +

∫ s

t

grad µ̃(u,Xϵ
u)∇iX

ϵ
udu+

n+1∑
j=1

∫ s

t

[
grad σj

ϵ (u,X
ϵ
u)
]
∇iX

ϵ
udB̃u,j, (8.23)

where ei = (0, . . . , 1, . . . , 0)⊤ where the value 1 is in the ith row and σj
ϵ

denotes the jth column of σϵ and by grad we mean the gradient operator
( ∂
∂x1

, . . . , ∂
∂xn

) in order to avoid confusion, since the equations contain nabla

processes as well. These formulae are made clearer in [4, Appendix 1].

The representation of (8.21) is due to [20, Equation (3.4) in the proof of Theorem
3.2]. We get the following link to partial differential equations:
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Remark 8.24. The forward-backward system (8.19) corresponds to the non-degenerate
PDE {

−∂tuϵ =
∑n+1

i,j=1

[
σϵσ

⊤
ϵ

]
ij
∂i∂juϵ +

∑n+1
i=1 µ̃∂iuϵ

uϵ(T, x, v) = Ψ(x, v).

If the terminal function Ψ is not regular, one can typically approximate it by a
sequence of smooth functions in a suitable space. The PDE can be further analyzed
using standard methods; the key being that one will obtain the same solution as with
the BSDE methods laid out in the thesis.

I conclude the thesis by referring the reader to [4, Section 5] for an illustration of the
PDE toy model, as a concrete example.
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Appendix A.

Definition A.1 (Stopping Time). Assume a measurable space (Ω,F ) equipped with
a filtration (Ft)t≥0. The map τ : Ω → [0,∞] is called a stopping time w.r.t. the
filtration if {τ ≤ t} ∈ Ft for all t ≥ 0.

Definition A.2 (Local Martingale). Let M = (Mt)t≥0 be a continuous and adapted
process with M0 = 0. It is called a local martingale provided that there exists an in-
creasing sequence of stopping times (τn)

∞
n=0 with limn→∞ τn = ∞ such that (Mt∧τn)t≥0

is a martingale for all n = 0, 1, 2, . . . .

Proposition A.3 (Hölder’s inequality). Assume a measurable space (Ω,F , µ) and mea-
surable maps f, g : Ω → R. If 1 < p, q < ∞ with 1

p
+ 1

q
= 1, we have∫

Ω

|fg|dµ ≤
(∫

Ω

|f |pdµ
) 1

p
(∫

Ω

|f |qdµ
) 1

q

.

Lemma A.4 ([11] Thm. 7.21). A continuous local martingale M = (Mt)t≥0 which is
bounded by an integrable upper boung G such that

sup
t≥

|Mt| ≤ G, EG < ∞

is a martingale.

Theorem A.5 (Burkholder-Davis-Gundy inequalities). For any 0 < p < ∞ there exist
constants αp, βp > 0 such that for a process L ∈ Lloc

2 one has that

βp

∥∥∥∥∥∥
√∫ T

0

L2
tdt

∥∥∥∥∥∥
p

≤

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∣
∫ t

0

LsdBs

∣∣∣∣∣
∥∥∥∥∥
p

≤ αp

∥∥∥∥∥∥
√∫ T

0

L2
tdt

∥∥∥∥∥∥
p

.

Moreover, one has αp ≤ c
√
p for p ∈ [2,∞) for some absolute c > 0.

Theorem A.6 (Martingale Representation Theorem). Let the probability space
(Ω,F ,P) be complete, B = (Bt)t∈[0,T ] be a Brownian motion, F 0

t = σ{Bs : 0 ≤ s ≤ t}
be the smallest sigma-algebra such that all Bs, s ∈ [0, t] are measurable, FB

t be its
completion and FB = (FB

t )t≥0 be the associated augmented natural filtration. For any
random variable ξ ∈ L2(FB

T ) there exists a unique η ∈ L2(FB) such that

ξ = Eξ +
∫ T

0

ηsdBs.

Consequently, for any FB-martingale M for which EM2
T < ∞ there exists a unique

η ∈ L2(FB) such that the following holds:

Mt = M0 +

∫ t

0

ηsdBs.

The latter assertion is obvious due to the fact that EMt = EM0 = M0.

Theorem A.7. [Grönwall’s Lemma]. Let B ≥ 0, ϕ : [0, T ] → R be a bounded non-
negative function and C : [0, T ] → R be a nonnegative measurable function with the
property that

ϕ(t) ≤ B +

∫ t

0

C(s)ϕ(s)ds
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for all t ∈ [0, T ]. Then one has ϕ(t) ≤ B exp
(∫ t

0
C(s)ds

)
for all t ∈ [0, T ].

Definition A.8 ([4] Definition 3.8). Consider the general terminal value problem{
−∂tu(t, x) + F (t, x,Dxu(t, x), D

2
xu(t, x)) = 0, (t, x) ∈ [0, T )× Rn

u(T, x) = Ψ(x), x ∈ Rn

(A.1)

for some bounded and measurable funtion Ψ. Here ∂t = ∂
∂t

and ∂xi
= ∂

∂xi
for i =

1, . . . , n, Dxu stands for the collection of the first derivatives ∂xi
u and D2

xu is the
collection of second-order derivatives ∂xi

∂xj
u. Let F be a continuous function. We

say that u is a

(1) viscosity subsolution of (A.1) if for each ω ∈ C∞([0, T )× Rn),

−∂tω(t0, x0) + F (t0, x0, Dxω(t0, x0), D
2
xω(t0, x0)) ≤ 0

at every (t0, x0) ∈ [0, T )×Rn that is a strict maximiser of u−ω on [0, T ]×Rn

with u(t0, X0) = ω(t0, x0)
(2) viscosity supersolution of (A.1) if for each ω ∈ C∞([0, T )× Rn),

−∂tω(t0, x0) + F (t0, x0, Dxω(t0, x0), D
2
xω(t0, x0)) ≥ 0

at every (t0, x0) ∈ [0, T )×Rn that is a strict minimizer of u−ω on [0, T ]×Rn

with u(t0, X0) = ω(t0, x0),
(3) viscosity solution if it is both a viscosity subsolution and a viscosity super-

solution.
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