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ABSTRACT

Aghaei Pour, Pouya
Preference-based Evolutionary Multiobjective Optimization: Methods, Perfor-
mance Indicators, and Applications
Jyväskylä: University of Jyväskylä, 2022, 86 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 576)
ISBN 978-951-39-9233-0 (PDF)

Multiobjective optimization problems (MOPs) involve optimizing multiple con-
flicting objective functions simultaneously. As a result of this conflict, we have
several mathematically incomparable solutions called Pareto optimal solutions with
different trade-offs. Typically. in real-world MOPs, a decision maker (DM) is
needed to choose one of these solutions based on her/his preferences for imple-
mentation. In this thesis, we work with methods incorporating DM’s preferences
during the solution process. We call these methods preference-based methods. In
this thesis, we develop preference-based evolutionary multiobjective optimiza-
tion methods and means for assessing their performance.

Real-world MOPs come with several challenges. For example, they can
have some objectives and constraints with long computation time. In such prob-
lems, we can use some surrogate models to replace the expensive functions. How-
ever, by utilizing these models, we introduce new challenges: how to incorpo-
rate the DM’s preferences during the solution process? How can we satisfy con-
straints if we have used surrogates? How do we manage the surrogate models?

Another challenge we address in this thesis is: how to systematically com-
pare preference-based evolutionary methods? Such comparisons would require
quantitative assessments utilizing performance indicators. A handful of perfor-
mance indicators have been proposed for a priori methods, but no performance
indicator has been explicitly designed for interactive methods.

This thesis addresses the challenges mentioned above. We propose an a
preference-based method called KAEA-C, which is suitable for MOPs involving
computationally expensive constraints. It has a novel model management that
considers both the DM’s preferences and the feasibility of solutions. We iden-
tify 13 desirable properties of indicators designed for interactive evolutionary
methods. Based on this foundation, we propose a novel performance indicator
called PHI, which we can utilize to assess the performance of interactive evo-
lutionary methods. Finally, we introduce a novel surrogate-assisted interactive
method called interactive K-RVEA suitable for computationally expensive prob-
lems. We also apply this method to real-world problems.

Keywords: Interactive evolutionary multiobjective optimization, Quality indica-
tors, Computationally expensive problems, Decision making, prefer-
ence information



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Aghaei Pour, Pouya
Preferenssipohjainen evolutiivinen monitavoiteoptimointi: Menetelmät, suoritus-
indikaattorit ja sovellukset
Jyväskylä: University of Jyväskylä, 2022, 86 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 576)
ISBN 978-951-39-9233-0 (PDF)

Monitavoiteoptimointiongelmissa optimoidaan useita ristiriitaisia tavoitefunk-
tioita samanaikaisesti. Ristiriitaisuuden vuoksi niillä on useita ns. Pareto-opti-
maalisia ratkaisuja, jotka edustavat erilaisia vaihtosuhteita. Pareto-optimaalisia 
ratkaisuja ei voida matemaattisesti vertailla keskenään ilman lisäinformaatiota. 
Tyypillisesti reaalielämän monitavoiteoptimointiongelmia ratkaistaessa tarvitaan 
päätöksentekijä valitsemaan hänen mieltymyksiään ja preferenssejään parhaiten 
vastaava Pareto-optimaalinen ratkaisu vietäväksi käytäntöön.

Reaalielämän monitavoiteoptimointiongelmissa on erilaisia haasteita. Niis-
sä voi olla tavoitefunktioita tai rajoitteita, joiden arvojen laskeminen vie paljon 
aikaa. Tällöin voidaan käyttää sijaismalleja korvaamaan aikaa vievät funktiot. Si-
jaismallien käyttäminen tuo kuitenkin mukanaan uusia haasteita: miten huomioi-
daan päätöksentekijän preferenssit ratkaisuprosessin aikana, miten huomioidaan 
rajoitteet sijaismalleja käytettäessä ja miten sijaismalleja tulee päivittää? Toinen 
tärkeä teema on preferenssipohjaisten evoluutiomenetelmien systemaattinen ver-
taileminen. Tähän tarvitaan menetelmien toiminnan arviointiin sopivia mittarei-
ta. Muutamia mittareita on kehitetty menetelmille, jotka huomioivat preferensse-
jä ratkaisuprosessin alussa, mutta interaktiivisille menetelmille suunnattuja mit-
tareita ei ole ollut tarjolla. Interaktiivisissa menetelmissä päätöksentekijä antaa 
preferenssi-informaatiota iteratiivisesti ratkaisuprosessin aikana.

Vastauksena näihin haasteisiin tässä väitöskirjassa esitellään uusi preferens-
sipohjainen evoluutioalgoritmeihin perustuva menetelmä KAEA-C. Se sopii mo-
nitavoiteoptimointiongelmille, joissa on laskennallisesti aikaa vieviä rajoitteita. 
Siinä on uudenlainen sijaismallien hallintatapa, joka huomioi päätöksentekijän 
preferenssit ja sen, että ratkaisut noudattavat rajoitteita. Väitöskirjassa tunnis-
tetaan 13 toivottavaa ominaisuutta interaktiivisille evoluutiopohjaisille menetel-
mille soveltuville mittareille. Tämän pohjalta esitellään uusi mittari PHI, joka so-
veltuu interaktiivisten evoluutiopohjaisten menetelmien vertailemiseen ja niiden 
suoriutumisen arviointiin. Lopuksi esitellään uusi sijaismalleja hyödyntävä in-
teraktiivinen menetelmä K-RVEA laskennallisesti aikaa vieville ongelmille. Tätä 
menetelmää sovelletaan myös reaalielämän ongelmiin.

Avainsanat: Interaktiivinen evoluutiopohjainen monitavoiteoptimointi, laatumit-
tarit, laskennallisesti kalliit ongelmat, päätöksenteko, preferenssi-in-
formaatio
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1 INTRODUCTION

Real-world optimization problems usually come with several challenges. One of
the challenges is dealing with multiple conflicting objective functions (subject to
some constraints) that must be optimized simultaneously. We refer to such prob-
lems as multiobjective optimization problem (MOPs). For example, when buying a
cellphone, one may consider different objectives such as cost, battery consump-
tion, and camera quality. Cellphones with low battery consumption and high
camera quality are often more expensive than other cell phones. Obviously, a
cellphone with a low price, low battery consumption, and high camera quality
are preferable, but it is unlikely to find such a cellphone.

As shown in the above example, one can have several trade-offs between
cost, battery consumption, and camera quality. In MOPs, we refer to the solu-
tions that represent these trade-offs as Pareto optimal solutions1. In multiobjective
optimization, the evaluation of a candidate solution is a vector in a space (known
as the objective space) with a number of dimensions equal to the number of ob-
jectives. The set of Pareto optimal solutions is called a Pareto front in the objec-
tive space. Pareto optimal solutions are mathematically incomparable if we do
not have any preference information about the objectives. In practice, one of the
Pareto optimal solutions, called the most preferred solution must be selected for im-
plementation. Here, we usually need help from a domain expert, also known
as a decision maker (DM), to provide some preferences to find the most preferred
solution.

We can involve the DM’s preferences for finding the most preferred solution
after or during the solution process [81]. We refer to methods that invoke the
DM’s preferences after the solution process as a posteriori methods and methods
that incorporate the DM’s preferences during the solution process as preference-
based methods (see e.g, [45]). In the a posteriori methods, first, a set of Pareto
optimal solutions, which represents the entire Pareto front, is presented to the
DM. Then, the DM compares different solutions and selects the most preferred
one. Some challenges arise by using a posteriori method:

1 Named after Vilfredo Pareto, who was an Italian economist [91]. See [43] for a detailed
history.
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1. Comparing several solutions can become challenging when dealing with
problems with many objectives;

2. Computing a set of solutions representing the whole Pareto front can be
costly, and the DM may not even be interested in the entire Pareto front.

Preference-based methods address the two challenges mentioned above by incor-
porating the DM’s preferences during the solution process. These methods aim
to generate solutions that best reflect the preferences of the DM. By doing so, the
DM is presented with solutions that are interesting to her/him, and at the same
time, we save computation time since it is not needed to generate solutions in
the whole Pareto front. Preference-based methods can be divided into two main
categories: a priori and interactive ones. In a priori methods, the DM provides
preference information only once before the solution process. These methods are
suitable when the DM is busy and cannot be involved more actively in the so-
lution process. On the other hand, the downside of a priori methods is that the
DM may have unrealistic expectations since the DM may be unfamiliar with the
reachability of solutions that reflect her/his preferences (e.g., because of compli-
cated interdependencies). For more details on a priori methods, see e.g, [10, 25]

In interactive methods, the DM is actively involved in the solution process and
updates her/his preferences to guide the search direction toward the most pre-
ferred solution. In interactive methods, the DM has the chance to learn about the
trade-offs and the feasibility of her/his preferences and update them iteratively.
More precisely, we can often observe that when applying interactive methods,
DMs have two phases, called a learning phase and a decision phases [83]. During
the learning phase, the DM explores different solutions and increases her/his
knowledge about the problem until she/he identifies a so-called region of interest
(ROI). Then, in the decision phase, the DM fine-tunes the solutions within the
region of interest until she/he finds the most preferred solution. For more details
on interactive methods, see e.g, [5, 82, 112]

So far, we have discussed how the DM can be involved in the solution pro-
cess when solving an MOP. Over the years, many a posteriori and preference-
based methods have been developed [32, 63, 81]. Among them, evolutionary
multiobjective optimization methods (evolutionary methods for short) are one
of the most popular methods. The popularity is due to their ability to handle
e.g., discontinuous functions and different types of variables. However, evolu-
tionary methods have some drawbacks, too. For example, they require many
function evaluations to approximate the Pareto front. The number of function
evaluations becomes more problematic when MOPs have an objective or con-
straint function that its evaluation needs a lot of computational resources, like
examples e.g., in [21, 40, 59, 72, 89, 97]. We refer to such functions as expensive
functions and such problems as computationally expensive MOPs.

To reduce the time required for solving computationally expensive MOPs
with evolutionary methods, we can use surrogate-assisted evolutionary meth-
ods [24, 66]. In these methods, we train machine learning predictive models
known as surrogate models [67]. Surrogate models mimic the behavior of the ex-
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pensive functions during the solution process in an inexpensive manner. Several
surrogate-assisted a priori and a posteriori evolutionary methods have been de-
veloped in the literature, see, e.g., [8, 29, 53, 73, 98]. However, to the best of our
knowledge, there is no surrogate-assisted a priori evolutionary method that can
solve constrained MOPs with at least one computationally expensive constraint.

Even though using surrogate models reduces the computation time signif-
icantly, it introduces new challenges due to the uncertainty (inaccuracy) of the
predictions (of the objective and constraint functions) values. Examples of these
challenges include:

S1: How to identify feasible solutions when working with surrogate models?

S2: How to identify feasible solutions that reflect the DM’s preferences when
working with surrogate models?

S3: How to incorporate the DM’s preferences iteratively?

Improving the accuracy of surrogate models is a common way to tackle the above-
mentioned challenges. By doing so, the prediction values of surrogate models
become more trustworthy, and the uncertainty within the predicted values will
decrease. To improve the accuracy of the surrogate models, we can iteratively
choose some solutions to update (re-train) the surrogate models. We refer to this
process as model management. Various model management ideas have been pro-
posed in the literature, e.g., [24, 66, 67, 98], that consider different criteria. We
usually have a limited budget for expensive function evaluations. Therefore,
choosing (or developing) appropriate model management approaches is crucial
to surrogate-assisted evolutionary methods.

Thus far, we have discussed how to solve MOPs. However, over the years,
various evolutionary methods have been developed and choosing the most suit-
able one is challenging. Moreover, since the DM is a domain expert but not in
multiobjective optimization, we cannot expect her/him to select the most suit-
able evolutionary method. Here, an analyst with knowledge of multiobjective
optimization assists the DM and selects the suitable method for her/him.

Because of the trade-offs among objective values, assessing the performance
of evolutionary methods designed for MOPs is not straightforward. There have
been various studies on how to assess the performance of a posteriori evolution-
ary methods [126], and many performance indicators (indicators for short) have
been developed, see, e.g., [6, 95]. Moreover, some indicators have been devel-
oped for a priori evolutionary multiobjective optimization methods, like [9, 58,
75,85,118]. Furthermore, there have been some attempts to compare different in-
teractive evolutionary methods [4,113]. For instance, by conducting experiments
where different DM’s test different interactive evolutionary methods [4] or using
artificial decision makers (ADM) to replace humans [3, 5]. However, no indica-
tor has been explicitly proposed for interactive evolutionary methods that could
quantify performance in a meaningful way. To develop an indicator for measur-
ing the performance of any method, first, we need to understand the desirable
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properties the method and, therefore, the indicator needs to possess. For exam-
ple, the desirable properties of indicators developed for a posteriori and a priori
evolutionary methods are described in [122] and [85], respectively. However,
there has not been much study on interactive evolutionary methods. Challenges
of designing an indicator for interactive evolutionary methods include the fol-
lowing:

IN1: What desirable properties should an indicator designed for interactive evo-
lutionary methods possess?

IN2: How to incorporate the DM’s preferences in a meaningful way to assess the
performance of interactive evolutionary methods?

IN3: How to assess the performance of interactive evolutionary methods as a
whole process?

This thesis is a collection of four articles published in or submitted to sci-
entific journals (Articles PI - PIV) that address the challenges mentioned (S1-S3
and IN1-IN3). In Chapter 3, we discuss a novel Kriging-assisted a priori evo-
lutionary algorithm for constrained problems, called KAEA-C, proposed in Ar-
ticle PI, for MOPs with three or more objectives. KAEA-C can handle MOPs
with at least one computationally expensive objective and constraint while incor-
porating the DM’s preferences provided a priori. To our knowledge, KAEA-C
is the first surrogate-assisted a priori evolutionary method designed for MOPs
with at least one computationally expensive constraint and the ability to incorpo-
rate the DM’s preferences. KAEA-C utilizes some elements from an evolutionary
method called reference vector guided evolutionary algorithm (RVEA) [20] to decom-
pose the objective space and Kriging models [50, 99] to approximate the expen-
sive functions. KAEA-C handles computationally expensive constraints and the
DM’s preferences in the solution process by replacing expensive functions with
the Kriging models. Furthermore, KAEA-C has an appropriate model manage-
ment approach, which has been developed for computationally expensive con-
strained problems. We assess the performance of KAEA-C on some benchmark
and engineering problems and show why it is important to develop more meth-
ods for such problems.

Despite the excellent performance of KAEA-C, it may not be sufficient for
solving real-world problems if a DM wants to update one’s preferences. There-
fore, we needed a surrogate-assisted interactive method. However, as mentioned
earlier, no indicators have been proposed in the literature to assess interactive
evolutionary methods. Because of this, in Chapter 4, we discuss the desirable
properties that an ideal indicator should possess for assessing the performance
of interactive evolutionary methods. One common way to assess interactive evo-
lutionary methods is to see them as a series of a priori steps and then consecu-
tively use indicators suitable for such methods to assess the performance. In Ar-
ticle PII2, we demonstrate why this approach is not ideal for interactive methods

2 the supplementary materials can be found here:
https://github.com/ppouyaa/desirable-properties-master

https://github.com/ppouyaa/desirable-properties-master
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and how it can be misleading. In fact, we argue that we need different indicators
for assessing the performance of the learning and the decision phases since they
have different characteristics [5].

The hypervolume indicator [125] has been originally developed for a pos-
teriori methods, but we propose a hypervolume-based indicator for assessing
the performance of interactive evolutionary methods. We refer to this indicator
as preference-based hypervolume indicator (PHI) in Article PIII3 and introduce it in
Chapter 5. PHI can identify solutions that reflect the DM’s preferences (in the
form of a reference point) and those that do not. Then, this indicator uses the
hypervolume indicator for rewarding the solutions that reflect the DM’s prefer-
ences (similar to [115]) and punishes the performance assessment based on the
solutions that do not reflect the preferences. Moreover, we propose two separate
ways to utilize PHI for assessing the performance of the learning and the decision
phases.

In Chapter 6, we go back to developing an interactive evolutionary method
for a real-world MOP since we now have the indicator PHI for performance as-
sessment. The problem at hand (see [97]) has four conflicting objectives with
regard to configuring energy consumption in large buildings. Three of the objec-
tives are computationally expensive. The Kriging-assisted interactive evolution-
ary method we developed for this problem is called interactive K-RVEA, proposed
in Article PIV. It uses elements of interactive RVEA [56] to direct the search di-
rection toward the DM’s preferences. Additionally, interactive K-RVEA uses a
unique model management to update the Kriging models with the best solutions
that reflect the DM’s preferences.

Moreover, in Chapter 6 we apply interactive K-RVEA to another real-world
problem introduced in [17]. This problem is about designing a pump and max-
imizing the fluid flow in different parts of it. This problem has three conflicting
objectives, and evaluating each function requires running an extremely computa-
tionally expensive simulator. More precisely, each simulation run takes between
16-20 hours. Another challenge with this problem is that sometimes the simu-
lations may fail, and we cannot get the objective values for the given decision
variables. We show how interactive K-RVEA can help to reduce the computation
time, and by incorporating the domain expertise of the DM, we can avoid failed
simulations.

The rest of this thesis is organized as follows. In Chapter 2, we discuss
the main terminologies and background information used in this thesis. Then,
we discuss the surrogate-assisted a priori method KAEA-C (introduced in Chap-
ter 3). In Chapter 4, we provide the desirable properties that indicators for inter-
active evolutionary methods should possess and give some examples justifying
the need for such indicators. We develop a novel indicator for interactive evolu-
tionary methods called PHI in Chapter 5 and use it on an engineering benchmark
problem to demonstrate how we can assess interactive evolutionary methods. We
introduce a surrogate-assisted interactive evolutionary method in Chapter 6 and

3 the supplementary materials can be found here:
https://github.com/ppouyaa/PHI

https://github.com/ppouyaa/PHI
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demonstrate it with two applications. The conclusions, future research directions,
and author’s contributions are elaborated in Chapter 7.



2 BACKGROUND

In this chapter, we present a short description of the general form of MOPs con-
sidered, overviews of constraint handling techniques and interactive evolution-
ary methods as well as indicators to be utilized in the following chapters. In
addition, we discuss several evolutionary methods and indicators for a priori
evolutionary methods that are relevant to this thesis.

2.1 Multiobjective Optimization

We define an MOP as:

minimize f (x) = ( f1(x), . . . , fk(x))
subject to gi(x) ≥ 0, i = 1, . . . , m

xl
j ≤ xj ≤ xu

j j = 1, . . . , n,

(1)

where f (x) denotes an objective vector which consists of the values of k(≥ 2)
conflicting objective functions fi at x = (x1, . . . , xn)T, an n-dimensional decision
variable vector (for short, decision vector). The decision vector belongs to an n-
dimensional space called the decision space, and the objective vector belongs in
a k-dimensional space called the objective space. Note that in problem 1, the
objectives may require to be maximized.

We say a decision vector x is feasible in the decision space, if it satisfies the
inequality gi(x) ≥ 0 for all indices i and all the box constraints. The set of all
feasible decision vectors is denoted by F. In contrast, we call a decision vector
infeasible if it violates the inequality gi(x) ≥ 0 for at least one index i. We call an
objective vector feasible if the corresponding decision vector is feasible. In what
follows, we refer to objective vectors as solutions.

We say that f (x1) dominates f (x2) ( f (x1) ≻ f (x2)) if fi(x1) ≤ fi(x2) and
f j(x1) < f j(x2) for at least one index j. We refer to the solutions that do not
dominate each other as nondominated solutions. Moreover a feasible solution f (x)
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is Pareto optimal if there does not exist another feasible solution f (x⋆) such that
f (x⋆) dominates f (x). Note that nondominated solutions are not always Pareto
optimal, but all Pareto optimal solutions are nondominated.

Some solutions in correlation to the Pareto front are of particular impor-
tance. An ideal point z⋆ is a point that is attained by optimizing the objective func-
tions individually. Typically, the ideal point is not feasible because of the trade-
offs between objectives. However, if the objectives are not conflicting, the MOP
at hand has only one optimal solution, which is the ideal point. The components
of a nadir point represent the worst objective values attained in the Pareto front.
There is no exact method for finding the nadir point except for bi-objective prob-
lems [42]. However, a few methods can approximate the nadir point (e.g., [11,35,
36,81]). In real-world problems, it is usually hard to calculate the ideal and nadir
points. In this thesis, we use the population of evolutionary methods to calculate
them. Finally, we define a new concept, called a dystopian point as a point slightly
worse than the nadir point. In other words, we add a small positive number to
each component of the nadir point.

Various preference-based methods assume the DM to provide preferences in
different ways. Examples of different preference types can be seen in [1,20,71,74].
Among them, providing desirable values for each objective that the DM wishes
to see is regarded as understandable to her/him [10, 111] since both the desires
and solutions are in the same space. These values form a point, which we refer
to as a reference point. Throughout this thesis and the Articles PI, PII, PIII, PIV,
we have used reference points as the type of preference information that the DM
provides.

2.2 Evolutionary Multiobjective Optimization Methods

Several evolutionary methods have been developed to solve MOPs with different
characteristics1, see, e.g., [2, 32]. Evolutionary methods are nature-inspired and
based on the concepts of Darwinian evolution [28]. To put the idea briefly, a
population of species is evaluated by its environment, and the “fittest” species
have the best chance to breed and pass their “good” genes to their offspring.
Here, genes are recombined and mixed, and the next generation will have more
of the genetic characteristics considered good within the population’s species.

Figure 1 illustrates the general framework of evolutionary methods. Evolu-
tionary methods view a set of decision vectors as a population. a mathematical
function to describe the fitness of the decision vectors is created and referred to
this function as a fitness function. Fitness functions vary in evolutionary meth-
ods. We refer to assessing the fitness of decision vectors and selecting the most
fitted one as a selection strategy. After the selection strategy, we use crossover
and mutation operators [65] to recombine the decision vectors and generate the
offspring. We refer to the acts of selection and recombination as one generation.

1 The very first evolutionary method for solving MOPs was proposed in [102].
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FIGURE 1 General framework of evolutionary methods.

We continue the generations until some stopping criterion is met.

2.2.1 Different Types Of Evolutionary Methods

Evolutionary methods can be divided into three main classes [45]:

1. dominance-based [18];

2. indicator-based [46] and;

3. decomposition-based methods [101, 107, 114].

Dominance-based methods use the concept of dominance to assess a population’s
fitness and select the offspring. These methods perform well for problems with
up to three objectives [101]. However, they seem to have some issues in com-
putation time and converging toward the Pareto front when we deal with more
than four objectives [52]. The very first dominance-based method was proposed
in [49]. Additionally, NSGA-II [37] and SPEA2 [123] are famous dominance-based
methods. Moreover, there are some preference-based dominance-based methods
in the literature as well [48, 117].

Indicator-based methods [46] use an indicator such as hypervolume indi-
cator [125](see, e.g., [13]), or R2 indicator [57] (see, e.g., [92]) to assess the per-
formance of a set of solutions. These methods use the indicator assessment to
convert the MOP into a new optimization problem with a single objective by
optimizing the improvement of the performance assessment. Indicator-based
evolutionary methods can become computationally expensive as the number of
objectives increases. According to a recent survey [46], SMS-EMOA [13] is the
most representative indicator-based method. For a set of nondominated solu-
tions, the ones that contribute the most to the hypervolume indicator are selected
for the next population. In the literature, there are preference-based versions of
indicator-based methods. For example, see [68, 106]

Decomposition-based evolutionary methods have mainly been developed
for MOPs with more than three objectives since the performance of the methods
in the other two classes drops for such problems [14, 20]. These methods use
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evenly distributed reference vectors (or weight vectors) to divide the objective
space into many subspaces. In each subspace, we have to solve a subproblem. Then
for each subproblem, one solution gets selected based on a fitness function that
assesses the fitness of the solutions of each subproblem. Among decomposition-
based evolutionary methods, NSGAIII [34], RVEA [20], and MOEA/D [120] are
famous ones.

In this thesis, we focus on preference-based decomposition-based evolu-
tionary methods since they offer a natural possibility for incorporating a DM’s
preferences. To be more specific, they can adjust the positions of the reference
vectors according to the preferences provided by a DM. For example, in [56], the
method can incorporate four different types of preferences. Another recent ex-
ample is an interactive version of MOEA/D [74], which adjusts weight vectors.

2.2.2 RVEA

The reference vector-guided evolutionary algorithm (RVEA) was proposed to
handle problems with a high number of objectives [20]. Moreover, a function
called angle penalized distance (APD) is used for the selection strategy that can
balance convergence and diversity. According to the experiments in [20], the
performance of RVEA is competitive with other evolutionary methods such as
NSGA-III and MOEA/D. In this thesis, we use some components of RVEA in
developing the new methods KAEA-C and interactive K-RVEA.

10

1

(a)

10

1

(b)

FIGURE 2 An example of (a) decomposition of the objective space by using reference
vectors and (b) assigning solutions to reference vectors

Figure 2a illustrates how RVEA uses reference vectors to decompose the ob-
jective space into subspaces. First, a set of uniformly distributed points (black cir-
cles in the figure) is generated using the canonical simplex-lattice design method [19]
on a unit hyperplane (illustrated as a red line). Then, the reference vectors (illus-
trated as blue vectors) are obtained by projecting the generated points from the
hyperplane to a hypersphere (illustrated as an orange arch).

After decomposing the objective space, for each generation t, we translate
the objective vectors as f ′i(x) = f i − z⋆i , where i = 1, . . . , |Pt|, and |Pt| is the size
of population Pt at generation t so that the origin of the reference vector is always
the origin (see Figure 2b). Then, we assign the translated objective vectors to the
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reference vectors. Here, we assign f ′i(x) to the reference vector with the smallest
angle. Figure 2b demonstrate how we can assign the solutions in Pt to different
reference vectors. Assume Pt only contains translated objective vectors f ′1 and
f ′2 (denoted as black filled circles). we calculate the angles (θ1

1, θ2
1, θ1

2, and θ2
2)

between these solutions and the reference vectors v1 and v2 (denoted as black
vectors) and assign them to the reference vector that they have the smallest angle
with. For example, in Figure 2b, f 1 is assigned to v1 and f 2 is assigned to v2.
Then we use APD to select the best solution of each subspace to create the next
population Pt+1. APD assesses each solution based on two criteria: the distance
of solutions to the ideal point z⋆ and the angle between each solution and the
reference vector they are assigned to. The first criterion is responsible for leading
the search direction toward the Pareto front, and the latter one is responsible for
maintaining diversity.

Preference-based versions of RVEA [20, 56] have also been proposed. An a
priori RVEA was proposed in [20], where reference vectors are generated around
the DM’s preferences (given in the form of a reference point) by using the follow-
ing equation:

v̄i =
r · vi + (1 − r) · vc

∥r · vi + (1 − r) · vc∥
, (2)

where vc
j =

ẑj
∥ẑ∥ , and ∥ẑ∥ ≥ 0 is the Euclidean norm of the reference point. Note

that if ∥ẑ∥ = 0, then we set vc to be the unit vector. The parameter r ∈ (0, 1)
controls how the reference vectors are adjusted towards the reference point. If r
is close to 1, then the reference point has less effect on the reference vectors, and
if it is close to 0, they will get closer to the reference point. According to [67, 114]
RVEA has the most straightforward way of incorporating the DM’s preferences
among decomposition-based evolutionary methods. In Articles PI,PIV we use (2)
for generating the reference vectors.

2.3 Surrogate Assisted Evolutionary Multiobjective Optimization
Methods

As mentioned in Chapter 1, real-world MOPs may possess computationally ex-
pensive functions. This makes evolutionary methods practically inapplicable
to such problems, since they need many generations and function evaluations.
As mentioned in the previous chapter, surrogate-assisted evolutionary methods
provide a way to reduce the computation time required by evolutionary meth-
ods [24, 66].

In Chapters 3 and 6, we assume that at least one of the functions (either
objective or constraint) is computationally expensive to evaluate. This means
that during the optimization process we might deal with both computationally
expensive and inexpensive functions. Therefore, we define the following terms
for more clarity:
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FIGURE 3 General framework of surrogate-assisted methods

Term 1 Original function: An MOP may have computationally expensive or inexpen-
sive functions. We refer to an objective or constraint function of an MOP as an original
function before training a surrogate model for an expensive one.

Term 2 Expensive function: We refer to a computationally expensive function that we
need to train a surrogate model for as an expensive function.

Term 3 Expensive evaluation: We refer to evaluating an expensive function at a given
decision vector as an expensive evaluation.

Term 4 Expensive solution: We refer to a solution f (x) whose corresponding decision
vector x has been used for evaluating an expensive function as an expensive solution.

Term 5 Surrogate evaluation: We refer to evaluating a surrogate function at a decision
vector as a surrogate evaluation.

Term 6 Surrogate solution: We refer to a solution whose corresponding decision vector
has been used only for evaluating a surrogate function as a surrogate solution.

Term 7 Iteration: Every time we use model management to update surrogate models,
we say an iteration has happened. In this thesis, each iteration is a fixed set of generations.

Term 8 Interaction: An interaction is a fixed number of generations (or sometimes
iterations), where the DM provides her/his new preferences.

Figure 3 illustrates the main steps of surrogate-assisted evolutionary methods.
After generating the initial population, we need to evaluate the decision vectors
with the original functions. Then, we train the surrogate models for the expensive
functions. Next, we run an evolutionary method that optimizes the surrogate
models and inexpensive functions for a fixed number of generations. After the
optimization process, we should apply model management to select one or more
solutions for updating the surrogate models. We repeat this process until we meet
a stopping criterion, such as the limit for expensive evaluations.



25

Different surrogate models in the literature can be utilized to replace expen-
sive functions, that is, mimic their behavior [41, 78, 99]. Among them, Kriging
models [50] are widely used surrogate models [24,66]. The popularity of Kriging
models is due to their ability to provide uncertainty information with the pre-
dicted values for the objectives and constraints. The uncertainty information can
be used to design new model management approaches that can improve the ac-
curacy of the models or find new (expensive) solutions that are interesting to the
DM. In Articles PI and PIV, we have used Kriging as the surrogate model.

2.3.1 Kriging

Kriging models (also known as Gaussian process) have been used in different
fields such as Bayesian optimization [103], geo-statistics [27], hydraulic pump
design [72] and even in the field of surrogate-assisted multiobjective optimization
methods [70, 121]. A Kriging model can be expressed as a multivariate normal
distribution with a mean µ and a covariance matrix C:

y ∼ N (µ, C). (3)

In Articles PI, PII, we assumed that the mean is zero. The covariance matrix C
uses a kernel function κ(x⃗, x⃗′) that performs a pairwise comparison between two
decision vectors x⃗ and x⃗′. Different kernels can be used in Kriging models [93].
Based on some preliminary tests on different kernels, in Articles PI, PII we used
the Matern 5/2 kernel, that can be expressed as:

κ(x⃗, x⃗′) = σ2
f

(
1 +

√
5

n

∑
j=1

∥xj − x′j∥
lj

+
5
3

n

∑
j=1

∥xj − x′j∥2

lj
2

)

exp

(
−
√

5
n

∑
j=1

∥xj − x′j∥
lj

)
+ σ2

t δ⃗xx⃗′ ,

(4)

where the σf and lj are the amplitude and length scale of the jth decision variable,
δ⃗xx⃗′ is the Kronecker delta function [54], and σt is the noise parameters. In Ar-
ticles PI and PIV, where we deal with computationally expensive problems, we
define the uncertainty of a decision vector x⋆ as:

unc(x⋆) = κ(x⃗⋆, x⃗⋆)− κ(x⃗⋆, X)TC−1κ(X⃗, x⃗⋆). (5)

We use the uncertainty information during the model management for updating
the Kriging models.

2.3.2 Model Management

As mentioned earlier, model management selects some of the solutions evaluated
by the expensive functions to update the surrogate models with. In the literature,
different model management approaches have been proposed [67]. For instance,
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in Bayesian optimization, the solution that maximizes the acquisition function
gets selected [115], or in a method called K-RVEA [22] the number of solutions
selected should be set as a parameter, and the solutions are selected that have the
highest uncertainty.

Moreover in some model management approaches, at the end of each iter-
ation2, we use the whole final population to update the surrogate models. How-
ever, this approach may not be ideal if a limited, expensive evaluation budget is
given, or if the problem is extremely expensive [17].

2.3.3 Handling Computationally Expensive Constraints

According to [77], although many real-world MOPs possess some computation-
ally expensive constraints [26, 40, 59, 79, 90, 119], handling them has not been ex-
plored enough. However, recently some new methods have been developed for
handling computationally expensive constraints [8, 29–31, 98].

Most methods for handling computationally expensive constraints use an
acquisition function that measures the expected improvement in a performance
quality indicator [8, 80]. For example, most methods suitable for handling com-
putationally expensive constraints use an acquisition function that measures the
expected improvement in a performance quality indicator. The solution with the
best acquisition function value is chosen for updating the surrogate models.

2.3.4 Surrogate-assisted Preference-based Evolutionary Methods

Surrogate-assisted preference-based evolutionary methods are quite rare to find.
A handful of methods can incorporate a DM’s preferences when solving com-
putationally expensive problems [23, 53, 108, 116]. For example, in a priori K-
RVEA [23] preferences are only considered during the optimization process, and
the model management does not consider them. In [116], the DM provides her/his
preferences as a reference point, and a desired region is formed around it. Then
an acquisition function is developed that measures the expected hypervolume
improvement within this desired region. Additionally, in [53], the DM is able to
provide multiple reference points and then an acquisition function is used that
can incorporate all of them along with the expected hypervolume improvement.
Then, the solution that maximizes the acquisition function is selected for updat-
ing the surrogate models. In [108] a utility function is used to find the most pre-
ferred solution at each iteration and use that solution to update the surrogate
models. Then the method tries to generate new solutions that are similar to the
most preferred solution of the previous iteration.

In computationally expensive problems we usually have limited expensive
evaluation budget [24,66], and finding the most preferred solution is exacerbated
by this limitation. Additionally, the existence of expensive constraints makes it
harder to find feasible solutions. Even though using DM’s preferences in MOPs
with computationally expensive constraints seems complementary, to the best

2 Reminder: see term 7 for the definition of iteration.
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of our knowledge, no method in the literature can both handle computationally
expensive constraints and incorporates a DM’s preferences.

2.4 Indicators

In single objective optimization, it is quite clear how to assess the performance of
different methods. We can refer to the optimal objective function values found,
and the method with the lowest objective value (assuming we are minimizing)
has the best performance. Or a method that finds a good enough solution fastest.
However, the performance assessment is not a straightforward task in multiob-
jective optimization. Because of the existence of different trade-offs, it becomes
tricky to compare different methods against one another. There are many studies
regarding different types of indicators [7, 76, 95]. In this thesis, for compactness,
we refer to the indicators designed for a posteriori methods as a posteriori indica-
tors, indicators designed for a priori methods as a priori indicator, and indicators
designed for interactive methods as interactive indicators.

In the following subsections, we provide a short review of indicators rel-
evant to this thesis. For example, according to [126] a good a posteriori evolu-
tionary method should be able to generate a set of solutions that is as close as
possible to the Pareto front (convergence), and can present a good distribution of
solutions that represents the whole shape of the Pareto front (diversity). Thus,
an indicator should measure both convergence and diversity. But in preference-
based evolutionary methods, solutions need to reflect also the preferences and,
thus, convergence and diversity around the preferences.

2.4.1 A posteriori indicators

As mentioned, according to [126] an a posteriori indicator should be able to assess
the following:

1. The distance between the Pareto front and the outcome of the method, that
is, the approximated front;

2. The diversity of the approximated front;

3. The extent of the approximated front, meaning a wide range of values cov-
ered for each objective.

According to [6, 95, 104] the hypervolume indicator is one of the most famous
indicators widely used for a posteriori evolutionary methods.

The hypervolume indicator was first proposed in [124], and it was referred
to as the "Size of the space covered”. For minimization problems like problem (1),
we can define the hypervolume indicator as follow:
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The hypervolume indicator maps a point set in Rk to the measure of the
region dominated by that set and bounded above by a given dystopian point3

zdy = {zdy
1 , . . . , zdy

k }.

FIGURE 4 Hypervolume in a bi-objective case. The dystopian point is denoted as the
black rectangle. The blue area represents the hypervolume of the solution
set consisting of black circles.

In Figure 4 the blue area is the part of objective space that is calculated by hyper-
volume for a set of solutions in a bi-objective problem. Here, the hypervolume is
the dominated area defined by these three solutions and the dystopian point (the
blue area).

Besides the popularity of the hypervolume indicator, it has some disadvan-
tages. For example, it is computationally expensive to calculate [39]. The com-
putation time indicator increases exponentially as the number of objectives in-
creases [12, 16, 55]. Choosing the dystopian point can also adversely affect the
value of the hypervolume indicator performance assessment [60, 61]. Some at-
tempts have been made to provide a framework to specify the dystopian point [60]
for some specific problems. However, there is no general guideline for specifying
the dystopian point. In this thesis, we assume that the nadir point is provided,
and we specify the dystopian point as zdy = {znad

1 + ϵ, . . . , znad
k + ϵ}, where ep-

silon is a small positive constant. In this thesis we denote the function that calcu-
lates the hypervolume of a set of nondominated solutions as:

hypervolume = HV(P, zdy). (6)

2.4.2 A Priori Indicators

As mentioned earlier, some indicators have been designed to evaluate a priori
evolutionary methods. In [85], a list of desirable properties for a priori indicators
has been proposed. They are the following:

3 In the literature dystopian point is also referred to as reference point. However, to avoid
confusion, in this thesis we refer to it as dystopian point.
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1. Form a desired region by incorporating the DM’s preferences;

2. Measure both convergence and diversity of the solutions with respect to the
preferred region;

3. Be independent of knowledge of Pareto front;

4. Scale well as the number of objectives increases.

The authors mentioned that the a priori indicators (e.g., [109, 110, 126]) that ex-
isted at the time of publishing their list, did not possess these desirable proper-
ties. Moreover, the authors in [85] developed a new a priori indicator called user
preference metric based on composite front (UPCF). The main steps of UPCF are as
follows:

1. Merge the solution set of all methods to be compared into a set and select all
nondominated solutions from this set. This set is referred to as a composite
front;

2. Choose the solution with the smallest Euclidean distance to the reference
point. This solution is known as the mid-point;

3. Use any a posteriori indicator to assess the performance of solutions within
a cubic centered at the mid-point with a side length of a parameter ∆ (de-
termines the size of the desired region).

The main drawback of UPCF is that sometimes all the solutions generated by
some method may be outside of the desired region. In such a case, UPCF cannot
assess the performance of this method.

A new indicator called R-metric was introduced in [75] to address the draw-
back of UPCF mentioned above. The main difference between R-metric and
UPCF is that after generating the composite front, a point called a pivot point
is found instead of finding the mid-point. The pivot point for each solution set
is the solution that has the lowest achievement scalarization function (ASF) [111]
value in a solution set. Once the pivot point is found, a parameter ∆ is used to
determine the size of the desired region to remove solutions that are too far away
from the reference point. Next, the pivot point is used to transfer the solutions
into a so-called virtual space. Finally, an a posteriori indicator is used to assess
the performance of the transferred solutions. Because of how R-metric transfers
the solutions, the desired region is never empty for any solutions. Therefore, the
solution sets are always comparable. In this thesis, whenever we use R-metric we
will utilize hypervolume in it and we refer to it as R-HV.

UPCF and R-metric only consider the solutions that are inside the desired
region. This way of assessing the performance can be misleading if the DM sees
all of the solutions, but only some of them play a role in the performance assess-
ment. Indicators proposed in [58,118] penalize the performance of a priori meth-
ods in case some solutions exist outside of the desired region. In PMDA [118],
the desired region is identified based on a reference point and a parameter that
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determines its size. Then, only their distance to the ideal point is calculated for
solutions inside the desired region. However, if a solution lies outside the desired
region, its performance is penalized based on how far it is from the desired re-
gion. Another a priori indicator called PMOD [58] has almost the same steps as
PMDA, but the penalty function is different.

All the indicators mentioned so far rely on one or several parameters, like
the size of the desired region or a penalty coefficient. This has two main issues.
First, these parameters’ role in the final performance assessment has not been
studied. Second, setting these parameter values is challenging due to their un-
intuitive nature. Therefore, a parameterless indicator called EH-metric has been
proposed in [9]. It uses the concept of an expanding hypercube, which starts as a
point at the reference point and expands (with the reference point at its center)
until it envelops all solutions. The EH-metric value for an a priori method is cal-
culated as the area under the curve generated by plotting the fraction of solutions
enveloped by the hypercube as it expands versus the size of the hypercube. The
EH-metric can measure convergence and diversity without relying on the knowl-
edge of the Pareto front.

In Articles PII,PIII, we use the indicators mentioned above to compare some
preference-based methods. To the best of our knowledge, no interactive indica-
tor has been proposed in the literature. In Article PIII, we demonstrate why we
cannot utilize a series of a priori indicators for assessing the performance of in-
teractive evolutionary methods.



3 A PRIORI EVOLUTIONARY METHOD WITH
COMPUTATIONALLY EXPENSIVE CONSTRAINTS

As mentioned, one of the advantages of considering the DM’s preferences while
solving MOPs is to save computation time, which is particularly essential in com-
putationally expensive MOPs. However, it is not straightforward how to handle
DM’s preferences in this setting, and only a handful of methods can do this. In ad-
dition, if the computationally expensive MOPs have some expensive constraints,
it becomes even more challenging to incorporate the DM’s preferences. In fact,
there is no preference-based method in the literature that is designed for compu-
tationally expensive constrained MOPs. KAEA-C1 (proposed in Article PI) uses
Kriging models to replace the computationally expensive functions and incorpo-
rates the DM’s preferences provided in the form of a reference point.

For the selection strategy, where we optimize surrogate models and original
functions (as defined in Section 2.3), KAEA-C decomposes the objective space
by using equation (2) (similar to a priori RVEA [20]). KAEA-C selects a set of
feasible nondominated surrogate solutions based on two fitness functions. The
first fitness function measures the distance to the ideal point (calculated based on
the current population), and the second one is the angle between the surrogate
solutions and the reference point. To handle the constraints during the selection
strategy, KAEA-C prioritizes feasible surrogate solutions over infeasible ones. In
addition, if there is no feasible surrogate solution, KAEA-C uses a ranking system
based on the normalized constraint violation of all constraints and the number of
constraints violated.

For the model management, KAEA-C takes advantage of the uncertainty in-
formation that Kriging models provide to select two types of surrogate solutions
to evaluate the expensive functions (the terms have been defined in Section 2.3):

1. Surrogate solutions with the most potential to improve the accuracy of the
Kriging models the most (Surrogate solutions that have a high uncertainty
in their predictions ).

1 As mentioned earlier, the acronym stands for “Kriging assisted a priori evolutionary algo-
rithm for constrained problems”
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2. Feasible surrogate solutions that reflect the DM’s preferences the best with
low uncertainty.

Note that for the first type of surrogate solutions, we do not consider their feasi-
bility because we are only interested in improving the accuracy of the surrogate
models. In the second type, however, we choose feasible surrogate solutions with
low uncertainty because we are looking for promising solutions to be shown to
the DM at the end of the solution process. In what follows, we describe the selec-
tion strategy and the model management of KAEA-C in more detail.

3.1 Selection Strategy

For each subspace of the decomposed objective space, three situations can hap-
pen:

1. Only one feasible surrogate solution exists;

2. There is more than one feasible surrogate solution;

3. There is no feasible surrogate solution.

In the first situation, it is quite obvious that we have to select the only existing
feasible surrogate solution for the next population. The values of the two fitness
functions for each feasible surrogate solution we mentioned earlier are calculated
in the second situation. These fitness functions can be expressed as:

1. δ( f (x), z⋆) which calculates the distance between f (x) and the ideal point
z⋆ of the current population;

2. Γ( f (x), ẑ) which calculates the angle between f (x) and the reference point
ẑ.

Then, instead of selecting a single surrogate solution for each subspace, we select
the nondominated surrogate solutions based on these two fitness function val-
ues. The role of the first fitness function is to find surrogate solutions close to
the Pareto front, while the second fitness function finds surrogate solutions that
reflect the DM’s preferences.

Figure 5 demonstrates a simple example of how the selection strategy works
in KAEA-C in the second situation. Assume we have generated three feasible
nondominated surrogate solutions (purple circles in Figure 5) that are assigned
to the reference vector RV (see Figure 5a). Figure 5b shows how we can select a set
of nondominated surrogate solutions based on the two fitness functions. In this
example, we can observe that f (x1) is dominated by f (x2) because its distance to
the ideal point and angle to the reference vector ẑ is higher than those of f (x2).
However, f (x1) and f (x2) are mutually nondominated and therefore are selected
for the next population.
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(a) (b)

FIGURE 5 An example of the selection strategy in KAEA-C. Here, the reference vector
RV is denoted by a gray vector and the reference point ẑ by a black vector. In
addition, Γ is the angle between surrogate solution f (x1) and the reference
point.

The last situation is when we have no feasible surrogate solution in a sub-
space. In this case, KAEA-C first calculates the constraint violation of each con-
straint. Then it counts the number of constraints that have been violated. Finally,
KAEA-C ranks the surrogate solutions based on these two criteria, and the one
with the lowest rank will get selected for the next population.

TABLE 1 An example of ranking surrogate solutions based on their constraint violation
and the number of violated constraints.

g1 g2 g3 CV RNV RCV RT
x1 0 3 0 3 0 2 2
x2 1 0.3 0 1.3 1 0 1
x3 0.25 0 4 4.25 1 3 4
x4 0.2 0.2 1 1.4 3 1 4

As an example, consider Table 1 with four decision vectors x1, x2, x3, and
x4 for a subspace, which all are infeasible given three constraints {g1, g2, g3}. In
the table 1, the column CV represents the sum of constraint violations, the RCV
column shows the ranking of CV for each decision vector, RNV shows the ranking
of the number of violated constraints for each decision variable vector, and RT
shows the total rank of each decision variable vector. Here, we can observe that
x2 has the lowest total rank so that it will be selected for the next population.

KAEA-C’s selection strategy generates the next population by finding trade-
offs between how well the surrogate solutions reflect the DM’s preferences (Γ( f (x), ẑ))
and how close they are to the ideal point (δ( f (x), z⋆)). Therefore, during model
management, we have more flexibility to select the most beneficial solution for
our surrogate models.
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3.2 Model Management

KAEA-C uses a novel model management technique to update the surrogate
models. It is important to note that if we only consider improving the accuracy
of the surrogate models, then the expensive solutions we generate do not nec-
essarily reflect the DM’s preferences. Therefore, besides the surrogate solutions
with high uncertainty, we also need feasible surrogate solutions with the highest
potential of reflecting the DM’s preferences. In KAEA-C, we use the following
ASF to identify the surrogate solutions that follow the DM’s preferences:

max
i=1,...,k

[wi( fi(x)− ẑi)] + ρ
k

∑
i=1

wi( fi(x)− ẑi), (7)

where w ∈ Rk is a weight vector with positive fixed values, and ρ ∑k
i=1 wi( fi(x)−

ẑi) with ρ > 0 is an augmentation term to assure Pareto optimality [81].
We assume that the DM provides a priori the maximum number of expen-

sive solutions NU that she/he wants to see at the end of the solution process, and
we have an archive A for storing expensive solutions. The following steps consti-
tute the general framework of KAEA-C’s model management for every iteration:

1. For improving accuracy:

1.1. Calculate the uncertainty of every surrogate solution in population Pit
at the end of each iteration;

1.2. Select NU
2 surrogate solutions that have the highest uncertainty;

1.3. Evaluate the expensive functions with these solutions and store the
values in the archive A.

2. For finding expensive solutions that reflect the DM’s preferences:

2.1. Calculate the ASF values of every feasible surrogate solution in popu-
lation Pit at the end of each iteration;

2.2. Select Nu surrogate solutions that have the lowest ASF values;

2.3. Select NU
2 surrogate solutions that have the lowest uncertainty;

2.4. Evaluate the expensive functions with these surrogate solutions and
store the values in the archive A.

3. Use the expensive solutions in A to update the Kriging models.

The first step in KAEA-C’s model management is responsible for improving the
accuracy of the Kriging models. Here the procedure is quite straightforward. As
mentioned earlier, we select the surrogate solution with the highest uncertainty
in the objectives and constraints. The second step is responsible for finding sur-
rogate solutions that are likely to reflect the DM’s preferences by using 7. In
Article PI we assumed that both of these steps have equal importance, and that



35

is why we select NU
2 solutions in each phase. However, one can change this ratio

based on the MOP that is to be solved.

3.3 Discussion and Results

To compare the performance of KAEA-C, we needed to find other surrogate-
assisted a priori evolutionary methods. Unfortunately, as mentioned earlier, no
method in the literature has been designed to handle computationally expensive
constraints and incorporate DM’s preferences. Because of this, to enable compar-
ison, we used different selection techniques and model management approaches
in Article PI to assemble three new methods.

TABLE 2 Assembled methods by using different selection strategies and model man-
agement. The sign ✓ indicates the selected component for the corresponding
method.

Selection strategy Model management
KAEA-C RVEA [20] KAEA-C BMOO [47]

AM1 ✓ ✓

AM2 ✓ ✓

AM3 ✓ ✓

We used the selection strategy of RVEA since KAEA-C selection strategy’s
main idea comes from APD. In addition, we used the model management of a
Bayesian method called BMOO (stands for “Bayesian multi-objective optimiza-
tion”) since it uses expected hypervolume imptovement [44] and considers the
feasibility of solutions in the acquisition function in a straightforward way. Ta-
ble 2 shows the components of each assembled method. Note that there are a va-
riety of selection strategies and model management, and our main purpose in Ar-
ticle PI was to show the importance of developing surrogate-assisted preference-
based evolutionary methods for constrained MOPs.

There is a handful of constrained benchmark MOPs in the literature that
have more than three objectives. We chose some of these problems as an example
to emphasize the gap in the literature and show we need methods like KAEA-
C that can handle computationally expensive constraints and DM’s preferences
simultaneously. In Article PI, We assess the performance of KAEA-C and the
assembled methods on a constrained benchmark problem C3DTLZ4 [62] with
three and seven objectives, the car-side impact problem [62], the water resource
problem [94], and the multiple-disk clutch brake design problem [88]. 15 random
reference points were generated in a way that they are dominated by the ideal
point, and they dominate the nadir point. Due to the fact that EH-metric is a
parameterless indicator, we used it to assess the performance of the assembled
methods and KAEA-C. Then a paired color map was used to create the EH-metric
results shown in Figure 6 as a heatmap. Here, we denote ranks 1 and 2 by dark
blue and purple, respectively, rank 3 by orange, and rank 4 by yellow color.
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KAEA-C AM1 AM2 AM3

C3DTLZ4
with 3 objectives

C3DTLZ4
with 7 objectives

Car-side impact

Water
management

multiple-disk
clutch
brake design

FIGURE 6 Heatmap for EH-metric value of expensive solutions obtained by KAEA-C,
AM1, AM2, and AM3

We observe in Figure 6 that KAEA-C mostly achieved ranks 1 and 2, except
for some exceptions where it achieved rank 3. Among the assemble methods,
we can observe that AM2 had the best performance, and after KAEA-C had the
most ranks 1 and 2. The selection strategy used in AM2 is the same as KAEA-C.
However, the model management of BMOO is used for AM2. Even though the
test problems were not complicated, the results show that the assembled meth-
ods cannot perform as well as KAEA-C. This means we need explicitly designed
methods for MOPs with computationally expensive constraints and that can in-
corporate DM’s preferences.

KAEA-C’s selection strategy selects a set of surrogate solutions for each sub-
space (if possible) instead of only one solution, which decomposition-based evo-
lutionary methods typically do. Obviously, it increases the computation time of
the solution process for KAEA-C. However, since we deal with inexpensive func-
tions during the solution process, we argue that it is worth spending some more
time during the selection strategy, but in return, we have more options to choose
from in the model management.

As for the other assembled methods, we can observe that AM2 had the best
performance and AM3 had the worse performance among them. Moreover, AM1
was using KAEA-C’s model management, and AM2 was using KAEA-C’s selec-
tion strategy. Thus, a conclusion could be drawn that the selection strategy of
KAEA-C has a more significant effect on its performance than the model man-
agement.



4 DESIRABLE PROPERTIES OF INDICATORS FOR
EVOLUTIONARY METHODS

We must be able to assess the performance of different interactive methods to
choose a proper one for a given MOP. As mentioned in Chapter 2, no indicator
has been explicitly designed explicitly to assess the performance of interactive
evolutionary methods. To develop such indicators, first, we need to understand
the properties that an indicator should possess.

4.1 Desirable Properties

We defined the learning and decision phases of interactive solution processes in
Chapter 1. They have shared and separate characteristics that should be consid-
ered when assessing the performance of methods. In Article PII, we introduced
13 desirable properties for interactive indicators. Nine of them are applicable to
both the learning and the decision phases. We refer to them as general properties
(GPs). On the other hand, two of the desirable properties are explicitly designed
for the learning phase. We refer to them as learning phase properties (LPs). The last
two desirable properties are explicitly designed for the decision phase, and we
refer to them as decision phase properties (DPs).

In what follows, we outline the desirable properties briefly. An indicator
should be able to

GP1: assess the convergence of solutions in those regions of the approximated
Pareto front that reflect the DM’s preferences the best (local convergence);

GP2: assess the diversity of solutions in those regions of the approximated Pareto
front that reflect the DM’s preferences the best (local diversity);

GP3: assess the performance irrespective of the number of objective functions
(scalability);

GP4: assess the performance without knowledge of the Pareto front;



38

GP5: assess the performance by incorporating preferences that are provided in
different ways;

GP6: assess the performance in a computationally inexpensive manner;

GP7: assess the performance in a manner that is independent of the interactive
methods being compared;

GP8: assess the performance without introducing parameters that have an un-
clear effect on the performance or are unintuitive to set;

GP9: assess the performance as a whole process and not as a series of indepen-
dent a priori steps;

LP1: assess how much of the Pareto front has been studied (expedition);

LP2: assess how well/fast the method can adapt to new (even very different)
preferences (responsiveness);

DP1: assess the capability of fine-tuning solutions inside the ROI and

DP2: assess the decision phase by considering the amount of information shown
to the DM at each interaction.

Before discussing the list above further, we must point out that the list of desirable
properties is expandable, and one can add more or redefine them. Nevertheless, it
was our aim to cover the most important properties in a concise manner. In what
follows, we discuss them in more detail and justify why we find them important.
In addition, we provide simple examples to demonstrate the importance. In the
examples, we use illustrative solutions generated by two interactive evolutionary
methods I1 (visualized by purple squares) and I2 (visualized by green circles). In
addition, the reference point ẑ is denoted by a black cross and the desired region
by a blue dashed cone.

GP1 and GP2

As mentioned, in a posteriori methods, solutions must be as close as possible
to the Pareto front (convergence) and represent an approximation of the whole
Pareto front (diversity), while in preference-based methods, we are only inter-
ested in parts of the Pareto front that reflect the DM’s preferences. Therefore, we
use the concept of local convergence and local diversity [85]. According to [4],
if a set of solutions is locally converged and diverse, the DM feels in control and
can choose the most preferred solution more confidently.

Figure 7 shows an example to illustrate what we mean by local convergence
and local diversity. In Figure 7a we can observe that methods I1 and I2 each
have generated two solutions inside the desired region and two outside of it.
For solutions outside of the desired region, solutions generated by I2 dominate
the ones generated by I1. On the other hand, within the desired region, solutions
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(a) Example for illustrating
local convergence.

(b) Example for illustrating
local diversity.

FIGURE 7 An example to illustrate local convergence and local diversity around the
DM’s reference point.

generated by I1 dominate the ones generated by I2, which means that I1 has better
local convergence than I2.

Figure 7b illustrates a situation when I2 has better local diversity than I1.
Here we can observe that I1 is globally more diverse than I2. However, within the
desired region, this is not the case, and I2 solutions have a better local diversity
than I1.

GP3

Whenever we are dealing with problems with less than four objectives, we can
visualize solutions in the objective space and visually validate the assessment of
an indicator for the generated solutions. However, as the number of objectives
increases, this gets harder. Therefore, an indicator should be applicable to any
problem with any number of objectives, and an analyst should be able to trust
the indicator’s performance assessment.

GP4

In most real-world MOPs, we do not know where the Pareto front lies. Therefore,
an indicator designed for interactive evolutionary methods must not rely on such
information.

GP5

As mentioned in Chapter 2, different interactive methods can incorporate dif-
ferent types of preferences. Therefore, appropriate indicators are needed. This
does not mean that one indicator should be able to handle all different ways of
providing preferences.

GP6

An indicator should not require a lot of computational resources. In different
studies on evolutionary methods, we may need to use an indicator for perfor-
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mance assessment every few generations. For example, in [15] an indicator is
used at every generation to determine whether an evolutionary method has con-
verged or not. Therefore, if the performance assessment is computationally ex-
pensive, then the indicator becomes inapplicable, e.g., for real-world problems.

GP7

In some indicators designed for a priori methods like [9, 75, 85], two (or more)
sets of solutions are compared against one another. This means that the perfor-
mance assessment of these indicators does not have an independent meaning.
In other words, if we add a new set of solutions to the performance assessment,
we need to start the whole performance assessment from the beginning. We find
such behavior undesirable. Therefore, an indicator should be able to assess the
performance of an interactive evolutionary method so that the assessment is not
affected by the other methods being compared.

GP8

Evolutionary methods have several parameters that need to be specified, such as
the number of generations, iterations, and so on. Moreover, if we use surrogate
models, the number of parameters increases even more. Therefore, an indica-
tor should not require setting many parameters. But if it needs parameters, we
should be able to understand their effect on the performance assessment.

GP9

An indicator should consider the interactive solution process as a whole and as-
sess the performance of this complete process taking, e.g., into account the learn-
ing that takes place. We can design different indicators for the learning and the
decision phases since they are different by nature, but each of these phases should
be seen as a whole process and not as a series of independent steps.

LP1

During the learning phase, it is important that the DM feels comfortable about
the problem and knows which preferences are achievable, and feels confident
that he has found the ROI. Therefore, it is desirable that an interactive indicator
can assess how much the DM has studied of the interesting regions on the Pareto
front (We refer to it as expedition).

Note that LP1 and GP2 (local diversity) are different. The desirable prop-
erty GP2 is related to every preference the DM provides. However, LP1 is about
the whole learning phase and whether the Pareto front’s interesting regions have
been studied enough. For example, consider Figure 8. Assume that after the
first interaction (Figure 8a), the DM is interested in improving f1. Therefore, for
the second interaction (Figure 8b), she/he provides the reference point ẑ2. Even
though all the generated solutions in the second interaction are within the de-
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(a) Example for illustrating
local convergence.

(b) Example for illustrating
local diversity.

FIGURE 8 An example when the desired region has not been studied well enough by
an interactive method. The solutions generated by an interactive method are
denoted by purple squares. The solution that was not found by the method
is denoted by a red circle. The Pareto front is represented by black lines.

sired region and have good local diversity, the method could not find the solu-
tion shown as a red circle. Here, if the DM decides to move on with the solution
process, she/he will not know such a solution existed. An indicator should be
able to assess how well the Pareto front has been covered.

LP2

In the learning phase, the DM usually wants to learn about the feasibility of
her/his preferences and learn more about different trade-offs between the ob-
jectives. In addition, between interactions, the preferences may be drastically
different. We should not keep the DM waiting for a long time for the interactive
evolutionary method to generate new solutions. Therefore, it is essential that the
method can respond to these changes by representing new parts of the Pareto
front and generate these solutions reflecting the new preferences in a reasonable
time.

DP1

As mentioned in Chapter 2, the DM fine-tunes the solutions in the decision phase
and provides preferences to study the ROI closer until she/he is satisfied with
one of the generated solutions. In this phase, an indicator should be able to iden-
tify the concordance between preferences and measure how well the interactive
method allows the DM to fine-tune solutions. However, the definition of concor-
dance between preferences is quite vague. For example, in Article PII, we defined
the following term for concordance between a set of reference points:

Term 9 Reference points inside the ROI have concordance with each other, and the ones
outside of the ROI have no concordance.

We suggest that an interactive indicator should identify the concordance between
preferences at each interaction during the decision phase. Then, the indicator
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should use this information to assess how well solutions are fine-tuned with re-
gard to the preferences.

DP2

In interactive evolutionary methods, we show a limited number of solutions to
the DM. The idea is not to put too much cognitive load set on her/him. The
number of solutions to be shown should be set by the DM based on her/him cog-
nitive capacity. During the learning phase, when the DM is learning about the
shape of the Pareto front, the number of solutions presented to her/him can vary,
considering the acceptable cognitive load. In contrast, in the decision phase, the
interactive evolutionary method should respect the DM’s wishes and provide as
many solutions as she/he asked for within the ROI (if possible). Hence, an indi-
cator designed for interactive evolutionary methods must consider the number of
solutions shown to the DM in its performance assessment of the decision phase.

4.2 Numerical Results

As mentioned earlier, among the existing indicators, the ones designed for a
priori evolutionary methods can be used for assessing interactive evolutionary
methods if each interaction is treated as a separate step and the learning be-
tween interactions is ignored. In Article PII, we utilized some of these indicators
to assess the performance of two interactive evolutionary methods, interactive
RVEA [56] (iRVEA) and an interactive variant of NSGA-III (called iNSGA-III) [5].
Our goal here is not to have a deep comparison of these two methods but only
to show that applying a priori indicators like this is not desirable. In this section,
we present the highlights of the numerical results we obtained in Article PII.

4.2.1 Learning Phase

As an example of the learning phase, we have chosen a benchmark problem
DTLZ7 [38] with three objectives and 12 decision variables. The reason we chose
DTLZ7 is because of its unique Pareto front shape. It has four disconnected re-
gions (shown in grey in Figure 9)

We manually provided four reference points for each region of the Pareto
front (one reference point per region). These reference points are as follows:

• Interaction 1: [0.11, 0.10, 5.4],

• Interaction 2: [0.70, 0.14, 4.5],

• Interaction 3: [0.76, 0.76, 3.5],

• Interaction 4: [0.14, 0.70, 4.5].



43

(a) Interaction 1. (b) Interaction 2. (c) Interaction 3. (d) Interaction 4.

FIGURE 9 DTLZ7 results in the learning phase. Each reference point (the black plus
sign) has been generated randomly in each region of the Pareto front (the
grey area).

As we can see in Figure 9, for the first interaction, both methods have gener-
ated some solutions around the first reference point (Figure 9a). However, as we
change the reference point to other regions, we can see that iRVEA can respond
to these changes (see Figures 9b, 9c, and 9d), but iNSGA-III was stuck in the ini-
tial region. Importantly, if the analyst was using iNSGA-III, she/he would never
know that these other regions exist. Therefore, for LP1 and LP2, iRVEA performs
better than iNSGA-III.

TABLE 3 Learning phase results of iRVEA and iNSGA-III for DTLZ7 with three ob-
jectives. The symbol ↑ next to the indicator name indicates that the higher
values of the indicator are better, and the symbol ↓ indicates that lower values
are better.

R-HV ↑ EH-metric ↑ PMOD ↓ PMDA ↓ UPCF-HV ↑
i iRVEA iNSGA-III iRVEA iNSGA-III iRVEA iNSGA-III iRVEA iNSGA-III iRVEA iNSGA-III
1 5.927 6.669 0.276 0.561 6.543 7.888 4.632 5.050 3.437 4.310
2 5.859 5.401 0.569 0.419 5.713 6.626 4.248 5.092 3.985 2.546
3 7.301 6.489 0.688 0.121 5.418 5.833 3.226 4.940 4.015 2.135
4 5.909 2.930 0.482 0.196 5.690 6.392 4.245 4.893 3.874 2.497

In Table 3, we show the performance assessment of a priori indicators for
each interaction individually. Based on the indicator values for each interaction,
it shows that except for the first interaction, iRVEA has a better performance than
iNSGA-III. However, based on these values, we cannot conclude that iNSGA-III
solutions are stuck in one region. For example, if an analyst uses PMOD or PMDA
to assess the performance of methods, she/he may not think that iNSGA-III was
much worse than iRVEA.

4.2.2 Decision Phase

Here we show the decision phase of DTLZ3 with five objectives and 13 decision
variables. We used an artificial decision maker (ADM) proposed in [5] to identify
the ROI and provide the preferences as a reference point in the decision phase.
The reference points for four interactions are as follows:

• Interaction 1: [0.000, 0.000, 0.000,0.000, 3.072],
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TABLE 4 Decision phase results of iRVEA and iNSGA-III for DTLZ3 with five objec-
tives. The symbol ↑ next to the indicator name indicates that higher values of
the indicator are better and the symbol ↓ indicates that lower values are better.

R-HV ↑ EH-metric ↑ PMOD ↓ PMDA ↓ UPCF-HV ↑
i iRVEA iNSGA-III iRVEA iNSGA-III iRVEA iNSGA-III iRVEA iNSGA-III iRVEA iNSGA-III
1 14.145 32.212 0.475 0.590 5.835 8.533 2.888 3.329 0.185 0.195
2 24.263 32.253 0.619 0.643 6.405 9.265 1.430 3.329 0.185 0.262
3 26.126 31.956 0.766 0.744 13.813 12.160 0.704 3.329 0.311 0.347
4 28.699 31.957 0.768 0.741 14.950 12.160 0.687 3.329 0.412 0.458

• Interaction 2: [0.000, 0.000, 0.000, 0.000, 1.951],

• Interaction 3: [0.000, 0.000, 0.000, 0.000, 1.010],

• Interaction 4: [0.000, 0.000, 0.000, 0.000, 1.010].

We ran the interactive solution process (with the same reference points) 10 times
with iRVEA and iNSGA-III. Then we calculated the average performance assess-
ment of each of the indicators mentioned in Table 3 and reported the results in
Table 4.

The results are unanimous for some of the indicators in Table 4. For exam-
ple, based on PMDA, iRVEA’s performance was better for all four interactions,
and R-metric declared iNSGA-III as the winner. However, for EH-metric and
PMOD, this is not the case. The EH-metric results indicate that for the first two
interactions, iNSGA-III was the winner, and for the last two interactions, iRVEA
was the winner. In the literature, when a priori indicators are used to compare
interactive methods, all interactions in the decision phase have the same impor-
tance for performance assessment [3, 74]. However, in the description of the de-
sirable property DP1, we mentioned that this should not be the case. In fact, we
should measure the concordance between the reference points and corresponding
solutions and consider it in the performance assessment of the decision phase.

4.2.3 Guidelines for Designing a New Interactive Indicator

As shown in this chapter, there are many different desirable properties that an in-
teractive indicator should possess. In addition, we showed why it is not enough
to use a priori indicators to assess the performance of interactive evolutionary
methods. Moreover, because of the complex nature of interactive evolutionary
methods, there are many desirable properties for an interactive indicator com-
pared to a posteriori or a priori ones. Therefore, when designing a new indicator,
one should realize the followings:

1. The desired region and ROI should be defined clearly;

2. One interactive indicator does not need to have all of the desirable proper-
ties;

3. Every solution that we show to the DM should play a role in the perfor-
mance assessment, even if it is outside of the desired region.
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Typically, the definition of desired region and ROI is quite vague and there is no
unified way to define them. Moreover, the way the preference-based evolution-
ary methods and indicators define the desired region is usually different and this
can lead to misleading results in the performance assessment. For example, a
preference-based evolutionary method may use the distance between solutions
and a reference point to identify the desired region, but the indicator utilized for
assessing the performance, uses some scalarization function to determine if solu-
tions reflect the reference point. Therefore, the desired region that is identified by
the indicator may not be the same as the one identified with the preference-based
evolutionary method. Identifying ROI is even more challenging than the desired
region since we have to understand what parts of the Pareto front are interesting
to the DM and how he is fine-tuning the solutions.

An example of the second item of the list above is when we are dealing with
a computationally expensive problem. Developing an indicator that requires a
lot of computational resources is probably not a good idea in this case since we
should not introduce a lot of additional computational overhead. Therefore, the
new indicator used to assess the performance of methods for solving this problem
should possess at least property GP6.

Another example is when the DM asks for a certain number of solutions
to be analyzed during the decision phase. As we have discussed in Article PII,
if the interactive method generates fewer solutions than the DM has asked for
(assuming the true Pareto front contains as many solutions as the DM wants),
the solution process can be delayed, and if the number of solutions is more than
what the DM has asked, it may put too much cognitive load set on her/him.
In this case, the indicator must consider the number of solutions an interactive
method shows to the DM.

As for the last item on the list above, sometimes some of the solutions shown
to the DM are outside of the desired region, and, therefore, she/he may not be
interested in them. We should realize that these solutions may distract the DM
or make her/him lose confidence in the interactive evolutionary method she/he
is using. Therefore, we should consider these solutions in the performance as-
sessment. In other words, they should have a negative effect on the performance
assessment.



5 PREFERENCE-BASED HYPERVOLUME
INDICATOR FOR INTERACTIVE EVOLUTIONARY
MULTIOBJECTIVE OPTIMIZATION METHODS

Many aspects may explain the absence of interactive indicators in the literature.
Interactive methods have many components that make it challenging to assess
their performance. For instance, the DM plays an important role, and the learn-
ing and decision phases have different characteristics [4]. Additionally, prefer-
ences get updated iteratively, and an indicator needs to adjust accordingly. In
Chapter 4, we discussed the desirable properties of interactive indicators con-
sidered in Article PII. In this chapter, we introduce the interactive indicator PHI
proposed in Article PIII that can incorporate DM’s preferences in the form of a
reference point. Moreover, in Article PIII, we discuss how to utilize PHI for as-
sessing the learning and decision phases by capturing their characteristics that
we mentioned in Chapter 4. In Article PIII, we used a bi-objective problem to
show how to utilize PHI. In this chapter, we provide a case study with nine ob-
jectives to show how we can use PHI in practice and demonstrate why a priori
indicators are unsuitable for assessing interactive evolutionary methods.

5.1 PHI Description

In the performance assessment of an interactive evolutionary method, the main
idea of PHI is to reward the solutions that reflect the reference point of the DM
and punish if the solutions do not reflect preferences. To know when to reward,
we first need to define a desired region and identify solutions that reflect the DM’s
reference point. For a reference point ẑ and a dystopian point zdy, we defined the
desired region in Article PIII as: “a region of the objective space enclosed by a
hyperrectangle with corners ẑ and zdy.”

In other words, the desired region is the area of the objective space ẑ domi-
nates and is limited by zdy. In Chapter 2 we introduced the hypervolume indica-
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tor (see (6)). The size of the desired region can be measured as HV(ẑ, zdy), which
we call a hypervolume measure of ẑ.

Next, we identify solutions that reflect the DM’s reference point. We di-
vide a set of nondominated solutions P generated by an interactive evolutionary
method into three subsets:

1. The subset P≻ which contains solutions that dominate ẑ;

2. The subset P≺ which contains solutions that are dominated by ẑ;

3. The subset P= which contains solutions that are not dominated by ẑ nor
dominate it.

We say that solutions in P≺ and P≻ reflect the DM’s reference point, and they
have a positive contribution to calculating the PHI value. In contrast, solutions
that belong to P= are not of immediate interest to the DM and have both positive
and negative contributions to calculating the PHI value based on how far they
are from the desired region.

To continue to the description of PHI, we need to define the following terms:

Term 10 v≺: a part of the hypervolume measure HV(P, zdy) inside the desired region
(the light green areas in Figure 10).

Term 11 v≻: a part of the hypervolume measure HV(P≻, zdy) that is outside the desired
region (the dark green areas in Figure 10b).

Term 12 v− : a part of the hypervolume measure HV(P=, zdy) that is outside the desired
region (the orange areas in Figure 10).

Term 13 positive and negative contributions: for a set of solutions P we refer to the
volume of v≺ + v≻ as the positive contribution of P. In addition, we refer to volume v−

as the negative contribution of P.

In short, the PHI value for the solution set P that has been generated by an inter-
active evolutionary method as:

PHI(P, ẑ, zdy) :=
v≺

HV(ẑ, zdy)
+

v≻

HV(P, zdy)
, (8)

where HV(ẑ, zdy) and HV(P, zdy) are used to normalize the values of v≺ and v≻,
respectively. Algorithm 1 shows the main steps of assessing the performance of
an interactive method that has generated the set of solutions P.

As we mentioned earlier, the first step is to create the subsets P≻, P≺, and
P=. We know that solutions in P≻ are better than what the DM asked for, and
we are interested in calculating how many good solutions are beyond the given
reference point. The following subset is p≺, which contains solutions that ẑ dom-
inates. Here, our goal is to reward the method’s performance as the solutions in
P≺ get closer to ẑ. In other words, if p≺ ̸= ∅, we would like the solutions to be as
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(a) (b)

FIGURE 10 A simple illustration of how to calculate PHI for a set of solutions (black
circles): (a) No solution dominates the reference point; (b) The reference
point is dominated by at least one solution. The dystopian point is denoted
by a black square, and the reference point by a plus sign. A dashed purple
box illustrates the desired region. The light and dark green areas represent
the positive contribution of solutions, and the orange areas the negative
contribution of solutions.

close as possible to the Pareto front (local convergence) and be locally diverse in
p≺. Finally, the subset p= contains solutions that do not dominate ẑ nor are dom-
inated by it. Because we define the desired region, we know solutions in p= are
outside of it. Therefore, they are not of immediate interest to the DM. However,
if they are very close to the desired region, they may become interesting, and the
DM may choose one of these solutions. Consequently, their role in assessing the
performance of the method that generated P is based on how far they are from
the desired region.

Next, we calculate the positive contribution of solutions in P to the desired
region. Here we have two possibilities: P≻ ̸= ∅ or P≻ = ∅. In the first case,
because P contains nondominated solutions, P≺ = ∅. In other words, it is im-
possible to have solutions in both subsets p≻ and p≺. Because the reference point
is dominated by at least one solution (P≻ ̸= ∅), we can say v≺ = HV(ẑ, zdy) (see
Figure 10b). Next, we measure v≻ (step 5 of Algorithm 1). As for the second case,
because no solution dominates the reference point (v≻ = 0), we can calculate v≺

as the positive contribution of P (step 7).
Now that we calculated the solutions’ positive (v≻ + v≺) and negative (v−)

contributions, we can calculate the final value of the indicator PHI(step 9). In (8),
we normalize the values of v≺ and v≻ because by doing so, we can provide addi-
tional information. If at least one solution in P dominates the reference point, the
final indicator value (in (8)) can be written as:

PHI(P, ẑ, zdy) = 1 +
v≻

HV(P, zdy)
, (11)

because v≺ = HV(ẑ, ddy) and since v≻
HV(P,zdy)

≤ 1, PHI(P, ẑ, zdy) always belongs
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Algorithm 1 Computation of PHI(P, ẑ, zdy)

Input: A set of solutions P, reference pointẑ, and dystopian point zdy

Output: Performance assessment of an interactive evolutionary method
1: Divide P into

a: P≻: subset of P where solutions dominate ẑ.
b: P≺: subset of P where solutions are dominated by ẑ.
c: P=: subset of P where solutions neither dominate ẑ nor are dominated by
ẑ.

2: Calculate v− (orange areas in Figures 10a and 10b):

v− := HV(P ∪ {ẑ}, zdy)− HV(P≻ ∪ {ẑ}, zdy). (9)

3: if P≻ ̸= ∅ then
4: Calculate v≺ (light green area in Figure 10b):

v≺ := HV(ẑ, zdy). (10)

5: By using the value of v≺ (dark green area in Figure 10b) calculate v≻ as:

v≻ := HV(P≻, zdy)− v≺.

6: else
7: Use (9) to calculate v≺(light green area in Figure 10a) as:

v≺ := HV(P, zdy)− v−.

8: Put v≻ := 0. // Since P≻ := 0.
9: end if

10: Calculate final value of PHI by using (8).

to the interval (1, 2].

Moreover, if no solution dominates the reference point, the final indicator
value can be expressed as:

PHI(P, ẑ, zdy) =
v≺

HV(P, ddy)
. (12)

Here, because v≺
HV(P,ddy)

≤ 1, the final value of PHI always belongs to the interval

(0, 1]. Therefore, in problems with a high number of objectives, where it is hard
to assess how well the solutions reflect a given reference point, we can determine
if some of the solutions dominate the reference point or not by only looking at the
PHI values.
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5.2 Assessing the Learning Phase

As we mentioned in Chapter 4, the list of desirable properties proposed in Arti-
cle PII can be improved. In Article PIII, we decided to redefine responsiveness
which is the second desirable property regarding the learning phase (LP2) as: “
assess the ability to adapt to new (even very different) preferences (responsive-
ness) and maintain the best-so-for solutions within interactions (stability).”

To assess the performance of an interactive evolutionary method during the
learning phase, we take the following steps:

1. In each generation t of the interactive evolutionary method, select the non-
dominated solutions Pt.

2. Calculate PHIt = PHI(Pt, ẑ, zdy).

3. Calculate the indicator value for the learning phase as:

RS =
tm

∑
0

PHIt, (13)

where tm is the number of generations in the learning phase, and RS is the respon-
siveness and stability of an interactive evolutionary method during the learning
phase. In other words, if we plot each generation’s PHI value for an interactive
evolutionary method, the area underneath the line would be the RS value.
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FIGURE 11 Tracking the values of an indicator throughout generations of an interac-
tion. The learning phase can be calculated as the area underneath the pur-
ple line.

Figure 11 demonstrates an example of one interaction of an interactive evo-
lutionary method. Here, we can see that around generation 50, the method reaches
its top indicator value. However, the performance drops slightly and then con-
verges to the PHI value of 0.8. Calculating the area underneath the purple line
can capture the method’s responsiveness and steadiness.
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FIGURE 12 Similarities of two desired regions corresponding to reference points ẑj and
ẑd in a bi-objective example. A black square denotes the dystopian point.
The ROI is denoted as a purple dashed box.

5.3 Assessing the Decision Phase

At the beginning of the decision phase, the DM already has the ROI and is looking
for the most preferred solution within it. We assume the DM tries to provide
her/his reference point within the identified ROI. However, sometimes due to
human error or other reasons, the reference points may not have concordance
with each other, and some of them are outside the ROI. To assess the performance
of an interactive evolutionary method for the decision phase, we show in this
section how to measure the concordance between the reference points that the
DM has provided. Then, we demonstrate how to use these measurements to
assess the method’s performance for this phase.

Assume we have d interactions during the decision phase, and ẑd is the ref-
erence point provided in the last interaction. In this thesis, we assume that the
DM chooses the most preferred solution from the solution set corresponding to
the last reference point ẑd. Therefore, the d-th interaction should have the most
importance. We measure the concordance between ẑ and the rest of the refer-
ence points provided in the decision phase. We assign a coefficient λ to each
interaction that determines the concordance (similarity) between ẑj and ẑd where
j = 1, . . . , d. The higher λj is ẑj and has more similarity with ẑd. In Algorithm 2,
we show the main steps of calculating the coefficients λj. For each reference point
ẑj we create a set ζ = {ẑj, ẑd}. Then, we calculate the individual hypervolume
contribution of each reference point to HV(ζ j, zdy). Next, we calculate the co-
efficients in step 6. Note that λd = 1 since vd represents HV(ẑd, zdy). Once all
the coefficients are calculated, we can express the indicator value of the decision
phase as:

FD =
∑d

j=1 λjPHI(Pj, ẑ, zdy)

d
, (16)

where FD measures the ability of the method to fine-tune solutions.
We assume that we utilize PHI to assess the performance of the learning

and decision phases after the interactive solution process. The reason for such an
assumption is that usually, after the interactive solution process, we have a decent
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Algorithm 2 Calculating coefficients λj

Input: Set of reference points used in the decision phase {ẑ1, . . . , ẑd}
Output: set of coefficients {λ1, . . . , λd} determining the concordance between

reference points.
1: set counter j = 1
2: while j<=d do
3: ζ j := {ẑj, ẑd}
4: Calculate the individual hypervolume contribution of ẑj to HV(ζ, zdy) de-

noted as vd,j (orange area in Figure 12) by the following equation:

vd,j := HV(ζ j, zdy)− HV(ẑj, zdy). (14)

5: Calculate the shared hypervolume contribution of ẑj and ẑd to HV(ζ, zdy)
denoted as vj (green area in Figure 12) by the following equation:

vj := HV(ẑd, zdy)− vd,j.

6: Calculate λj as:

λj :=
vj

HV(ẑd, zdy)
. (15)

7: Set j = j + 1
8: end while

idea of the Pareto front, and it helps us in estimating the nadir point, which we
need for setting the dystopian point. However, the analyst can use PHI during
the interactive solution process to guide the DM. For instance, the analyst can
suggest using different methods for the learning and decision phase by analyzing
the results during the interactive solution process. Another example is that the
analyst can help the DM to understand if the provided preferences are reachable
or not.

Furthermore, sometimes there is no clear line between the learning and de-
cision phases. In this case, we suggest assessing the performance of interactive
methods as if all of the interactions belong to the learning phase since we can
visualize the results, which may be easier to digest for the analyst. It is also
worth mentioning that even though hypervolume is typically considered to be
computationally expensive when the number of objectives increases, there have
been some efforts in developing fast algorithms for hypervolume calculation [64],
which one should consider when using a hypervolume-based indicator such as
PHI.
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5.4 Results

In Article PIII, we showed that existing a priori indicators are not as suitable
as PHI to assess the performance of interactive evolutionary methods. (This is
understandable since they have been developed for a different purpose.) We also
demonstrated how we could utilize PHI to assess the performance of the learning
and decision phases by capturing some of their desirable properties. Moreover,
we demonstrated that PHI could provide additional information to the analyst
to assist him/her in choosing the most appropriate method. For instance, the
analyst can analyze the positive and negative contributions of the solutions set
that a method generates to see how converged/diverse the solutions are within
the desired region or how far away they are from it.

In this section, we provide an example and show how PHI can be used to
assess the performance of interactive evolutionary methods. We deal with MOPs
that have many objectives (more than three objectives). In Article PIII, we used
PHI to assess the performance of iRVEA and another method called interactive
optimization using preference incorporated space (IOPIS) [100]. The test problem was
a bi-objective engineering problem known as “RE21” [105]. In Article PIII, we
showed that IOPIS could follow the reference point better, while iRVEA, on the
other hand, always generated solutions outside of the desired region during the
learning and decision phases. In this case, we can visualize all solutions and
the desired region with two objectives. However, visualization becomes an is-
sue for problems with more than three objectives. We chose a problem known as
“RE91” [105], which has nine conflicting objectives and seven decision variables
to be solved by IOPIS and iRVEA. For more details of the problem and mathe-
matical formulations, see [33].

The author acted as both an analyst and a DM in the following experiment.
We used 200 generations per interaction. Note that our goal is not to find the right
number of generations before the methods converge toward the Pareto front but
only to assess their performance in the same environment. Note that we show all
the solutions to the DM during the interactive solution process.

The DM stopped the interactive solution process after eight interactions.
The first three interactions constituted a learning phase, and then the DM started
a decision phase and took five more interactions. In this section, we are more in-
terested in how the analyst can use PHI to compare interactive methods. There-
fore, we do not include detailed interactive solution processes. However, to be
able to reproduce the results, we have gathered the reference points that the DM
provided for the interactive methods in Table 5.

5.4.1 Performance Assessment of the Learning Phase

As mentioned in Section 5.2, we calculate the PHI values for every generation
during the learning phase and then use (13) to get the final indicator value. Fig-
ure 13 illustrates the PHI values we tracked for every generation of IOPIS (the
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TABLE 5 The reference points used during the interactive solution process of RE91.

ẑ1 33.30 1.50 40.06 0.80 1.90 1.80 1.78 1.84 1.89
ẑ2 27.16 0.92 22.24 0.80 1.33 1.41 1.23 0.97 0.92
ẑ3 21.54 1.52 10.31 0.64 1.73 1.01 1.21 1.32 1.13
ẑ4 18.50 0.85 0.15 0.75 1.35 1.15 1.15 1.05 1.05
ẑ5 18.32 0.81 0.22 0.54 1.52 1.10 0.87 0.98 1.10
ẑ6 16.25 0.83 0.14 0.52 1.13 0.88 0.86 1.06 0.82
ẑ7 17.19 0.91 0.17 0.72 1.11 0.91 0.94 1.16 0.93
ẑ8 17.15 0.73 0.12 0.62 1.23 0.95 0.93 0.86 0.93
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FIGURE 13 PHI values in the learning phase in each generation. The purple and green
lines correspond to IOPIS and iRVEA, respectively.

purple line) and iRVEA (the green line). We can observe that for the first interac-
tion, iRVEA had a slightly better performance than IOPIS. In addition, since the
value of PHI is above 1, we know that at least one solution dominated the pro-
vided reference point (for both methods). The PHI values of IOPIS for the second
interaction were slightly better than that of iRVEA. Here, we can observe that
both methods’ PHI values were close to 0. This means that the DM’s reference
point (ẑ2) was not reachable, and none of the methods could find good solutions
to reflect it very well. Finally, for the third interaction, both methods almost had
the same PHI values for the first few generations, where iRVEA performed better
than IOPIS. For this interaction, we can see that the third reference point ẑ3 was
dominated by at least one solution. However, for both methods, the values of
PHI are closer to 1 than in the first interaction. This means that ẑ3 is almost on
the Pareto front, and if this value is shown to the analyst, he gets some idea of
where some parts of the Pareto front are. The overall performance assessments
of the learning phase (RS values) obtained by IOPIS and iRVEA are shown in Ta-
ble 6. iRVEA had a slightly better performance than IOPIS here. However, the
difference was too small to make a firm judgment.

Thanks to PHI, we can dig deeper into PHI results by analyzing solutions’
positive and negative contributions for each generation. In Figure 14 we can ob-
serve these values. Here, In Figure 14a, we illustrated that the positive contribu-
tion of solutions of iRVEA is better for the first interaction. The positive contri-
bution in the second interaction is almost the same for IOPIS and iRVEA. In the
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TABLE 6 Performance assessment of IOPIS and iRVEA for the learning phase.

RS
iRVEA 4.10E2
IOPIS 4.03E2
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FIGURE 14 The values of solutions’ (a) positive and (b) negative contribution at each
generation. The purple and green lines represent these values for IOPIS
and iRVEA, respectively.

third interaction, solutions generated by iRVEA have a better positive contribu-
tion than IOPIS.

For the negative contribution (Figure 14b), we can observe that solutions
generated by IOPIS have almost the same values as iRVEA. However, for the last
two interactions, solutions generated by IOPIS have a better negative contribu-
tion than the ones of iRVEA. This means the solutions IOPIS generates reflect the
DM’s reference point better than those of iRVEA. This is a critical piece of infor-
mation for the analyst. Even though the overall performance (RS value) of iRVEA
is slightly better than IOPIS, he thinks IOPIS has a better performance than iRVEA
for the learning phase since it can find solutions that reflect the DM’s preferences
better than those of IOPIS.

5.4.2 Performance Assessment of the Decision Phase

To assess the decision phase, first, we use Algorithm (2) to measure the coeffi-
cients {λ4, . . . , λ8}, which represent the similarities between the reference points
of interactions four to eight (see Table 7). Here we can observe that the fourth
reference point ẑ4 has the lowest similarity (λ4 = 0.20) to the last reference point
ẑ8 and the sixth reference point ẑ6 has the highest similarity (λ6 = 0.76) since the
DM chooses the final solution from the 8-th interaction, λ8 = 1.

Next, we assess the performance of the two interactive methods considered
for each interaction in the decision phase (see Table 7). Now that we have the
values of {λ4, . . . , λ8}, and PHI value of each interaction of the methods in the
decision phase, we can assess the performance of IOPIS and iRVEA for the deci-
sion phase by using (16). The indicator value for the decision phase with IOPIS
is 0.26 and with iRVEA 0.34, which means that overall, iRVEA could fine-tune
solutions better than IOPIS.
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TABLE 7 Coefficients {λ4, . . . , λ8}, PHI, positive contribution, and negative contribu-
tion values of solutions during the decision phase for problem RE91. The best
values are in bold font. The sign ↓ means lower values are better, and ↑ means
the higher the values are, the better. The better values are in boldface.

Interaction λ PHI ↑ Positive contribution ↑ Negative contribution ↓
IOPIS iRVEA IOPIS iRVEA IOPIS iRVEA

4 0.20 1.03 1.03 0.04 0.05 0.04 0.03
5 0.45 0.70 0.83 0.28 0.62 0.60 0.24
6 0.76 0.60 0.56 0.39 0.53 0.35 0.45
7 0.47 0.77 0.88 0.36 0.47 0.53 0.46
8 1 0.68 0.83 0.51 0.70 0.25 0.15

In addition, we provide solutions’ positive and negative contributions dur-
ing the decision phase in Table 7. Here, we can observe that the positive contri-
bution of solutions generated by iRVEA is never less than the ones of IOPIS. In
addition, except for the 6-th interaction, the negative contribution for solutions
generated by iRVEA is smaller than that of IOPIS. In fact, because the negative
contribution of solutions generated by iRVEA was much higher than the ones of
IOPIS, we can observe that IOPIS had a better overall performance for this inter-
action. However, since iRVEA was the winner in the other four interactions, its
decision phase performance assessment is superior to IOPIS. These observations
align with the fact that the performance of iRVEA for the decision phase is better
than IOPIS.



6 SURROGATE-ASSISTED INTERACTIVE
EVOLUTIONARY MULTIOBJECTIVE
OPTIMIZATION METHOD

In real-world MOPs, a DM is not necessarily aware of the shape of the Pareto
front before solving the problem or whether her/his preferences are reachable
or unreachable (see, e.g., [84]). Because of this challenge, interactive methods
are often an ideal tool to be used since the DM can learn and update her/his
preferences iteratively. Another challenge of real-world MOPs is that they may
contain expensive functions1. A method called interactive K-RVEA was proposed
in Article PIV for solving such problems.

Interactive K-RVEA uses Kriging models to speed up calculations to replace
expensive functions. The uncertainty information in the predictions of the Krig-
ing models is used in the model management to select some of the surrogate
solutions2 for updating the Kriging models.

6.1 Description of Interactive K-RVEA

In this section, we briefly introduce the main elements of interactive K-RVEA.
Moreover, we discuss the model management of interactive K-RVEA.

Figure 15 shows the main steps of interactive K-RVEA for one interaction.
First, we generate an initial population randomly. Then we use the initial pop-
ulation to train Kriging models and ask for the DM’s preferences. We assume
here that the DM provides a reference point. Next, we use iRVEA [56] to solve
a multiobjective optimization problem, where the inexpensive Kriging models
have replaced expensive functions. This means that the problem consists of the
Kriging models and the inexpensive original functions (for which no surrogate
models are needed). Afterward, we use model management to select some of the

1 Reminder: see term 2 for the definition of expensive functions.
2 Reminder: see term 6 for the definition of surrogate solutions.
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FIGURE 15 General steps of interactive K-RVEA for one interaction.

solutions and update the Kriging models. We refer to the last two steps as an it-
eration3. We repeat iterations a fixed number of times (interactive K-RVEA takes
this number as a parameter). Then, we show the solutions we selected to the DM
and evaluate the expensive functions at them. The DM continues the interactions
until she/he finds the most preferred solution or other stopping criteria are met.

The behavior of interactive K-RVEA was initially demonstrated with a real-
world problem [97]. In Article PIV, we tested different surrogate models on the
initial population of the problem, and Kriging showed promising results. In fact,
the Kriging models’ accuracy was so good that we decided that the model man-
agement only needs to consider the DM’s preferences.

We denote the number of solutions we update the Kriging models with by
NU. The model management of interactive K-RVEA can be summarized in the
following steps:

1. Select 2 ∗ NU solutions that follow the DM’s preferences the best based on
an ASF (see (7)).

2. Out of the selected solutions in the previous step, select NU that have the
lowest uncertainty in their Kriging predictions and use them to update the
Kriging models.

In the following section, we discuss two real-world problems introduced in Arti-
cle PIV,17. We describe the interactive solution processes for these problems and
analyze the performance of interactive K-RVEA.

6.2 Two Real-World Problems and Their Solution Processes

The two problems we solve with interactive K-RVEA in this section are both com-
putationally expensive. The first problem we discuss is an energy configuration
problem for large buildings where each expensive evaluation4 takes about 14 sec-

3 Reminder: see term 7 for the definition of an iteration.
4 See Term 3 for the definition of expensive evaluation.
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onds. The second problem is finding the optimal pump design, where each ex-
pensive evaluation takes 18-22 hours.

6.2.1 Building Energy Configuration Problem

The building energy configuration problem was initially proposed in [96]. Our
goal here is to find the optimal configuration of the energy system of a heteroge-
neous business building complex. Building management usually looks at how to
optimally invest in building energy systems where different energy sources can
be utilized. For instance, photo voltaic (PV) systems (also known as solar power
systems) or battery storage capacity are some of the options that the building
manager may invest in. Typically, there are several different options that the
building manager can choose from. Because of this, the complexity of the build-
ing energy system can increase, and finding the optimal usage of each energy
source becomes challenging.

Some works have addressed this problem as a single objective optimization
problem [69,86], where a linear formulation of the problem has been used. How-
ever, the linear formulation cannot capture all aspects of the problem, such as
the aging of the battery, dynamic user behavior, and so on. Therefore, a detailed
building simulator [51] was proposed in [96]. For the simulation-based problem,
the objectives to be considered are:

1. initial investment cost (to be minimized),

2. annual operation cost (to be minimized),

3. annual CO2 emissions (to be minimized) and

4. resilience (to be maximized).

The decision variables of the problem are as follows:

• Three decision variables for configuring the PV system:

– inclination angle,

– orientation angle and

– peak output power.

• Four decision variables for configuration of the battery system:

– mix battery state-of-charge level,

– max battery state-of-charge level,

– charging threshold and

– discharging threshold.

• Total volume of heat storage in m3.

• Two decision variables for controlling co-generator for heat and power:
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– upper threshold and

– lower threshold.

All decision variables have values within the interval [0, 1]. For more details on
the objectives and decision variables, see [97].

For this problem, the author acted as the analyst and a domain expert as the
DM. The DM mentioned that he does not want to wait more than three minutes
between interactions. Moreover, the analyst had decided to use five solutions for
updating the Kriging models since it was the number used in [22]. Since each
simulation call took about 10 seconds, it meant that each iteration took about one
minute, and therefore, we could have three iterations between interactions. This
meant that interactive K-RVEA generated 15 solutions per interaction. The DM
showed interest in analyzing all 15 solutions. (Hence, there was no need to select
a subset of the generated solutions to be shown.) In Figures 16 - 21, the generated
solutions are illustrated in a parallel coordinate plot in purple, the reference point
in black, and the most preferred solution in orange.

6.2.1.1 Interactive Solution Process

In Article PIV, we provided the detailed interactive solution process for solving
this problem. The initial population created randomly is illustrated in Figure 16.
Figures 17 - 20 illustrate the solutions obtained by interactive K-RVEA. To em-
phasize the importance of model management, we went through the same inter-
active solution process (providing the same reference points) without updating
the surrogate models. In other words, we optimized the surrogate models by
using iRVEA. Figure 21 demonstrates the solutions generated by iRVEA.

Initial investment Annual operation CO2 emmision Resilience

FIGURE 16 Initial population for the building energy configuration problem.

We can observe that, except for the first interaction, interactive K-RVEA
found some solutions that are very similar to the reference point. Moreover, inter-
active K-RVEA found 15 solutions to show to the DM for every interaction, and
the DM felt that his preferences were taken into consideration by the method.

In Figure 20 we illustrate the solutions generated in the fourth interaction.
The DM chooses the (149886, 380764, 2211, 561) as the final solution (illustrated
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Initial investment Annual operation CO2 emmision Resilience

FIGURE 17 First interaction of interactive K-RVEA for the building energy configura-
tion problem.

Initial investment Annual operation CO2 emission Resilience

FIGURE 18 Second interaction of interactive K-RVEA for the building energy configu-
ration problem.

Initial investment Annual operation CO2 emission Resilience

FIGURE 19 Third interaction of interactive K-RVEA for the building energy configura-
tion problem.

as an orange line) since it had a good compromise between the first and third
objectives.

Figure 21 illustrates the solutions that were generated by iRVEA. Here we
can observe that the solutions iRVEA found are more scattered than those of in-
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Initial investment Annual operation CO2 emission Resilience

FIGURE 20 Fourth interaction of interactive K-RVEA for the building energy configu-
ration problem.

Initial investment Annual operation CO2 emmision Resilience

FIGURE 21 Final solutions generated by iRVEA.

teractive K-RVEA (see Figure 20), especially for the first objective. In Article PIV,
we used the ASF values to assess how well the solutions of interactive K-RVEA
and iRVEA reflected the DM’s preferences. Additionally, we used the R-metric
to measure the local convergence and local diversity of the solutions. R-metric
can measure the diversity and convergence of solutions within the desired region
and does not consider the solutions outside of it. For both ASF and R-metric,
interactive K-RVEA was superior to iRVEA.

6.2.1.2 Performance Assessment

The indicator PHI had not been developed when Article PIV was written. Hence,
we could not use it for the performance assessment of interactive K-RVEA. More-
over, with iRVEA, we did not have any iterations to update the surrogate mod-
els; therefore, we can only compare the final solutions of iRVEA with interactive
K-RVEA. The performance assessment of interactive K-RVEA and iRVEA using
PHI is shown in Table 8. Here we can observe that the PHI value of interactive
K-RVEA is very close to 1, which means that almost all of the desired region is
covered by the solutions. On the other hand, the PHI value for iRVEA is 0.18,
demonstrating the method’s poor performance compared to interactive K-RVEA.
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TABLE 8 PHI values for the final population of interactive K-RVEA and iRVEA. The
best values are in boldface.

PHI ↑ Positive contribution ↑ Negative contribution ↓
Interactive K-RVEA 0.98 0.78 0.22

iRVEA 0.18 0.45 0.65

Furthermore, the positive/negative contributions of solutions generated by
these methods can give us more insight into their performance. Here, we can ob-
serve that the positive/negative contributions of solutions generated by interac-
tive K-RVEA are better than those of iRVEA. This means that interactive K-RVEA
was able to:

1. generate solutions with better local convergence and local diversity than
iRVEA, and

2. generates solutions that reflect the DM’s preferences better than iRVEA.

In addition to the performance assessment of PHI, the analyst can use PHI as a
tool during the interactive solution process to assist the DM. The interactive so-
lution process did not have an explicit learning and decision phase. Therefore, as
we suggested in Chapter 5, we treated the interactions as if we were in the learn-
ing phase. However, instead of calculating the value of PHI for every generation,
we conducted it at every iteration in which we used expensive function evalua-
tions during the model management (see Figure 22. This is justified since we only
show expensive solutions to the DM. Moreover, We have provided the positive
contribution (illustrated as a green line) and negative contribution (illustrated as
a red line) in Figure 23.

Before getting to how to use PHI as the analyst to assist the DM, we would
like to point out an important observation in Figure 22. We can observe that the
values of PHI are increasing slowly (with some fluctuation). This means two
things: Firstly, the surrogate models are getting more accurate due to the model
management in interactive K-RVEA. Secondly, the DM is getting a sense of where
the Pareto front may lie.

Figure 23 demonstrates the positive/negative contributions of solutions gen-
erated by interactive K-RVEA at each iteration. Suppose the analyst had access
to this information (Figures 22 and 23) during the interactive solution process, he
could advise the DM to keep the second reference point for one more interaction
since the values are fluctuating. The method has not probably converged toward
that region of the Pareto front yet.

For the fourth interaction, we can observe in Figure 23 that the positive con-
tribution of solutions in the last iteration is increasing and the negative contribu-
tion is decreasing, which leads to improvements to the PHI values (see the fourth
interaction in Figure 23). This means that the solutions are moving toward the
desired region. Here, the analyst would have advised the DM to continue for
one more interaction (if there is no time limitation) since the value of PHI is in-
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FIGURE 22 PHI values for each iteration of interactive K-RVEA The black dashed lines
indicate when new interactions occurred. The purple line indicates the
value of PHI at each iteration.
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FIGURE 23 The positive and negative contribution of solutions at each iteration for the
energy configuration problem. The black dashed lines show when new in-
teractions occur. The green line is the positive contribution of solutions gen-
erated by interactive K-RVEA at each iteration. The red line is the negative
contribution of solutions generated by interactive K-RVEA at each iteration.

creasing, and there may be a solution that he likes even more than the one he has
already chosen.

6.2.2 Pump Design Problem

The pump design problem was introduced in [72], and the task was to design
a pump with the maximum fluid flow rate in different parts of the pump. The
problem has 22 decision variables leading to a pump stator design. The pump’s
flow rate is optimized for three different efficiencies 76%, 100%, and 120% of the
pump design point.

A computational fluid dynamics simulator was used to analyze the design
of the pump. The simulator is extremely computationally expensive, so every
simulation call takes about 16–20 hours to complete. Hence, using surrogate-
assisted methods is necessary. Previously, several surrogate-assisted methods
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(e.g., K-RVEA [22]) have been used to solve this problem [72]. Even though some
promising solutions have been found, there remain several challenges to be ad-
dressed:

1. The computation time is very long, and it takes weeks to solve the problem
with methods like K-RVEA;

2. For some decision variables, the simulation fails, and no objective function
values are obtained. It is not possible to avoid failed simulations by intro-
ducing constraints, but it is still desirable to avoid wasting time;

3. Not all nondominated solutions are interesting to the DM, but there is a
specific trade-off between the objectives that are of interest.

In the literature, Kriging methods have shown good performance for the pump
design problem. Moreover, K-RVEA had performed in a promising way for this
problem in [72]. Therefore, interactive K-RVEA was a natural choice to address
the challenges mentioned above. In what follows, we describe the interactive
solution process reported in [17]. In the parallel coordinate plots in Figures 24-30,
the generated solutions are illustrated in purple, the reference point in black, and
the most preferred solution in orange.

Interactive Solution Process

The DM wanted to see 15 solutions at each interaction, and based on this informa-
tion, we set the parameters of interactive K-RVEA. This means that in the model
management, we should select 15 solutions to update the surrogate models be-
fore each interaction. Figure 24 shows the initial solutions generated randomly.
The DM was a domain expert and quite familiar with the problem. Therefore, he
started from the decision phase (he had, for example, seen solutions generated
by K-RVEA).

f1 f2 f3

FIGURE 24 The initial population of the pump design problem

For the first interaction, the DM provided the reference point ẑ1 = (84, 90, 86).
Figure 25 illustrates the solutions after the first interaction. The DM thought that
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f1 f2 f3

FIGURE 25 Solutions generated by interactive K-RVEA for the pump design problem
after the first interaction.

the solutions could still improve and decided to keep the same reference point
(ẑ2 = ẑ1) for the second interaction.

In Figure 26, we see the solutions for the second interaction. However,
again, the DM asked to keep the reference point the same for the next interac-
tion (ẑ3 = ẑ2) since he thought there was still room for improvement in all three
objectives.

f1 f2 f3

FIGURE 26 Solutions generated by interactive K-RVEA for the pump design problem
after the second interaction.

Figure 27 illustrates the solutions generated by interactive K-RVEA after
the third interaction. Here, the DM found some solutions that dominated the
reference point. Therefore, he modified the reference point by increasing the as-
piration level for the first objective and provided the fourth reference point as
ẑ4 = (86, 90, 86). This was because the DM hoped to improve the first objective
without sacrificing the second and third objectives. In Figure 28, we see the gen-
erated solutions after the fourth interaction. Again, the DM was not satisfied with
any of them and decided to provide the same reference point (ẑ5 = ẑ4) for the fifth
interaction. The resulting solutions are shown in Figure 29. Here we can observe
that one of the solutions dominated ẑ5. For the sixth interaction, the DM hoped to
improve the first objective even more without sacrificing in the other two objec-
tives. He provided the sixth reference point as ẑ6 = (88, 90, 84). In Figure 30, we
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f1 f2 f3

FIGURE 27 Solutions generated by interactive K-RVEA for the pump design problem
after the third interaction.

f1 f2 f3

FIGURE 28 Solutions generated interactive K-RVEA for the pump design problem after
the fourth interaction.

f1 f2 f3

FIGURE 29 Solutions generated interactive K-RVEA for the pump design problem after
the fifth interaction.

show the solutions generated based on ẑ6. The DM was finally satisfied with one
of the solutions and chose (87.3, 90.1, 87.5) as the most preferred solution. The
DM believed the chosen solution represented a good trade-off between the three
objectives, and he could fine-tune solutions successfully.
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f1 f2 f3

FIGURE 30 Solutions generated by interactive K-RVEA for the pump design problem
after the sixth interaction. The most preferred solution is denoted by an
orange line.

The results reported in the literature involved some failed expensive sim-
ulations. For example, K-RVEA had 36 failed expensive simulations. On the
other hand, interactive K-RVEA involved no failed expensive simulations. Thus,
it could avoid the decision vectors that lead to such a result. We believe this be-
havior was because of the DM’s expertise and the fact that he knew which part of
the Pareto front should be explored. In addition, interactive K-RVEA obeyed the
DM’s preferences well and provided solutions that reflected the provided refer-
ence points.

When it comes to problems such as the pump design problem, where func-
tion evaluations are extremely expensive, even saving a small number of evalu-
ations can lead to substantial computational savings. With interactive K-RVEA,
the DM could find the most preferred solution with 30 iterations (6 interactions),
which means that it saved 11 days in computational time compared to K-RVEA.



7 CONCLUSIONS AND AUTHOR’S CONTRIBUTION

In the final chapter of this thesis, we provide the conclusion and future research
directions. Furthermore, we provide the authors’ contributions to individuals
who had a role in writing the articles mentioned in this thesis.

7.1 Conclusions

In this thesis, we have addressed several challenges that arise when solving real-
world MOPs. We can roughly summarize them as follow:

1. Handling computationally expensive constraints;

2. Incorporating the DM’s preferences in solving computationally expensive
problems;

3. Assessing the performance of preference-based methods, especially interac-
tive ones.

Real-world problems may have computationally expensive constraints. How-
ever, there were no preference-based evolutionary methods that could handle
them. In Article PI, we proposed the KAEA-C that is capable of addressing MOPs
with computationally expensive constraints. We borrowed components from
different methods to assemble new ones, compared their performance against
KAEA-C, and demonstrated the strengths of the proposed method.

As our next step, our goal was to further develop KAEA-C into an inter-
active evolutionary method. However, one of the main obstacles was that there
were no performance indicators to assess the performance of interactive methods.
Therefore, in Article PII we characterized properties that interactive indicators
need to possess. We argue that a single indicator cannot necessarily possess all
desirable properties, but we may need different interactive indicators for differ-
ent purposes. For example, the learning and decision phases have very different



70

characteristics, and probably a single indicator cannot assess the performance of
these phases simultaneously.

We then extended the research in Article PIII where we developed PHI as
the first performance indicator for interactive evolutionary methods. Here, we
used the concept of a hypervolume indicator but modified it to reward solutions
covering a desired region and to punish others. PHI can provide the overall per-
formance assessment of a method, how far the solutions are from the desired re-
gion (negative contribution), and how diverse and well converged the solutions
inside the desired region are (positive contribution). We showed how to utilize
PHI to assess the performance of a method in the learning and decision phases. In
addition, we demonstrated how PHI could help the analyst to identify the most
suitable interactive evolutionary method for a given MOP.

Interactive K-RVEA was developed in Article PIV for real-world problems
with computationally expensive objective functions. In the paper, we were able to
reduce the computation time of solving the building energy configuration prob-
lem from 23 hours to around only one hour. In addition, the waiting time for
each interaction was only three minutes which was what the DM requested from
the author. This means we were able to save a massive amount of computation
time. As for the performance, we used R-metric and an ASF to compare the final
populations of interactive K-RVEA and interactive RVEA (with surrogates but
without model management). For both indicators, interactive K-RVEA had a bet-
ter performance. More importantly, when we applied interactive K-RVEA, the
DM was satisfied with the solutions found and thought the method was useful
to them and they could use it for their internal use. Additionally, we used PHI
to show how it gives more insight to the analyst so he/she can assist the DM in
such problems and analyze the behavior of interactive K-RVEA.

We applied interactive K-RVEA also in a pump design problem with three
objectives. Evaluating the objective function values required a simulator which
was computationally extremely expensive (16-20 hours for each simulation). In-
teractive K-RVEA showed very promising results and could satisfy the DM within
90 function evaluations. Compared to the previous methods applied to solve this
problem, interactive K-RVEA saved 15 function evaluations which in this case
means almost 11 days in computation costs.

The proposed methods and indicator in this thesis can be utilized to make
solving real-world multiobjective optimization problems more manageable. We
only showed two applications of interactive K-RVEA, but many more applica-
tions can benefit from the methods developed in this thesis. All methods devel-
oped in this thesis have been implemented in Python as a part of an open-source
software frameworkDESDEO [87], designed for solving MOPs with preference-
based methods (especially interactive methods) and therefore easily accessible to
everyone to use.

The methods and indicators proposed in this thesis are one of a kind in
the sense that there were no immediate competitors in the literature. Besides
the challenges they addressed in this thesis, they open the doors to new research
paradigms. We demonstrated a clear need for more surrogate-assisted preference-
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based methods and performance indicators for interactive evolutionary methods.
In short, this thesis sheds light on the importance of surrogate-assisted prefe-

rence-based methods and how they can help us solve computationally expensive
problems. The proposed approaches include incorporating the DM’s preferences
in the model management, handling computationally expensive constraints, and
assessing the performance of interactive methods. In Chapter 1 we mentioned six
challenges (S1-S3 and IN1-IN3). In this thesis, we have addressed all of them.

There are still several challenges for future research. For example, in both
KAEA-C and interactive K-RVEA, we used a linear formulation to generate the
reference vectors for decomposing the objective space. One could explore differ-
ent and perhaps new ways of generating reference vectors. In addition, utiliz-
ing different types of model management is a research direction that can be ex-
plored more. The methods assumed in this thesis were only able to incorporate
DM’s preferences in the form of a reference point. Developing more preference-
based surrogate-assisted methods that can incorporate different types of prefer-
ences would be quite useful. Moreover, surrogate-assisted interactive evolution-
ary methods have many parameters that need to be set. Creating an artificial
intelligent-based method that can set or change these parameters during the so-
lution process or model management is an interesting future research topic.

As for the performance indicators, the list of desirable properties can pos-
sibly be improved, and more research is needed to study desired regions and
regions of interest. Moreover, the dystopian point used in PHI for calculating
the hypervolume requires further research on how to set it in interactive meth-
ods. For example, we may need to set it differently for the learning and deci-
sion phases. Furthermore, PHI uses hypervolume calculation many times, which
makes it computationally expensive as the number of objectives increases. There-
fore, exploring other interactive indicators where the calculation is inexpensive
would be desirable. Next, we can use the concept of PHI to develop an indicator-
based interactive method to see if PHI can also guide the search direction toward
the desired region. Finally, every preference-based indicator developed so far as-
sumes the DM provides preferences in the form of a reference point. However,
there are other kinds of interactive methods. Therefore, future indicators should
be able to incorporate different types of preferences.

7.2 Author’s Contribution

The author’s supervisors suggested working with interactive evolutionary mul-
tiobjective optimization methods, surrogate models, and performance indicators.
Initially, the author conducted a literature survey on computationally expensive
multiobjective optimization problems. For example, he found out that preference-
based methods that can handle computationally expensive constraints have not
been explored enough. He started testing different ideas toward developing an
interactive method. However, because of the complexity of the matter, the au-
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thor decided to first develop an a priori evolutionary method, where the DM’s
preferences are to be considered only once.

The author tested different selection strategies, model management tech-
niques, and surrogate models. The initial idea of KAEA-C in using reference vec-
tors to decompose the objective space came from Dr. Jussi Hakanen. Moreover,
Prof. Kaisa Miettinen provided rich literature information about the advantages
and disadvantages of different approaches. The main idea of using two fitness
functions, one for converging solutions toward the Pareto front and one for in-
corporating the DM’s reference point, came from the author. In addition, he had
the idea that the DM’s preferences should also be considered during the model
management and came up with a novel model management approach introduced
in KAEA-C. The author implemented KAEA-C in Python and tested its perfor-
mance on different benchmark problems. Finally, as a result of this research, the
author wrote major parts of Article PI while comments of the supervisors helped
in improving it.

The idea of desirable properties for interactive indicators proposed in Ar-
ticle PII was initiated when the author was on a research visit at the University
of Skövde and met Dr. Sunith Bandaru, who has worked with preference-based
methods and indicators. During the visit, the author and Dr. Sunith Bandaru
started collecting ideas as desirable properties of indicators designed for interac-
tive evolutionary multiobjective optimization methods. Dr. Bekir Afsar and Prof.
Kaisa Miettinen brought their expertise and experiences in comparing interac-
tive methods. The Article PII with the list of desirable properties and a detailed
discussion of them was mostly written by the author and iterated and further
polished together with the co-authors.

A deeper understanding of desirable properties was necessary before de-
veloping indicators for interactive methods. It was then natural to continue col-
laboration with Dr. Sunith Bandaru and develop the first indicator for interactive
evolutionary methods. The author had the idea of PHI when he was studying
different indicators and noticed that for most a priori indicators, solutions that
are outside of the desired region are not considered in the performance evalua-
tion. Thus, the main idea of PHI was developed by the author, and Dr. Bandaru
helped with some fine-tuning in calculation and in utilizing PHI for assessing the
learning phase. Moreover, the author found a way to find similarities between
the reference points that the DM provides during the interactive solution process
and use this information to assess the ability of interactive methods to refine so-
lutions during the decision phase. Prof. Kaisa Miettinen and Assoc. prof. Michael
Emmerich helped identify the proposed method’s potential drawbacks. Dr. Bekir
Afsar provided the code for the ADM he developed and provided valuable in-
sights of interactive solution processes. The author implemented PHI and most
of other a priori indicators in Python and gathered the numerical results. The au-
thor wrote most of Article PIII and the co-authors provided valuable comments
to mature the ideas.

Dr. Tobias Rodemann provided the building simulator used in Article PIV,
where the interactive K-RVEA method was introduced. He expressed a need for
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an interactive method where the DM can explore different building energy con-
figurations. One of the main issues at the time was the computationally expensive
nature of the problem. The author searched the literature and realized that there
was no surrogate-assisted interactive evolutionary method for computationally
expensive multiobjective optimization problems available. Additionally, the au-
thor tested several different surrogate models to find the most suitable one for this
problem. The idea of incorporating the DM’s preferences in the model manage-
ment was from the author. Prof. Kaisa Miettinen and Dr. Jussi Hakanen provided
further information on using the achievement scalarizing functions to determine
solutions that reflect the DM’s preferences. Moreover, Dr. Tobias Rodemann acted
as the DM. The author wrote most of the paper and iterated improving it based
on the comments of the co-authors.

The author was the main source of new ideas, implemented all methods
and conducted all numerical experiments. Therefore, the role of the author in
each paper was significant.



YHTEENVETO (SUMMARY IN FINNISH)

Monissa reaalielämän ongelmissa on useita ristiriitaisia tavoitefunktioita ja nii-
den ratkaiseminen voi vaatia paljon laskentaresursseja. Tällöin sijaismalleja käyt-
tävät preferenssipohjaiset menetelmät ovat usein käyttökelpoisia. Niiden käyt-
tämiseen liittyy kuitenkin haasteita, joita ei ole vielä riittävästi tutkittu kirjalli-
suudessa. Esimerkiksi sijaismalleja käytetään korvaamaan laskennallisesti aikaa-
vieviä tavoitefunktioita laskentaresurssin säästämiseksi, mutta nämä mallit ei-
vät välttämättä ole riittävän tarkkoja. Toinen haaste on preferenssipohjaisten me-
netelmien suoriutumisen vertaileminen keskenään silloin, kun päätöksentekijän
preferenssejä tulee huomioida ratkaisuprosessin aikana.

Tässä väitöskirjassa on kaksi osaa: menetelmäkehitys ja interaktiivisten me-
netelmien arviointi. Menetelmäkehitysosassa esitellään KAEA-C -menetelmä, jo-
ka sekä huomioi ennen ratkaisuprosessin alkua annettuja preferenssitietoja että
pystyy käsittelemään laskennallisesti aikaavieviä funktioita (sekä tavoitteita että
rajoitteita). Lisäksi esitellään interaktiivinen K-RVEA -menetelmä, joka on kehi-
tetty laskennallisesti aikaavieville ongelmille yhdessä Honda Research Institute
Europen tutkijoiden kanssa. Menetelmää sovelletaan reaalielämän ongelmiin ja
havainnollistetaan miten päätöksentekijän preferenssejä huomioidaan ratkaisu-
prosessissa ja miten laskenta-aikaa voidaan säästää.

Menetelmien arviointiosassa keskitytään interaktiivisten menetelmien ver-
tailemiseen keskenään. Tätä pohjustetaan keskittymällä ensin interaktiivisille me-
netelmille soveltuvien mittareiden toivottaviin ominaisuuksiin. Esimerkkien avul-
la havainnollistetaan sitä, miksi olemassa olevat mittarit eivät sovellu interak-
tiivisten menetelmien arviointiin ja tarjotaan suosituksia mittareiden kehittämi-
seen. Lopuksi esitellään uusi mittari PHI, joka pystyy arvioimaan interaktiivisen
evoluutiopohjaisen menetelmän suoriutumista erikseen ratkaisuprosessin oppimis-
ja päätösvaiheessa.

Väitöskirja koostuu menetelmistä, mittareista ja sovelluksista. Siten sitä voi-
daan pitää lähtökohtana jatkotutkimukselle ja preferenssipohjaisen monitavoi-
teoptimoinnin alan laajemmalle kehitykselle.
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ABSTRACT

Interactive methods support decision makers in finding the most

preferred solution in multiobjective optimization problems. They

iteratively incorporate the decision maker’s preference information

to find the best balance among conflicting objectives. Several in-

teractive methods have been developed in the literature. However,

choosing the most suitable interactive method for a given problem

can prove challenging and appropriate indicators are needed to

compare interactive methods. Some indicators exist for a priori

methods, where preferences are provided at the beginning of the

solution process. We present some numerical experiments that illus-

trate why these indicators are not suitable for interactive methods.

As the main contribution of this paper, we propose a set of desirable

properties of indicators for assessing interactive methods as the

first step of filling a gap in the literature. We discuss each property

in detail and provide simple examples to illustrate their behavior.
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1 INTRODUCTION

In multiobjective optimization problems, we usually optimize sev-

eral conflicting objectives simultaneously. This leads to multiple

optimal solutions (known as Pareto optimal solutions) that are math-

ematically incomparable [20]. The set of Pareto optimal solutions

is referred to as the Pareto front in the objective space.

Multiobjective evolutionary algorithms (MOEAs) arewell-known

methods for solving multiobjective optimization problems due to

their ability to provide an approximation of the Pareto front. In

addition, they can handle problems without analytical functions,

different types of decision variables, and so on [9, 15]. On the other

hand, they cannot guarantee Pareto optimality, but generate an

approximation of the Pareto front. However, in most real-world

problems, only a single Pareto optimal solution needs to be selected

for implementation. Typically, we use the knowledge of a domain

expert, also known as a decision maker (DM), to provide some kind

of preference information. Then, based on the DM’s preference

information, the most preferred solution is selected.

We can incorporate the DM’s preference information for MOEAs

in three main ways [13, 20]: 1) a posteriori methods, where the DM

first sees an approximation of the Pareto front, and then chooses

one or more solutions based on her/his preferences, 2) a priori

methods, where the DM provides the preference information before

the solution process, and then, a suitable MOEA tries to generate

solutions that reflect the DM’s preferences as well as possible and

3) interactive methods, where the DM provides her/his preferences

iteratively during the solution process and guides the search to find

one’s most preferred solution in the approximated Pareto front.

A posteriori methods enable the DM to better understand exist-

ing trade-offs before expressing preferences. However, generating

an approximation of the entire Pareto front is computationally ex-

pensive. In addition, it may be overwhelming for the DM to compare

many solutions, especially, if we deal with a high number of objec-

tives. A priori methods are usually computationally less expensive

than a posteriori methods. However, it may be hard to provide pref-

erence information without knowing what kind of trade-offs are

feasible. Moreover, besides preference information, most a priori

methods require a parameter to identify a parameterized region

of interest (ROI) which is a part of the approximated Pareto front

that the DM is interested in. It is worth mentioning that according

to [17], the definition of parameterized ROI is vague, and it can be

identified in many different ways.

1
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In interactive methods, the DM has the chance to learn about

the trade-offs between objectives during the solution process and

identify her/his most preferred solution in the ROI. The ROI is

a part of the approximated Pareto front, where the DM likes to

fine-tune the preferences and refine solutions. Moreover, unlike a

posteriori methods, the DM has to process only a limited amount

of information based on her/his preference information, which

reduces the cognitive load set on her/him. There are different ways

to provide preferences [7, 21]. For instance, in [11], the DM is able

to provide his/her preferences in four different ways. Specifying

aspiration levels representing desirable objective function values

(constituting a so-called reference point) is a well-known way of

providing preference information. The reference point is a popular

way to provide preference information since it has been proven to

be understandable to the DM [7, 25].

Many performance indicators (or indicators for simplicity) have

been developed for a posteriori methods to be able to compare

them [5, 23]. They assess the performance in approximating the

whole Pareto front. In addition, some indicators have been dedicated

to a priori methods [6, 12, 18, 22, 26]. They assess the performance

in representing specific parts of the Pareto front identified by pref-

erence information provided by a DM.

However, comparing interactive methods has been studied less.

Typically, before the DM uses an interactive method, an analyst,

who knows the behavior of interactive methods, should choose

the most appropriate one. However, there are many aspects that

the analyst should consider to be able to choose. To the best of

our knowledge, no indicators have specifically been designed for

assessing interactive methods.

As the first step towards developing indicators for interactive

methods, we must identify desirable properties for such indicators.

As the main contribution of this paper, we identify such desirable

properties. It is important to note that a single indicator is unlikely

to possess all desirable properties. In fact, we suggest that several

indicators should be developed for assessing different aspects of

interactive methods. To support our motivation, we show that the

indicators designed for a priori methods are not suitable to assess

interactive methods. However, we do not claim that the list of

properties presented in this paper is exhaustive. Our objective is to

initiate research in this direction.

In this paper, we first briefly review existing indicators in Sec-

tion 2. Then in Section 3, we propose the desirable properties that

indicators designed for interactive methods should possess, and

describe each property in detail. In Section 4, we assess existing

indicators against our proposal. Section 5 includes numerical exper-

iments to support our arguments. Finally, we conclude the paper

and mention future research directions in Section 6.

2 BACKGROUND

Different indicators have been developed for assessing a priori

methods. Their desirable properties are discussed in [22] and the

indicators are stated to possess most of the desirable properties.

However, some of the indicators require the knowledge of the Pareto

front [24, 29] but, according to [22], an indicator should not rely

on the knowledge of the Pareto front. In what follows, we briefly

describe some recent indicators designed for a priori methods.

In R-metric [18], a reference point is incorporated to identify

the parameterized ROI. Then, based on an achievement scalarizing

function [25], one of the solutions is selected as a pivot point. Next,

all solutions are transferred into a virtual position using the pivot

point. Finally, the hypervolume [28], or the IGD [8] of the solutions

inside the parameterized ROI is calculated as the assessment of an

a priori method. In this paper, we use R-metric by calculating the

hypervolume (we refer to it as R-HV) and higher values of R-HV

represent better performance.

PMOD [12] is a distance-based indicator. The main idea is to

map solutions onto a hyperplane generated based on the DM’s

reference point. Then, three different distances are calculated. First,

the distance between the solutions and the reference point, second,

the standard deviation of each mapped point to the nearest point

(for measuring diversity), and third, the distance of each solution

and the origin point is calculated, but if the solutions are outside of

parameterized ROI, this value is multiplied by a penalty coefficient.

Finally, the PMOD value is calculated by using these three distances

(for more details see [12]). For PMOD, lower values represent better

performance both in convergence and diversity.

The preference metric based on distances [26] (PMDA) indicator

is based on light beam search [14] and decomposition-based multi-

objective evolutionary algorithm [27]. PMDA has four main steps.

First, the reference point is decomposed into𝑘+1 light beams, where

𝑘 is the number of objectives. Then a preference-based hyperplane

is constructed by means of the light beams. Next, the Euclidean

distances of solutions to the ideal point are calculated as the main

assessment. Following this, angles between solutions outside the

parameterized ROI and the reference point are calculated to form

a penalty function by multiplying them by a constant coefficient.

Finally, the mean of distances and angles for all solutions generate

the PMDA assessment of a set of solutions. The lower the value of

PMDA, the better it is.

In the user-preference composite front (UPCF) indicator [22], first,

all the solution sets are merged. Then, all of the nondominated

solutions are selected. Next, the closest solution to the reference

point is identified, and a parameterized ROI is formed around it by

acquiring a parameter that determines the size of the parameterized

ROI. Finally, the hypervolume or IGD values for the solutions inside

the parameterized ROI are calculated as the final assessment. In

this paper, we use only the hypervolume version of UPCF (we

refer to it as UPCF-HV). Higher values in UPCF-HV indicate better

performance.

The EH-metric [6] is a parameterless indicator designed to elim-

inate the problem of defining parameterized ROI required by the

indicators above. Instead of asking the user to define the size of

the parameterized ROI through a parameter, this indicator uses

the concept of an expanding hypercube, which starts as a point at

the reference point and expands (with the reference point at its

center) until it envelops all solutions. The EH-metric value for an a

priori method is calculated as the area under the curve generated by

plotting the fraction of solutions enveloped by the hypercube as it

expands versus the size of the hypercube. The former is considered

to be a measure of diversity around the reference point, while the

latter is a measure of convergence to the reference point. Thus,

higher EH-metric values indicate good convergence and diversity

of preferred solutions.
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As mentioned earlier, to the best of our knowledge, there are

no indicators for assessing interactive methods. So far, researchers

have applied indicators developed for a priori methods (with some

adjustments) as the best viable option. For example, in [1, 3] the

R-metric has been used in this way.

According to [21], we can often observe two phases in interactive

solution processes: a learning phase and a decision phase. In both of

these phases, the provided preferences direct the search to a desired

region, where interactive methods try to generate solutions. In the

learning phase, the DM studies different parts of the Pareto front to

increase her/his knowledge about the problem, how well different

preferences can be reflected, and learn more about the achievable

values for objectives. At the end of the learning phase, the DM

is more confident about which part of the Pareto front she/he is

interested in and has identified her/his ROI. Here, the DM enters

the decision phase, where she/he fine-tunes the search within the

ROI until she/he is satisfied with one of the solutions.

One should note that we use the concept ROI with different

meanings in different contexts. The ROI in a priori indicators is

based on the preferences that the DM provides before the optimiza-

tion process, whereas in interactive methods, the ROI is identified

at the end of the learning phase to be further studied in the decision

phase. In addition, we refer here to the act of providing new pref-

erence information by the DM as an interaction. It happens after

every method-specific number of generations.

3 DESIRABLE PROPERTIES

In this section, first, we provide a list of desirable properties for

designing indicators suitable for interactive methods. Then, we

discuss and describe them in detail. Since these properties are meant

to assess different aspects of interactive methods, a good starting

point is the list of desirable properties identified for interactive

methods, provided in [2]. In that study, the authors divided the

desirable properties of interactive methods into three categories.

The first category consists of properties that should be considered

during the whole solution process, that is, both in the learning

and decision phases. These properties are referred to as general

properties (GPs). The second set of desirable properties, referred

to as LPs, relates to the learning phase. In this phase, the method

is supposed to assist the DM in studying the objective space and

learning about the different trade-offs to identify a ROI. The third

and final set of desirable properties, DPs, relates to the decision

phase, where the interactive method is intended to assist the DM in

identifying the most preferred solution in the ROI. For more details

about the three phases, see [2].

In the same way, we divide desirable properties of indicators

for interactive methods into the corresponding categories. Ideally,

indicators for interactive methods must be able to:

GP1: Assess the convergence of solutions in those regions of the

approximated Pareto front that reflect the DM’s preferences

the best (local convergence).

GP2: Assess the diversity of solutions in those regions of the ap-

proximated Pareto front that reflect the DM’s preferences

the best (local diversity).

GP3: Assess the performance irrespective of the number of objec-

tive functions (scalability).

GP4: Assess the performance without knowledge of the Pareto

front.

GP5: Assess the performance by incorporating preferences that

are provided in different ways.

GP6: Assess the performance in a computationally inexpensive

manner.

GP7: Assess the performance in a manner that is independent of

other interactive methods being compared.

GP8: Assess the performance without introducing parameters that

have an unclear effect on the performance or are unintuitive

to set.

GP9: Assess the performance as a whole process and not as a

series of independent a priori steps.

LP1: Assess how much of the Pareto front has been studied (ex-

pedition).

LP2: Assess how well/fast the method can adapt to new (even

very different) preferences (responsiveness).

DP1: Assess the capability of fine-tuning solutions inside the ROI.

DP2: Assess the decision phase by considering the amount of

information shown to the DM at each interaction.

Next, we discuss each desirable property in more detail. More-

over, for some of the desirable properties, we provide hypothetical

examples illustrating their role in designing indicators for assess-

ing interactive methods. We consider two hypothetical interactive

methods, 𝐼1, and 𝐼2, and visualize their solutions as red rectangles

and orange circles, respectively.

In the provided examples, we use a reference point 𝑧 as pref-

erence information. Furthermore, we assume that the DM begins

with a learning phase, which is the case in many practical scenarios.

After having identified an ROI, the DMmoves to the decision phase.

Moreover, the desired region and ROI may be identified differ-

ently in each indicator. For simplicity, in the provided examples,

we use a cone (green dashed lines) to represent the desired region.

In addition, the ROI is represented by a purple box, where we ex-

pect the DM would provide her/his reference points in the decision

phase. Actually, the ROI is a subset of Pareto optimal solutions.

Figure 1 illustrates an example of how reference points are typi-

cally provided in learning and decision phases to reflect different

needs. Reference points in the learning phase (denoted by +) are

often scattered as the DM goes on an expedition to learn more about

the Pareto front. On the other hand, reference points in the decision

phase (denoted by ⊕) have some conformance among them as the

DM refines solutions in the ROI identified at the end of the learning

phase.

3.1 General Properties

We have nine general desirable properties that should be considered

when designing new indicators. These general properties are valid

for both learning and decision phases. According to [22], indicators

for a priori methods should have four desired properties. We can

extend these desirable properties to be applicable in the case of

interactive methods. Thus, the first four general properties corre-

spond to those in [22]. In addition, we have formulated five more

general properties for designing indicators for interactive methods.

These general properties do not depend on specific desires of the

DM regarding the learning or decision phases.

3



GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA .

Figure 1: Example of reference points in the learning phase

(denoted by +) and the decision phase (denoted by ⊕)

GP1. Convergence following the preferences, which we refer to

as local convergence, is an important desirable property because

with each interaction, whether in the learning phase or the decision

phase, the DM expects to see solutions that reflect the preferences.

According to [2], this gives the DM the feeling of being in control

of the solution process.

(a) Example for showing local

convergence.

(b) Example for showing local di-

versity.

Figure 2: Solutions generated with two hypothetical inter-

active methods 𝐼1 (red rectangles) and 𝐼2 (orange circles) for

the reference point 𝑧 (denoted by +). The desired region is

shown by a green dashed cone.

Figure 2a illustrates local convergence. Here, both interactive

methods 𝐼1 and 𝐼2 have generated four solutions. If we consider

the union of the solutions and eliminate dominated ones, we can

observe that 𝐼2 retains all of its solutions, while 𝐼1 loses one. How-

ever, since the remaining solutions of 𝐼1 reflect 𝑧 better, an indicator

should be able to identify 𝐼1 as a better method.

GP2. An indicator should be able to measure the diversity of so-

lutions reflecting the DM’s preference, which we refer to as local

diversity [22]. This is important because, at each interaction, the

DM must have “discernibly distinct” solutions to choose from. A

good balance between local convergence and local diversity is re-

quired so that the solutions are not too diverse to make the DM

feel that the preferences are not being reflected by the interactive

method (c.f. GP1).

Figure 2b illustrates local diversity. It is clear that the solutions

generated by 𝐼2 are more diverse than those of 𝐼1. We can observe

that all solutions of 𝐼1 are in the desired region, while 𝐼2 has gen-

erated a solution outside it. We assume that interactive methods

show all these solutions to the DM. Therefore, solutions that are

outside of the desired region should not be disregarded but should

influence the indicator’s assessment in a negative way to reflect

differences between methods compared.

GP3. Scalability is a desirable property of indicators. For example,

when the number of objectives grows, and we cannot even visualize

the solutions properly, it will be imperative for the analyst to be

able to rely on the indicator when comparing interactive methods.

GP4. If an indicator needs knowledge of the Pareto front, the ap-

plicability of the indicator is limited. This is important to keep

in mind since the main purpose of interactive methods is solving

real-world problems, where we do not know the Pareto front in

most cases. Therefore, it is essential that indicators do not depend

on this information.

GP5. As mentioned in Section 1, different interactive methods as-

sume preference information to be provided in different ways.

Therefore, appropriate indicators are needed. This does not mean

that one indicator should be able handle all different ways of pro-

viding preferences.

GP6. In general, the calculation of indicator values should be com-

putationally inexpensive. This enables their more versatile usage.

For example, one may want to calculate them at regular intervals

during the solution process to monitor the progress of an interactive

method or compare progress of different methods. For example, if

an indicator is based on an inherently expensive computation, such

as the hypervolume, the computation time increases exponentially

as the number of objectives grows. It is impractical to use such

indicators often (e.g., in regular intervals).

GP7. It is desirable that the indicator value for a given interactive

method be independent of the other interactive methods being com-

pared. This avoids the problem of recomputing the indicator when

a new interactive method needs to be included in the comparison.

GP8. An indicator should be easy to use, not having parameters

whose effect on assessing the performance is unclear. For example,

many interactive methods have a parameter that identifies the

desired region based on the DM’s preferences (see e.g., [11]). Here,

if the indicator asks for a new parameter to redefine the desired

region, the analyst can get confused since she/he has to provide

this information twice in different ways.

GP9. In some studies, the performance of interactive methods has

been assessed by considering each interaction as a distinct a priori

step [1, 3, 19], and indicators for a priori methods have been used

to assess the median performance of interactions of each phase.

This allows the use of existing (a priori) indicators in the absence of

those designed for interactive methods. However, this can mislead

assessments since the solution process as a whole and different

roles of learning and decision phases are not supported.

Figure 3 illustrates why interactive methods should not be as-

sessed as a series of a priori steps. Figures 3a, 3b, and 3c show three

interactions of the decision phase with the two interactive methods

𝐼1 and 𝐼2 in a biobjective minimization problem. It is shown that
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(a) First interaction of deci-

sion phase

(b) Second interaction of de-

cision phase

(c) Third interaction of de-

cision phase

Figure 3: Three interactions of interactive methods 𝐼1 and

𝐼2 with the reference points 𝑧1, 𝑧2, 𝑧3. The desired region is

shown by a green dashed cone, and the ROI is shown by a

purple box.

the solutions generated by 𝐼1 in Figures 3a and 3b are better than

those of 𝐼2. However, in the third interaction, 𝐼2 manages to find a

solution that the DM prefers (orange circle inside a black rectangle).

Here, if we calculate the mean of the performances of 𝐼1 and 𝐼2 with

most of the indicators developed for a priori methods, 𝐼1 will have

a better performance than 𝐼2. However, the most preferred solution

was generated by 𝐼2. Therefore, it is important for indicators to

consider the interactive methods as more than a series of a priori

steps.

Before moving to desirable properties specific for decision and

learning phases, it is worth pointing out that whether the DM is

in the learning phase or the decision phase is not always obvious.

Ideally, the indicator should have a mechanism to detect this tran-

sition based on the sequence of DM’s preferences and modify its

calculations to either suit the learning phase or the decision phase.

Alternatively, one can design separate indicators for the two phases.

3.2 Learning Phase

In addition to the general properties, indicators should have spe-

cific desirable properties for the learning phase. In this phase, the

DM wants to study the objective space to finally identify her/his

ROI. Therefore, when designing indicators, we should consider the

unique characteristics of the learning phase.

LP1. Measuring the expedition of an interactive method in the learn-

ing phase can help the analyst to figure out whether the interactive

method has covered the approximation of the Pareto front well

enough. Typically in this phase, the DM is not aware of the shape of

the Pareto front. So, it is difficult for the DM to say how much expe-

dition she/he has done. This is particularly true in many-objective

problems. Moreover, measuring the expedition does not need to be

exact since we do not want to rely on the knowledge of the Pareto

front (GP4) and it is enough if the indicator can identify different

regions of the Pareto front and communicates this information to

the analyst.

It is worth mentioning that expedition is not the same as local

diversity. The solutions shown to the DM should be diverse within

the desired region so that they still reflect the DM’s preferences

(GP2). On the other hand, expedition is more about an approxi-

mation of how much of the approximated Pareto front has been

covered by the generated solutions through the learning phase.

LP2. In the learning phase, the DM is still studying the objective

space, and therefore her/his preferences may change drastically. As

mentioned in [2], responsiveness to these changes is a desirable

property for interactive methods in the learning phase. Therefore,

in the learning phase, it is desirable for indicators to assess howwell

an interactive method can adapt to the changes in the preferences.

Moreover, as mentioned in Section 2, one of the main advantages

of interactive methods is that they do not need as many function

evaluations as a posteriori methods. Besides the responsiveness of

an interactive method, measuring how fast it can converge toward

new preferences is essential as well because usually the DM has

limited time to wait for new solutions to be generated. Therefore,

it is important that the interactive method can respond to the new

preferences as fast as possible to minimize the waiting time of the

DM. For example, we can track how many function evaluations it

takes to generate solutions that reflect the new preferences.

(a) First interaction (b) Second interaction

Figure 4: Two interactions of methods 𝐼1 and 𝐼2. Here, 𝐼2 re-

sponds better to the change of preferences (from 𝑧1 to 𝑧2).

Figure 4 illustrates an example of the importance of respon-

siveness. Here, we assume that both interactive methods 𝐼1 and 𝐼2
had the same budget for function evaluations for each interaction.

We can observe that in the first interaction (Figure 4a) with the

reference point 𝑧1, both interactive methods had almost similar re-

sults. However, when the DM provided the second reference point

(Figure 4b), 𝑧2, the solutions generated by 𝐼2 are closer to 𝑧2 than

what 𝐼1 has generated. In other words, we could say that 𝐼2 is more

responsive to the changes in reference points than 𝐼1.
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3.3 Decision Phase

As the DM begins the decision phase, new desirable properties

dedicated to this phase should be considered. Now, she/he is more

interested in fine-tuning solutions in the ROI identified at the end

of the learning phase.

DP1. Since the DM refines solutions by providing her/his prefer-

ences within the ROI, preferences are likely to be concordant.

However, it is not easy to confirm whether the provided prefer-

ences have concordance with each other in problems with more

objectives. For example, when we are using reference points in the

decision phase, if the new reference point at each interaction in the

ROI dominates the old reference point (which is also in the ROI),

they are concordant. Otherwise, even if the new reference point

dominates the previous one, they are not concordant if the new one

is provided outside of the ROI. An indicator must identify the pref-

erences with concordance and increase the role of corresponding

solutions in assessing the decision phase.

Figure 5: Hypothetical fine-tuning in the decision phase dur-

ing four interactions. The ROI is represented by a purple box.

Figure 5 shows a simple example of the fine-tuning capability

of an interactive method. Here, 𝑧1, 𝑧2, 𝑧3 and 𝑧4 are the reference

points that the DM has provided in successive decision phase inter-

actions. Assume that the most preferred solution is chosen in the

last interaction (from solutions corresponding to 𝑧4). In this exam-

ple, we can easily observe that 𝑧1, 𝑧2 and 𝑧4 are all inside the ROI

(denoted by a purple box), but 𝑧3 is not. Here, 𝑧4 dominates 𝑧1 and

therefore, they are concordant. However, there is no concordance

between 𝑧4, 𝑧2, and 𝑧3 because 𝑧2 is not dominated by 𝑧4, and 𝑧3 is

outside the ROI.

Moreover, since the most preferred solution is chosen from the

fourth interaction, 𝑧4 must play the most significant role in assess-

ing the decision phase. An indicator should be able to measure the

concordance between the DM’s preferences in the decision phase.

Here, each interaction does not influence the assessment equally,

Thus, this approach is different from seeing interactive methods as

a series of a priori steps where all interactions have an equal effect

on the assessment of the performance.

DP2. Another important aspect of interactivemethods is the amount

of information shown to the DM at each interaction. In relation to

GP5, the amount and nature of information depends on theway pref-

erence information is provided. In the learning phase, the amount

of information required by the DM to learn about the shape of the

Pareto front can vary as long as the cognitive load is acceptable

to the DM. However, in the decision phase, a typical requirement

from a DM is the number of solutions that she/he wishes to analyze

within the ROI [20]. An interactive method that generates fewer

solutions than what the DM desires may delay the solution process,

whereas one that generates more solutions may increase the cogni-

tive load on the DM. In essence, the desires of the DM should be

respected. An indicator should be able to take both these aspects

into account.

4 APPLICABILITY OF EXISTING INDICATORS

As mentioned earlier, since there are no indicators in the litera-

ture designed specifically for comparing interactive methods, some

studies [1, 3, 4] have resorted to using indicators developed for a

priori methods. In this section, we assess the five a priori indica-

tors presented in Section 2 with respect to the desirable properties

discussed in the previous section.

Table 2 shows how well the five indicators stack against the

desirable properties. All of the indicators satisfy the first four desir-

able properties concerning local convergence and local diversity,

scalability and knowledge of the Pareto front (GP1, GP2, GP3 and

GP4). However, for GP1 and GP2, some of the indicators like R-HV

and UPCF-HV remove solutions outside the desired region before

calculating GP1 and GP2. This may be misleading since the DM sees

these solutions. In other words, if the interactive method presents

some solutions outside the desired region (or the ROI), then these

solutions should have a negative effect in assessing the method

(instead of being deleted).

All the indicators consider reference point(s) as the preference

information. Hence, none of the indicators satisfy the desirable

property GP5. Moreover, R-HV and UPCF-HV do not satisfy GP6,

since they are based on computationally expensive calculations

(hypervolume). Here, as the number of objectives increases, the

computation time of these indicators grows exponentially, which

is not desirable in interactive methods.

Among the indicators we listed in Table 2, R-HV, EH-metric

and UPCF-HV do not satisfy GP7. They employ a prescreening

step which combines and sorts the final solutions from all methods

being compared. Thus, the values of these indicators depend on the

methods being compared. If a new method is to be compared, these

values may need to be recomputed (for more details see [6, 18, 22]).

Except for EH-metric, the rest of the indicators need an analyst

to set at least one parameter. For example, R-HV, PMOD, PMDA and

UPCF-H require the size of parameterized ROI. In addition, PMOD

and PMDA require a penalty coefficient for the solutions outside the

parameterized ROI. It may be confusing for the analyst to provide

these parameters values. None of the studies have analyzed the

effect of these parameters on their assessment of the performance.

The rest of the desirable properties are understandably not sat-

isfied by any of the indicators, because they were not designed to

consider the learning and decision phases. We have already men-

tioned that there could be separate indicators dedicated to assess

learning and decision phases. In addition, it may be even too diffi-

cult to design an indicator that satisfies all the desirable properties

in the learning or decision phases. Hence, we may need several

indicators for different purposes in each phase.
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iRVEA

iNSGA

Reference point

(a) interaction 1

iRVEA

iNSGA

Reference point

(b) interaction 2

iRVEA

iNSGA

Reference point

(c) interaction 3

iRVEA

iNSGA

Reference point

(d) interaction 4

Figure 6: DTLZ7 in the learning phase where we provided a reference point in each part of the Pareto front manually.

Table 1: Indicator values for iRVEA and iNSGA for 3-objective DTLZ7 problem in the learning phase. Here, ↑ means that

higher values are better for the corresponding indicator, and ↓means that lower values are better. Bold values indicate that the

corresponding interactive method has a better performance.

iRVEA iNSGA

R-HV ↑ EH-metric ↑ PMOD ↓ PMDA ↓ UPCF-HV ↑ R-HV ↑ EH-metric ↑ PMOD ↓ PMDA ↓ UPCF-HV ↑

interaction 1 5.927 0.276 6.543 4.632 3.437 6.669 0.561 7.888 5.050 4.310

interaction 2 5.859 0.569 5.713 4.248 3.985 5.401 0.419 6.626 5.092 2.546

interaction 3 7.301 0.688 5.418 3.226 4.015 6.489 0.121 5.833 4.940 2.135

interaction 4 5.909 0.482 5.690 4.245 3.874 2.930 0.196 6.392 4.893 2.497

Table 2: Proposed desirable properties and their presence in

existing indicators for a priori methods.

Properties R-HV EH-metric UPCF-HV PMOD PMDA

GP1 � � � � �

GP2 � � � � �

GP3 � � � � �

GP4 � � � � �

GP5 � � � � �

GP6 � � � � �

GP7 � � � � �

GP8 � � � � �

GP9 � � � � �

LP1 � � � � �

LP2 � � � � �

DP1 � � � � �

DP2 � � � � �

5 NUMERICAL EXPERIMENTS

In this section, we present two numerical examples to emphasize

the need for developing new indicators specifically designed for

interactive methods. We demonstrate that the current practice of

assessing interactive methods as a series of a priori steps is inap-

propriate. The first example shows the importance of desirable

properties for the learning phase (LP1 and LP2). The second exam-

ple focuses on the importance of DP1 in the decision phase and

GP9 of the general properties. We compare interactive NSGAIII

(iNSGA) [3] and interactive RVEA (iRVEA) [11] using DTLZ bench-

mark problems [10]. For both examples, the number of generations

is limited to 100 per interaction, while the number of function eval-

uations for both methods is 100000. These numbers are examples

as our goal here is not to find the best method but to study the

behavior of the indicators.

Since using a priori indicators for comparing interactive methods

is not the main focus of this study, we have provided the details of

this part in the Supplementary Material.1.

5.1 An Example for the Learning Phase

Here, we use the 3-objective 11-variable (number of variables is

based on [16]) DTLZ7 problem due to the unique shape of its Pareto

front, which has four disconnected regions as shown by the blue

areas in Figure 6. These distinct regions enable demonstrating the

importance of measuring the expedition (LP1) and responsiveness

(LP2) in the learning phase. The following reference points corre-

sponding to each region were used in successive interactions to

test the expedition capability of iRVEA and iNSGA (a) [0.11, 0.10,

5.4], (b) [0.70, 0.14, 4.50], (c) [0.76, 0.76, 3.5], and (d) [0.14, 0.70, 4.5].

Figure 6 shows the solutions that iNSGA (red rectangles) and

iRVEA (orange circles) have generated corresponding to different

reference points. We can observe that iNSGA could not respond

to the changes of the reference point and stayed in one region.

On the other hand, iRVEA could provide solutions in the same

region with the reference point. Therefore, for expedition (LP1)

and responsiveness (LP2), iRVEA was better than iNSGA in this

example.

The assessments of indicators for a priori methods for each

interaction have been gathered in Table 1. We can observe that

most of the indicators declare that iRVEA is better than iNSGA

1Link to the implementation: https://github.com/ppouyaa/desirable-properties-mas
ter
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Table 3: Mean indicator values of iRVEA and iNSGA for 5-objective DTLZ3 problem in the decision phase. As before, ↑means

that higher values are better for the corresponding indicator, and ↓means that lower values are better. Bold values indicate that

the corresponding interactive method has a better performance.

iRVEA iNSGA

R-HV ↑ EH-metric ↑ PMOD ↓ PMDA ↓ UPCF-HV ↑ R-HV ↑ EH-metric ↑ PMOD ↓ PMDA ↓ UPCF-HV ↑

interaction 1 14.145 0.475 5.835 2.888 0.185 32.212 0.590 8.533 3.329 0.195

interaction 2 24.263 0.619 6.405 1.430 0.203 32.253 0.643 9.265 3.329 0.262

interaction 3 26.126 0.766 13.813 0.704 0.311 31.956 0.744 12.160 3.329 0.347

interaction 4 28.699 0.768 14.950 0.687 0.412 31.957 0.741 12.160 3.329 0.458

in the last three interactions. However, based on these values, we

cannot get the essential information that iNSGA was stuck in the

initial region and could not cover the Pareto front well. In fact, by

looking at these values, the analyst may be misled to think that

the performance of these interactive methods is not that different

(e.g., see PMOD or PMDA values). Therefore, it is essential that the

indicators can communicate such important insight to the analyst.

5.2 An Example for the Decision Phase

In this section, we compare iRVEA and iNSGA using the 5-objective

DTLZ3 problem in the decision phase. Thus, we assume that the

ROI has already been identified. To generate reference points, we

used an artificial decision maker [3]. These reference points are:

(a) [0.000, 0.000, 0.000, 3.072], (b) [0.000, 0.000, 0.000, 0.000, 1.951],

(c) [0.000, 0.000, 0.000, 0.000, 1.010], and (d) [0.000, 0.000, 0.000, 0.000,

1.010]. We can observe that the artificial decision maker changed

the reference point for the first three interactions, but at the last

interaction used the same reference point as the previous one. After

generating the reference points, we ran each interactive method

ten independent times. Then, we calculated the average of results

for each interaction (see Table 3).

According to Table 3, EH-metric indicates that for the first two

interactions, iNSGA was better than iRVEA, while for the third

and fourth interactions, iRVEA was better than iNSGA. Earlier, we

mentioned that in the current literature, the mean of indicators

values for each interaction is typically calculated to find the best

interactivemethods. Here, if we calculate themean of the EH-metric

values, iRVEA has the value of 0.656, and iNSGA has the value of

0.679. Therefore, based on this way of calculation, iNSGA is better

than iRVEA.

However, earlier, we noted that one of the desirable properties

in the decision phase is fine-tuning solutions in the ROI (DP1). This

involves information about the concordance of reference points.

Moreover, the reference points did not change in the last two in-

teractions (where iRVEA had a better performance). If we consider

the concordance of reference points and let solutions correspond-

ing to the third and fourth interaction influence the results more,

iRVEA could probably be regarded to have a better performance

than iNSGA. This shows that it is important to have specifically

designed indicators for the decision phase (or the learning phase).

Besides, this example shows why it is important not to assess the

interactive methods as a series of a priori steps (GP9).

Finally, we can observe in Table 3 that the indicators are not

similar for each interaction. For example, based on R-HV, iNSGA

was better than iRVEA at every interaction. However, based on

PMDA, iRVEA was better than iNSGA at every interaction. In

addition, EH-metric indicates that at the first two interactions,

iNSGA was better, and for the third and fourth interactions, iRVEA

was better. On the other hand, PMOD gave opposite results to

EH-metric. This is interesting since most of these indicators were

designed to calculate local convergence and local diversity, and

still, the results are so different from one another. Thus, if these

indicators are used to assess interactive methods, the results may

be sensitive to the choice of the indicator. This supports the need of

indicators designed specifically for assessing interactive methods.

6 CONCLUSIONS

In this paper, we identified the desirable properties for designing

indicators suitable for interactive methods and discussed them in

detail. There are three main categories for these desirable prop-

erties. The general properties that should be considered in both

the learning and decision phase, the desirable properties regarding

the learning phase, and the decision phase properties that focus

on aspects of interactive methods that help the DM refine a solu-

tion. Together, we suggested 13 desirable properties that indicators

designed for interactive methods should possess. However, one in-

dicator cannot satisfy all the desirable properties, and there should

be different indicators for different purposes.

We also demonstrated why indicators developed for a priori

methods should not be applied for interactive methods. We showed

that these indicators do not satisfy most of the desirable proper-

ties that we presented. Furthermore, we provided two numerical

examples to support the claim that there is a need for indicators

specifically designed for assessing interactive methods.

By assessing interactive methods, we can analyze their charac-

teristics and choose the appropriate method for different real-world

problems. Therefore, as a future research direction, we plan to de-

velop indicators that satisfy at least most of the desirable properties

we presented in this paper. Moreover, these desirable properties

only consider algorithmic aspects of interactive methods. It is also

important to study interactive methods from human perspectives

such as cognitive load set on the DM.
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Abstract
In this paper, we develop a novel evolutionary interactive method called interactive 

K-RVEA, which is suitable for computationally expensive problems. We use sur-

rogate models to replace the original expensive objective functions to reduce the 

computation time. Typically, in interactive methods, a decision maker provides 

some preferences iteratively and the optimization algorithm narrows the search 

according to those preferences. However, working with surrogate models will intro-

duce some inaccuracy to the preferences, and therefore, it would be desirable that 

the decision maker can work with the solutions that are evaluated with the original 

objective functions. Therefore, we propose a novel model management strategy to 

incorporate the decision maker’s preferences to select some of the solutions for both 

updating the surrogate models (to improve their accuracy) and to show them to the 

decision maker. Moreover, we solve a simulation-based computationally expensive 

optimization problem by finding an optimal configuration for an energy system of 

a heterogeneous business building complex. We demonstrate how a decision maker 

can interact with the method and how the most preferred solution is chosen. Finally, 

we compare our method with another interactive method, which does not have any 

model management strategy, and shows how our model management strategy can 

help the algorithm to follow the decision maker’s preferences.

Keywords Model management · Evolutionary interactive methods · Surrogate-

assisted optimization · Multiobjective optimization · Computationally expensive 

problems
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1 Introduction

Real-world optimization problems often contain multiple conflicting objective func-

tions, and we call them multiobjective optimization problems (MOPs). In MOPs, 

instead of having one optimal solution, we have many so-called Pareto optimal 

solutions with different trade-offs. Mathematically, all of the Pareto optimal solu-

tions are equally good if no additional information is available since vectors can-

not be ordered completely. However, one of the Pareto optimal solutions needs to 

be selected as the outcome of the optimization process to be implemented. Here, 

we need an expert known as the decision maker (DM) who knows the properties 

of the problem and can provide preferences and compare different Pareto optimal 

solutions.

Based on the literature (see, e.g., Miettinen 1999; Hwang and Masud 1979), the 

DM can participate in solving MOPs in three different ways. In a priori methods, the 

DM expresses one’s preferences before the solution process. In the second category, 

a posteriori methods, the DM selects the final solution after the method provides 

a set of solutions representing different trade-offs. In the third category, the DM 

actively interacts with the algorithm and provides preferences during an iterative 

solution process. In the literature, the last type is referred to as interactive methods.

By using interactive multiobjective optimization methods that involve a DM’s 

preference information, the DM directs the solution process to the regions that one 

is interested in. A solution pattern is repeated iteratively, and information is pro-

vided to the DM at each iteration, who then needs to provide preferences in order 

to improve solutions from the current iteration. There are many interactive methods 

in the literature that use different types of preferences (see, e.g., Miettinen 1999; 

Miettinen et al. 2016). Using interactive methods can be beneficial in the process of 

problem-solving because as mentioned by Miettinen (1999): 

1. The DM learns about the interdependencies between the conflicting objectives 

and the feasibility of one’s preferences.

2. The algorithm focuses on those parts of the objective space that are interesting 

to the DM.

Moreover, since the DM’s understanding of the problem grows during the optimiza-

tion process, one will have more confidence in the final selection.

There exist several types of methods to solve a MOP (see e.g., Miettinen 1999; 

Deb 2001). One of the well-known methods is evolutionary multiobjective optimi-

zation (EMO) algorithms. EMO algorithms are population-based a posteriori meth-

ods where a set of solutions approximating the actual Pareto optimal solutions, is 

found (Deb 2001).

Over the years, EMO algorithms have become popular due to certain advan-

tages. For example, they can provide a set of representative solutions in one run, 

they can handle different kinds of decision variables (Deb 2001), and they can 

be applied to objective functions or constraints that are discontinuous or non-

differentiable. Many EMO algorithms have been proposed (see, e.g, Deb 2001; 
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Branke et al. 2008). However, usually, evolutionary algorithms need a consider-

able number of function evaluations. Recently, some interactive EMO algorithms 

have been developed, where the DM provides preferences iteratively during the 

solution process to get a set of solutions that is the most preferable (for reviews, 

see Wang et al. 2017; Xin et al. 2018; Purshouse et al. 2014).

Real-world multiobjective optimization problems may involve functions that 

do not have any analytic formulation. For instance, when we are dealing with 

simulation-based problems (Rodemann 2019; Cheng et  al. 2017), one only gets 

output for a given input. Then, in some cases, we can use the output directly as 

the values of the objective functions, and sometimes some post-processing analy-

sis on the output data is needed to calculate the values of the objective functions. 

Calculating the output may be time-consuming, and such problems are known 

as computationally expensive multiobjective optimization problems. EMO algo-

rithms are viable for simulation-based problems since we do not necessarily know 

the properties of the functions involved, but their need for many function evalua-

tions makes solution processes time-consuming.

In this paper, we focus on finding an optimal configuration for the energy sys-

tem design of buildings, as formulated by Rodemann (2019). The usage of local 

energy production and storage facilities has become increasingly interesting both 

in terms of energy costs and CO2 emissions. Facility management is, therefore, 

looking at how to invest in extensions to the current building energy system opti-

mally. Here a simulator is used that has a time-consuming process to generate the 

outcome (Rodemann 2019).

Even though interactive methods have desirable properties, applying them in 

computationally expensive problems is not straightforward since the DM must 

wait for solutions corresponding to one’s preferences to be generated, which can 

take hours. Waiting too long may become exhausting for the DM, and this is why 

it is desirable to speed up the calculation in such problems. One way to reduce the 

computing time is to approximate the objective functions by analytic functions. In 

the literature, this is known as surrogate (meta-model)-assisted optimization (see 

e.g., Jin 2011; Chugh et al. 2019).

As far as we know, there has been no attempt to tackle the prob-

lem  addressed  by Rodemann (2019) by any interactive methods. Besides, there 

are only few interactive evolutionary methods in the literature that are suited 

for computationally expensive problems. Therefore, we develop an interactive 

method that is suitable for solving computationally expensive multiobjective opti-

mization problems, like  the one addressed by Rodemann (2019), to show how 

it provides decision support for the DM in computationally expensive problems. 

Moreover, there are some algorithms in the literature that motivated our novel 

interactive method. The first algorithm is the reference vector guided evolution-

ary algorithm (RVEA) (Cheng et al. 2016) since it has got good results in similar 

simulation-based problems like  the one  presented by Cheng et  al. (2017). The 

second algorithm is the surrogate assisted version of RVEA (K-RVEA) presented 

by Chugh et al. (2018) where the Kriging models (Sacks et al. 1989) have been 

used to reduce the computation time. The final method that inspired us is the 
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interactive version of RVEA (Hakanen et al. 2016) in which RVEA is modified to 

be able to incorporate the DM’s preferences.

Typically, in surrogate-assisted optimization problems, model management (i.e., 

how to select solutions to evaluate with a computationally expensive function) is used 

to improve the accuracy of the surrogate models with updating them. Model manage-

ment is a very crucial part of surrogate-assisted optimization. For instance, solutions 

computed by the surrogate functions might deviate substantially from the true values, 

and it is desirable to find the solutions that are following the DM’s preferences when 

they are evaluated by the original objective functions. A good model management strat-

egy can help the surrogate models to make such selection.

The contributions of this paper are two-fold. First, we develop a novel model man-

agement strategy that has a smart selection process, where the solutions, which are 

generated by the surrogate models, will be examined and the ones that have the high-

est chance of following the DM’s preferences are selected to be shown to the DM and 

update the surrogate models. The second contribution is to show how model manage-

ment can help an interactive method to follow the DM’s preferences better than when 

there is no model management involved. In other words, we show that by reserving 

some of the computational resources that we have available for updating the surrogate 

models, we can provide several solutions that reflect the DM’s preferences well.

The rest of this paper is structured as follows. In Sect. 2, the energy system design 

problem is briefly described, along with relevant background information. In Sect. 3, 

we present a new interactive method for solving computationally expensive problems. 

In Sect. 4, we solve the problem presented in Sect. 2 with our new interactive method 

and demonstrate the importance of having a model management strategy with some 

comparisons. Finally, conclusions are drawn and future research directions mentioned 

in Sect. 5.

2  Background

Next, we provide some background about notation and terminology, the energy man-

agement problem we consider, and the supporting materials for developing our new 

interactive method.

2.1  Terminology and notation

The general form of a multiobjective optimization problem (for minimization) is as 

follows:

where the set S is called the feasible region which is a subset of the decision space 

ℝ
n . We consider k(≥ 2 ) objective functions fi ∶ S → ℝ . For every feasible decision 

variable vector x, there is a corresponding objective vector f (x) = (f1(x),… , fk(x))
T , 

(1)
minimize {f1(x), f2(x), … , fk(x)}

subject to x ∈ S,
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and f(S) is called the feasible objective region which is a subset of the objective 

space ℝk.

As mentioned earlier in Sect. 1, usually, the objective functions in problem (1) 

conflict with each other. Hence, not all the objective functions can achieve their opti-

mal values simultaneously. A feasible solution x∗ ∈ S and the corresponding f (x∗) 

are called Pareto optimal, if there does not exist another feasible solution x ∈ S such 

that fi(x) ≤ fi(x
∗) for all i = 1,… , k , and fj(x) < fj(x

∗) for at least one index j. The 

set of all Pareto optimal objective vectors is called a Pareto front (PF). A feasible 

solution x∗ ∈ S and the corresponding f (x∗) are called weakly Pareto optimal, if 

there does not exist another feasible solution x ∈ S such that fi(x) < fi(x
∗) for all 

i = 1,… , k.

Assume that the set X = {x1,… , xm} is an arbitrary subset of feasible solutions 

in S, and F = {f (x1),… , f (xm)} the corresponding objective vectors in the objective 

space. A solution xi for i = 1,… , m that satisfies the definition of Pareto optimality 

within the set X, is called a nondominated solution in X (Miettinen 1999). Note that 

sometimes in the EMO literature, Pareto optimality and nondominance are regarded 

as synonyms, but this is a more precise distinction. By definition, a Pareto optimal 

solution is always nondominated but not necessarily vice versa.

In this paper, we have two important concepts, iteration, and interaction. By an 

iteration, we mean a fixed number of generations, and in this paper, we update the 

surrogate models at the end of each iteration. Whenever the DM provides prefer-

ences, we call it an interaction, and it happens after a fixed number of iterations. 

For simplicity, every time we evaluate a decision variable vector with the surrogate 

models, we refer to it as a surrogate evaluation, and every time we use the original 

expensive objective functions, we use the term function evaluation.

In the method to be proposed, we use an achievement scalarizing function (ASF) 

proposed by Wierzbicki (1980) to order nondominated solutions based on a given 

reference point ẑ . It consists of aspiration levels ẑi ( i = 1,… , k ) provided by the DM. 

There are different ways to formulate an ASF. Here, we use the following formula-

tion to be minimized:

where k is the number of objective functions, w is some weighting vector with posi-

tive fixed values, and 𝜌
∑k

i=1
wi(fi(x) − ẑi) with 𝜌 > 0 is the augmentation term to 

avoid finding weakly Pareto optimal solutions (Miettinen 1999).

In this paper, we use an ASF as an indicator of how well a given solution is fol-

lowing the DM’s preferences (given as a reference point). The lower the ASF value 

for a given x, the better it is following the DM’s preferences (Wierzbicki 1980).

2.2  Simulation-based problem considered

Managers of large buildings are confronted with complex investment decisions 

concerning possible extensions of the energy system, like photovoltaics, stationary 

(2)max
i=1,…,k

[wi(fi(x) − ẑi)] + 𝜌

k∑
i=1

wi(fi(x) − ẑi),
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batteries, or heat storage. They have to consider a multitude of objectives, for exam-

ple, investment and annual operation costs and CO2 emissions.

Here, we want to find an optimal configuration for an energy system of a hetero-

geneous business building complex. Because of the complex nature of the problem, 

it is possible to consider different numbers of objective functions and decision vari-

ables. For example, the problem considered by Rodemann (2019) consisted of five 

objective functions and ten decision variables, and a building simulator based on 

Modelica Fritzson and Bunus (2002); Yang and Wang (2012) was used, which is 

capable of modeling the most relevant real-world effects. Several EMO algorithms 

were applied to solve this problem (Rodemann 2019). However, no analysis of the 

final set of solutions was done to determine the DM’s most preferred solution. This 

can be a difficult task since the DM has to choose a solution from a big pool of solu-

tions with different trade-offs.

We have ten real-valued decision variables (see Appendix for more details) whose 

values are given to the same simulator that was used by Rodemann (2019) as input. 

Here, we consider four objective functions:

f1 : minimize initial investment cost (in euros),

f2 : minimize annual operation cost (in euros),

f3 : minimize annual CO2 emissions (in tons), and

f4 : maximize resilience (in seconds),

where resilience is defined as the time the facility can run without grid power. Here, 

f1 is independent of the simulator and it is computationally cheap to calculate f1(x) . 

On the other hand, the other objective functions are computationally expensive, and 

we need to post-process the simulator’s output to calculate them (for more details, 

see Rodemann 2019).

We formulate our multiobjective optimization problem as:

where fi for i = 2,… , 4 are derived from the output of the simulator and xi for 

i = 1,… , 10 are the decision variables which only have box-constraints. In what fol-

lows, we consider and solve problem (3).

2.3  Related Work

As we mentioned in the previous section, our method is inspired by RVEA, 

K-RVEA, and interactive version of RVEA. Here, we provide some background on 

these algorithms.

(3)

minimize {f1(x), f2(x), f3(x)},

maximize {f4(x)}

subject to 0 ≤ xi ≤ 1, i = 1,… , 10,
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2.3.1  RVEA

RVEA (Cheng et  al. 2016) is a decomposition-based algorithm which divides the 

objective space into a number of subspaces using reference vectors. The reference 

vectors are initially generated so that they are uniformly distributed in the feasible 

objective space, and they are adjusted within the algorithm based on the structure 

of the PF. RVEA balances between the diversity of the solutions and the conver-

gence towards Pareto optimality by using an angle penalized distance (APD) scalari-

zation (Cheng et al. 2016) to select solutions from different subspaces for the next 

generation.

RVEA has three main steps. First, generating a set of uniformly distributed refer-

ence vectors to divide the objective space to a number of subspaces. Second, using 

a heuristic algorithm to find solutions in the created subspaces. Third, assigning the 

solutions found in the previous step to the reference vectors by using APD and then 

adjusting the positions of reference vectors based on those solutions.

2.3.2  K-RVEA

As mentioned in Sect. 1, it takes much time to solve a computationally expensive 

problem with EMO algorithms. A widely used approach for solving computation-

ally expensive problems is to use surrogate functions to approximate the original 

ones (Jin 2011; Chugh et  al. 2019). A surrogate-assisted version of RVEA called 

K-RVEA was proposed by  Chugh et  al. (2018). K-RVEA assumes that all the 

objective functions are computationally expensive, and uses Kriging (also known 

as Gaussian process regression) as a surrogate model. The main idea of Kriging is 

to predict the values of a function for a given decision variable vector by generat-

ing weighted coefficients of the true values of the function in the neighborhood of 

the decision variable vector. Typically, the computation time for training the Krig-

ing models in population-based EMO is quite high and there might be a need for 

a model management strategy to limit the size of the training samples like the one 

mentioned by Chugh et al. (2018).

A major difference between K-RVEA and RVEA is that in RVEA, the final popu-

lation is examined to measure the quality of solutions. However, in K-RVEA, an 

archive is used to store all the function evaluations, and in the end, the solutions that 

are stored in the archive are examined to determine the quality of the solutions.

K-RVEA consists of three main steps. First, in the initialization step, a sampling 

method is used to create a training data set in the decision space. Then, the collected 

samples are evaluated with the original objective functions, and the data, which is 

stored in an archive, is used to train a surrogate model for each objective function. 

Second, RVEA is run with the surrogate models instead of the original objective 

functions. Third, the surrogate models are updated after a certain number of gen-

erations by using both APD and uncertainty information, which is provided by the 

Kriging models (see Chugh et al. 2018 for more details).
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2.3.3  Interactive RVEA

As mentioned earlier, in interactive methods, the DM guides the algorithm to find 

one’s most preferred solution by providing preference information. There are many 

types of preferences, for example, reference points, classification, pairwise com-

parisons, and selecting preferred solutions, see, e.g., (Miettinen 1999; Hwang and 

Masud 1979). An interactive version of RVEA, to be referred to as iRVEA, was pro-

posed by Hakanen et al. (2016). In iRVEA, the preference information given by the 

DM is used to adjust reference vectors V = {v1,… , vm} so that the search focuses 

on solutions reflecting the preferences. For example, if the DM provides a reference 

point ẑ = (ẑ1,… , ẑk) , an adjusted reference vector v̄i is created from vi by the follow-

ing formula (Hakanen et al. 2016):

where i = 1,… , k , ||ẑ|| ≥ 0 is the Euclidean norm of the reference point which is 

used for normalization, and vc
j
=

ẑj

||ẑ|| . If ||ẑ|| = 0 , then it means that all the objective 

functions have the same amount of desirability, and we can use the unit vector as the 

reference vector. The parameter r ∈ (0, 1) controls how much the reference vectors 

are adjusted towards the reference point. If r is close to 1, then the reference point 

has less effect on the reference vectors, and if it is close to 0, they will get closer to 

the reference point.

3  Interactive K-RVEA

We selected RVEA as the EMO algorithm that we use in our interactive method 

(called interactive K-RVEA) because it had reasonable results in similar problems 

(Rodemann 2019; Cheng et al. 2017). Moreover, we used Kriging models because 

they provide uncertainty information that is useful for our model management strat-

egy. Kriging models have been used with a priori EMO algorithms before (Chugh 

et al. 2018) to approximate the whole PF. However, to the best of our knowledge, 

they have never been used to incorporate the DM’s preferences to focus on particular 

regions of the objective space. To consider Kriging models when applying interac-

tive methods, we must incorporate DM’s preferences in model management, which 

has some challenges. Here, the main point of our model management strategy is that 

it improves the ability of the method to follow the preferences with respect to (2).

Figure 1 presents a flowchart of the main steps of interactive K-RVEA. First, we 

generate the initial population, evaluate it using the original objective functions, and 

train a Kriging model for each expensive objective function. Next, the DM provides 

preferences, and we solve a multiobjective optimization problem (by incorporating 

the preferences) by replacing original objective functions with the Kriging mod-

els. After generating an approximation of a part of the Pareto optimal set reflect-

ing preferences, the accuracy of the Kriging models must be improved to get a bet-

ter approximation. We propose a model management strategy based on the DM’s 

(4)v̄i =
r ⋅ vi + (1 − r) ⋅ vc

||r ⋅ vi + (1 − r) ⋅ vc|| ,
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preferences to update the Kriging models, which is done by selecting solutions that 

follow the DM’s preferences best. The solutions for updating the Kriging models 

must be evaluated with the original objective functions. Based on how many solu-

tions the DM wants to see at a time, we show to the DM the corresponding number 

of solutions reflecting the preferences among those evaluated by the original objec-

tive functions. Finally, if the DM is satisfied, he/she selects the most preferred solu-

tion and the algorithm stops.

As mentioned earlier, there are only few interactive methods that are suited for 

computationally expensive problems. In this section, we use Kriging models to 

reduce the computation time and RVEA as an EMO algorithm to build the basis of a 

new interactive method called interactive K-RVEA. The main contribution to devel-

oping interactive K-RVEA is a model management strategy to incorporate the DM’s 

preferences while using the Kriging models.

We have two main steps in developing interactive K-RVEA. First, we must select 

the type of preferences that the DM is expected to provide, and second, we must 

select some of the solutions that are found by using Kriging models in a way that 

when they are evaluated by the original objective functions, they follow best the 

DM’s preferences (at least they are following the DM’s preferences better than other 

available solutions). For the first task, we mentioned in Sect. 2 that there exist dif-

ferent ways to express one’s preferences for interactive methods. After consulting 

with experts, who deal with problem (3) regularly, we decided to use a reference 

point to develop our model management strategy because it is intuitive, and they 

were comfortable with this kind of preference information. Reference vectors could 

Fig. 1  Flowchart of interactive K-RVEA
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be adapted based on other types of preference information as done by Hakanen et al. 

(2016), if so desired.

As for the second step, we have to select the solutions that have the highest 

chance of following the DM’s preferences when they are evaluated with the original 

objective functions. When a solution is evaluated with the original objective func-

tions, it may have different values than with the surrogate models because surro-

gates tend to contain some approximation error. Besides, evaluating all the solutions 

that the Kriging models find is not computationally efficient, especially in cases that 

some of these solutions are not following the DM’s preferences. For example, due 

to the error of surrogate models, a surrogate evaluation of a given decision variable 

vector could follow the DM’s preferences much better (lower ASF value) than when 

it is evaluated by the original objective functions. Therefore, these kinds of solu-

tions may not be interesting to the DM, and it is ideal to avoid them. Furthermore, 

in problems like (3), we usually have a particular budget for the number of function 

evaluations, and it should be spent carefully on the solutions that have a higher prob-

ability of following the DM’s preferences.

To increase our chances of selecting the best possible solutions for updating the 

Kriging models, we use two criteria. First, we use ASF to calculate how close each 

of the nondominated solutions, which are found by using the Kriging models, are 

to the DM’s reference point. Then, we sort the solutions based on the ASF values, 

and we select 2 ∗ NU solutions ( NU is the number of solutions to update the Kriging 

models) that are the closest to the DM’s preferences. In other words, we select the 

solutions that have the lowest values in ASF.

So far, we have selected some solutions which have the lowest ASF value. How-

ever, since Kriging models provide uncertainty information, we use this additional 

information as our second criterion. Typically, when the uncertainty information of 

generated solutions is available, those which have the highest uncertainty are chosen 

to improve the accuracy of the Kriging model globally (Chugh et al. 2018). How-

ever, in interactive methods, we are looking to search specific parts of the objec-

tive space that the DM has shown interest in. Therefore, after selecting the solutions 

that have lower ASF value, we select NU solutions among those that have the lowest 

uncertainty values to update the Kriging models. By incorporating the DM’s prefer-

ences in the model management strategy along with the uncertainty information, we 

increase our chances to select the solutions that are following the DM’s preferences, 

both with the Kriging models and the original objective functions. Algorithm  3 

shows the main steps of the interactive K-RVEA algorithm, which are discussed in 

more detail in the following subsections. 
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3.1  Inputs

The first input for interactive K-RVEA is the number of reference vectors NV . In 

RVEA, the method called simplex-lattice design method (Cornell 2011) is used to 

generate a given number of reference vectors. In RVEA, as the number of objective 

functions increases, the number of reference vectors increases as well. For instance, 

for a problem with three objective functions, 105 reference vectors were used  by 

Cheng et  al. (2016). In iRVEA, on the other hand, a lower number of reference 
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vectors was used compared to RVEA (Hakanen et  al. 2016). For example, for a 

problem with five objective functions, only 15 reference vectors were used. The rea-

son for choosing a low number of reference vectors in iRVEA is that there is no 

model management to select the solutions that the algorithm finds, and all of them 

are shown to the DM. Therefore, if the number of reference vectors increases, the 

number of solutions that the DM sees will increase as well, and the cognitive load 

set on the DM grows.

In interactive K-RVEA, we develop a model management strategy that enables 

the algorithm to choose the solutions that the DM is most interested in. Here, we are 

not limited to a low number of reference vectors. In fact, we are more interested in 

increasing the size of NV because we will have more solutions to choose from, and 

the chance of finding solutions that follow the DM’s preferences increases. Besides, 

surrogate evaluations are computationally cheap, and therefore, we do not need to 

worry about the number of solutions that are found by using the Kriging models.

The number of generations ( tmax ) and the number of solutions to update Kriging 

models ( NU ) can be set based on the sensitivity analysis by Chugh et al. (2018). The 

number of updates between each interaction ( Nupdate ) can be set based on how much 

time it takes to evaluate NU solutions with original objective functions. Since FEmax 

is based on Nupdate and NU , we can use the following formulas to calculate an estima-

tion of FEmax

and

where FEint is the number of function evaluations that we need for one interaction, 

and 𝜇 is the estimation of the number of interactions that the DM wants to have.

3.2  Initialization

Before the DM starts interacting with the algorithm, the Kriging models should be 

trained with an initial population. The size of the initial population ( N0 ) should be 

set based on the type of problem that we are dealing with and the function evaluation 

budget that we have. Moreover, since the algorithm has no preferences at the begin-

ning, the Kriging models should be trained globally. Therefore, the initial population 

( P0 ) is generated by using a method (e.g., using Latin hypercube sampling used by 

McKay et al. 2000). These samples are evaluated by the original objective functions, 

and then they are stored in the archive A (along with their corresponding decision 

variables). Then, the samples in A are used to train independent Kriging models for 

each expensive objective function.

After training the Kriging models, it is time for the DM to set the first reference 

point. If the DM does not have information about the problem to be confident about 

her/his preferences, then, we provide three alternatives to the DM. First, to see all 

the nondominated solutions in the initial population. Second, to see only the ranges 

of each objective function for the nondominated solutions in the initial population. 

(5)FEint = NU ∗ Nupdate,

(6)FEmax = N0 + 𝜇 ∗ FEint,
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Third, to proceed without any further information. The purpose of the first two alter-

natives is to give some idea to the DM of the feasible solutions and speed up the 

learning process. However, one should note that no optimization has been done in 

this stage, and this information is not accurate enough to represent the trade-offs 

between different objective functions. Finally, after the DM provides the first refer-

ence point, the reference vectors are adjusted by using (4) to focus on the regions 

that the DM is interested in.

3.3  Loops

In Algorithm 3, we have three main loops. The inner loop runs RVEA, the middle 

loop updates the Kriging models after each iteration, and the outer loop interacts 

with the DM after each interaction.

In the middle and outer loops, we mostly focus on the model management strat-

egy that was mentioned earlier in this section. As it was mentioned earlier, because 

Kriging models are not completely accurate, it is possible that some of the solutions 

that are found are not appealing to the DM. In these two loops, we identify and 

select the solutions which have the highest chance of following the DM’s prefer-

ences when they are evaluated with the original objective functions. Then, we use 

the selected solutions to update the Kriging models.

3.3.1  Inner loop

In the inner loop, we use Kriging models to replace original objective functions. We 

run RVEA with the Kriging models for a fixed number of generations ( tmax ), and this 

parameter should be set high enough so that RVEA can perform a sufficient search 

of the Pareto optimal set.

3.3.2  Middle loop

In the middle loop, we select the solutions that we want to evaluate with the origi-

nal objective functions to update the Kriging models. The selected solutions should 

improve the Kriging models in regions that the DM is interested in. Here, we man-

age the solutions that are found by the Kriging models in two phases. In the first 

phase, we select a number of solutions ( NASF ) that are following the DM’s prefer-

ences while using the Kriging models. If the solutions are not close to the DM’s 

preferences even with the Kriging models, then our selection will involve too much 

randomness, and the model management becomes unstable. In the second phase, 

we use the uncertainty information that Kriging provides to select the most accu-

rate solutions (solutions with the lowest uncertainty) from the previously selected 

solutions and store them in U and A to update the Kriging models. Based on our 

tests, Kriging models can properly approximate the objective functions of problem 

(3) (see Appendix). However, the surrogate models have inevitably some error and 

by going through the two phases mentioned, we increase the probability of selecting 

solutions that are following the DM’s preferences.
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3.3.3  Outer loop

Unlike iRVEA, where the number of solutions shown to the DM ( NS ) is the same 

as the number of reference vectors, here NS is an independent parameter defined 

by the DM. Once the Kriging models are updated, ASF is used to select NS solu-

tions from U, and then they are shown to the DM. Then, the DM has the option of 

separating the best solutions (with respect to (2)) generated in the current iteration 

visually ( N̄S ). Next, either the DM decides to finish the solution process by selecting 

the most preferred solution or set a new reference point to search for more preferred 

solutions. At the end of this loop, we reset U to the empty set to prepare it for the 

next interaction. Note that if NS > NU , then the algorithm cannot provide enough 

solutions to be shown to the DM, and all the solutions in NU are shown to the DM.

These three loops keep running until the function evaluation budget runs out, or 

the DM terminates the algorithm by finding the most preferred solution. In the first 

case, if the budget of function evaluations runs out and the DM is not satisfied, he/

she can either increase FEmax , or as the final alternative (step 24), the DM can ask to 

see all the nondominated solutions that have been generated so far, which are stored 

in archive A. Then, one can use visualization tools, such as parallel coordinate plots, 

to study these solutions, or to provide new value to N̄S to see the closest solutions to 

the final reference point visually, and then select the most preferred solution from 

there.

In the next section, we use interactive K-RVEA to solve problem (3). Besides, we 

show how the model management strategy that we proposed can provide better deci-

sion support for the DM by comparing our algorithm with iRVEA.

4  Numerical results

Here we describe how we can design an energy system for buildings by using inter-

active K-RVEA. In what follows, we first describe how we set the parameters of 

interactive K-RVEA, and then how the DM can interact with this algorithm to solve 

problem (3). We also incorporate visualizations to support the DM in providing 

preferences and comparing solutions. To show the results, we used the web-based 

parallel coordinate plots tool https ://dgold ri25.githu b.io/Categ orica l-Paral lelCo 

ordin atePl ot/.

For parameters that are shared between K-RVEA and interactive K-RVEA such as 

the number of generations before each iteration ( tmax = 20 ), the number of samples 

to update the Kriging models with ( NU = 5 ), and the number of reference vectors 

( NV = 109 ), we used the same values that have been used when the K-RVEA algo-

rithm was proposed by Chugh et al. (2018). Furthermore, determining the number 

of iterations before each interaction is one of the important parameters. According to 

private discussions with experts in the domain of problem (3), DMs should not wait 

more than three minutes before each interaction. Each time we call the simulator, it 

takes about ten seconds, and since we update the models with five new solutions (c.f. 

NU above), each update takes about one minute (including the training time). Conse-

quently, to have at most three minutes waiting time before each interaction, we can 
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update the models three times ( Nupdate = 3 ). Based on Step 21 of Algorithm 3, the 

DM can increase the maximum number of function evaluations ( FEMAX ) or termi-

nate the algorithm at any time. Here, we need 109 function evaluations to generate 

the initial population ( FEinit = 109 ), and based on equation (5), we set FEmin = 15 . 

Due to the time limitation that we had, we decided to have six interactions ( 𝜇 = 6 ), 

and hence, based on Eq. (6), we set FEMAX = 199.

The number of solutions that the DM wants to see at each interaction ( NS ) is the 

next parameter that must be set. As we mentioned above, we update the Kriging 

models three times before we ask for a new reference point, and it means that we 

can show a maximum of 15 solutions to the DM in one interaction. Here, the DM 

decided to see all of the solutions that interactive K-RVEA finds in each interaction 

( NS = 15).

As mentioned in Sect.  2, in problem (3), calculating the outcome of the first 

objective function (initial investment cost) is not computationally expensive. There-

fore, we use Kriging models only for the other three objective functions. Note that 

based on discussions with real DMs, one of the authors (TR) provided feedback on 

presented solutions similar to what we would expect from a real DM.

4.1  Interactive solution process

To get started, we generated the initial population randomly and trained Kriging 

models for expensive objective functions. Then, the DM was asked to provide the 

first reference point. To support the DM in providing the first reference point, inter-

active K-RVEA has different options (c.f. step 4). First, he asked to visually see non-

dominated solutions of the initial population (see Fig.  2). Note that the solutions 

provided in Fig. 2 are nondominated solutions from the random initial population, 

which have not yet been optimized, and they can only give a rough idea of feasi-

ble solutions. In addition to the visualization, the DM can naturally always see the 

numerical values of the selected solutions ( NS ) in the form of a table at each interac-

tion. However, in this paper, we only show the parallel coordinate plots during the 

interactive solution process for compactness. Note that the figures in this section 

have different scales so that the changes between the solutions can be better seen.

Here, based on the objective functions’ ranges shown in Fig.  2, and 

the prior knowledge that f1 and f3 (initial investment cost and CO2 emis-

sion) are regarded as the most important objective functions, the DM sets 

RP1 = (298806, 377430, 2194, 28) as the first reference point since he believes it 

Fig. 2  The nondominated solutions in the initial population. Red crosses are the aspiration levels forming 

the first reference point
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is a good compromise for f1 . Components of the reference point are indicated 

by red crosses in Fig.  2. Based on the solutions that were generated after pro-

viding RP1 (see Fig. 3), the DM provides RP2 = (47950, 382509, 2215, 12) as the 

second reference point because the values of f1 for the generated solutions are all 

in this range and he also wants to improve the trade-offs between f1 and the rest of 

objective functions.The corresponding aspiration levels are depicted in Figure 3 

with red crosses and the previous aspiration levels with orange dots.

Next, the solutions in Fig. 4 were generated and presented to the DM. This time, 

the generated solutions are well spread at around RP2 . However, the trade-offs 

between f1 and the rest of the objective functions still are not satisfying. The DM 

decides not to make a significant change in the reference point to continue search-

ing this region of objective space. He chooses RP3 = (37192, 382426, 2219, 152) 

as the third reference point (denoted by red crosses in Fig. 4) because based on 

the generated solutions he knows such a solution is achievable, and it is quite 

cheaper (it has smaller value for f1 ) than RP2 and it only produces a little more 

CO2 than RP2.

Figure  5 shows the solution set that was generated after the third inter-

action. Now, the DM finds out that the aspiration level for f1 in RP2 and 

RP3 is too small, and therefore, the trade-offs cannot improve significantly. 

As for the fourth reference point, the DM makes a compromise and sets 

RP4 = (156067, 377696, 2202, 500) to find a more balanced solution.

Figure 6 shows the the results corresponding to RP4 . Here, the DM was satis-

fied with the trade-offs and selects (149886, 380764, 2211, 561) as the most pre-

ferred solution since it has the same trade-offs as RP4 but with lower value for f1.

Fig. 3  Solutions after the first interaction of interactive K-RVEA. The orange dots are the aspiration lev-

els forming the first reference point, and the red crosses are the aspiration levels forming the second 

reference point.

Fig. 4  Solutions after the second interaction of interactive K-RVEA. The orange dots are the aspiration 

levels forming the second reference point, and the red crosses are the aspiration levels forming the third 

reference point
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4.2  Performance evaluation

As mentioned earlier, in this paper, we show how using model management in sur-

rogate models can incorporate DM’s preferences in an interactive method to get sat-

isfactory solutions. To show the importance of model management strategies used 

in this paper, we applied iRVEA with the Kriging models as objective functions and 

compared the results. However, comparing interactive methods is not a trivial task 

in the field of multiobjective optimization, and there is no widely accepted way for 

this.

We used the same reference points ( RP1 , RP2 , RP3 , and RP4 ) that were used in 

interactive K-RVEA. Note that interactive K-RVEA used 60 function evaluations to 

update the Kriging models, and since iRVEA does not update them, we increased 

the size of the initial population by 60 to have the same number of function evalu-

ations as interactive K-RVEA. Next, we evaluated the final solutions that iRVEA 

generated with the original objective functions and present the nondominated ones 

in Fig. 7. The final set of solutions generated by iRVEA are more scatter than inter-

active K-RVEA around the final reference point ( RP3 ) in Fig.  5. Finally, the DM 

chooses (367142, 380138, 2273, 45) as the final solution since it has the best com-

promise between the objective functions.

None of the final solutions dominate each other. However, the final solution for 

interactive K-RVEA has better values than iRVEA for f1 , f3 , and f4 objective func-

tion and only slightly worst value for f2.

To compare interactive K-RVEA and iRVEA in terms of following the DM’s 

preferences, we ran both algorithms with the same configuration ten times and used 

three different ways (ASF, domination and R-metric Li et al. 2017) to evaluate their 

Fig. 5  Solutions after the third interaction of interactive K-RVEA. The orange dots are the aspiration 

levels forming the third reference point, and the red crosses are the aspiration levels forming the third 

reference point

Fig. 6  Solutions after the fourth interaction of interactive K-RVEA. The orange dots are the aspiration 

levels forming the fourth reference point, and the red line is the most preferred solution selected by the 

DM
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performance. Experiments were run on a laptop with core i7 CPU, using 16 GB of 

RAM, and the running OS was Linux (Ubuntu).

4.2.1  Computation time

In Table 1, we present the total computation times for both algorithms without con-

sidering the decision making time. Interactive K-RVEA and iRVEA included the 

same number of function evaluations. However, interactive K-RVEA had the model 

management, where Kriging models were updated. On the other hand, iRVEA used 

all the function evaluations for the initial population and the solution process only 

used the surrogate evaluations. Therefore, the computation time for interactive 

K-RVEA was a bit higher than for iRVEA.

As far as waiting time is concerned, we updated the Kriging models iteratively in 

interactive K-RVEA. On the other hand, there was no update for iRVEA, and there-

fore, the waiting time of iRVEA was shorter. However, the waiting time for both 

methods was under three minutes, that met the DM’s time limitation.

4.2.2  ASF

We recorded the ASF values for the final set of solutions (see Table 2) to measure 

how close they were to the final reference point. In all of the independent runs, inter-

active K-RVEA had lower ASF values than iRVEA, which means that interactive 

K-RVEA had a better convergence towards DM’s preferences than iRVEA.

Fig. 7  The final solutions of iRVEA. The orange dots are the aspiration levels forming the fourth refer-

ence point, and the red line is the most preferred solution selected by the DM

Table 1  Average of computation time of interactive K-RVEA and iRVEA between interactions (in sec-

onds). The best results are highlighted in boldface

Algorithm min mean max

Interactive K-RVEA 520 552 575

iRVEA 511 535 567

Table 2  ASF values for the 

10 independent runs with 

interactive K-RVEA and 

iRVEA. The best results are 

highlighted

Best Mean Worst

Interactive K-RVEA 0.41 0.53 0.59
iRVEA 0.71 0.77 0.82
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4.2.3  Domination

Here, we checked to see if iRVEA solutions dominate the final set of solutions gen-

erated by interactive K-RVEA. In all ten runs, none of the solutions provided by 

iRVEA dominated any of the solutions that were generated by interactive K-RVEA. 

However, this was not the case when we checked the inverse situation. In other 

words, in all ten runs, we could find at least one solution generated by iRVEA that 

was dominated by one or multiple solutions that interactive K-RVEA generated. In 

Table 3, we show how many of the final solutions of iRVEA were dominated by the 

final solutions of interactive K-RVEA for ten independent runs.

Moreover, we merged all the solutions generated in the ten independent runs for 

both methods and checked how many nondominated solutions were generated with 

each method. Furthermore, iRVEA had 108 nondominated solutions and domi-

nated only seven solutions generated by interactive K-RVEA. On the other hand, 

interactive K-RVEA had 117 nondominated solutions and dominated 31 solutions 

that were generated by iRVEA. The number of nondominated solutions generated 

by interactive K-RVEA is still more significant than iRVEA, which shows that the 

model management strategy used in interactive K-RVEA helps the method provide 

more nondominated solutions than iRVEA.

As we showed in Fig.  7 and Table  2, the solutions generated by iRVEA were 

more scattered than by interactive K-RVEA, which means that interactive K-RVEA 

followed the DM’s preferences better than iRVEA. Besides, when the DM interacts 

with interactive K-RVEA, all the solutions that he works with are evaluated with the 

original objective functions, but when the DM interacts with iRVEA, the solutions 

are evaluated by the Kriging models. Hence, the DM cannot be sure that when the 

final set of solutions (generated with iRVEA) is evaluated with the original objec-

tive functions, it will follow the DM’s preferences and before (when it was evaluated 

with surrogate functions).

4.2.4  R-metric

Finally, we used a well-known R-metric indicator, which evaluates the quality 

of a set of solutions with respect to a reference point. Originally, R-metric was 

developed for a priori methods to compare different sets of solutions, but since 

it includes a reference point, we apply it for the final set of solutions of interac-

tive K-RVEA and iRVEA. To compare two sets of solutions, R-metric takes four 

main steps. First, we remove the common solutions between the two sets. Second, 

Table 3  iRVEA final solutions 

that are dominated by interactive 

K-RVEA

Number of dominated solutions by 

the other algorithm

Best Mean Worst

Interactive K-RVEA 0 0 0
iRVEA 7 4.7 2
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based on the closeness of solutions to DM’s reference point ( Δ ), we remove some 

of the solutions that do not represent the region of interest in the objective space. 

Third, we transfer the solutions into a virtual position concerning the reference 

point using ASF, and finally, we use an indicator like hypervolume to evaluate the 

quality of the solutions. For details, see Li et al. (2017).

For the second step of R-metric, we must set a value for Δ . Initially, the value 

of Δ is set as an arbitrary number by Li et al. (2017). However, since there does 

not exist a widely accepted way to set this value, we decided to analyze the results 

with three different values of Δ with respect to the last reference point ( RP4 ), and 

create a vector for Δ , representing separate exploration rates for each objective 

function. Here, we add 10, 15, and 20 percent to the aspiration levels of RP4 to 

create the vector Δ . Note that we remove the solutions that are exceeding Δ in at 

least one objective function. We calculated the R-metric by using the hypervolume 

indicator for each method’s ten independent runs, normalized the hypervolume 

values, and present the results in Table 4. Moreover, a pairwise two-tailed t-test 

(Derrac et  al. 2011) was conducted between the two interactive methods for the 

R-metric results. The significance level of our testing was set at %5 . In Table 4, ↑ 

indicates that the statistical significance of the pairwise comparison between inter-

active K-RVEA and iRVEA is significant in favor of interactive K-RVEA.

As it is shown in Table 4, interactive K-RVEA is performing better than iRVEA. 

Table  4 shows that for the first value of Δ , iRVEA might generate zero solutions 

(for the worst case), which means none of the solutions generated by iRVEA were 

in the region determined by Δ . Moreover, for the first and second values of Δ , inter-

active K-RVEA is getting much higher R-metric values than iRVEA, which shows 

that more solutions are generated by interactive K-RVEA that are concentrating on 

the regions around RP4 . In addition, for the third value of Δ , iRVEA’s performance 

gets much better than the previous values of Δ , which is in line with the fact that 

solutions are generated with iRVEA are more scattered than interactive K-RVEA. 

However, interactive K-RVEA is still obtaining much higher R-metric values than 

iRVEA. We did not continue with higher values of Δ since we wanted to analyze 

how each method can generate solutions close to the DM’s reference point, and 

based on the results above, interactive K-RVEA is doing a better job than iRVEA.

5  Conclusions

In this paper, we developed a novel evolutionary interactive multiobjective opti-

mization method, called interactive K-RVEA, that is suitable for real-world com-

putationally expensive problems. As integral elements of the new method, we 

Table 4  Results of R-metric 

for interactive K-RVEA and 

iRVEA. The best results are 

highlighted

Δ Interactive K-RVEA iRVEA

Best Mean Worst Best Mean Worst

1.10 ∗ RP
4

0.81 0.71 0.65 ↑ 0.23 0.11 0.00

1.15 ∗ RP
4

0.88 0.79 0.72 ↑ 0.28 0.19 0.12

1.20 ∗ RP
4

0.98 0.90 0.82 ↑ 0.42 0.35 0.27
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chose the RVEA algorithm as our optimizer and the Kriging models as surrogate 

models. We developed a novel model management strategy that incorporates the 

DM’s preferences (reference point in our case) in the Kriging models.

We demonstrated the performance of the developed method by solving a com-

putationally expensive simulation-based problem where our goal was to find an 

optimal configuration for an energy system of a heterogeneous business building 

complex, and we were able to generate a reasonable solution, which had better 

values than the final reference point provided by the DM except for the second 

objective. We demonstrated how the decision maker can interact with the method 

and how the most preferred solution is chosen. Then, we compared the results 

produced by interactive RVEA that has no model management strategy. We ran 

both algorithms for ten independent runs and considered three different perfor-

mance indicators (achievement scalarizing function, domination, and R-metric). 

We showed the importance of having a model management strategy for computa-

tionally expensive problems. Besides, we demonstrated that interactive K-RVEA 

followed the decision maker’s preferences better than interactive RVEA. Thanks 

to interactive K-RVEA, very good results were generated without spending too 

much of computational resources.

In this paper, we fixed the values of most of the parameters in interactive 

K-RVEA, and developing an adaptive method to change these values during opti-

mization is one of our future research directions. Another possible future research 

topic is to address different types of preferences and make interactive K-RVEA 

compatible with them. Here, the challenge is how to develop a model manage-

ment strategy that can use different preferences and incorporate them within the 

surrogate models.
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Appendix

In this Appendix, first, we describe the decision variables of the simulation-based 

problem (3). Then, we show the performance of Kriging models for problem (3).



 P. Aghaei Pour et al.

1 3

Decision variables

The simulator uses decision variables to calculate parameters of four different 

investment options. Then, based on the parameters and the investment options, 

we can calculate the objective functions values ( f2 , f3 and f4 ). The investment 

options are as follows: 

1. A photovoltaic (PV) system on the building roof or carport.

2. An extension of the internal heat storage.

3. A stationary battery.

4. Optimization of the operation of co-generator for heat and power (CHP).

The first three decision variables are related to the PV system: x1 is the inclination 

angle, x2 is the orientation angle, and x3 is the peak output power of the PV system. 

The next two decision variables, x4 and x5 , control the stationary battery’s capacity 

and the maximum charging/discharging power. The minimum and maximum battery 

state of charge are maintained by x6 . Then, the battery has a charging and discharg-

ing threshold connected to the next two decision variables x7 and x8 . Next, the deci-

sion variable x9 is used to calculate the size of the heat storage. Finally, the CHP 

generator will only turn on if the ambient temperature is below a certain level, which 

defines the final decision variable x10 . For a full explanation of the decision vari-

ables, see Rodemann (2019).

Surrogate models

Here, we show that Kriging models are suitable for problem (3) with different ini-

tial population sizes. We tested different Kriging models (with different kernels) 

along with five other well known surrogate models (Chugh et al. 2019; Bartz-Beiel-

stein and Zaefferer 2017). First, we used Kriging with normal, radial basis func-

tion (RBF), rational quadratic (RQ), exponential sine squared (ESS) and Matern 

kernels. Second, we used support vector regression (SVR) by Drucker et al. (1997) 

with linear, RBF and polynomial kernels. Last, we used random forest (Liaw and 

Wiener 2002) and Bayesian surrogates (Fornalski 2015). We tested these surrogates 

with different training sample sizes. The first sample size was set as 35 (Rodemann 

2019). Then, we doubled the sample size. According to Knowles (2006) and Zhang 

et al. (2010), for n decision variables, the initial population should be 11n − 1 . So we 

used the same logic to choose the third sample size, which was 109.

In Tables  5, 6 and 7, one can see the results for different sample sizes for all 

the surrogate models that were tested (the best results are highlighted in boldface 

in each table). It is worth mentioning that each model was trained ten times, where 

each time the training sample was selected randomly (in the feasible space), and the 

R2 value (Torrie 1960; Glantz and Slinker 1990) was used to evaluate how accurate 

the surrogates were. In the tables we show the average of these ten runs. Besides, a 

random assign algorithm was used to create a sample pool (for all sample sizes) for 
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Table 5  Average of the R2 

values for different surrogate 

models with sample size 35

Annual opera-

tion cost

Annual CO
2
 

emissions

Resilience

Bayesian 0.711 0.856 0.618

Random forest 0.626 0.687 0.802
SVR-linear 0.454 0.368 0.516

SVR-RBF 0.498 0.435 0.482

SVR-polynomial 0.457 0.625 0.664

Kriging-Default 0.734 0.904 0.523

Kriging-RBF 0.756 0.908 0.540

Kriging-Matern 0.768 0.911 0.625

Kriging-ESS 0.768 0.914 0.600

Kriging-RQ 0.765 0.911 0.265

Table 6  Average of the R2 

values for different surrogate 

models with sample size 70

Annual opera-

tion cost

Annual CO
2
 

emissions

Resilience

Bayesian 0.912 0.921 0.788

Random forest 0.869 0.922 0.768

SVR-linear 0.498 0.400 0.498

SVR-RBF 0.645 0.578 0.651

SVR-polynomial 0.747 0.704 0.784

Kriging-Default 0.764 0.914 0.632

Kriging-RBF 0.788 0.917 0.592

Kriging-Matern 0.883 0.901 0.816
Kriging-ESS 0.760 0.810 0.762

Kriging-RQ 0.775 0.921 0.545

Table 7  Average of the R2 

values for different surrogate 

models with sample size 109

Annual opera-

tion cost

Annual CO
2
 

emissions

Resilience

Bayesian 0.827 0.887 0.788

Random forest 0.836 0.864 0.768

SVR-linear 0.476 0.471 0.516

SVR-RBF 0.745 0.564 0.683

SVR-polynomial 0.765 0726 0.767

Kriging-Default 0.689 0.723 0.727

Kriging-RBF 0.689 0.834 0.727

Kriging-Matern 0.825 0.893 0.800
Kriging-ESS 0.754 0.854 0.762

Kriging-RQ 0.795 0.891 0.698
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training the surrogate models. Here, 70 percent of the sample size was used to train 

the surrogates, and the remaining 30 percent was used to test them.

As one can see, SVR surrogates did not perform as well as the others. This could 

be because of their hyper-parameter tuning. On the other hand, Kriging had the best 

performance for at least two objectives with different training sample sizes. Besides, 

the uncertainty information that Kriging provides can be utilized in interactive 

K-RVEA. Moreover, these results are only based on the initial populations, and the 

performance of Kriging models will improve as we update them during the solu-

tion process. Based on the results provided, we could conclude that Kriging models 

have competitive performance, and we selected them to be used in the interactive 

K-RVEA method.
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