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BEAM DYNAMICAL STUDIES OF 

CRYRING 

Abstract 

This thesis consists of two parts. Part 1 (Introduction to Accelerator Physics) 
gives the basis of understanding the formalism and parameters that are used 
in accelerator physics, especially in synchrotron theory. The text is a selected 
collection of relevant topics in this context and it follows closely lecture notes by 
K. Steffen [St85]. As an appendix of part 1 there is a short introduction to electron 
cooling which appears in the latter part of the thesis. 

Part 2 (Beam Dynamical Studies of CRYRING - Lattice Design Criteria and 
Operation Limits) was originally written and the work was done at the Research 
Institute of Physics (AFI) in Stockholm as a part of the CRYRING project. 
Later, after some modifications in the lattice, the text was updated and some 
electron cooling simulation calculations with intrabeam scattering were done at 
the Department of Physics, University of Jyvaskyla. 

CRYRING is a small acceletaror and storage ring for heavy ions and it will replace 
the old classical 225 cm cyclotron. CRYRING will mostly be used for atomic and 
molecular physics but nuclear physics will not be totally forgotten. Atomic physics, 
which will be done inside of the ring, requires the best beam quality. Good quality 
in this context means small energy spread and small beam size and divergence 
( transverse velocity). The beam quality will be increased by using electron cooling. 
Nevertheless, increasing beam quality brings along some unwanted effects. If 
energy spread is decreased too much the beam will get into some instabilities -
the most important of them here is the microwave instability. 

There are some competing processes to cooling. They attempt to increase the 
energy spread and the emittance (divergence) of the beam. These processes are 
residual gas scattering and intrabeam scattering. Due to very strict vaccuum 
requirements residual gas scattering will be more or less harmless as emittance 
growth is concerned whereas intrabeam scattering will set the limit for beam 
quality where one parameter is the beam intensity. 

In part 2 the ion optical requirements set by the physics that will be done inside 
and outside of the accelerator and the operating limits as beam intensity and 
quality are are discussed. 
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Introduction 

For designing an accelerator or trying to understand the behaviour of the beam in 
it, one needs a good set of parameters to describe the optics of the machine. In the 
linear approximation these parameters should not depend on the beam properties 
such as emittance or energy. Twiss parameters are used when dealing with circular 
accelerators. To be strict there are only two of them for each transverse direction: 
betatron wave length /3 and dispersion D. The other main parameters can be 
calculated from /3 and D.

To obtain beam dimensions and divergences one needs to know the Twiss 
parameters of the ring and only one beam parameter, the emittance E or €. The 
normalized emittance {3-y E is a constant of motion and it is independent of beam 
energy. So, if we know the beam emittance at some energy and the machine 
parameters we, in principle, know what is happening in the accelerator all the 
time. 

In the following chapters we derive the Twiss parameters from the linear motion 
and give some examples how these parameters are used in different situations. 

During the writing of this thesis accelerator physicists at CERN decided to use the 
coordinate system { x, y, s} following the beam s being parallel to beam velocity 
instead of the { z, x, s} system frequently used before. This lead to changes of sign 
in some horizontal terms ( x direction). The new convention is used in the latter 
part of this thesis to be consistent with computer programs obtained from CERN. 
However, since most of the literature used still employs the "old" coordinates, the 
introductory theory here uses the { z, x, s} system in order to be more easy to be 
compared with other theory texts. The only place in this paper, where the change 
to the new coordinates appears explicitely is in the MAD-input where positive 
K indicates horizontal focusing while in the theory negative K gives horizontal 
focusing and vertical defocusing. When the reader also remembers that x is always 
the horizontal direction there should not be any risk of confusion. 



-1-

Frequently used symbols and their meanings 

Symbol 

X 
y 
u 
s 
u' = 0 

Up 

1/ 

/3 

'Y 
q 

A 

T 

t 

Meaning of the symbol 

horizontal transverse coordinate 
vertical transverse coordinate 
general transverse coordinate, x or y 
distance along beam axis 
du 

transverse closed orbit shift due to a momentum 
deviation 
average machine radius 
transverse betatron amplitude function in plane ( u, s) 
(betatron wave length devided by 21r) 
_!.� 

2 d, 

phase advance of betatron oscillation 
number of betatron oscillations per revolution in plane 
(u, s) 

Q-shift due to momentum deviation 7
transverse dispersion function 
transverse emittance
= 1r(2uu)2 //3u 
'Y-2 _ 'Yt2 

revolution frequency spread per unit of momentum 
spread, 'Yt being the value of 7 at the transition energy 
where 1/ changes its sign 
�' where c is the velocity of light 

(1 -/32)-½ 
charge state of the ion 
or charge of the ion 
mass number of the ion 
kinetic energy 
kinetic energy divided by mass 

Unit 

Ill 

111 
Ill 

Ill 

rad 
Ill 

Ill 

Ill 

rad 

Ill 

7r m rad 

Coulomb 

Note that the emittance is the area of the transverse phase space ellipse, but the 
value given is the area divided by 7r ( 7r is included in the unit), and it corresponds to 
a beam half width of 2uu (2 x standard deviation). The reader should distinguish 
between /3 = (v/c) and the focusing function f3u • The subscript is dropped to 
shorten the formulae in places where the significance is clear from the context. 
Also the meaning of q should be clear from the context whether it is the charge 
state or the charge of the ion. 

Connections between some parameters are given below: 

where rp
0 

is an arbitrary phase angle ( constant for each ion) 

flu(s) = 1• /3�(s)

(i) 

( ii)
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( iii) 

where 7 is the fractional momentum deviation

(iv) 

Sometimes in the literature Q'/Q = l is called the chromaticity whereas we define 
the chromaticity as Q'. Note the special meaning of the prime, which is here a 
derivative with respect to 7 (usually with respect to s).

More details of synchrotron parameters can be found e.g. in [Gu77], [B177] and 
[Br84]. Note, however, that definitions of some parameters vary a bit in the 
literature. 
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1. Particle Motion in Curved Coordinate System
Following a Reference Trajectory 

1.1 Coordinate System 

Among all particle trajectories we choose one to be a reference trajectory ( center 
of beam). We describe particle trajectories in the vicinity of the reference 
trajectory using right-handed rectangular coordinate system { z, x, s} that follows 
this trajectory, x and z being the horizontal and vertical coordinates respectively 
and s pointing in the direction of the beam. 

zzo 

Figure 1.1 

Curved coordinate system {z,x,s} 

The gyration radius p is taken to be positive when the gyration centre is on the 
negative x-axis , the general gyration radius being then (p + x ). If not mentioned 
explicitly bending takes place only horizontally. Anyway, we could always rotate 
the coordinate system so that there is no bending vertically. 

1.2 Motion in a Homogenous Field Bz (x) = const 

In a homogenous magnetic field, B = B,(x) = canst, a particle will follow a circle 
with curvature 

x" 1 q 
---- = -- = -B, = canst. 
(l+'J.;'2)3/2 p p 
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Here the prime denotes derivative with respect to s. Note the minus sign which 
comes from the choise of gyration centre to be on the negative x-axis. The gyration 
radius p becomes positive with negative B, and positive charge q (F = q( v x B)). 

1.3 Field Expansion in the Curved Coordinate System, with 
B., = B. = o in the Symmetry Plane z = o 

We assume the field symmetry 

Bz(z) = Bz(-z); B.,(z) = -B.,(-z); B,(z) = -B,(-z). 

Then, using V x B = 6 and V • B = 0 with 

q l h=-B,=--
Po P 

k = 
!!._ fJBz 
Po ox 

q 82 Bz 
m=--

Po fJx2 

q a3Bz 
n=--

Po fJx3 

dipole 

quadrupole 

sextupole 

octupole 

one can derive the general field expansion with symmetry plane in the curved 
coordinate system 

(1.2) 
with a: = ½h2 + k and (3 = h" - hk + m. In the linear theory, we need only terms 

q -Bz
-h+kx

p 
q -B.,= kz
p 

'l__B,=h'z. 
p 

Here, again, the prime denotes derivative with respect to s. 

1.4 Betatron Oscillations 

(1.3) 

In an accelerator we need focusing in order to have the beam confined around the 
reference trajectory. We shall now look at the equation of motion in the { z, x, s} 
frame and find the focusing condition for weak focusing. 
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Since the bending takes place only horizontally the time derivatives of the moving 
axes are 

where s is the velocity of the particle projection on the reference orbit. 

The location of the moving frame in a fixed frame is .R. Then 

and 

Setting 

and using 

- '... . - . - '(1 X )V = r = ZZ0 + XX0 + S + - S0 

p 
•2 • 

'... ·.:. .. _ {"
S X }- { , S .. X _ v = r = zz

0 
+ x - -(1 + -) x0 + 2x- + s(l + -)}s 0• 

p p p p 

• I• z = z s 
Z = z

11 s2 + z's

x = x's 
x=x11s2 +x's 

. q -
v=-·(vxB) 

m 

one can evaluate 

II S I Vq
{ I ( 

X
) } z + 72z = -;-- x B, - 1 + - B., 

s sp p 

II s I l( 
X V q

{ I X 
x + -:-x --1+-)=--;-- zB,-(l+-)B 2 } 

s2 
p p s p p 

with � = ✓(1 + �)2 + z'2 + x'2 and, by differentiation,

s l (v2 /s2
)' 

s2 -2 v2 I s2 • 

Considering only the linear part we use 
V X 

-;-�1+- s�o s p 

� � �(1- Ap ) 
P Po Po 

and equations (1.3). Using these notations we can finally write 

z11 

+ kz = 0

x11-(k-�)x=��?,p2 
p p 

(1.4) 

(1.5) 

(1.6) 

For the moment being we can forget the term � �l'. Then the equations (1.7) are 
both simply equations of motion for a harmonic oscillator if 

k > 0

k- � < 0p2 

(vertically) 

(horizontally). 
(1.8) 
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For both directions to be stable simultaneously we have then the condition
1

0 < k < 
2

. 

p 

Note here that the magnitude of the bending field decreases with x when B, < O
(Fig. 1.1).
The particle motion described by Eqs ( 1. 7) is called betatron oscillation, and it
was first derived and applied for weak focusing machines. The equations show
that a certain kind of field can keep the beam confined in both transverse planes
simultaneously. However, it is possible to get stronger overall focusing by altering
focusing and defocusing fields. This will decrease the size of the beam.

1.5 General Solution of Trajectory Equations 

In modern accelerators both bending strength h( s) and the focusing strength k( s)
vary along the reference orbit ( sector focused cyclotrons and alternating gradient
synchrotrons / storage rings). This leads to an oscillatory motion with variable 
restoring force and it is described by Hill's equation

II E_'( ) 1 �p y + sy=--.
p p 

The general solution of this equation is 
y(s) = C(s)y0 + S(s)y'0 + D(s) �P

p 

y'(s) = C'(s)y0 + S'(s)y'0 + D'(s) �P,p 

(1.9)

(1.10)

where C and S are two independent solutions of the homogenous equation, with
initial conditions

( Co
C'o 

So) ( 1 0)
S' o - 0 1 (1.lla)

and D( s) is a particular solution of the inhomogenous equation for � = 1, subject
to appropriate initial conditions. For beam transfer lines one usualfy chooses:

{1.llb)
at the entrance of the channel. To satisfy more general initial conditions for D ( s),
appropriate solutions of the homogenous part of (1.9) have to be added to this
particular solution. The functions C, S and D are called principal trajectories
(Cosinelike, Sinelike and Dispersion). Eqs (1.10) can be written in matrix form

s 

S' 

0 

(1.12)
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It is worth noting that the determinant of the transformation matrix is independentof s, which can be seen by differentiation 
(CS' - SC')'= CS" - SC"= -K(CS - SC)= 0.

From the chosen initial conditions its value is unity, and it stays unity throughoutthe system. Later in the text, it will be shown that the area in the phase space 
{y, y'} occupied by the beam is constant, which essentially is the same as thementioned property of the determinant to be equal to unity. 
The dispersion D(s) subject to the initial conditions (1.llb) can be written as
(St85]

• • 

D(s) = S j �Cdr - C j )sdr
0 0 

• • 

D'(s) = S' j �Cdr - C' j �Sdr.
0 0 

(1.13)

These equations can be derived using the method of variation of constants which permits to express the solution of the inhomogenous linear equation by integralsover the homogenous solutions. 
Equations (1.10) and (1.13) or transformation (1.12) together with (1.13) give usa tool to determine particle cordinates at position s when the initial coordinatesare known. Next we shall give some simple examples of accelerator elements. 
a) Drift space
The magnet is non-existent, and we have

(1.14)

where l is the length of the drift space.
b) Constant B along the reference trajectory; B( s )=const
Using a simple hard edged model where a constant field region starts and endsabrubtly we get the harmonic oscillator equation 

y" + I{ y = 0 with { K = k = const I(= -(k - :,) = const for z for X.
With <p = s}TK1 the solution in the magnet is simply

(C ff,) ( cos <p i sin <p) for K > 0 focusing
C' - 1!. sin <p cos <p 

• 

(g, ff,) ( cosh <p 
� sinh <p

i sinh</J)cosh <p for K < 0 defocusing.
(1.15)
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K = 0 gives just a drift space. Just to check one can see that the determinant is
unity.
The dispersion comes easily using Eqs (1.13) with C and S given above:

and

1 
D = -(1- cos</>)

pK 

D
I 

1 • ,I. 

= v1f s1n'I-'

D = -plKl(l - cosh</>)
D' = �sinh</>

K > 0

K < 0. 

(1.16a) 

(1.16b) 

What we have done so far is not enough in determining the beam properties in
an accelerator. We are only able to follow a particle when we know its initial
values. We need to know what the beam looks like when it makes 1nillions of turns
around the machine. It is evident that if we can find periodic solutions for the
beam envelope and the dispersion we have more adequate tools to describe the
long term behaviour of the ensemble of particles.
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2. Beam Motion in Accelerators

2.1 Amplitude and Phase Function 

An alternative way of formulating the solution of the homogenous Hill's equation
y"+K(s)y=O

is to write the trajectory in quasi-harmonic form
(2.1) 

The function Je vft(s) is just another way of writing the amplitude that variesalong s due to varying restoring force K(s), and <f>(s) is the phase of betatronoscillation that in turn advances unevenly along s depending on the focusingstrength. 
We use the following notations

and rewrite the equation of motion:
y =vev'f3 cos l::,.<f> 

1 
O'. = --/3'; 2 

1 + 0:2 

7=--/3 (2.2) 

y' =ve { 2� cos l::,.<f> - v'f3<t>' sin l::,.<f>} = -ve { ✓fJ cos l::,.<f> + v'f3<1>' sin l::,.<f>}
a, ra/3 - o: --1L.. 

{ V /J 2'Vf3 /3' y" = - ve /3 cos l::,.<f> + 2./lJ <I>' sin l::,.<f>
+ (/�<t>' + v'f3<t>") sint:,.<f>+ v'f3<f>'2 cosl::,.<f>}

y" = - : { ( o:' + ;2 + /3</>'2) cos l::,.<f> + (/3' <I>' + /3</>") sin l::,.<f>} . 
Inserting y and y" into Hill's equation we see that the coefficient of sin l::,.<f> mustbe zero 0 = /3' <I>' + /3</>" = (/3</>')'. 
Thus /3</>'=const. We are free to choose /3</>' = 1, i.e.

, 1 <I>=-;/3 
where � = d</> is the local phase advance of the betatron oscillation.

(2.3) 



From y" we have also
/ 1 + Q

2 T?/3a+--=.n /3 
a'+ 1- K/3 = 0

or 
or 

. 10 -

1 1+ 11312 -/311 
+ K/3 - 4 = 02 /3 

which is a differential equation for the amplitude function /3( s ).

(2.4)

The equation (2.4) could be used to solve /3( s) but there is a more elegant way
of doing it provided that we know the transfer matrix from an entrance point( s = 0) to the desired position s. In a general magnet system /3( s) depends on the
initial values /3(0) and a(0) . The periodic solution can be found by choosing two
orthogonal trajectories

and
( y2) ( .Jiv1J sin ( <p - </10 ) ) 

y� = --j;;(cos�</!+asin�</!) 
with any value of <p0 and given values of /30, a0 and transforming them throughout
the system up to s by matrix multiplication. Then /3( s) can be obtained as

(2.5) 

2.2 Phase Plane Ellipse 

Up to this point we have been looking at the trajectories of a single particle.
However, it is more useful to treat the whole beam. This is done using the conceptof the phase space ellipse. The particle position in the {y, y'} plane 

(y) ( .Jiv1Jcos (<p-<p0) ) 
y1 = --j;;(sin(</!-</!0)+acos(</!-</!0)) (2.6) 

is the parametric representation of an ellipse in the {y, y'} plane with a phase
parameter <p -<p0 • Varying <p0 from 0 to 21r, moves the point (y, y1

) around the
ellipse which is centered about thP. origin (0,0) (rP.fP.rP.nr.P. trajP.r.tory). ThP. P.llipsP.
with some special points is showh in Figure 2.1.
The area of the ellipse is

,r .  ,./iy/3 · ii_ = u = Ev1J 
At fixed beam energies this area stays constant on the condition that the
determinant of the transfer matrix is unity. This is the message of Liouville's
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VEn/n---..i 

-·•yE/nT 

Figure 2.1 

I� 

l:! � 
• 
I 

Beam ellipse in terms of amplitude function /3. 

y 

theorem which means that the particle density in the phase plane and hence the 
area occupied by the beam in {y, y'} space stays constant. The constant that 
characterizes the beam is the emittance t: ( or E = 1rt: in some papers). One 
example of a non-conservative determinant ( emittance blow up) is scattering when 
going through a foil. 

The coordinate representation of the ellipse is 

(2.7) 

which can be checked by inserting (2.6) into it. 

2.3 Calculation of Amplitude Function 

Using the property of constant emittance (Eq. (2. 7)) we are able to calculate /3( s ), 
o:(s) and -y(s) when /30 , 0:0 and 'Yo are known. By inverting the transfer matrix we 
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can come back from (y, y') to (y
0

, y�) 

(Yo ) ( S' -S) ( y) y� - -C' C y' .
Using (2.7) we have at point s

0 "YoY� + 2aoYoY: + f3y'! = constant 
=10(S'y - Sy')2 

+ 2a0(S'y - Sy')(-C'y + Cy') + /30(-C'y + Cy')2 

= ( C'2 /30 - 2C' S'ao + S'2,o) y2 
+ 2 (-CC'/3o + (S'C + SC')ao - S S',o) yy'

+ (C2/3o - 2CSao + S2,o)Y'2 

/3 =,y2 
+ 2ayy' + f3y'2

• 

a 

Then equating the coefficients, /3, a and I can be calculated from -2CS 
CS'+ SC' -2C'S'

S2 ) ( /30) 

-SS' ao .
5 12 /0 

(2.8) 

This allows us to follow the beam ( the phase space ellipse) through transfer lines when the initial conditions are known. 
2.4 Generalized Transfer Matrix 

The generalized transfer matrix can be written in terms of amplitude and phase functions using the trajectory representation (2.6) together with the initial conditions (1.lla), and with 6.4> = 1> - 4>
0 

( 
4,-( cos 6.</> + a0 sin 6.<f>) 
V f3o -#.

v'13
{(a - a0) cos A</>+ (1 + aa0 ) sin A</>}

,JlJ;,-.JIJ sin A</> ) i(cos6.ef>- a sin6.</>) 
(2.9) This form is completely general and it is very useful in practical accelerator work. 

In a circular accelerator the Twiss parameters ( a, /3 and 1) repeat themselves turn after turn. So, after one revolution 
/3 = /3o In a symmetry point a = 0 and the matrix gets a simple form ( C S ) ( cos µ /3 sin µ ) 
C' S' = -b 8ill µ CU8 µ ' 
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where /t = 21rQ is the phase advance per revolution and Q the number of betatron 
oscillations per turn. When a ::/ 0 the matrix for one turn is 

S ) = M ( L) = ( cos µ + _a sinµ 
S' -1�nµ

j3 sinµ ) 
cosµ - a sinµ (2.10) 

where L = 21r R is the circumference of the machine. This equation gives the 
periodic Twiss parameters a, /3 and 7 when the transfer matrice for the whole 
accelerator has been calculated by matrix multiplication. 

It can be easily seen that the generalized matrix can be split into two parts 

where 

M = I cos µ + J sinµ, 

o\ 
1) and

and (by virtue of the third relation of (2.2)) 

J2 
= -I.

(2.11) 

This property allows us to use a relation similar to De Moivre's formula for complex 
numbers 

( cos 0 + j sin 0 r = ( cos m0 + j sin m0). 

For the present case it can be shown[Co58] that the transfer matrix for m turns 
in the accelerator and its inverse may be written as 

Mm 
= I cos(mµ) + J sin(mµ) (2.12a) 

and 
(2.12b) 

This can also be understood by imagining what happens in the machine at a given 
place: /3, a and 7 stay constant turn after turn by definition (periodic solution) 
and the phase advance per turn is constant namely 

µ
= 

/�-

So, after m turns the phase advance will be mµ.

A stability criterion is obtained from Eq. (2.12a). The elements of M are bounded 
for all m if and only if µ is real, which implies (cf. Eq. (2.10)) 

ITr(M)I =IC+ S'I = l2 cosµI :S 2. (2.13) 

Of course, this criterion must be satisfied in both transverse planes. 
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2.5 Periodic Dispersion 

We have earlier written down the expression for dispersion with initial values 
(D, D') = (0, 0) (Eq. (1.13)). In a circular accelerator we need the periodic 
solution which gives us the closed orbit shift due to � 

c;; D.p 
y = yepcosD.</>+ D-.

p 

One notes from Eq. (1.9) and (1.13) that D describes the trajectory which results 
from the change of the orbit curvature in the bending elements on one side and 
the couteraction of the focusing elements on the other. Using Eq. (1.13) and the 
notations 

and writing C(s + L) = C; S(s + L) = S etc. we can write 

(C S)(D) (Sf-Cf) (D) 
C' S' D' + S' f - C' f = D' '

where the first term corresponds to the normal focusing and the second to sources 
of dispersion. The equation means that after one turn we have to come to the 
same point in the {D, D'} space. Now we can write 

yielding 

(C - l)D + SD' = C f- S 1 
C' D + (S' - l)D' = C' f- S' 1 

{(S' - l)(C - 1) - SC'}D = (S' - l)(C f- S 1) - S(C' f- S' 1). 

The determinant S'C - SC' is always unity and thus 

{2 - (C + S')}D = f + S 1- C f 

From the general transfer matrix (2.9) 

2 - (C + S') = 2-TrM = 2- 2 cosµ = 2(1- cos21rQ) = 4sin2 1rQ. 
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Thus 

with 

and 

4 sin2 1rQ • D( s) =
•+L •+L •+L 

J p(\/(r)dr + S(s + L) J p(\/(r)dr - C(s + L) J pt
r

/( r)dr 

• • • 

C(r) = 1-- ( cos Llef, + a(s) sinLlef,)
V ,8( s) 

S( T) = ✓�T�) v7JFl sin Llef, 
C(s + L) = cos21rQ + a(s) sin21rQ 
S(s + L) = ,B(s) sin21rQ 

according to equation (2.9). 
Using the relation 

sin Llef, + sin(27rQ - Llef,) = 2 sin 1rQ cos(Llef, - 1rQ) 
we can finally write for the periodic dispersion 

•+L 

ft(ij I 1 D(s) = 2 . Q -( )vftFlcos(ef,(r)- ef,(s)- 1rQ)dr. sm 1r p T 

2.6 Weak and Strong Focusing 

2.6.1 Weak Focusing 

(2.14) 

Before going to strong focusing, let's take a look at weak focusing and, specifically, at constant gradient ( CG) accelerators. Since the focusing strength k in the Hill'sequation is constant around the machine we can calculate ,8, directly from k 

Similarily for ,B., 

1 1 ,B;, = P2 - k.

If we, for example, for simplicity take ,B., = ,B, then 
,B., = ,8, = ,8 = ,/?,p. 

(2.15) 

(2.16) 

(2.17) 

From this we see that when going to larger accelerators ( with larger energies) the beam dimensions grow as ✓P· If one increases focusing in one plane to obtain 
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smaller /3 ( and ,/i v1J) the decreased focusing in the other plane causes larger beam size. 
Another way of examining this is by considering the phase advance per turn which is /l = f 1 = �if!_ = 21rQ.
Then the number of betatron oscillations is 

or 
Q= !i,_ /3 

(2.18) 
From this we can see that by increasing the Q-value one can decrease the beam size. Although this derivation applies for weak focusing it is approximately true for other machines too. From (2.15) and (2.16) or (2.17) we see that for a CG machine Q., ,z < 1. Much higher Q-values can be obtained by "strong focusing", arrangement where focusing and defocusing elements alternate. 

2.6.2 Strong Focusing - FODO Lattice 

Most high energy accelerators consist of a number of FODO-cells (horizontally focusing element - straight section ( or bending) - defocusing element - straight section ( or bending)). As will be seen, this kind of structure provides stronger focusing than e.g. CG structure. 
In practice the parameter s /fKT = </> occuring in the transfer matrices happens to be small compared to unity. This allows us to simplify the transfer matrices by concentrating the whole focusing in the centre of the element and by letting s ------> 0. At the same time sin</> ------> </> = s /fKT. The focusing provided by the element will be the same as earlier, i.e. 7 = IKll =canst where / is the focal length of the element and 6.s = l its effective geometrical length. Using these approximations the transfer matrices for ( de )focusing elements get the form 

M= (�\ n, (2.19) 
The upper sign applies to focusing, and the lower sign to defocusing. Edge focusing has been neglected here. 
By using transfer matrices of type (2.19) we are able to study Twiss parameters in a FODO-lattice. For simplicity, we put /focusing = - /defocusing = f = ¼- We consider a FODO-cell of length L. Then starting at an F quadrupole, the transfer matrix for the whole cell becomes 

(2.20) 
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Comparing coefficients with Eq. (2.10) yields 

L8 
• jl= 4sm

2

f3x = -/:- (1 + sin I!) = f3max
smµ 2 

f3z = -/:- (1 - sin t:) = f3min smµ 2 
1 + sin 11: 

a - - 2 

"' - cos i;-

- 1 - sin 1;-
0'.z - COS I:!. 

2 

{2.21) 

The parameters at the D quadrupoles are obtained by exchanging the the indeces 
x <-> z in {2.21). The values of a are at the entrance of the quadrupole {they are 
zero in the middle of the quadrupoles). 

The variation of f3max/ L and f3min/ L are shown in Figure 2.2 as a function of the 
phase advace per cell. In order to determine the smallest maximum we write 

I!_= 
1 + sin 1;-

L 2 sin 1 cos� 
1 1 + sin r 
2 sin rcos r 

Then by differentiating with respect to r and equating with O we get 

1
2 

( cos r • sin r cos r - ( 1 + sin r) ( cos 2 r - sin 2 r) ) = O

sin2 r{2 + sin r) = 1 sin r =sin�= 0.618 

µ = 76.34° 

min{f3max) = 1.66£. 
. {2.22) 

This is the smallest f3max that can be obtained. For constant µ, in order to decrease 
Lone must have stronger integrated gradients 6 = Kl (cf. Eq. (2.21)). 

As can be seen from Figure 2.2, the phase advance per cell can, in practice, be
chosen between, say, 50° and 90° with almost constant f3max•

2.6.3 Other Lattices 

The most commonly used accelerator structure is the FODO-lattice described 
above. FODO-machines exist both in combined function arrangement ( e.g. FNAL
booster) where the focusing and the bending are combined in gradient magnets 
and in the separated function version ( e.g. CERN SPS) where focusing is provided 
by quadrupole - and bending by zero gradient dipole magnets. Another structure 
that is used in earlier synchrotrons (CERN PS, Brookhaven AGS) is a combined 
function FOFDOD-lattice. In a FOFDOD-lattice correction elements are placed 
between F's or D's where the two (3-values differ from each other. This permits 
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Maximum and minimum /3 versus phase advanceµ per one FODO-cell. 

one to correct both transverse planes fairly independent of each other. However, 
a given phase advance in a FOFDOD-lattice requires more focusing strength than 
in a FODO-lattice and the smallest f3max is usually bigger. 

Small machines, like ASTRID, CRYRING (He85] and LEAR (Le80], [Le82], [Le84] 
cannot usually use FODO-structure due to the short circumference and many 
special constraints on /3-values and the number and length of the straight sections. 
There is no general rule what kind of structure should be used in these machines. 
They must be designed "individually" taking into account the requirements set by 
the physics that will be done inside or outside of the ring together with the normal 
constraints coming from injection, extraction, acceleration, cooling etc. 
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2.6.4 Insertions 

In larger accelerators it is possible to change lattice parameters locally without 
affecting them elsewhere in the ring by using matched insertions. The lattice 
functions (/3, D) and their derivatives at the entrance and at the exit of these 
special sections are equal to those of the unperturbed lattice at the insertion points. 

The most usual cases where insertions are used are 1} low f3 -insertions for 
interaction points, 2} non-dispersive straight sections, 3) long straight sections, 
4) large f3 -insertions.

In small machines such insertions may occupy a major part of the circumference. 
The structure may then be ragarded as a "series of insertions" rather that a highly 
periodic lattice with a few special sections. 
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3. A Non-ideal Beam in a Non-ideal Accelerator

3.1 The Effect of an Error in Quadrupole Strength 

So far, we have considered only an ideal beam in a perfect accelerator. Next we 
outline the important aspects of field errors and tolerances. We shall review the 
effect of an error in quadrupole strength. Other field imperfections can be treated 
in a similar way (see e.g. [Co58, p 26-27]). The error is assumed to be so small 
that the change of ,6-values can be regarded as a small perturbation. 

The true quadrupole qradient at position s can be written as 

k(s) = k0(s) + 6k(s),

where k0( s) applies for a perfect machine. We shall calculate the effect of 6 k on the 
Q-value by looking at the change it produces in the transfer matrix for one turn. 
The length of the quadrupole is taken to be ds. Then the unperturbed quadrupole 
has a matrix 

au<l perturbed, a malri.x. 

m= 
( 

1 ds)-[k
0(s) + 6k(s)]ds 1 

The unperturbed transfer matrix for the whole machine 

includes m
0

• 

(3.1) 

(3.2) 

(2.10) 

The perturbed matrix can be calculated by first tracking through the ring 
(M

0
) starting from the location of the quadrupole, back-tracking through the 

unperturbed quadrupole ( m0 ), and then proceeding through the perturbed 
quadrupole (m). By this means we have replaced the ideal quadrupole by the 
perturbed one. This can be written as 

Since -1 ( 1 mmo = -6k(s)ds
the perturbed matrix becomes 

M= 

( 
cos /Lo + a O sin /Lo -6k(s)ds(cosµ0 + a0 sinµ0 )- -y0 sinµ0 

/30 sin µ0 
)-6 k( s )ds/30 sin µ0 + cos µ0 - a O sin /Lo 

(3.3) 
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Remembering that ½Tr(M) = cos µ0 the change in cosµ is

(3.4)

Equation (3.4) qives the effect of an error in one short quadrupole on the Q-value.
Allowing all quadrupoles to have an error 6k( s) we obtain for the whole accelerator

D.Q = _!__ f ,8(s)6k(s)ds.4,r (3.5)

Note that Eq. (3.5) is approximate since we have kept ,B(s) unchanged. For higher
accuracy one should have higher order terms but these turn out to be negligible
as long as ( D.Q / sin 2,rQ) « 1 )[ Co58, p. 26-27]. The change of the tune can lead
to resonant beam loss as will be discussed in section 3.3.

3.2 Chromaticity 

The focusing of particles depends on their momentum (Eqs (1.1) and (1.9)). We
restrict ourselves to quadrupoles here. The focusing strength of a quadrupole

q&Bz 

k = -----

P &x 

varies inversely with the momentum. Then

We define a quantity called the chromaticity

or
Q' 

= 
D.Q 

D.p/p

D.Q = Q' D.p_
p 

Combining equations (3.5) and (3.6) we get

or
D.Q = _!__ f ,B(s)D.k(s)ds = [- _!__ f ,B(s)k(s)ds] D.p

4,r 4,r p 
Q' = - _!__ f ,8( s )k( s )ds.4,r 

(3.6)

(3.7)

(3.8)

Frequently in the litterature the quantity Q'/Q = ( is called the chromaticity.
The chromaticity of the machine without sextupoles ( except for those unavoidably
present in the fringing field of the bending magnets) is called the natural
chromaticity of the lattice.
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Jn FODO-lattices the natnral Q' is usually ahout -1.3Q for both planes. The
main source of chromaticity in large rings are the matching quadrupoles for low f3
-insertions. For example, in LEP [LEP79] f3max at the focusing quadrupoles in the
low /3 -insertions is about 4.6f3max(regular lattice).

In machines designed to accept large momentum spread 7 Q' should be small in
order to avoid crossing the resonances. For example, if� = ± 1 % and Q' = 10 one
would have an "operating line" of length 0.2 in the working diagram which means
that many particles in the beam (with a certain �;) would lie on a dangerous
resonance and hence be lost.

In order to correct chromaticity one needs focusing that changes with momentum.
This can be obtained by combining amplitude dependent focusing and closed
orbit shift due to momentum deviation, i.e. dispersion. A sextupole produces
a quadrupole component L'1k at a distance D7: 

11 k = 

g_ a2 B, -D l::!.p
= mD 11P.

p 8x 2 p p
m 

Now, combining (3.5) and (3.10) we obtain

(3.9)

(3.10)

Replacing m <- -m the same equation applies to the vertical tune shift as can
be verified from (3.9) and (1.2) (replacing B, by Em)• The quantity in the square
brackets can be adjusted to compensate for the natural chromaticity. An important
source of sextupole fields m are the fringing fields of dipoles and they must be
carefully studied when determining the chromaticity of the accelerator[Dr82]. In 
order to correct both horizontal and vertical natural chromaticities independently
the locations of the sextupoles have to be chosen so that in the horizontal case
f3m � /3, and in the vertical case /3, � /3,,,.

The natural chromaticity Q' is an average quantity. There are, however, local
chromatic effects too. Due to momentum dependent focusing /3-values are
fuuctiuus uf 7· The local change of /3 can be obtained from the matrix (3.3)
comparing it with Eq. (2.10). There can be places in the accelerator where the
user needs very small beam dimensions which means small /3-values. At these
places it is favourable to minimize a(:�/p) in order to keep the interaction volume
as small as possible. These local corrections are carried out with additional families
of sextupoles.

3.3 Operating Point and Resonances 

The Q-values, i.e. the number of betatron oscillations per turn, are often plotted
in a working diagram with Q"' and Q z as its axes. The point ( Q "'' Q z) is called the
operating point. In practice there is always a certain Q-spread due to momentum
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k+½ Gx 

Figure 3.1 

Working diagram with some resonance lines 

k+l 

dependent focusing and the space charge tune shift which is not the same for all 
particles. 

There are zones in the working diagram that are dangerous for a particle circulating 
in the accelerator. If (Fig. 3.1) 

nQ =p, 

where n and p are integer, a particle got into a resonance can be lost. The same 
can happen when the more general resonance condition is met: 

lQ,,+mQz=P, (3.11) 

Here Ill+ 1ml is the order of the resonance and p is the azimuthal harmonic which 
drives it. This equation gives lines as drawn in Fig. 3.1. 

The stopbands of first, second, third and fourth order and nonlinear resonance 
lines up to fourth order have been drawn in the diagram. The order n determines 
the spacing of lines: third order stopbands converge on a point which occurs at 
every ½ integer Q-value including the integer itself, and so on. The order, n, 
is related to the order of the driving multipole so that 2n poles drive nth order 
resonances. They drive also lower order resonances: a sextupole drives first and 
third order resonances and an octupole second and fourth order resonances, but 
here we are only interested in the highest order. Usually the highest "dangerous" 
order of resonance is four but experience has shown that when the beam is stored 
times for much longer than a second, higher order resonances may cause trouble. 
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The resonance lines are called stop bands because they have a width which depends 
on the field error and, in the case of non-linear resonances, on the amplitude of 
betatron oscillation of the particle. 

We shall briefly discuss resonances of order three as this is the lowest order that is 
amplitude dependent and because this resonance is often used for slow extraction. 

3.3.1 The Third Order Resonance 

The third order resonance is driven by sextupole fields. Before going into details 
we introduce a normalized phase space which gives a circle when a = 0: the usual
x' is replaced by p., = f3x' and x is kept unchanged.

We consider a short sextupole of length l, near a horizontal f3max location ( a � 0).
Its field is 

11B = !8
2 Bzx2 

= 
B"

x2 .
2 8:r:2 2 

It kicks a particle with a displacement x = a cos Q0

q f3lB" 2 q f3lB" a2 2 !1p., = ---x = ----cos Q0. 
p 2 p 2 

The kick changes both phase and amplitude of the betatron oscillation: 

11a !1p . q f3lB" a . 
- = -smQ0 = ---cos2 Q0smQ0

a a p 2 
!1p qf3lB"a 3 11</> = - - cos Q0 = --- - cos Q0
a p 2 

q f3lB"a 
= ---(cos3Q0+3cosQ0). 

p 8

(3.12) 

( 3.12) 

(3.14) 

(3.15a) 

(3.15b) 

If Q is near a third integer, the kicks on three successive turns appear as in Fig.
3.2. 

The second term in ( 3.15b) averages to zero over three turns and the phase shift 
is then 

AQ _ A ,i._ 'J_/3lB"a cos 3Q0
21ru - u'I-' - ------. 

p 8 
(3.16) 

Close to Q = l/3, where l is an integer, cos 3Q0 varies slowly, wandering within a
band about the unperturbed Q0 : 

qf3lB"a q/3/B"a
Qo - p� < Qo < Qo + p�• (3.17) 

When the perturbed Q, after a number of turns, coincides with 3p, the argument 
of the cosine advances by 3Q X 21r on each subsequent revolution ( full turns) and
the particle has been locked on to the resonance. 
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Phase space diagram following the motion of a particle at a 3rd order 
resonance 

The amplitude perturbation (3.14) can be rewritten as 

�a qf3lB"a . 
- = - -- sm3Q0. 
a p 8 

(3.18) 

This too is locked on, increasing steadily the amplitude until the particle is lost. 

We see that both stopband width and growth rate are amplitude-dependent. If Q
0 

is a distance �Q from the third integer resonance line, particles with amplitudes 
less than 

(3.19) 

will never lock on and are in a central region of stability. The limit gives the 
amplitude of the metastable points in the phase space where there is resonant 
condition but infinitely slow growth. The symmetry of Eq. (3.18) suggests that 
there are three fixed points at 0 = 0, \", and \". The fixed points are joined by 
a separatrix, which is the bound of stable motion. A more rigorous theory, which 
will be omitted here, would reveal that the separatrix is triangular in shape with 
three arms to which particles cling on their way out of the machine (Fig. 3.3). 

Suppose now that we have an azimuthal distribution of sextupoles. Expressing 
this as a Fourier series 

B"(0) = I:B;i cosl0 (3.20) 
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Phase space diagram at a fixed azimuthal position 

f q /3B" 
�<j, = L 

- - - cos 3QB cos lBdB. 
l p 6 

This integral is large and finite if 

l = 3Q. 

( 3.21) 

(3.22) 

Here l gives the azimuthal frequency of sextupoles that act coherently when driving 
the stopband. Periodicities in the lattice and in the multipole pattern can thus 
mix to drive resonances. Eq. (3.21) qives also the "medicine" to cure unwanted 
resonances by using a set of sextupoles to generate a particular Fourier component 
which compensates the excitation due to field errors. 

Third order resonance can be used in slow extraction. By choosing a proper phase 
and strangth of the driving sextupoles one can slowly shrink the stable area to 
zero, and particles will follow the arms of the separatrix until they have jumped 
over the septum (cf. Fig. 3.3). Note that ideally all particles will be extracted 
since they jump from one arm to the next every successive turns and thus come 
back to the same arm after three turns (with a larger amplitude). 

The resonant condition for the third order resonance, 3Q = integer, arises because 
of the cos3 QB term in Eq. (3.15a), which in turn stems from the x2 dependence 
of the sextupole field. The x dependence of the quadrupole fields gives a resonant 
condition 2Q = integer. These examples show how the orders of resonances and 
multipoles are related to each other. 

The a
2 dependence in Eq (3.13) leads to a linear dependence of width upon 

amplitude. For the half integer resonance a1 dependence leads to a width which is 
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independent of amplitude, and in the case of fourth-order resonance the a3 term 
gives a parabolic dependence of width upon amplitude. 

Here we have studied only cases of type nQ = I. We could similarily treat the case 
IQ

"' 
+ mQ z = p. We only give a working rule [W i85] which says that one should 

keep any systematic resonance 

IQ
,,

+ mQ, = S(number ofsuperperiods) X integer 

out of the half integer square in which Q is situated. 

(3.23) 
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Al. A Short Introduction to Electron Cooling 

Al.1 Background 

During the last two decades two techniques of improving the quality of charged 
particle beams have been developed: stochastic cooling [Me72] and electron cooling
[Bu66, Be81, S083]. Stochastic cooling has been used succesfully to accumulate 
antiprotons which were collided with protons in the CERN-SPS to produce the 
intermediate vector bosons predicted by the unifying electro-weak theory. This 
work lead to the Nobel Prize in 1984 (shared by Carlo Rubbia and Simon van der 
Meer[Me84]). Electron cooling has been tested at the Nuclear Physics Institute of 
the Siberian Branch of the USSR Academy of Science at Novosibirsk during the 
years 1966 - 1976 [De77], at CERN during the Initial Cooling Experiment (ICE), 
which was started at 1977, and at Fermilab. 

The theory of electron cooling was initiated at Novosibirsk by G.I. Budger, A. 
Skrinsky, and A. Derbenev [De77, De78, Bu78] who described the basic kinetics of 
e--cooling and later refined the theory. 

Today, there are several electron cooling projects around the world [ Be81a, Bo87, 
De77a, Fi84, Fr87, Ha85, Hii82, Ma85, Mo86a, No84, 0187, Po84, Sc87] which 
show the need for the good quality beams that cooling processes can provide. 
Physics that can be done with high quality ion beams has been discussed e.g. in 
[Da87, Fr85, Ki84, Mi87, Po84a, Wo86]. The special problems related to heavy 
ions and very low velocities have been treated in (Fr84, He84, He85b]. 

A review of electron cooling experiments has been published by H. Poth (Po85] 
and the differences of electron cooling and stochastic cooling has been discussed 
by D. Mohl (Mo84, Mo86]. 

Al.2 Basic Theory of Electron Cooling 

Electron cooling is used in order to decrease the longitudinal and trasverse velocity 
spread of an ion beam. The cooling is carried out in a storage ring where the stored 
beam overlaps with a "cold" electron beam in a 1 to 3 meters long section. The 
mean velocities of the two beams are the same and in the rest frame of the beams 
the motion of the particles is like a motion of two mixed gases. Both components 
of the mixed gas have their own temperature ( average kinetic energy), and through 
collisions ( Coulomb collisions in the case of ions) the warmer gas gives heat to the 
cooler one. In an electron cooler device the electrons are contineously renewed and 
thus the temperature of the stored beam approaches the temperature of the cold 
e--beam. 
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The transverse and longitudinal temperature of the beams are defined as
T.1 = Mc2/32 -y 2 (02.i_)
Tu

= Mc2 /32 ( b.p
)
2 = Mc2/32 ·, 2 (011),

p 

where (02 ) is the square of the relative rms velocity spread, defined as
V

rms 0.1 = _1,_ ,/Jc and
vrms 

0 - _II_ II - ,/Jc.

(Al.l) 

(Al.2) 

The velocities v are expressed in the particle frame, whereas /Jc is the velocity of
the particle frame with respect to the laboratory frame.
According to Spitzer [Sp56] the relaxation time of the temperature for charged
particles in a two-component plasma ( caverned by Rutherford scattering) is

T = 
M1 M2 

(I!_
+ 

�) 312 

4v'31rnLZ; Z�e4 M1 M2 

where the relaxation time in the particle frame is defined as
dT1
dt T 

(Al.3)

(Al.4)
Here Z and M are the atomic number and mass, respectively, n is the particle
density (number of electrons per unit volume in our present case) and T is thetemperature. L is the Coulomb logarithm

Pmax 

L _ J dT _ l Pmax
- - n 

' T Pmin
Pmln 

(Al.5) 

where Pmin and Pmax are the minimum and maximum impact parameters of the
collisions, respectively.
The factor 4v'37r comes from averaging over the velocity distribution. It varies in
different publications depending on the distribution chosen and on the definition
of 1/T as temperature ( � �f = ,,\ !!l) or velocity spread ( � �n relaxation rate.
This is of no relevance here as we are only interested in the functional dependence
of T on rms velocities and on the ions itself (mass, atomic number).
Applying Eq. (Al.3) to the electron-ion interaction ( electron cooling) we get[M082]

Tei= meM ( Te + Ti ) 3
/2 

4v'31rneZ2e4 Lei me M (Al.6)
Trasforming this to the laboratory frame and using the equation of continuity
Je = nee/Jc, we obtain

(Al.7)
or
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T (X M/34"(6 
(02 02)3/2

J.z2 e + t ' 
(Al.8) 

This equation gives the basic parametrical dependence of the time constant: 

i) The velocity spread dependence T <X (0! + 0;)3 12 leads to two velocity
regions where the larger velocity spread dominates:

T <X max{0!, en.

ii) The cooling time is inversely proportional to the electron current density Je 

which is quite apparent.

iii) At a constant current density T increases strongly with energy as (34
-y

5.

iv) For fixed angular divergence the time constant for heavy ions goes as M / Z2
• 

In addition the cooling time depends on some device characteristics. Perhaps most 
important is the perveance of the electron gun. The perveance gives the limiting 
electron current obtained for a given gun voltage: 

le= pu3/2. (Al.9) 

For a constant perveance gun (and in the nonrelativistic approximation where 
T = eU <X /32 ): 

I. = pu3/2 <X /33 p

Thus for a constant perveance e- -gun and a given divergence one has

T (X (3, 

However, if 0_Le � 0_Li we have 

since 

1 
T <X 

(32 

V
rms 

0_j_ = ---1c._ <Xl//3 
(3c 

( v'.i_";' is ideally constant and give by the cathode temperature). 

There are other parameters and processes that influence the performance of a 
storage ring with electron cooling. To mention only some of them: the velocity 
spread of the electron beam due to space charge, the tune shift of the ion beam due 
toe- -beam, as well as effects related to the solenoidal magnetic field which guides 
the electrons and to the reduction of the longitudinal electron velocity spread as 
the e-beam is accelerated. The combination of this magnetized electron - and 
flattened distribution effects lead to so called fast cooling[Pa84, Di84]. To give a 
full account would demand a separate paper. The aim of this chapter was only 
to give an introduction to electron cooling so that the reader is familiar with the 
subject when it appears in part 2 of this thesis. 
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PART 2 

BEAM DYNAMICAL STUDIES OF 

CRYRING 

Lattice Design Criteria and 

Operation Limits 
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1 Introduction 

A special feature of CRYRING(He85a] is that it will be a multi-purpose ring: 
It will be operated both in synchrotron mode and in storage mode. In storage 
mode various kinds of experiments are planned to be done in the ring and then 
one usually has to cool the beam (e- -cooling). There are, therefore, different 
requirements regarding beam properties at different parts of the circumference. 
The size of the ring itself is limited (max circumference 50 m) to save cost 
and to house the machine in an existing hall. Therefore, it is not possible to 
have special insertions for all different functions (injection, extraction, cooling, 
acceleration/deceleration, merged beams, crossed beams, ... ). Some functions must 
be combined and this calls for flexibility of optics and beam characteristics. Typical 
constraints for an accelerator like CRYRING are listed in table 1.1. 

Table 1.1. 

Typical optical constraints for CRYRING 

injection large horizontal /3, small dispersion 

extraction large horizontal /3 
Q"' near a third order resonance 
long enough straight section 

acceleration small dispersion 

crossed beams small f3u-values, small dispersion 
long enough straight section 

merged beams small divergence 
long enough straight section 

e-- cooling not too large f3u-values ( equilibrium emittance) 
not too small f3u-values ( cooling time) 
long enough straight section 

chromaticity correction non-zero dispersion 
horizontal correction: /3:i: > /3

y 

vertical correction : /3
y 

> f3x 
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2 Lattice Design 

Before going into details of the lattice calculations we first discuss the functions of 
CRYRING and the beam quality that is needed. 

2.1 Extraction and Injection 

At this stage of stndy it is foreseen that multi-turn injection is used. To achieve a 
large duty cycle ( 30 % ) slow extraction will be used and hence the operation point 
should be in the vicinity of a horizontal third order resonance. The resonance 
Q

,, 
= 2.33 is excited with a sextupole field of appropriate harmonic content. 

For injection and extraction it is good to have large horizontal ,8-values. It has been 
planned to use electrostatic deflectors as proposed for ELENA [Le84]. Because the 
maximum momentum of the extracted beam is q • _430 Me V / c, we need a relatively 
long septum and thus it was decided to separate injection and extraction. 

More rigorous studies of injection and extraction schemes has been performed and 
the results can be found in reference [An85]. 

2.2 Electron Cooling 

Most experiments planned to be done in the ring need very good longitudinal and 
transverse energy resolution. This calls for small � and small emittances. To 

p 

attain such a beam quality electron cooling is used. It is the transverse cooling 
that depends on the lattice functions. Cooling time sets the lower limit to .8u

values and the requirement of decreasing the transverse emittance sets the upper 
limit[He83]. 

We shall discuss the upper Jim.it first: 

If space-charge effects are neglected, the equilibrium beam divergence 0; can be 
written as 

(2.1) 

where m is the electron mass and M the mass of the ion. This comes from 
the condition that in equilibrium electrons and ions should have the same 
transverse temperature. Space-charge effects and int.rabeam scattering increase t.he 
equilibrium divergence. The transverse electron energy is a function of the electron 
gun cathode temperature and a cathode temperature of 1000 °C corresponds to an 
average electron energy of 0.055 e V in one degree of freedom which leads to a 0 e of 
typically 20 mrad for CRYRING at low beam energies. To obtain efficient cooling 
the divergence 0; of the ions corresponding to a given emittance should be large. 
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In any case the initial rms divergence of the beam should be larger than shown 
above. The rms divergence of the ion beam with an emittance E

u is 

(E:: 0rms = y � (2.2) 

where f3u is taken at a symmetry point in the center of the cooling section where 
we assume a= -½df3u /ds = 0. 

Note that the emittance corresponds to a beam half width of 2u. 

From equations (2.1) and (2.2) we see that for given emittances largest acceptable 
f3u 

to ensure cooling is proportional to the mass of the ion, so that the lightest 
ions give the lowest limit for the f3u • The lightest ion planned to be cooled in 
CRYRING is Ar. Below we determine the limits for betatron amplitude functions 
in the cooling section corresponding to Ar. 

We start from the assumption that the electron energy is 0.1 e V in one degree of 
freedom and that the lowest beam energy is 200 keV /u. This energy corresponds 
to an electron divergence of 30 mrad which leads to an Ar-beam divergence of 0.11 
mrad by virtue of Eq. (2.1). If we now require the electron temperature to be 
smaller than the temperature of the stored beam we get the maximum permissible 
f3u-values from 

Eu f3u < 40?
' 

(2.3) 

where Eu is given in units (ir m rad). If one wants the final emittance to be smaller 
than 0.5 ,r nun mrad, one requires 

f3u < 10 Ill (2.4) 

This is not a bad assumption, since in some of the experiments planned the final 
emittance should of the order of 0.5 ,r nun mrad. If smaller emittances are required 
the /3-values should be smaller. 

Next we discuss the lower limit of f3u : 

The cooling time is proportional to ( see part one) 

l 

T (X ( 0; + 0;) 2 (2.5) 

To get the fastest possible cooling the rms divergence of the ions must he smaller 
than the rms divergence of the electrons. Because of the quadratic addition an 
ion divergence 20 % smaller than the electron divergence gives about a factor 2 
longer cooling time compared to zero ion divergence. Hence we can require that 
the ion divergence should not be larger than 80 % of the electron divergence. The 
electron divergence is smallest at large beam energies. The highest energy of the 
cooled beam has not yet been decided for CRYRING, but it will not be larger than 
10 MeV /u and most probably it will be much lower. If we, however, have such a 
fast beam the corresponding electron divergence is about 3 mrad (0.055 eV /degree 
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Figure 2.1 

Ion and electron (rest mass) velocity distributions 

of freedom). Then the maximum allowed ion divergence is about 2.4 mrad. The 
smallest permissible .3u•value is then (by virtue of Eq. (2.2)) 

0; S 0.80, � 2.4 mrad (2.6) 

Because the injection energy will be of the order of 300 keV /u, adiabatic damping
can cause the transverse emittances for a 10 MeV /u beam to be 10 ir mm mrad 
with planned apertures. Hence the lower limit (2.6) for .3u is 

.3u > 0.43 Ill (2.7) 

If emittance blow up occurs .3u has to be increased accordingly. To fulfill the two 
requirements discussed we thus obtain for the betatron amplitude functions in the 
electron cooling section: 

0.4 Ill < _3u < 10 Ill (2.8) 

The dispersion in the electron cooling section should also be determined. However, 
there are too many open parameters to be able to specify a unique optimum. If 
there is no dispersion and the transverse emittances are not too big all particles 
will be cooled longitudinally i.e. !::i.p/p will be decreased. If the dispersion and 
the initial momentum spread are large enough, there is a certain portion of ions 
whose momentum will be increased whereas the other ions will be cooled normally 
(and even faster than without dispersion). The electron velocity as a function of 
distance from the sy mmetry axis is a parabola due to electron beam space charge. 
The ion velocity distribution follows a line whose slope is 1/ Du , These are sketched 
in figure 2.1. 
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In longitudinal cooling the velocity of the ions tends to approach the electron 
velocity. Hence, the ions in the stable region move towards the crossing of the 
curves and the ions in the unstable region move away from the beam axis with 
increasing velocity. The smaller the dispersion, the steeper the t:.p/p-line in 
figure 2.1 thus increasing the range of "stable" t:.p/p-values. We must, however, 
remember that the cooling becomes slower when the velocity difference between 
electrons and ions increases, as in the case where D is too small such that the 
t:.p/p-line matches poorly with a branch of the parabola in fiqure 2.1. 

For stability reasons (Keil-Schnell limit for microwave instability[Ke69]), it may be 
necessary to have a "stabilizing" tail in the momentum distribution[Ho83l[Ho84]. 
We can use dispersion in the cooling section to build up this tail but there are also 
other methods for making the tail (time dependent electron energy). To be able to 
determine the value of the dispersion we must know the momentum distribution 
of the ions at the beginning of the cooling, and also the properties of the cooling 
device. In any case, it seems safe to have a small but finite dispersion in the cooling 
section where the exact value is determined from a compromise between the width 
of the stable t:.p-range and the cooling speed. 

When we consider electron cooling at low beam energies, the initial momentum 
spread might be too large without some kind of pre-cooling ( too many particles in 
the unstable region or just too long cooling time due to large velocity difference). 
One way of pre-cooling the slow beam is to first accelerate it to a higher energy to 
achieve smaller momentum spread, cool the beam at the higher energy and then 
decelerate it to lower energies, and perhaps cool the beam in several steps during 
the deceleration. One notes that the electron cooling itself is a challenging topic 
of research. 

2.3 Merged Beams 

One of the most interesting ( and most difficult) class of experiments planned to 
be done in CRYRING are experiments with two merging ion beams. In such a 
situation it is possible to achieve very low center of mass energies, below 1 e V 
may be ( with certain restrictions). Very low center of mass energies call for a 
very good energy resolution, both longitudinal and transverse. Hence one must 
have the smallest possible � and divergence in both beams. Small divergence 

p 

means a small transverse emittance and/or large ,l'.3.,-values. The properties of the 
external beam are determined by the injection line and therefore we discuss only 
the focusing of the stored beam. 

The center of mass energy is determined by the energy difference between the 
two beams and the angle between them. Even if the two beams are absolutely 
parallel and syncronized in energy we will get some contribution to Ecm from the 
transverse motion, since it is not possible to have zero emittance, and from the 
logitudinal motion since ¥ cannot be zero either. The motion of the ions in the 
beam increases both Ecm and t:.Ecm • 

If we assume Gaussian beams we can calculate the expectation value of the center 
of mass energy. It doesn't actually correspond to the maximum amplitude of the 
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Ecm 
distribution since the transverse motion of the ions has only an increasing 

contribution to Ecm and the distribution of the square of the transverse velocity 
is not symmetrical. However, if � for the two beams is large enough the non
synunetrical contribution from the transverse motion cannot be seen. 

Below the expectation value and the standard deviation of the center of mass 
energy distribution in the case of merged beams are calculated. Before doing 
any calculations we have to make some assumptions concerning the velocity 
distributions of the two heams. 

2.3.1 Assumptions 

We assume that all the velocity components of the two beams are Gaussian ( see 
figures 2.2 and 2.3). 

Figure 2.2 

J .!!.. 

a; 

Beam distribution in the transverse phase space. 
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In figure 2.2 the transverse amplitude distribution is shown, but one gets a 
similiar distribution for the beam divergence and hence for the transverse velocity 
component as well. The area of the phase space ellipse, i.e. the emittance E, can 
be written as 

or 

(2.9) 

where a and /3 are the Twiss parameters and /3* is /3 at a symmetry point where we 
have an upright phase space ellipse (a= 0). The coefficient Ou relates emittance 
to the standard deviation of the beam dimension Uu , If the emittance Eis defined 
to contain 95 % of particles in the phase space Ou = /6. Similarily (fig. 2.3) 
O

p
= 1.96 defines the momentum range (t:.p/p = ±o

p
u

p
) that contains 95 % of the 

ions. 

-1
�p

dN 

d{tip/p)

Figure 2.3 

The logitudinal velocity distribution ( � ). 

Finally, we assume that the velocities of the two beams do not differ too much. This 
is naturally always true in the practical merged beams experiments. We can allow 
a small angle between the two beams, but in the experiments the aim usually is to 
align the beams as well as possible. Furthermore, we impose no constraints on the 
positions of the colliding particles. The positions of two colliding particles should 
be equal except for a small "uncertainty" t:.r = � given by the cross-section 
of the reaction under study ( fo S: 10-7 cm). Non-zero dispersion together with
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!:::.p/p will change the position of the particle ( which will also mix the longitudinal 
and the transverse phase space). Similarily, the divergence distribution changes 
with the position being broadest in the center of the beam. Since the constraint 
on the poisition has been left out the value for l':::.Ecm will be somewhat larger than 
in the reality. Also the "transverse component" of the center of mass energy will 
be a little larger. In cases where the longitudinal part in the energy resolution is 
dominating the effect on the Ecm is neqligible. 

2.3.2 The expectation value for the center of mass energy Ecm 

The center of mass energy for two colliding ions is (in nonrelativistic approxima
tion): 

where 

The distributions of the velocity components and divergences are 

V ~ N((V),o-t) 
x' ~ N( (x'), o-;,) 

y' ~ N( (y'), o-!,) 

(2.10) 

(2.11) 

Since, in the case of merged beams, the divergences x' and y' are small the 
longitudinal velocities can be written (in the nonrelativistic case where T =
½mV2 ): 

'T1 r,,, 
Vi= - = y2t1m1 

(2.12) 

We can also substitute Vi � Vi � V into the transverse part and hence we get for 
the expectation value 

From the distributions we get 

((Vi -Vil 2) = ((Vi)- (Vi)l2 

+ ut, + uh 
((x� -x;)2) = ((x�) -(x;))2 + 0-;,

1 

+ o-;�
((y� - y�)

2

) = ((y�) - (y�))
2 

+ o-i; + o-i; 

(2.13) 

(2.14) 

If the average specific energy of the two beams is t and the specific energy difference
is !:::.t, we can write 

(2.15) 
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where V = ,/2t. Writing erv in terms of ';}' we have (again in nonrelativistic 
approximation) 

erv = V er
P 

(2.16) 

where er
P 

is the standard deviation for the � distribution. Making the 
substitutions shown above, we can finally write 

where 

and 

er; = ( L\::p r 
2 E.,

er.,, = <2 f3•u E 7r 

"' 
2 

E
y er y' = 6};;13z

m1m2 
µ= 

m1 + m2

( 2.17) 

When the two beams are perfectly parallel and sychronized in energy only the last 
term in the brackets remains and the c.m. energy is determined by the velocity 
spreads of the two beams. 

2.3.3 The standard deviation of the center of mass energy 

The variance of the center of mass energy is 

er2{Ecm} = �µ{ er2 {(Vi - Vi)2
} + V4 {er2 {(x� - x;)2

} + (er2 {(y( - y�)2
})} 

( 2.18) 
We calculate first the logitudinal part and write 

(2.19) 

and thus 
(2.20) 

The square of a variable that is normally distributed with parameters N(O, 1) is 
x2 distributed with one degree of freedom and its variance is 2, i.e. 

and 

(VII -
µ)

2 

~ Xi er11 
(2.21a) 

(2.21b) 
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So, we can write

0"
2 { Vil + /L

2 - 2Vjlµ} = 2u"
u2{Vjr} + 4µ2u2{Vj1} + 2(-21LV11Vj1) - 2(Vjj)(-21tVj1) = 2u" (2.22)

Knowing that

and combining some terms we get 
(2.23) 

It is relatively easy to verify that
(2.24)

Substituting this into the previous equation and combining terms we get
(2.25)

This can be written in terms of the known parameters as

The variances of the transverse components can be written in the form of equation
( 2.25) and thus we can finally write down the standard deviation of cent er of mass
energy as

u(E,m) � ,/,µt (u/, + •i,) (•i, + •i, + 2 (1 - [,�)')
... + (u2 , + u2 ,) (u2 , + u2

, + 2(x� - x;)2)
X

l 
X

2 
X

l 
X

2 

(2.27)

Note, however, that in practice the distribution is not infinite but truncated by the
machine acceptances. Both beams are therefore not pure Gaussian. This means
that the approximations made tend to lead to a somewhat pessimistic estimate of 
both Ecm and l::..Ecm •

2.3.4 Merged beams in CRYRING 

One of the design goals for CRYRING was to optitnize the lattice functions for
merged beams experiments in one straight section. This means that we have to
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keep the beam divergences as small as possible in the interaction region. As the 
beams travel together it is evident that it is not allowed to use any quadrupoles 
at this straight section. The f3 values have to be as large as possible to have small 
divergence for given emittance {c.f. Eq. {2.2)). 

Later in the text we shall discuss the attainable quality of the stored beam 
(intabeam scattering vs. cooling). Here we use approximate values of emittance 
and � to study the possibility of merged beam experiments with very low center 

p 

of mass energy and good energy resolution. 

The horizontal /3* in the merged beams straight section that resulted from a lattice 
optimization is 2.17 m and the vertical 2.67 m. The values for the extarnal beam 
depend on the injection line and here we assume that the optics of this line can be 
adjusted so that f3; = 5 m and /3; = 3 m, for example. 

As an example, we take the case of Ar18+ and H-. Due to intrabeam scattering 
one does not want to go below the beam energy of 200 ke V /u because of the strong 
energy dependence in the divergence and momentum growth rates ((3314). Even 
at this energy the maximum number of stored Ar ions is � 106 for emittances 
E., � 0.2 ,r mm mrad, Ey 

� 0.2 ,r mm mrad and b..p/p � 2 • 10-4• The distribution
of the cent er of mass energy in the collisions is shown in figure 2.4 for two cases. The 
broader distribution is perhaps more realistic and corresponds to �(Ar) = 2-10-4,
�:(H) = 10-4, E., ,

y
(Ar) = 0.2 ,r 1mn mrad and E., ,

y
(H) = l ,r nun mrad. The 

expectation value for the center of mass energy (Ecm) = 1.0 eV. The energy of 
the Ar beam is 200 keV /u and the energy difference of the beams is 889 eV /u. 
The full width of half maximum is � 0.25 eV and the standard deviation of the 
distribution cr{Ecm} = 0.105 eV. 

The narrower distribution is for the same case except that b..p/p = 10-5 for
both beams and that E., ,y{Ar) = 0.1,r mm mrad which is the emittance that 
corresponds to the transverse electron temperature in the cooler device at this 
beam energy. The full width of half maximum of the distribution is � 0.04 
eV (cr{Ecm} = 0.033eV). One can see that the distribution is not symmetrical 
because the transverse part is dominating and it only increases Ecm provided that 
(x\ - x;) = M - y�) = 0. 

Here we have assumed that the two beams are absolutely collinear. If the beam 
energies stay constant a small angle between the beams shifts (Ecm) to higher 
values ( see equation 2.17). At the same time the peak becomes broader ( eq. 2.27) 
but this broadening in most cases is smaller compared to the energy shift. In 
practical experiments the data is collected from several injected and cooled pulses 
and thus it is necessary to keep the possible angle between the two beams as stable 
as possible. 

The energy shift due to an alignement error has to be compared with the "best" 
width of the energy peak without errors. In this case it seems that one cannot 
come below FWHM � 25% (cr{Ecm} � 11%). If the alignement errors are 1 mrad 
both horizontally and vertically the (Ecm) shift is 0.4 eV. We require that the 
energy shift should not exceed 0.5 FWHM and this means that the alignement 
errors should not be larger than 0.5 mrad. If a shift of 0.1 FWHM is allowed the 
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Figure 2.4 

Center of mass energy distribution for merged beams with Ex ,y(Ar) 
0.2,r mmmrad, Ex ,y(H) = l,r mm mrad, �(Ar)= 2-10-4, �(H) = l• 
10-4 (case I), and Ex ,y(Ar) = 0.1,r mm mrad, Ex ,y(H) = l ,r mm mrad, 
�(Ar,H) = 1 · 10-5 (case II) 

alignement should be done with a precision of� 0.2 mrad. Actually, the derivative 
of dispersion dD/ds = D' changes the horizontal angle of the beams. D' for the 
stored beam is zero aml fur the uuter beam it can he adjusted by the injection 
line. However, at the same time the f3 values are changed as well. The f3 values 
are more important for this kind of experiments since 6.p/p for the outer beam 
can be assumed to be small. Since � D' gives the change of ( x 1) we require that 
D' < 1 if 6.p/p � 10-4•

Another limit for the angle between the two beams comes from the fact that the 
beams should overlap as much as possible to give the maximum collision rate. The 
diameters of the beams are of the order of 1 - 4 mm if emittances around 0.2 - 1 
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Table 2.1 

(Ecm) [e VJ for different horizontal and vertical alignement errors �x', �y' 
(mrad) for Ar1B+ ( 7 == 2 • 10-4

, E., ,Y == 0.2 7r mm mrad, t == 200 keV /u)

and H- ( 7 == 10-4, E., ,Y == l ,r mm mrad, t == 200.889 keV /u)

(�x') 

(�y'} 0.0 0.1 0.2 
0.0 1.000 1.002 1.008 
0.1 1.002 1.004 1.010 
0.2 1.008 1.010 1.016 

-· ··- r--- ...... 
0.3 1.018 1.020 1.025 
0.5 1.049 1.051 1.057 
1.0 1.195 1.197 1.203 

Table 2.2 

0.3 0.5 
1.018 1.049 
1.020 1.051 
1.025 1.057 

·-------� 

1.035 1.066 
1.066 1.098 
1.213 1.244 

1.0 
1.195 
1.197 
1.203 

- - ·--·-----

1.213 
1.244 
1.390 

u{ Ecm} [e VJ for different horizontal and vertical alignement errors �x', 
�y' (mrad) for Ar18+ ( 7 == 2 • 10-4

, Ex ,y == 0.2 ,r nun mrad, t == 200

ke V /u) and H- ( 7 == 10-4
, E., ,Y == l 1r 1mn mrad, t == 200.889 ke V /u)

(�x') 
(�y') 0.0 0.1 0.2 0.3 0.5 1.0 

0.0 0.105 0.106 0.108 0.110 0.118 0.151 
0.1 0.106 0.107 0.108 0.111 0.119 0.151 

·---- -·-----·---· ·-1-- -o.i2i-
----------� 

0.2 0.108 0.109 0.110 0.113 0.153 
0.3 0.112 0.113 0.114 0.117 0.124 0.155 

·-•··-- ··-· 

�6.if,i-
-··· 

0.5 0.123 0.125 0.127 0.134 0.163 
1.0 0.165 0.166 0.167 0.168 0.174 0.197 

,r mm mrad are achieved. The length of the merged beams straight section is 3.0 
m which gives raise to an alignement precision of� 0.3 1mad. 

Overlapping of the beams requires also that the horizontal and vertical tolerances 
for the position of the beams are of the order of 0.2 - 1.0 mm corresponding to the 
rms radii of the beams. This is not an easy task. The only way to make this easier 
is to make the f3 values of the outer beam larger ( the diameter of the beam goes 
as ,/jj). This would also be favourable to the energy resolution. The emittances 
cannot be made larger in order to increase the beam dimensions since it would 
destroy the transverse energy resolution. 
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2.4 Crossed Beams 

Among other things it has been proposed to use CRYRING for crossed beams 
experiments . When we have two beams with specific energies t1 and t2 (kinetic 
energy divided by mass) colliding at an angle a the cent er of mass energy is 
obtained easily from vector calculus and it is (in nonrelativistic approximation) 

Ecm = /.t(li + t2 - 2� COS a) (2.28) 

From this equation we see that the divergences of the beams directly give the 
transverse energy resolution, i.e. a divergence of 1 mrad gives an energy resolution 
of the order of 0.1 % (a :::::, 90°). By electron cooling one should easily reach 
beam divergences of 1 mrad and smaller ( eq. 2.1 ). The external beam cannot be 
cooled ( which is also the case in the merged beams experiments) and the transverse 
emittances must be reduced with slits in the injection beam line. 

It is not obvious how to do crossed beams experiments in order to determine 
absolute cross-sections, since in that case one has to know the beam profiles rather 
exactly and when the beam has been cooled the diameter will be of the order of mm, 
which makes it rather difficult to determine its profile. One way of circumventing 
the beam profile determination is to sweep the other beam [Br83]. So far, we 
have not in detail studied the capability of this method to measure absolute cross
sections with the beam sizes that CRYRING would provide. 

If we then consider the luminosity of the beams we know that the diameter of each 
beam should be as small as possible. 

The dispersion is not a severe problem here because it affects only the horizontal 
width of the beam and thus doesn't introduce a thick target when the detection 
takes place vertically. The momentum spread of the cooled beam is, anyhow, very 
small so that the beam width increase due to dispersion should be of the order of 
one nun at the most. 

2.5 Lattice Calculations 

In the lattice calculations the program MAD [Is85] has been used. The main goal 
was to find a lattice that could be used both in the storage ( cooler ring) and 
synchrotron mode with almost the same magnet excitation, which means that the 
lattice functions should be suitable for experiments done in the storage mode and 
that the horizontal Q-value should be in the vicinity of a third order resonance 
to permit a slow resonant extraction. We also wanted to rninimize the natural 
chromaticities in order to avoid too strong chromaticity correction sextupoles. 
Therefore the quadrupoles shouldn't be too strong either. 

One possible lattice was presented at the 1985 Particle Accelerator Conference in 
Vancouver [He85]. However, this lattice was then modified during the extraction 
studies [An85]. The modified lattice is also presented in reference [He86]. However, 
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during the year 1986 a decision was made to place the the ion source and the 
RFQ(Sc85] in the former cyclotron vault which then left the whole "experimental 
area" for the ring. This allowed us to increase the length of the ring up to almost 50 
meters. One reason for lattice modifications was that the earlier lattice had sector 
dipoles. Because of fast ramping the dipoles must be laminated. Since it is easier 
to manufacture laminated rectangular magnets than sector magnets it was decided 
to search for a lattice where rectangular dipoles could be used. Another natural 
reason was that it is always easier to find space in a longer ring for equipment such 
as the electron cooling device, pumps, diagnostics etc. 

In Appendix 1 an input of the latest lattice(Ba87](Je87] for program MAD ( version 
4.02) is shown, from which at least a MAD-user can see the details of the lattice. 
The corresponding MAD output is also given in Appendix 1. The ring has six 
symmetrical superperiods as shown in figure 2.5. The lengths of the long straight 
sections may be somewhat varied in the final lattice. 

The lattice parameters of CRYRING are shown in table 2.3 

Table 2.3 

The lattice parameters of CRYRING 

{3':in 2.17 m 
/3;;1in 2.67 lll 

/31;1ax 5.68 Ill 

13;ax 7.30 m 
nmax 

"' 
1.88 m 

D,, (straight) 1.39 Ill 

Q,, 2.30 

Qy 
2.27 

Q� -1.36 (natural)

Q� -3.30 (natural)

ft 2.29

The natural chromaticities can be brought near to zero with the sextupole strengts 
(K2) shown in the MAD-input (2.3, -3.2). The third order resonance (3Q

,, = 7) 
is excited by changing the strengths of sextupoles to introduce a 7th harmonic 
perturbation without changing the harmonic zero. In this way the chromaticity 
does not change. 

The lattice functions are shown in figure 2.6. 

In the case of merged beams the q/ A ratio for positive external ions in the merged 
beams case (i) must be large (to get high enough velocity through acceleration 
from a small platform), (ii) must be smaller than that for the stored beam (larger 
bending radius than the stored one for approximately same velocities). This 
means that the variety of available positive external beams in the merged beams 
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P.Xperiments is relatively small. One possibility is to inject neutral beams but 
in that case one might meet some problems concerning divergences ( transverse 
emittances ). The case of negative external beams should be the easiest one. 

Table 2.4 gives the main parameters of the ring. The lengths of elements in the 
MAD-input and in table 2.4 are naturally effective lengths. 

Circumference 
Maximum momentum 
Dipoles 

Quadrupoles 

Sextupoles 

Table 2.4 

Main parameters of CRYRING 

laminated, parallel endfaces 
no field gradient 
munber 
bending angle 
bending radius 
vertical gap 

horizontal focusing 
number 
magnetic length 
max gradient 
vertical focusing 
number 
magnetic length 
max gradient 

horizontal focusing 
number 
magnetic length 
max gradient 
vertical focusing 
number 
magnetic length 
max gradient 

48.63 111 
q 430 MeV /c 

12 
30 degrees 
1.2111 
10.0 cm 

12 
30 cm 
5 T/m 

6 

30 cm 
5 T/m 

12 
20 cm 
12 T/m2 

12 
20 cm 
12 T/m2 

In addition to the magnetic elements listed above, we need small dipoles to 
introduce an orbit bump in the injection and in the extraction. 
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Figure 2.5 

The lattice of CRYRING 
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Figure 2.6 

The lattice functions in one half of a superperiod of CRYRING 
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3 Operation Limits 

In a storage ring there are always certain limits for intensity and momentum spread. 
In our case (low energy, small ring) the space charge tune shift sets a limit for the 
maximum number of ions in the ring and the microwave instability (Keil-Schnell 
limit) may set an upper bound for the momentum spread at a certain intensity. 
It seems that for highly charged ions such as Ar18+ , with injection energy 300 
keV /u, the maximum number of ions in the ring is 108 

- 109 depending on the 
available aperture and whether multiturn injection is used or not. This limit goes 
down when the energy is decreased. However, with lower energies one usually 
wants very good energy precision and then the Keil-Schnell limit gives a smaller 
maximum intensity than the space charge tune shift. These limits are discussed 
below, and in particular the possibility of working above the Keil-Schnell limit is 
raised. 

3.1 Space Charge Limit 

An ion in the beam feels the electromagnetic field of the rest of the beam. This 
field is defocusing. Since this defocusing is not the same for all particles it cannot 
be totally compensated for by adjusting quadrupole fields. One can write the 
following expression for the maximum number of ions in the ring for a given tune 
shift bQ [Bo70]. 

where 

E ., 

E y 

f3 

'i' 
B1 
bQ 
A 

q 

F 

N = _1r E-----"---'y('--1 _+_✓-'---E---'-., /_E---"-y'----)(3_2_'i'3_B---'-1_b Q_A
Froq2 

horizontal emittance [1r m rad] 
vertical emittance [1r m rad] 
v/c 
(1 - /32)-½ 
bunching factor (:::; 1) 
tune shift 
mass nun1ber 
charge state 
qeometrical factor ( � 1) 
classical proton radius (1.5 • 10- 18 m) 

(3.1) 

The emittances given above are areas of phase space ellipses, and the values must 
be given without the factor 1r. The geometrical factor F depends on the beam and 
vacuum tube dimensions. F is 1 for a circular vacuum tube and for an elliptical 
tube it is a little larger. We can use F = 1. 

Note that N for low velocities is proportional to energy if emittance is constant. 
However, in adiabatic acceleration/ deceleration it is the normalized emittance /J'i' E
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that is constant and thus in practice we have N proportional to velocity. Another 
important factor is that N goes down as q-2

• We usually want 6Q to be smaller 
than 0.1 so that the beam doesn't get into destructive resonances. The only way 
to increase the intensity of the beam is then to make the emittances larger or in 
the case of synchrotron mode to increase the injection energy. The emittance can 
be increased with multi turn injection ( where the horizontal phase space is filled by 
moving the equilibrium orbit inwards during the injection) and/or by filling the 
vertical phase space by using either an orbit bump or deflectors. 

Below we give two tables of maximum number of ions in the ring, one for the 
injection energy and one for the lowest planned energy. 

Table 3.1 

Space char�e limit for CRYRING at t = 300 keV /u 
and 6Q = 0.1 

a) E., = Ey = 100 1r mm mrad (multi turn injection)
b) E., = Ey = 101r mm mrad

Ion N (a) N (b) 
Ar1H+ 3 · 10� ·BJ 3 · 108 ·BJ 

KrJ•-t- 2 · 109 
• B 1 2 · 108 

• B 1____
--:;-g- 2 -16-S-:-B, Xe44+ 2·10 ·B

1 
PbOU-j- 1.5 · lO

ij ·BJ 1.5 · 10
8 ·BJ 

Table 3.2 

Space charge limit for CRYRING at t = 200 keV /u 
and 6Q = 0.01 

a) E., = Ey = 101r mm mrad
b) E., = Ey = 0.2 1r mm mrad ( cooled beam)

Ion N (a) N (b) 
A?•+ 5 · 107 

• B t 1·106 -B1
Aris+ 2 · 107 ·BJ 4 -10

5 
• B1 

Kr34+ 1 · 10' ·BJ 
--------- 5--- -----3·10 -B1 

Xe44+ 1·101·Bt 3·10"·Bi 

-- - �-

Pb'U-t- g -10'. n, 2, lQb · B -r-J --
Pbbu+ 1 · 107 

• B 1 3·10 ·B1 

Table 3.1 gives the maximum intensity when we are not decelerating the ions 
but either store them at the injection energy or accelerate them. The injection 
is the most critical as regards beam intensity in the synchrotron mode. When 
accelerating particles the bunching factor BJ is smaller than 1, and in injection 
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one can use a value of 0.2 - 0.3, which means that the maximum number of highly 
charged ions in the ring is about 108 (provided that emittances in injection are 
about 10 1r mm mrad). By multi-turn injection we can fill the transverse phase 
space and hence the maximum number of ions may be increased up to 109 • 

In table 3.2 we can use Bf = 1 since usually with such a low energy we have a 
coasting beam. When considering merged beams experiments we should take N (b) 
rather than N (a) since we must have as small emittance as possible to reduce the 
transverse motion to its minimum. Long storage time leads to smaller acceptable 
6Q and hence to smaller space charge limit (which is proportional to 6Q). It may 
be as small as 0.01 in the worst case as shown in the table. The price of good 
energy resolution (transverse) in this case means smaller intensity. 

As can be seen in the next chapter, it turns out that for low energy experiments 
with good energy resolution, the intensity might be more sensitive to the microwave 
instability (Keil-Schnell) than to the space charge limit. 

3.2 Keil-Schnell Limit 

If one injects a cold beam ( D.p / p = 0) in a ring the longitudinal phase space will 
blow up due to the microwave instability. If the momentum spread of the beam is 
sufficiently large this blow up will not occur. For a given momentum spread the 
Keil-Schnell criterion [Ke69] gives us the maximum number of ions that we can have 
in the ring without getting the microwave instability. For low energies the space 
charge component is dominating in the longitudinal coupling impedance(La85] and 
thus there is not much to be done to increase the K.S.-limit. In this case the limit 
can be written as 

where 
§_p_ 
p 

Zo 
g 
b 

a 

I 

the FWHM value of the momentum distribution 
µoc = 3770 
1 + 2 ln(b/ a)
radius of the vacuum tube 
average radius of the beam 
beam current 

The maximum number of ions in the ring is then 

(3.2) 

(3.3) 

Here we have taken 1111 = ,-
2

- ,t-
2 to be equal to 0.8 since the transition I for

CRYRING is about 2.3. For g � 5 the equation above can be written as 

(3.4) 
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Above we have left ,-3 out since for energies in CRYRING it is � 1. R is the 
average radius of the ring. Again, we have (A/q2 )f32 dependence, which does not 
favour highly charged ions with low energy. 

Table 3.3 gives N K.S. for three different beam energies corresponding to different 
£2 
p 

Table 3.3 

Keil-Schnell limit for ions in CRYRINC (R � 7.7 m) with 
a) t = 200 keV /u, 5p/p = 2 • 10-4 

b) t = 300 keV /u , 8p/p = 10-2 (injection) 
c) t = 5 MeV/u , 8p/p = 10-3 

Ion a b C 

--Arlo-,- 1.6 · 1ou 6.0 · 10� 1.0 · 10� 
Kr�•-t- 9.6 . 106 3.6 . 109 5.9 · 108 

- -xe44-+ 9.o-:-i·o"r-�-i4-:-10� 5.6 . 1oir 

Pbov-,- 7.6 · 1ou 2.9 . 109 4.7 • 108 

From table 3.3 we can easily see that for low energies and a very small momentum 
spread the Keil-Schnell criterion gives a much smaller limit for the numoer or-ions 
in the ring than the limit from space charge tune shift provided that the allowable 
tune shift is larger than 0.01. One must note that if we reduce 8p/p by a factor 10 
the Keil-Schnell intensity limit goes down by a factor of 1/100. 

In merged beams experiments one needs !lp/p of the order of 10-4 and hence at 
the first sight they don't seem very promising from the intensity point of view. 
There are, however, some theoretical predictions for cases where N � N1 cs. that 
this condition could lead to a non-destructive instability with a "stabilizing tail" 
in the momentum distribution [Ho83]. The momentum distribution would consist 
of a very narrow peak and a tail which contains N(tail) � 0.67 •N(total)-(!RZ/�Z) 
particles ( Z is the longitudinal coupling impedance). One could get this stabilizing 
tail also by electron cooling if there is enough dispersion. For the beam energies 
in CRYRING the imaginary part of Z is of the order of some k!1's (space charge 
component) and the resistive (real) part is usually 50 n at the most. Therefore only 
a minor part of the ions has to be in the tail of the momentum distribution. Thus 
it seems that the Keil-Schnell limit in our case is perhaps not a severe limitation 
at all. However, it turns out that in most cases intrabeam scattering prevents us 
to come above the K.-S. limit (see the next chapter). 

Note that the Keil-Schnell limit may play a role in the synchrotron mode too if one 
wants to have very good energy resolution. There is at least one way to improve 
the energy resolution of the extracted beam even if the energy resolution of the 
stored beam is not good enough. One can choose a fraction of the momentum 
distribution by having large chromaticity so that a certain part of the beam 
( certain momentum) gets to the thin.I order rew11ance and will be extracted due 
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to betatron oscillation amplitude growth. Particles can be moved to the resonance 
by introducing a longitudinal RF-noise which changes their momentum. When 
the momentum of an ion becomes suitable "its operation point" is near enough 
to the third order resonance and the particle will be extracted with a well defined 
momentmn. 

3.3 Intrabeam Scattering 

Scattering of the particles within the beam in some cases tends to decrease the 
phase space density[Pi74] [Pa86]. In other words, the temperature of the beam 
tends to increase. For machines where the focusing functions (/3 and D) do not vary 
around the ring "It < 1 and hence one is always above the transition energy. If the 
focusing functions vary along the machine in a smooth manner it may be possible 
to work below the transition energy. In a such case the total temperature cannot 
increase and heating is only possible as transfer from one direction to another. In 
strong focusing machines where the lattice parameters vary strongly along the ring 
it is possible to increase the total temperature also below the transition. 

Below we discuss briefly the theory of intrabeam scattering derived by A. Piwinski 
[Pi74] and give the growth times for !:l.p/p and betatron amplitudes presented by
M. Martini [Ma84].

3.3.1 About the theory of intrabeam scattering 

To the first order, the radial displacement of the particle from the closed orbit 
is the smn of betatron amplitude and linear closed orbit shift due to momentum 
deviation 

(3.5) 

where D., is the dispersion function. From now on we write D instead of D., 

because in most rings bending takes place only in the horizontal plane and thus 
there is no vertical dispersion. The angle ( small) between the particle trajectory 
and the closed orbit is then 

x' = 

dx 
=

p., = x� + D' Ap
ds p p 

(3.6) 

Since the betatron oscillations satisfy the Courant and Snyder invariant[Co58] 

where 
1 + a;

"Ix
= ---/3., 

and 

the change of the emittance can be written as 

/3.,0E =(1 + a;)(2x136x13 + ox1) 
+ 2a.,/3.,(x�ox13 + x13ox� + ox13ox�)

+ /3;(2x�ox� + ox� 
2)

(3. 7) 

(3.8) 
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We can assume that the radial position does not change during the collision and so one can write 

and 
6p 6x13 = -D-
P 

D.p 6p since 6(-) = -
p p 

6x� = 6x' - D16P = 6P"'
- D16Pp p p 

(3.9a) 

(3.9b) 

When knowing the dynamics of intrabeam scattering i.e. collision of particles in a repulsive Coulomb field and using the Rutherford scattering cross-section we can calculate the momentum change of the ions in the collisions. So, we can finally calculate the emittance end D.p/p growth. The momentum change of the particles is a function of scattering angles and according to Piwinski [Pi74] 

where 

6p 1 - - -
- = - ( 2a-y sin 1/1 sin 4> + ")' € ( cos 1/1 - 1)) p 2 

6p., 1 { [ �2 
_ €0 -J _ _ } 

- = - ( 1 + -
2 

cos 4> - - sin 4> sin 1/1 + 0( cos 1/1 - 1) p 2 4a 2a 

;jJ and i/J are the scattering and azimuthal angles between the particles in the center of mass frame after the collision 2a is the angle between the incident particles in the laboratory frame 

(3.10) 

The Rutherford scattering cross-section for non-relativistic particle velocities in the C.M. system is 
d!1 = sin ;jJd;jJdi{J (3.11) 

/Jc is the particle velocity in the C.M. system and r; is the classical ion radius 
2 

r; = 11_ 1.535 • 10-18m A (3.12) 

where q is the charge state of the ion and A the mass number. This shows how the propability of scattering increases rapidly with the charge state of the beam ( q4 ).
Starting from these equations one can derive (see references [Pi74] and [Ma84]) the expressions for momentum and betatron angle ( or amplitude) growth rates. The growth rates for �, x' and y' can be expressed as 

1 nA 2 - = (-(1 - d )Ji)
Tp 2 1 A

2 -2 
-=(---['2+(d +d)/t]) 
Ta, • 2 1 A 
- = (-'3)
Ty• 2 

for bunched beams for coasting beams 
(3.13) 
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Here A is a constant and it is

where

r; 

L 

u, 

C 

E.,,Ey
(3 

'Y 

coasting
bunched

relates emittance to the standard deviation of the beam
dimension ( or divergence) and
relates 7 to the standard deviation of 7 distribution
number of particles in the beam, or per bunch
classical ion radius
orbit length
standard deviation of bunch length
velocity of light
horizonral and vertical emittance
v/c 
E/Eo

Further, the following notations have been used

and

where

b = o.
.,D + (3

.,D' 

u2 = u2 (3 + n 2 u2 

x x13 P' 

Uz 2 
a= -(1 + a

.,
), 

u.,,

q = 2(3 �
y-:;;; 

(D = D., )
<J'p<J'XfJ 

<Tz = --,
-yu., 

d= 
u

p D, 
u., 

The scattering functions are triple integrals

where

and

r
"" 

r r
2

" f; = k; lo dz lo dµ lo dvsinµg;(µv)exp[-U(µv)z]ln(l + z2 ) 

U(µv) = [sin2 µ cos v + sin2 µ( a sin v - d cos v )2 
+ b2 cos2 1i]/ c2 

g1 (µv) = 1 - 3 sin 2 ii cos v
g2 (µv) = 1 - 3 sin3 µ sin2 v + 6d sin µ sin v cos v / a
g3(µv) = 1 - cos2 µ

The brackets ( ... ) denote the average around the machine.

(3.14) 

(3.15) 

(3.16) 

( 3.17) 
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The shown formulae for the growth rates take into account the variation of lattice 
functions around the ring and thus the fact that a =f. 0 and D' =f. 0. In his paper 
[Pi74], Piwinski assumes constant /3 and D and so a = 0 and D' = 0. These 
assumptions lead to a very interesting Piwinski invariant 

( 3.18) 

The three terms of the invariant correspond to the temperature of the beam in the 
two transverse and the longitudinal direction. Depending on the values of D and 
/3

., 
we get two cases 

1. 
D2 1 
-
13

2 < 2 
"' i 

All three oscillation amplitudes are limited, i.e. particles can be considered to
be as particles of a gas in a dosed box. Tliis rneuus tliat tlie totul tempernl.ure 
cannot .increase, there is only transfer of oscillation energy from one direction into
another. An equilibrium must exist.

2. 

The total oscillation energy .increases until it exceeds the acceptance limitations
(walls of tl1e vacuum d1amber). There is no equilibrium.

In machines with sufficiently smooth lattice functions D2 / /32 :::::: ( 1 htr )2 and 
thus the case 1 corresponds to energies below transition and 2 above transition. 
However, in strong focusing machines where D and /3

., vary (much) along the 
ring and the calculation of growth speeds must be made in small steps along a 
superperiod. In any case, we see that it is favourable to have high transition 
energy to minimize the "beam heating" by intrabeam scattering. 

The constant A ( sec eq. 3.14) shows the strong dependence on beam energy (/33;4) 
and similarily the dependence on the charge state ( rf ex q4 ). 

The scattering functions f; and hence the intrabeam growth rates may vary very 
rapidly with emittances and � in a given lattice. Next we shall give some results 
of intrabeam scattering calculations applied to CRYRING. 

3.3.2 Intrabeam scattering in CRYRING 

As most of the experiments in CllY ll1N (j use slow highly charged heavy ions ( small 
/3, large q) intra beam scattering is one of the most limiting factors when considering 
cooled beams in the ring. Therefore a computer program INTRABEAM (based 
on Martinis papers [Ma84] and [Ma84a]) was written to study how this fenomenon 
affects the beam quality. The program uses lattice parameters calculated by the 
program MAD. The listing of the program is in the appendix 2. 

As an example 200 keV /u Ar18+ beam was studied. Although the scattering 
functions f; are also functions of /3 and q2 / A lhis <lepemlem:e is su weak cul!lpare<l 
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Figure 3.1 
The momentum growth time (seconds) for Ar18+ ions with 

N = 105 

�=1.7-10-4 

p 

at 200 keV /u 

to same dependence on constant A that one can scale the 1/r values calculated for 
200 ke V /u Ar1B+ to other ions and energies without any greater error using the 
scaling law 

1 q4 1 
-:;: <X A <X N 

A2 f33 "f 4 
(3.19) 

The beam heating by intrabeam scattering is compensated by strong enough 
electron cooling. The transverse (emittance) cooling times for the studied case 
are of the order of some seconds when the electron rms divergence is larger than 
the rms ion divergence. The longitudinal cooling is usually somewhat faster ( since 
the longitudinal rms velocity is smaller than the transverse one). Of course, the 
cooling times are functions of lattice functions and the cooling device parameters. 
The lattice functions have been optimized for cooling and so the largest uncertainty 
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Figure 3.2 

The horizontal divergence growth times (seconds) 
for Ar1s+ with N = 105 and 
7 = 1.7 · 10-4 at 200 keV /u

comes from the cooler device ( which does not exist yet). The growth times from 
intrabeam scattering calculations that are presented below are for divergences and 
not for emittances. The relationship between the growth rates for emittance and 
divergence is 

1 2 
(3.20) 

This relation is useful if we calculate the cooling time from Spizer's formula ( see 
Eq. (Al.3) in part one) which refers to temperature (i.e. emittance) relaxation. 
However, as mentioned the uncertainty in cooling times is so large that al Lhi� 
stage a factor of 2 is of no importance. 

As an example, in figure 3.1 we show the time constant Tp for b.p/p with different 
horizontal and vertical emittances and with b.p/p = 1.7 • 10-4 (105 ions). The
horizontal amplitude time constant T:x • (growth time) is shown in figure 3.2 with 
b.p / p = 1. 7 • 10-4• The corresponding vertical time constant is shown in figure 3.3.

When accelerating ions for nuclear physics with maximum beam intensity (limited 
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The vertical divergence growth times (seconds) 
for Ar18+ with N = 105 and � = 1.7 • 10-4 
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by space charge tune shift) intrabeam scattering should not be a problem. At 
single turn injection with injection energy of 300 ke V /u the emittances are of the 
order of 10 1r mm mrad and t:i.p/p around 1 %. This gives rise to growth times 

1"p = -85 s 
1"x• = 12 S 

r
y
•=Bs 

for 108 Ar18+ ions. As CRYRING is cycled faster than 1 acceleration/s these times 
do not cause any trouble. At multiturn injection the transverse entlttances as well 
as the intensity are a factor of 10 larger and the growth times are also larger. 

Comparing the equilibrium emittances and l::i.p/p values with the values given by 
the Keil-Schnell lintlt it seems that in most cases intrabeam scattering prevents 
us to come above the K.S. lintlt provided that the electron cooling is not more 
effective than we have assumed. One may say that the quality of the cooled ion 
beam in CRYRING is totally dependent on the cooling device and is finally lintlted 
by heating caused by intrabeam scattering. 
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3.3.3 The competition of electron cooling and intrabeam scattering in 
CRYRING 

The process of combined electron cooling and intrabeam scattering was simulated 
using fixed cooling time constants. When the divergence of the ion beam becomes 
smaller than the divergence of the electron beam the transverse cooling time does 
not depend anymore on the ion beam divergence and thus can be considered to be 
constant. When using more realistic cooling time constants the evolution of beam 
shrinking is different but the equilibrium values are more or less the same. The 
combined time constant of the process is 

1 1 1 
-=-+
T Tc Tibs 

Positive time constant means growth and negative damping. The equilibrium is 
reached when 

In practice one should take also time constants for residual gas scattering, ripple in 
magnet currents and in electron gun voltage into account. Our simulation shows 
only the effect of intrabeam scattering and electron cooling assuming that the 
other heating mechanisms are negligible. 

A typical process is seen in figure 3.4 where the initial emittances in both planes 
were l01r mm mrad and !lp/p 1 %. The longitudinal cooling is assumed to be 
ten times faster than the transverse one and !lp/p reaches a minimum rather 
soon. When the emittances become smaller !lp/p starts to increase slowly since 
the scattering probability increases with the increasing beam density. Finally 
emittances reach the equilibrium and !lp/p stops growing. In practice the 
difference in longitudinal and transverse cooling times is probably smaller than 
assumed here. Our simulations show that the equilibrium values are mainly 
dependent on the smallest cooling time - not on the difference between them 
and hence the assumption about the ratio T

v
/ TE is not critical. 

Equilibrium e1nittances and !lp/p as a function of cooling times are presented 
in figures 3.5 and 3.6. The ion in consideration is again Ar1s+ at the energy 
of 200 keV /u. The beam intensity is 106 ions in the ring. The transverse 
electron temperature was assumed to be 0.1 eV /degree of freedom which leads 
to corresponding Ar-beam emittance 0.1,r mm mrad. This limit is reached only 
with very fast logitudinal cooling. If the longitudinal cooling time is longer than 
100 ms the equilibrium !lp/p will be around 2 - 3 • 10-

4• The emittances, however,
seem to become rather small. The average transverse emittance is shown since the 
horizontal and vertical equilibrium e1nittances are almost equal ( see figure 3.4 ). 

The reader must note here that these numbers apply only to the case mentioned. 
Both electron cooling and intrabeam scattering change strongly with beam energy 
and the charge state of the ions. Electron cooling is more or less independent of the 
number of ions in the ring and so the effect of intrabeam scattering can be reduced 
by reducing the beam intensity. This, however, tends to reduce the interaction 
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Figure 3.4 

Electron cooling simulation with constant cooling times and intrabeam 
scattering for 105 Ar1s+ ions with TE. ,E, = 5 s and Tp = 0.5 s at 200
keV /u. 

rate in the experiments and the beam intensity must be determined carefully for 
each case to optimize the conditions. 

As an example, when the number of Ar1s+ ions is reduced from 105 to 104 at the 
energy of 200 keV /u and if the (final) cooling times are TE = 1.0 s and Tp = 0.3 
s the equilibrium emittance decreases from 0.17 ,r nun mrad to 0.1,r mm mrad 
which corresponds to the transverse electron temperature and l::i,.p / p decreases 
from 2.2 • 10-4 to 1.6 • 10-4

• Similarily, if we increase the number of Ar1s+ ions to 
106 the equilibrium emittance increases to 0.4 7 ,r mm mrad and !::i,.p / p increases to 
3.5 • 10-4

• As can be seen, the equilibrium values do not change rapidly with the 
beam intensity. That is a good property since in practice most experiments use 
several injected and cooled pulses from the ion source and it is important to keep 
the beam quality unchanged during the whole experiment. 

If the charge state of the beam is not relevant for the experiment it is more
favourable to use as low charge state as possible. This comes from the fact
that cooling time is proportional to A/ q2 whereas the intrabeam scattering
time constant is proportional to A 2 / q4

• When the charge state is reduced
intrabeam scattering decreases more strongly than cooling and the equilibrium
emittance and !::i,.p/p become smaller. If, for example, one takes Ar1 2+ instead of
Ar1s+ at 200 keV /u the equilibrium emittances decrease from 0.17 ,r mm mrad to
0.12 ,r mm mrad and !::i,.p/p decreases form 2.2 • 10-4 to 1.8 • 10-4 if the cooling
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Equilibrium !l.p/p in electron cooling with constant cooling times and 
intrabeam scattering for 106 Ar1s+ ions at 200 ke V /u. 

times for Ar18+ are TE = 1.0 s and Tp = 0.3 s. 

When comparing intrabeam scattering in the earlier version of the lattice(He86] 
with that in the lattice presented in this thesis one finds that the equilibrium 
emittance in the former lattice was much bigger. For example, with cooling times 
Tp = 0.5 s and TE = 5.0 s the equilibrium emittances in the old lattice were 
E'" � 1.5 1r mm mrad and E

y 
� 0.9 1r mm mrad whereas in the present lattice 

they are E'" � E
y 

� 0.25 7r mm mrad. The equilibrium !l.p/p in both lattices 
are almost equal (0.3 7r mm mrad and 0.261r 1mn mrad in the former and present 
lattice respectively). The reason for this is mainly that the amplitude functions 
are "smoother" in the present lattice. The dispersion is also almost constant in 
the whole ring but its effect is not so apparent since the maximum dispersion 
in the old lattice is somewhat smaller and there were two straight sections where 
dispersion was almost zero which is a good condition as far as intrabeam scattering 
is concerned. Small equilibrium emittance gives good luminosity which is more 
than wellcome in the experiments where the number of ions must be reduced in 
order to increase the beam quality and thus the present lattice gives better counting 
rates than the former one. 

In merged beams experiments !l.p/p seems to be the limiting factor as far as energy 
resolution is concerned. In order to make !l.p/p significantly smaller than 0.2 % 
the longitudinal cooling time should be smaller than 10 ms. Without doing any 
detailed electron coollng calculations !l.p/p rn1aller Lhan 0.2 % seems unprobable 



J:., C\l 
µ::j 0 

0.0 

..I' 

/ L/ 

./4--

-

- 65 -

..,,,,.. 
i..-,,--
----

--
--

0.5 

T 
p 

(s) 

Figure 3.6 

-1-""" 
�....--� 

L...--" 

---

T , = 10 S 

T , =5 S 

7 ,= 1 s 

temp. limit 

1.0 

Equilibrium emittance in electron cooling with constant cooling times 
and intrabeam scattering for 106 Ar18+ ions at 200 keV /u. 

for highly charged ions at low energies. At low energies the quality of the electron 
beam in the cooler becomes poorer, especially the beam intensity. This is because 
the corresponding electron energy and thus the gun voltage are very low. For 
example, if the beam energy is 200 keV /u the corresponding electron gun voltage 
is about 110 V. For such low voltage the normal Pierce type electron gun perveances 
may give too low current. Another construction for a low energy electron gun was 
presented by H. Herr (He84) giving reasonable electron beam properties. 

Besides low voltage also the guiding magnetig field becomes critical. For the lowest 
beam energies the guiding field will be of the order of 5 mT which is comparable 
to the earth's magnetic field (::::, 0.05 mT). To achieve a sufficient field homogenity 
( S 10-3) the cooler has to be carefully shielded against the earth's magnetic field
and other stray fields from the neighbouring ring magnets. 
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4 Discussion 

4.1 Lattice Design 

A solution to the lattice problem has been found[Ba87)[Je87] that meets the special 
requirements of a storage ring to work with merged and crossed low energy ion 
beams and as an accelerator. The normal ion optical problems as well as those 
imposed by the special functions of CRYRING ( optimal lattice functions) has been 
solved using the program MAD developed at CERN. The lattice presented earlier 
[An85l[He86] was modified during 1986: To gain more space for the ring it was 
proposed to move the ion source and the RFQ from the former experimental hall 
to the cyclotron vault. In this way the circumference of the ring could be increased 
from 32. 7 meters to 48.63 meters . The number of superperiods was then increased 
to six. Also the dipoles assumed in the lattice calculations were changed from 
sector to rectangular type. Moreover, the constraint of almost zero dispersion on 
some of the straight sections was abandoned. These modifications lead to better 
properties as far as intrabeam scattering is concerned. In fact, the equilibrium 
emittances went down by a factor of 5 approximately. 

4.2 Operation Limits 

There are processes that limit the beam intensity and beam quality during 
acceleration and storing. The fact that the ring uses mostly slow highly charged 
ions causes many severe problems conserning different space charge effects. In the 
present work these problems were put into perspective to derive criteria for the 
design and the application of CRYRING. 

4.2.1 Space charge limit 

The space charge tune shift limits the maximum number of ions to ::::: 109
, since 

in all cases the injection energy for the beam is 300 ke V /u at the most. The limit 
of 109 ions corresponds to emittances after multiturn injection (E,, = E

y 
= 100 71' 

mm mrad). For cases where the beam will be cooled the limit goes down linearily 
with emittance. Otherwise, the space charge effect is not the most limiting factor. 
For low energies the Keil-Schnell limit gives more stringent conditions for beam 
intensities. Moreover, intrabeam scattering usually prevents the beam emittance 
to reach the space charge limit. 

4.2.2 Intrabeam scattering vs. electron cooling 

The most important limiting factor for cooled beams in CRYRING (low emit.tances 
and small !l.p/p) is intrabeam scattering. The beam heating caused by intrabeam 
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scattering will be counteracted by electron cooling. The equilibrium emittances 
for low energies depend on the beam intensity. For example, for 106 Ar1B+ ions 
at an energy of 200 keV /u the equilibrium values are Ex ,y � 0.21r mm mrad and 
b..p/p � 2 • 10-4• These values do not reach either the space charge limit nor the
Keil-Schnell limit. 

For higher intensities, such as 108, the Keil-Schnell limit may cause problems 
during the cooling. If, e.g., we have 108 Ar18+ ions (300 keV /u) with E

,, 
= E

11 
=

10 1r mm mrad and if the longitudinal cooling is much faster than the transverse 
cooling so that b..p/p = 10-4 is achieved before the emittances have been decreased
significantly we have got smaller b..p/p than the Keil-Schnell limit allows ( 5 · 10-4 ).
The results from electron cooling simulations with constant cooling times show that 
this might happen if the longitudinal cooling time is less than 10 ms. However, 
the initial longitudinal cooling time is allways longer than the final time constant 
and this perhaps prevents the process described above. Whether this happens 
in practice is impossible to say without computer programs that simulate electron 
cooling [Wo85] in a more realistic way and that take also intrabeam scattering into 
account, and so we leave it to the future. In general, intrabean1 scattering 
see1ns to be so strong that it prevents the bea1n to reach space charge 

limit and the Keil-Schnell limit. 

The most critical parameter in the electron cooling seems to be the longitudinal 
cooling time, at least in the merged beams experiments. The transverse cooling 
time does not have an important effect on the equilibrium emittances and b..p/p. 
Its effect is seen only in the total cooling time which, of course, is an essential 
factor too. 

The key to good beam quality and the very interesting physics accesible with cold 
beams in CRYRING is electron cooling and so the heaviest burden lies on the 
shoulders of the cooler device designers. The biggest problems in cooling are met 
at low beam energies. One has to be able to produce an intense, high quality, 
low energy electron beam that is guided in a magnetic field comparable to earth's 
magnetic field and stray fields from the neighbouring magnets. 

As a conclusion one may say that in spite of the intensity limits CRYRING holds 
the promise of physics with very low beam energies and very good beam quality. 
As regards to merged beams, no other methods seems to exist to achieve such low 
center of mass energies for highly charged ions. 

4.3 Merged Beams 

Another exciting property of CRYRING is the possibility of doing merged beams 
experiments. To study collisions of highly charged ions at a very low center of 
mass energy with reasonable energy resolution the setup of merged beams seems 
to be the only practical possibility. There is no way of guiding highly charged ions 
at an energy of, say, 1 eV /u. 

It follows from kinematics that when two particles travel in the same direction 
at relatively high energy in the laboratory frame the center of mass energy of 
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their collision is much smaller than their energy difference in the laboratory frame. 
Sim.ilarily, when two beams with non-zero energy spread travel together the energy 
spreads in the moving coordinate system are much smaller than in the laboratory 
frame. Using merged beams one can reach for example a cent.er of mass energy 
of 1 eV for Ar1s+ and H- with an energy resolution of 25 % when the energy of 
Ar-beam is 200 keV /u and the energy difference of the beams is 889 eV /u. 

It was shown above (section 2.3) that in CRYRING the lowest attainable center 
of mass energy in merged beams experiments is about 1 eV. We have also found 
that, due to beam density limitations discussed, this value can only be reached 
with moderate beam intensities when the FWHM of the center of mass energy 
distribution is clearly smaller than the expectation value of the distribution (Ecm )
The energy resolution sets constraints on beam alignement and beam positions. 
The alignement was established to be about 0.5 mrad which gives rise to a magnetic 
field precision of about 5 • 10-4• The precision of positioning the beams is found
to be 0.2 - 1.0 mm depending on the width of the external beam. 

The energy resolution in merged beams experiments is primarily determined by 
the longitudinal velocity spread of the beams. The velocity or momentum spread 
of the stored beam is limited by intrabeam scattering. 

4.4 Beam Acceleration 

In synchrotron mode CRYRING will provide beams at energies high enough to 
work above the Coulomb barrier with almost all the beam and target combinations. 
The most critical point in this mode is how fast the magnets can be cycled. One 
needs a repetition rate of the order of 10 Hz to provide external beam currents of 
1 pnA provided that the number of ions in the ring is around 109• The machine 
presented (fig 2.5) seems well suited to house the RF-cavity and other equipment 
(position pick up electrodes for beam control etc.) for acceleration. The open 
question of the maximum repetition rate relates to magnet- and power supply 
technology but not (directly) to the lattice. 

The injection energy will be ;::: 300 ke V /u. The pre-acceleration is done with 
an RFQ, and thus the momentum spread 6..p/p of the injected beam will be 0.5 
- 1 %. During acceleration 6..p/p will decrease due to adiabatic shrinking. If a
better energy resolution is needed the accelerated beam can be cooled but that will
decrease the repetition rate and thus the average current of the extracted beam.

The accelerated beam for nuclear and surface physics will be extracted using 
slow extraction. Care has been taken to adapt the lattice to the requirements 
of third integer resonant extraction. A suitable working point and an appropriate 
arrangement of sextupoles have been found, both compatible with the other modes 
of operation for CRYRING. 
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TITLE! 

The input data for the program MAD 
The CRYRING lattice 

CRYRING 
PARAMETE,PI=3.141592653586 
!--------

!DRIFT SPACES
D1:DRIFT,L=l.50
11:DRIFT,L=0.4
12:DRIFT ,L=0.67 4

!QUADRUPOLES
QF:QUAD,L=0.3,Kl=l.81008
QD:QUAD,L=0.3,Kl=-2.33326

!SEXTUPOLES
SF:SEXT ,L=0.2,K2=2.3
SD:SEXT ,L=0.2,K2=-3.2
!-----

APPENDIX 1 

!BENDING
BM:SBEND,L=l.2*PI/6,ANGLE=PI/6,HGAP=0.07,FINT=0.4,El=PI/12,E2=PI/12
!-----

LINE,A=(D 1,BM,L 1,SF ,QF ,12,SD) 
LINE,SIXTH=(A,QD,-A) 
USE,SIXTH,SUPER=6 
PRINT,#S/E 
TWISS,TAPE 
STOP 



CRYRING 
TWISS PARAMETERS FOR BEAM LINE "SIXTH" 

POS. 
NO. 

ELEMENT SEQUENCE 
ELEMENT OCC. 
NAME NO. 

BEGIN SIXTH 
1 Dl 
2 BM 
3 Ll 
4 SF 
5 QF 
6 L2 
7 SD 
8 QD 
9 SD 

10 L2 
11 QF 
12 SF 
13 Ll 
14 BM 
15 Dl 

END SIXTH 

TOTAL LENGTH 

ALFA 
GAMMA(TR) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 

2 

2 
2 
2 
2 
1 

I 
DIST I 
AMA I 

0.000 
1.500 
2.128 
2.528 
2.728 
3.028 
3.702 
3.902 
4.202 
4.402 
5.076 
5.376 
5.576 
5.976 
6.605 
8.105 
8.105 

48.627822 

BETAX 
AMA 

2.174 
3.209 
4.203 
5.049 
5.527 
5.381 
3.414 
2.957 
2.957 
3.414 
5.381 
5.527 
5.049 
4.203 
3.209 
2.174 
2.174 

0.190936E+00 
2.288526 

DELTA(P)/P = 0.000000 

H O R I Z O N T A L 
ALFAX MUX X(CO) X'(CO) DX 

A2PIA AMMA AMRADA AMA 

0.000 
-0.690 
-0.966 
-1.150 
-1.242 

1.704 
1.215 
1.070 

-1.070 
-1.215 
-1.704 

1.242 
1.150 
0.966 
0.690 
0.000 
0.000 

QX 

0.000 
0.096 
0.122 
0 .136 
0.142 
0.151 
0.176 
0.186 
0.203 
o. 213 
0.238 
0.246 
0.252 
0.266 
0.292 
0.388 
0.388 

QX' 
BETAX(MAX) 
DX(MAX) 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

1.391 
1.391 
1.552 
1.766 
1. 873 
1.879 
1.544 
1.445 
1.445 
1.544 
1. 879 
1. 873 
1.766 
1.552 
1. 391 
1.391 
1.391 

2.330004 
-0.040983 

5.527250 
1.879189 

DX' 

0.000 
0.000 
0.536 
0.536 
0.536 

-0.497 
-0.497 
-0.497 

0.497 
0.497 
0.497 

-0.536 
-0.536 
-0.536 

0.000 
0.000 
0.000 

I 

I 

I 

"MAD" VERSION: 4.02 
SYMM = F 

RUN: 25JUN-87 12:43:43 
PAGE 1 

BETAY 
AMA 

2.667 
3.510 
3.546 
3.193 
3.059 
3. 419 
5.986 
6.924 
6.924 
5.986 
3. 419 
3. o 59 
3.193 
3.546 
3.510 
2.667 
2.667 

QY 

ALFAY 

0.000 
-0.563 

o. 513 
0.370 
0.299 

-1.564 
-2.244 
-2.446 

2.446 
2.244 
1. 564 

-0.299 
-0.370 
-0.513 

0.563 
0.000 
0.000 

QY' 
BETAY(MAX) 
DY(MAX) 

V E R T I C A L 
MUY Y(CO) Y'(CO) DY 
A2PIA AMMA AMRADA AMA 

0.000 
0.082 
o .110 
0.129 
o .139 
0.154 
0.178 
0.183 
0.190 
0.195 
0.219 
o. 234 

o. 24 4 
o. 26 3 
o. 291 
0.373 
0.373 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

2.237695 
0.090738 
6.923705 
0.000000 

0.000 
0.000 
0.000 
o. o o o 
0.000 
0.000 
o. o oo 
0.000 
0.000 
0.000 
0.000 
o. o oo 
0.000 
0.000 
0.000 
0.000 
0.000 

DY' 

0.000 
0.000 
0.000 
o. o o o 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 



APPENDIX 2 

C=================================================================== 

C PROGRAM INTRABEAM 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

PURPOSE: 
TO CALCULATE GROWTH TIMES FOR INTRABEAM SCATTERING 

BASED ON PIWINSKI'S THEORY AND M.MARTINI'S PAPERS 
PS/AA/Note 84-7 AND PS/84-9 (AA) 

WRITTEN BY PAULI HEIKKINEN 
AT AFI, STOCKHOLM 

JUNE 1985 

GOOD LUCK I! 
C=================================================================== 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

PROGRAM VARIABLES: 

INPUT: 

NPOS 

LEL ( 50 0) 
LSUP 
BETX ( 50 0) 
BETY ( 500) 
ALFX ( 500) 
ALFY ( 500) 
DX ( 500) 

DXP ( 500) 
CHARGE INTEGER 
MASS 
CCOAST CHAR 

COAST LOGIC 
LEN REAL 

GAMMA 
TA 

BETA 
NPART 
DPP 

DP 
STGP 

EX 
EY 
DE 

PROGVRSN 
DATAVRSN 

DATE 
TIME 

JOBNAME 
SUPER 

SYMM 
TITLE 
KEYWORD 

NAME 
TYPE 

NSTEP 

OPT 

EXPLANATIONS 
REFERS TO SUBSCRIPT (cf.Martini) 

+ REFERS TO SUPERSCRIPT (cf.Martini) 

NUMBER OF POSITIONS IN MAD OUTPUT (TAPE 3) 
LENGTH OF ELEMENT 
LENGTH OF SUPERPERIOD (THAT WAS READ FROM 3) 
HORIZONTAL BETA (M) 

VERTICAL BETA (M) 
HORIZONTAL ALFA 
VERTICAL ALFA 
DISPERSION (M) 
D(DX)/DS = DX' 
CHARGE STATE OF THE IONS IN THE BEAM 

MASS NUMBER 
C OR B 
.TRUE. IF COASTING BEAM - .FALSE. FOR BUNCHED 
ORBIT LENGTH / SIGMA(LENGTH) FOR BUNCH 

ENERGY FACTOR 
KINETIC ENERGY/A 

V/C 
NUMBER OF IONS IN THE BEAM/BUNCH 
DELTAP/P 

DPP/SIGMA(P) 

SIGMA(P) 
HORIZONTAL EMITTANCE (PI M RAD) 
VERTICAL EMITTANCE (PI M RAD) 
EMITTANCE/SIGMA (1.96 IF 95% OF PROFILE 

SQRT(6) IF 95% OF PHASE SPACE) 
MAD VERSION FROM UNIT 3 

SURVEY,TWISS OR CHROM 
DATE OF MAD RUN 
TIME OF MAD RUN 

FROM UNIT 3 
NUMBER OF SUPERPERIODS 
.TRUE. OR .FALSE. 

TITLE OF MAD RUN 

FROM UNIT 3 
ELEMENT NAME 

ELEMENT TYPE 
NUMBER OF INTEGRATION STEPS 

Y/N OPTIONS OR NOT 

OPTIONAL PARAMETERS: 

DISPFAC 

CDISP 

BETFAC 

CBETX 
CBETY 

NBREX 

NBREY 

OUTPUT SCHEME: 

DISPERSION MULTIPLFIER 
CONSTANT DISPERSION 

BETA MULTIPLIFIER 

CONSTANT BETX 

CONSTANT BETY 

NUMBER OF HORIZONTAL EMITTANCES 
NUMBER OF VERTICAL EMITTANC�H 



C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

OFIL A=FOROlO 
B=FOROll 
C=FOR012 

DURING CALCULATION: 

GOOD FOR ONE CASE 
MAP FOR SEVERAL EMITTANCES 
GROWTH TIMES AT ELEMENTS 

BTX 
BTY 
ALX 
ALY 
DISP 
DISPP 
PI 

BETX IN THE MIDDLE OF ELEMENT 
BETY 

RO 
RQ2A 
X 
y 
DELX 
DELY 
SII 
CII 
FAC 
N 

( 2 0) 

ALFX 
ALFY 
DX 
DXP 

l.525E-18 M CLASSICAL PROTON RADIUS 
= RO * (q**2/A) 
INTEGRATION VARIABLE 

INTEGRATION STEP 

SINE INTEGRAL 
COSINE INTEGRAL 
FAC(N) = NI 
= 1 IF BUNCHED BEAM, = 2 IF COASTING 

THE FOLLOWING VECTORS (500) COULD BE SCALARS AS WELL 
THE REASON FOR VECTOR REPRESENTATION IS A POSSIBLE 
OUTPUT OF THESE VARIABLES AT EACH ELEMENT 

SIGX (500) 
SIGBX (500) 
SIGPBX (500) 
SIGY (500) 
SIGPY (500) 

SIGMA Hi IN MARTINI'S NOTATION 
SIGMA-Hbetai 
SIGMA' Hbetai 
SIGMA Vi 
SIGMA-, Vi 

SIGZ (500) 
AI (500) 
BI (500) 
CI (500) 
DI (500) 

SIGMA Yi 
a i 

b-i 
C i 

d-i 
DDI (500) d+tilde i 
Kl (500) 
K2 (500) 
K3 (500) 
Fl (500) 
F2 ( 500) 
F3 (500) 
Gl (500) 
G2 (500) 
G3 (500) 

k 1i 
k 2i 
k 3i 
f li 
f-2i 
f 3i 
g li 
g-2i 
g-3i 

SCATTERING FUNCTION 

U FACTOR IN SCATTERING FUNCTION f 
LAMBDA NPART/LEN (COASTING) cf.MARTINI 
A CONSTANT IN 1/TAU EQUATION 
DTPINV LONGITUDINAL GROWTH SPEED AT ELEMENT 
DTXINV HORIZONTAL 
DTYINV VERTICAL 
TXINV 1/TAUX' 
TYINV 1/TAUY' 
TPINV 1/TAUP 
TAUXP (10,10) HORIZONTAL GROWTH TIME (S) 
TAUYP (10,10) VERTICAL GROWTH TIME (S) 
TAUP (10,10) LONGITUDINAL GROWTH TIME (S) 

C================================================================= 
C 

C 

C 

REAL LEL(500) ,BETX(500) ,BETY(500),ALFX(500) ,ALFY(500) 
1 ,DX(500),DXP(500),LEN 
2 ,SIGX(500),SIGBX(500),SIGPBX(500),SIGY(500) 
3 ,SIGPY(500) ,SIGZ(500) ,AI(500) ,BI(500),CI(500) ,DI(500) 
4 ,DDI(500) ,Kl(500) ,K2(500),K3(500) ,Fl(500) ,F2(500) ,F3(500) 
5 ,Gl(500) ,G2(500) ,G3(500) ,FAC(20) 
6 ,GAMMA,BETA,DPP,DP,SIGP,EX(lO) ,EY(lO),DE,TA,TAUXP(l0,10) 
7 ,TAUYP(l0,10),TAUP(l0,10),CDISP,CBETX,CBETY 
8 ,LAMBDA,X,Y,DELX,DELY,SII,CII,PI,A,RO,RQ2A,TXINV,TYINV,TPINV 
9 ,U,NPART,BTX,BTY,ALX,ALY,DISP,DISPP,LSUP,DISPFAC,BETFAC 

& ,DTPINV,DTXINV,DTYINV 

INTEGER NPOS,CHARGE,MASS,SUPER,NSTEP,N,NBREX,NBREY 

CHARACTER*80 TITLE 
CHARACTER*8 PROGVRSN,DATAVRSN,DATE,TIME,JOBNAME,KEYWORD,NAME 
CHARACTER*4 TYPE 



CHARACTER CCOAST,OPT,OFIL 
C 

LOGICAL SYMM,COAST 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 
C 
C 
900 
901 
1001 
1002 
1003 
1004 
1009 
1010 

& 

1011 
1 
1 
1 

1012 
1 

1013 
1014 
1015 
1016 
1017 
1018 
1019 
1020 
1021 
1022 
1023 
1024 
4999 

& 

5000 

FORMAT STATEMENTS: 

FORMAT(A) 
FORMAT(/' TITLE FROM UNIT 3: '/' ',80A,//) 
FORMAT(5A8,I8,L8,I8/A80) 
FORMAT(2A8,A4,Fl2.6/El6.9) 
FORMAT(5El6.9/3E16.9/El6.9) 
FORMAT(3El6.9) 
FORMAT(/' ',I8,' POSITIONS HAS BEEN READ FROM UNIT 3'/) 
FORMAT(/' TAUP a• ,Gl2.4E2,' S'/' TAUX'' =' ,Gl2.4E2,' S'/ 
' TAUY'' =' ,Gl2.4E2,' S') 
FORMAT(/' ••••••••••••************************************* '

, 

q A T/A iiMeV/uA NPART LEN AmA'/ 
' ',!3, ' ',I4,' ',G10.4E2,' ',G10.4E2,' ',F8.3/) 
FORMAT(' EX Api m radA EY Api m 

' ,G10.4E2,' ',Gl0.4E2,' 

FORMAT(//' GROWTH TIMES ') 
FORMAT(/' OUTPUT FILE = FOR010.DAT') 
FORMAT(' DELTAP/P = ',G10.4E2,//) 
FORMAT(' ',Tl8,10(' ',Gl0.2E2)) 

radA DELTAP/P'/ 
',G10.4E2) 

FORMAT(' ',Tl4, 'TP' ,Tl8,10(' ',Gl0.2E2)) 
FORMAT(' ',Gl0.4E2,Tl4,'TX',Tl8,10(' ',Gl0.2E2)) 
FORMAT(' ',T14, 'TY'Tl8,10(' ',Gl0.2E2)) 
FORMAT(/' OUTPUT FILE = FOROll.DAT') 
FORMAT(' ') 
FORMAT(' ',T40,'EX Api m radA') 
FORMAT(' EY iipi m radA') 
FORMAT(/' OUTPUT FILE = FOR012.DAT') 
FORMAT(' BTX' ,T14,'BTY',T22,'DX',T30,'OX''',T37,'1/TP' 

,T46, '1/TX''' ,T56, '1/TY''' ,T68, 'W') 
FORMAT(' ',4(' ',P'6.2) ,3(' ',G8.2E2),' 

TYPE •, ' ' 
TYPE . ' 

' 
TYPE *, ' * 

TYPE *, ' * 

TYPE *, ' * 
PROGRAM INTRABEAM 

', F6. 4) 

. ' 

. ' 

. ' 

TYPE •, ' ·······••****••••*••••*****************************' 

TYPE *, ' ' 
C* * * * * * * • * * * * * * * * * • ** • * ** * • * * •• * * * * * * * * * * * * * * * * * ** • * * * * * * * * * * * * • * * * • • * * * * 

C 

C 

INITIAL VALUES: 

FAC(l) = 1 
IJO 1ND=2,20 

FAC(IND) 
ENDDO 
COAST = .TRUE. 
PI 4*ATAN(l.) 
RO = 1.535E-18 
N = 2 
DISPFAC 
BETFAC 
CDISP 
CBETX 
CBETY 
NBREX 
NBREY 

1. 0 
1.0 
0. 0 
0. 0 
0. 0 
1 
1 

IND*FAC(IND-1) 

!COASTING BEAM 

c•• • • • • • • * * * * * •11. * 1t. * * * * * * * * * * 1t. * * * * * * * * * * 11.11. * •11. * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C 

C 

READ FROM UNIT 3 (MAD OUTPUT - TAPE) 

READ(3,100l)PROGVRSN,DATAVRSN,DATE,TIME,JOBNAME,SUPER,SYMM 
1 , NPOS, TITLE 

IF (DATAVRSN.NE. 'TWISS' )THEN 

ENDIF 

TYPE *,' TWISS WAS NOT THE FIRST DATAVRSN' 
TYPE •,' CORRECT IT AND START AGAIN' 
STOP 

DO 1 I=l,NPOS 
READ(3,1002)KEYWORD,NAME,TYPE,LEL(I) ,EDUMMY 
READ(3,1003)ALFX(I) ,BETX(I),EDUMMYl,DX(I),DXP(I) 

l ,ALFY(I),BETY(I),EDUMMY2,EDUMMY3 
LSUP = LSUP+LEL(I) 

CONTINUE 
READ(3,1004)EDUMMY1,EDUMMY2,LEN 
CLOSE(UNIT=3) 



WRITE(6,1009)NPOS 
WRITE(6,90l)TITLE 

C***********************�******************************************* 

C 

C 

C 

C 

C 

C 

C 

C 

C 

INPUT FROM TERMINAL: 

TYPE *,' GIVE THE CHARGE STATE (q) AND MASS NUMBER (A)' 
READ(S,*)CHARGE,MASS 
TYPE *, ' GAMMA OF THE BEAM ?' 

READ(S,*)GAMMA 
IF(GAMMA.LE.l)THEN 

ELSE 

ENDIF 

TYPE *,' GAMMA.LE.! - GIVE T/A AMeV/uA' 
READ(S,*)TA 
GAMMA = (931.48 + TA)/931,48 
BETA SQRT(l.-l./(GAMMA**2)) 

BETA SQRT(l.-l./(GAMMA**2)) 
TA = (GAMMA-l.0)*931.48 

TYPE *,' NUMBER OF PARTICLES/COASTING BEAM - BUNCH ?' 
READ(S,*)NPART 
TYPE *,' DELTAP/P ?' 
READ(S,*)DPP 
TYPE *,' DP ? , 1.96 FOR 95% OF GAUSSIAN BEAM' 
READ(S,*)DP 
TYPE •,' Ex AND Ey ? Api m radA' 
READ(S,*)EX(l) ,EY(l) 
TYPE •,' DE ?, = 1.96 IF 95% OF PROFILE, SQRT(6)=2.45 IF 95% OF' 
TYPE *, ' PHASE SPACE' 

READ(S,*)DE 
TYPE •,• COASTING OR BUNCHED BEAM' 
READ(5,900)CCOAST 
IF(CCOAST.EQ.'B')COAST=.FALSE. 
IF(.NOT.COAST)THEN 

ELSE 

ENDIF 

TYPE *,' GIVE THE SIGMA OF BUNCH LENGTH' 
READ(S,*)LEN 
N = 1 
LAMBDA 

LAMBDA 

NPART/(2*SQRT(PI)*LEN) 

NPART/LEN 

TYPE •,' GIVE THE NUMBER OF INTEGRATION STEPS' 
READ(S,*)NSTEP 

OPTION FOR MULTIPLIED DISPERSION AND BETA-VALUES ETC. 

TYPE •,' EXTRA OPTIONS ? Y/N' 
READ(5,900)0PT 
IF(OPT.EQ. 'Y' )THEN 

TYPE *,' GIVE THE DISPERSION MULTIPLICATION FACTOR' 
READ(S,*)DISPFAC 
TYPE *,' GIVE A CONSTANT ADDED TO THE DISPERSION' 
READ(S,*)CDISP 
TYPE •,' GIVE THE BETA MULTIPLICATION FACTOR' 
READ(5,*)BETFAC 
TYPE •,• GIVE THE CONSTANTS TO BE ADDED TO BETAS X,Y' 
READ(S,*)CBETX,CBETY 
TYPE •,' GIVE NBR(EX) AND NBR(EY)' 
READ(S,*)NBREX,NBREY 
IF(NBREX.GT.l)THEN 

ENDIF 

TYPE *,' GIVE THE EX VALUES Api rn radA 1 

READ(S,*) (EX(IEX) ,IEX=l,NBREX) 

IF(NBREY.GT.l)THEN 

ENDIF 

TYPE •,' GIVE THE EY VALUES Api m radA' 
READ(S,*) (EY(IEY) ,IEY=l,NBREY) 

IF(DISPFAC.EQ.0.AND.BETFAC.EQ.0. )NPOS=2 
ENDIF 

CHOICE OF OUTPUT SCHEME: 

TYPE * OUTPUT FILE ? A=l0,B=ll,C=l2,<RETURN>=NO FILES' 
TYPE *,' A IS GOOD FOR ONE CASE' 
TYPE *,' B GIVES A MAP FOR SEVERAL EMITTANCES' 
TYPE *,' C GIVES THE GROWTH SPEEDS AT EACH ELEMENT' 
READ(5,900)0FIL 

C************************************************************************* 

C ION RADIUS 
RQ2A = RO*(CHARGE**2)/MASS 

C 



C 

C 

C 

C 

C 

SIGMA(DELTAP/P) 

SIGP = DPP/DP 

INTEGRATION STEP IN THE SECOND INTEGRAL 

DELX = PI/NSTEP 

EMITTANCE LOOP: 

DO 5001 IEX=l,NBREX 

DO 5002 IEY=l,NBREY 

C CONSTANT A: 

C 

C 

C 

A =  (DE**4)*DP*LAMBDA*3.E8*(R0**2)*(CHARGE**4)/(16*PI*SQRT(PI) 

& *EX(IEX)*EY(IEY)*DPP*(BETA**3)*(GAMMA**4)*(MASS**2)) 

IF(OFIL.EQ. 'C' )THEN 

WRITE(l2,10ll)CHARGE,MASS,TA,NPART,LEN 

WRITE(l2,1012)EX(IEX) ,EY(IEY) ,DPP 

WRITE(12,1021) 

WRITE ( 12, 4999) 

ENDIF 

INITIALIZE SPEEDS 

TPINV 0.0 

TXINV = 0.0 

TYINV = 0.0 

C* * * * * • * * * * * * * • * * * * • • * * * * * * * * * * * * * * • * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * 

C 

C 

C 

C 

C 

C 

C 

C 

POSITION LOOP 

DO 100 I=2,NPOS 11<->BEGIN 

LATTICE FUNCTIONS IN THE MIDDLE OF THE ELEMENT I 
LINEAR APPROXIMATION 

BTX 

BTY 

ALX 

ALY 

DISP 

DISPP 

SIGBX(I) 

SIGY(I) 

SIGPBX(I)= 

SIGPY(I) 

SIGX(I) 

SIGZ(I) 

AI (I) 

BI (I) 

CI (I) 

Kl (I) 

K2 (I) 

K3 (I) 

DI (I) 

DDI(I) 

Fl(I) 0.0 

P'2(I) 0.0 

F3(I) 0.0 

0.5*(BETX(I)+BETX(I-1) )*BETFAC+CBETX 

0.5*(BETY(I)+BETY(I-l) )*BETFAC+CBETY 

0.5*(ALFX(I)+ALFX(I-l) )*BETFAC 

0.5*(ALFY(I)+ALFY(I-l) )*BETFAC 

0.5*(DX(I)+DX(I-l))*DISPFAC+CDISP 

0.5*(DXP(I)+DXP(I-l))*DISPFAC 

SQRT(EX(IEX)*BTX)/DE 

SQRT(EY(IEY)*BTY)/DE 

SQRT(EX(IEX)*(l+(ALX**2) )/BTX)/DE 

SQRT(EY(IEY)*(l+(ALY**2) )/BTY)/DE 

SQRT( (SIGBX(I))**2+( (DISP*SIGP)**2)) 

SIGP*SIGBX(I)/(GAMMA*SIGX(I)) 

SIGZ(I)/SIGPBX(I)*SQRT(l+(ALX**2)) 

SIGZ(I)/SIGPY(I)*SQRT(l+(ALY**2)) 

2*SIGZ(I)*BETA*GAMMA*SQRT(SIGY(I)/RQ2A) 

1./(CI (I) **2) 

(AI(I)/CI(I))**2 

(BI(I)/CI(I))**2 

SIGP*DISP/SIGX(I) 

SIGP*(ALX*DISP+BTX*DISPP)/SIGX(I) 

C**********************•••••••******************************************** 

C 

C 

C 

C 

& 

SCATTERING FUNCTION INTEGRATION BEGINS 

DO 3 J=l, NSTEP 

X = (J-0.S)*PI/NSTEP 

DELY = l"Pl"X/NSTKV 

DO 4 L=l,NSTEP 

Y (L-0.5)*2*PI*X/NSTEP 

U = ((SIN(X)*COS(Y/X))**2+(SIN(X)*(AI(I)'SIN(Y/X)-DDI(I)* 

COS(Y/X) ))**2+(BI(I)*COS(X) )**2)/(CI(I)**2) 

SINE AND COSINE INTEGRALS - 10 TERMS 

SII = 0.0 

CII = 0.577216 + LOG(U) 

DO 5 K=l,10 

SII = SII+( (-l)**(K-1) )*(U**(2*K-l) )/( (2*K-l)*FAC(2*K-l)) 

C I I = C I I+ ( ( -1 ) * * K) * I U * * ( 2 * K) ) / I 2 * K * F AC ( 2 * K) ) 

CONTINU! 

Gl I I) 

G2 (I) 

G3 I I) 

l.-3*(SIN(X)*COS(Y/X) )**2 

l.-3*(SIN(X)*SIN(Y/X) )**2+6*DDI(I)*SIN(X)* 

SIN(Y/X)*COS(Y/X)/AI(I) 

1.-3* (COS(X) **2) 



C 

C 

C 

3 

C 

C 

SCATTERING FUNCTIONS 

Fl(I) Fl(I)+DELX•DELY•(SIN(X)/X)•(Gl(I)/U)•(SIN(U)• 

(PI/2-SII)-COS(U)•CII) 

F2(I) F2(I)+DELX•DELY•(SIN(X)/X)•(G2(I)/U)•(SIN(U)• 

(PI/2-SII)-COS(U)•CII) 

F3(I) F3(I)+DELX•DELY•(SIN(X)/X)•(G3(I)/U)•(SIN(U)• 

(PI/2-SII)-COS(U)•CII) 

CONTINUE 

CONTINUE 

SCATTERING FUNCTION INTEGRATION STOPS 

C* * * * * * * * * * * * * * * * * * * * * • * • • * * * * * * * • * * * * * * * * * * *"' * • * * * • * * * * * * * * * * • ** • • • * * * * * 

Fl(I) Fl(I)•2•Kl(I) 

F2(I) = F2(I)•2•K2(I) 

F3(I) = F3(I)•2•K3(I) 

DTPINV A•N•(l-DI(I)••2)•Fl(I)/2 

DTXINV A*(F2(I)+(DI(I)**2+DDI(I)**2) 

& * Fl(I))/2 

DTYINV A*F3(I)/2 

TPINV TPINV+ LEL(I)*DTPINV 

TXINV = TXINV+ LEL(I)*DTXINV 

TYINV = TYINV+ LEL(I)*DTYINV 

IF(OFIL.EQ. 'C' )WRITE(l2,5000)BTX,BTY,DISP,DISPP,DTPINV 
& ,DTXINV,DTYINV,LEL(I)/LSUP 

100 CONTINUE 

C 

C 

C 

C 

5002 

5001 

C 

C 

POSITION LOOP STOPS 

AVERAGE GROWTH SPEEDS IN THE WHOLE RING 

TPINV TPINV/LSUP 
TXINV = TXINV/LSUP 

TYINV = TYINV/LSUP 

IF(TPINV.NE.O)THEN 

TAUP(IEX,IEY) = 1./TPINV 

ELSE 

TYPE *,' TAUP INFINITE' 

ENDIF 

IF(TXINV.NE.O)THEN 

TAUXP(IEX,IEY) = 1./TXINV 

ELSE 

TYPE *,' TAUX' ' INFINITE' 

ENDIF 

IF(TYINV.NE.O)THEN 

TAUYP(IEX,IEY) = 1./TYINV 

ELSE 

TYPE *,' TAUY' ' INFINITE' 

ENDIF 

IF(NBREX*NBREY.EQ.l)THEN 

WRITE(6,10ll)CHARGE,MASS,TA,NPART,LEN 

WRITE(6,1012)EX(IEX) ,EY(IEY) ,OPP 

WRITE(6,1013) 

WRITE(6,1010)TAUP(IEX,IEY) ,TAUXP(IEX,IEY) ,TAUYP(IEX,IEY) 

ENDIF 

IF(OFIL.EQ. 'A' )THEN 

WRITE(lO,lOll)CHARGE,MASS,TA,NPART,LEN 

WRITE(l0,1012)EX(IEX) ,EY(IEY),DPP 

WRITE(l0,1013) 

WRITE(l0,1010)TAUP(IEX,IEY) ,TAUXP(IEX,IEY) ,TAUYP(IEX,IEY) 

ENDIF 

IF(OFIL.EQ. 'C' )THEN 

WRITE(l2,1013) 

WRITE(l2,1010)TAUP(IEX,IEY) ,TAUXP(IEX,IEY) ,TAUYP(IEX,IEY) 

ENDIF 

CONTINUE 

CONTINUE 

EMITTANCE LOOP STOPS 

C* * * * * * * * * * * * * * * * * * * * * * * * * * * .,, * * * * * * * * * * * * * * * * * * * * * * * * * • * • * * * * * * * * * * * * * * * 

IF(OFIL.EQ. 'A' )WRITE(6,1014) 

IF(OFIL.EQ. 'C') WRITE(6,1024) 

IF(OFIL.EQ. 'B' )THEN 

WRITE(ll,lOll)CHARGE,MASS,TA,NPART,LEN 

WRITE(ll,1015)DPP 

WRITE(ll, 1022) 

WRITE(ll,1016) (EX(I),I=l,NBREX) 

WRITE(ll,1021) 



ENDIF 

END 

WRITE ( 11, 1023) 

DO J=l,NBREY 

WRITE(ll,1017) (TAUP(I,J) ,I=l,NBREX) 

WRITE(ll,1018)EY(J), (TAUXP(I,J) ,I=l,NBREX) 

WRITE(ll,1019) (TAUYP(I,J) ,I=l,NBREX) 

WRITE(ll,1021) 

ENDDO 

WRITE(6,1020) 
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