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ABSTRACT: We have trained the Extreme Minimum Learning Machine (EMLM)
machine learning model to predict chemical potentials of individual conformers of
multifunctional organic compounds containing carbon, hydrogen, and oxygen. The model
is able to predict chemical potentials of molecules that are in the size range of the training
data with a root-mean-square error (RMSE) of 0.5 kcal/mol. There is also a linear
correlation between calculated and predicted chemical potentials of molecules that are
larger than those included in the training set. Finding the lowest chemical potential
conformers is useful in condensed phase thermodynamic property calculations, in order to
reduce the number of computationally demanding density functional theory calculations.

Condensed-phase thermodynamic properties are important
in the modeling of the formation and growth of

atmospheric aerosols. In recent years, thermodynamic proper-
ties, such as saturation vapor pressures and activity coefficients,
have been calculated using the Conductor-like Screening Model
for Real Solvents (COSMO-RS1−3 implemented, e.g., in the
COSMOtherm program4).5−14 As input, the COSMO-RS
model uses single molecule density functional theory (DFT)
results of multiple conformers for statistical thermodynamics
calculations. The advantage of COSMO-RS is that, unlike
group-contribution methods (e.g., AIOMFAC,15 SIMPOL.116),
intramolecular interactions between functional groups are
included in the model by including different conformers of
each molecule. Additionally, the COSMO-RS model does not
need to be parametrized for new types of compounds.

A large uncertainty in COSMOtherm calculations originates
from the selection of conformers for the calculations.8,17

Especially multifunctional compounds can have various intra-
molecular hydrogen bonding patterns and generally all con-
formers cannot be included in the COSMOtherm calculations
due to memory limitations. The hydrogen bond acceptors and
donors available for intermolecular hydrogen bonding deter-
mine how strongly the compound is able to interact with the
surrounding system. We have therefore used the number of
intramolecular H-bonds to select conformers for COSMOtherm
calculations in previous studies.8,11−13,17−19 There is a strong
correlation between the number of intramolecular H-bonds and
the chemical potential, which is used in COSMO-RS to describe
the interaction between a compound and the surrounding
system (see Figure S1 of the Supporting Information). For

example, in polar solutions such as water, conformers containing
no intramolecular H-bonds are able to interact with the
surrounding system, leading to relatively low chemical
potentials. On the other hand, conformers containing multiple
intramolecular H-bonds may be more favorable in nonpolar
systems. In order to find all relevant conformers, the whole
conformational space needs to be sampled. However, this
method requires quantum chemical calculations on a large
number of conformers and becomes computationally expensive,
when the number of possible conformers increases exponentially
with the torsional degrees of freedom of a molecule.

Here, we utilize a distance-based machine learning (ML)
method to improve the conformer selection process. Kernel
Ridge Regression (KRR) methods have been used recently in
atmospheric science to predict binding energies of small
clusters20 and saturation vapor pressures of atmospherically
relevant organic compounds.21 We have chosen to use a
distance-based ridge regression model Extreme Minimal
Learning Machine (EMLM22), which was recently used to
predict energies of thiolate protected gold nanocluster con-
formers.23 EMLM is a computationally light ML method.
Additionally, it has only a single hyperparameter, the number of
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reference points. Hence, it does not require tedious hyper-
parameter optimization. This is a significant advantage, because
the descriptors of the atomic structures often contain several
parameters to be tested. In order to find suitable conformer
distributions for different atmospherically relevant systems
(aqueous, organic), the model was trained to predict
condensed-phase chemical potentials of different conformers
of atmospherically relevant multifunctional organic compounds.
The elemental composition and geometry of the conformers
were encoded for the ML model using a global descriptor called
many-body tensor representation (MBTR24), implemented in
DScribe.25

To train and test the model, we used atmospherically relevant
multifunctional compounds generated with the Generator of
Explicit Chemistry and Kinetics of Organics in the Atmosphere
(GECKO-A26,27). GECKO-A is a data processing tool that
generates gas-phase oxidation products in tropospheric
conditions. For our study, we selected only those compounds
that were flagged as products of α-pinene oxidation and that
contain only carbon, oxygen, and hydrogen atoms (excluding
nitrogen containing compounds) by Isaacman-VanWertz and
Aumont,28 2283 molecules in total. These compounds contain
hydroxyl, carbonyl, carboxylic acid, hydroperoxide, peroxy acid,
and peroxide functional groups. 284 of the molecules were
separated for testing, and the remaining 1999 molecules were
used in the training of the EMLM model. In order to include a
good variation of different conformers and molecules into the
model, the training data molecules from Isaacman-VanWertz
and Aumont28 were divided into 2 different types of training
data differing in number of conformers and geometry
optimization method. In the first training set (labeled as
train1), 50 conformers were generated for 1800 molecules using
the Merck molecular force field (MMFF29) in the Balloon
program.30 TheMMFF94 parametrization in Balloon was edited
to include peroxy acid groups (see Section S1 of the Supporting
Information). In the second training set (labeled as train2), we
found all conformers of the remaining 199 molecules using a
systematic conformer sampling algorithm of the Spartan
program31 and the geometries were optimized at the BP/def-
TZVP level of theory using the TURBOMOLE program
package.32 Duplicate conformers were omitted after the
geometry optimization using the CLUSTER_GEOCHECK
algorithm of the COSMOconf program.33 Using geometries
optimized at different levels of theory helps to account for the
small differences in bond distances and angles between the
methods. As a third training set (labeled as train3), we used a
small set (2956 conformers of 125 molecules) of COSMO files
generated for potential α-pinene-derived SOA constituents.34

These conformers were obtained with similar conformer
sampling and geometry optimization methods as train2, but
the data set contains some larger molecules than those included
in train1 and train2. All three training sets were used to train one
EMLM model, 155 867 structures in total. The chemical
potentials (pseudochemical potential, see Section S2 of the
Supporting Information) at 298.15 K were calculated using
single-point BP/def2-TZVPD-FINE COSMO calculations and
the BP_TZVPD_FINE_21 parametrization of COSMOtherm.

The performance of the EMLMmodel was tested using 3 data
sets:

Test1:
284 molecules from the Isaacman-VanWertz and

Aumont28 molecule set, not included in the training of
the model. The conformers in test1 and train1 were
generated similarly, with 50 conformers for each
molecule.

Test2:
All found conformers (2841) of a single molecule
(CC(O)(C(�O)(O))C(�O)CC(C(�O)(OO))C-
(OO)(C)C), found using the systematic conformer
sampling of Spartan. The geometries were optimized at
the BP/def-TZVP level of theory. 50 conformers of this
molecule (optimized using the MMFF force field) were
already included in the training data. This molecule is
among the largest molecules in the GECKO-A data set
and contains most atmospherically relevant functional
group types (hydroxy, ketone, hydroperoxy, carboxylic
acid, and peroxy acid).

Test3:
15 accretion products (dimers) from the α-pinene + OH
reaction (C20H34O10),

35 optimized at the BP/def-TZVP
level of theory (11 496 conformers). This data set is
testing the performance of the model when extrapolating
to larger molecules outside the training data of themodel.

The distributions of carbon and oxygen number of the
molecules in the training and test data are shown in Figures 1a
and 1b, respectively. Test2 and test3 are not shown in Figure 1
because they contain only conformers of one elemental
composition (C10H16O9 and C20H30O10, respectively).

We visualized the MBTR descriptors using Principal
Component Analysis.36 Figure 2a and 2b show how the first
and second principal components (PC1 and PC2, respectively)
correlate with the chemical potential in infinite dilution in water.
We see that, in terms of the PC1 values, test3 (C20H30O10) is
clearly different from the other data sets. Similarly, some of the
conformers of the train3 have relative high PC1 values. This
principal component is most likely reflective of the size of the
molecule, since these two data sets (train3 and test3) include
molecules that have significantly higher molar masses than the
other 4 data sets. The differences in the PC1 of test3 are likely
caused by the different functional groups of the C20H30O10
isomers. On the other hand, test2 (C10H16O9) has almost

Figure 1. Numbers of carbon and oxygen atoms in the molecules
included in the training and test data sets. Note that the number of
conformers for each molecule is much larger in train2 (62 911
conformers in total for 199 molecules) compared to train1 and test1
(50 conformers of each molecule).
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identical PC1 values for all the data points, because the data set
includes conformers of a single isomer. Additionally, we can see
no correlation between the first principal component and
chemical potential. Similarly, there is no correlation between
PC2 and chemical potential in water (Figure 2b). We can see
that, other than test3, our testing data are in the same feature
space with our training data. There is also no visible separation
between the force field (1) and DFT optimized (2 and 3) data
sets.

A common way to predict the potential energy of atomic
systems is to use ML methods that estimate the energy as a sum
of local contributions. However, due to the fact that chemical
potential does not depend on the size of the compound, a
summation approach would require extra scaling. Our global
ML model does not have this characteristic making it a viable
option for chemical potential predictions.

Figure 3 shows the correlation between calculated and
EMLM-predicted chemical potentials of 3 different test data sets
in water. Note that only 2%, 10%, and 20% of the data points are
shown in Figure 3a, 3b, and 3c (2 of the 15 isomers),
respectively. Similar figures for pure compound and infinite
dilution in water-insoluble organic matter (WIOM, CC(�
O)C1OC(C)(OC(C2�CC(C)=CC(C)=C2)O3)C3O137)
are shown in Figures S4 and S5 of the Supporting Information,
respectively. The test1 data set contains one outlier conformer

with predicted chemical potential hundreds of kcal/mol outside
the range of any calculated chemical potentials. The large error
in the prediction was caused by an unrealistic bond angle in the
conformer, and the conformer was therefore omitted from the
analysis.

Our model is able to predict the chemical potentials of test1
and test2 data sets very well in all three solvents. For test3
(C20H30O10), the RMSE of the predicted chemical potentials in
all solvents are significantly larger than for the other test data
(smaller molecules). This is caused by not having included
molecules with similar sizes to the training data and the ML
model is extrapolating outside its training region. From Figure
3c we see that even though the correlation between predicted
and calculated chemical potentials is good, the model is not able
to predict the absolute values of the chemical potentials. We
therefore fit a line to the test3 data points and calculated the
RMSE after scaling the predicted chemical potentials with the
fitted equation. The RMSE of all test data sets (scaled RMSE for
test3) in the three solvents are shown in Table 1.

The prediction is the most accurate for test1, around 0.5 kcal/
mol. For the molecule of test2, there is a smaller representation
of similar molecules in the training data, because it is one of the
largest molecules in the GECKO-A data set with 9 oxygen
atoms, which is seen in Figure 2. On the other hand, test1 is
more evenly spread in the principal component space. Even

Figure 2.Correlation between chemical potential in water (μw) and (a) PC1 and (b) PC2 from the principal component analysis (PCA) of theMBTR
descriptors of the different training and test data sets. For clarity, only 2% of the data points are shown in the figure.

Figure 3. Predicted and calculated chemical potentials (μw) of (a) test1, (b) test2, and (c) test3 in water solvent. Only a small subset of the test data
points, taken at constant intervals, are shown in the figures for clarity. In (c), the dashed line is a linear fit to all of the molecules in test3. The green and
magenta points are for the isomers with the highest and lowest RMSE between the calculated values and predicted values scaled with the linear fit.
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though test3 is well outside the size range of the training data,
there is a linear correlation between the EMLM-predicted and
calculated chemical potentials. Using a different subset of the
Isaacman-VanWertz and Aumon28 data set as test1 leads to
similar results: 0.56, 0.81, and 1.34 kcal/mol RMSE for the
chemical potential in infinite dilution in water for test1, test2,
and test3, respectively.

We further tested how well EMLM can predict chemical
potentials of molecules that are larger than the molecules
included in the training data (see Section S3 of the Supporting
Information). The EMLM model is able to predict chemical
potentials of molecules containing up to 4 more non-hydrogen
atoms than the molecules of the training data set with good
accuracy. The prediction deteriorates quickly when the size of
the predicted molecules is increased. We were not able to
discern any difference in the prediction accuracy based on
functional groups in the molecule. For example, the highest and
lowest RMSE values among the molecules containing 9 non-
hydrogen atoms more than the training data (3.8 and 0.9 kcal/
mol, respectively) both had identical functional groups (3
carbonyl and 3 hydroperoxide).

Here, we chose the 3 systems (water, pure compound, and
WIOM) for their atmospheric relevance. The error is very close
to equal in the prediction of chemical potentials in pure
compound and inWIOM, and smaller than in water for all of the
test data sets. Since the MBTR descriptors, as well as the
screening charge densities used to calculate the target chemical
potentials, are identical in all of the models, there may be some
additional uncertainty arising from the COSMOtherm calcu-
lation of chemical potential in infinite dilution in water.
Alternatively, there may be some features critical for the
calculation of chemical potential in water but not in pure
compound or WIOM, which are not captured by the MBTR
descriptor.

Our model is optimal for applications that require a set of low
chemical potential conformers, as opposed to accurate absolute
chemical potentials. In its current form, the model includes
carbon, hydrogen, and oxygen atoms. The model can be
extended to include other atoms by adding, e.g., nitrogen-
containing molecules to the training data. Lastly, we give
example codes for using chemical potential predictions in
finding conformers for COSMOtherm calculations (see the
Supporting Information). The EMLM chemical potential
prediction can be added to a COSMOconf calculation routine
between conformer sampling and the first DFT calculations.
After the chemical potential prediction, high chemical potential
conformers can be discarded from the calculation. A large
fraction of the conformers are often classified as duplicates after
the DFT optimization based on geometries and similarity of
chemical potentials in a set of solvents. The number of
conformers kept after the chemical potential prediction should

therefore be sufficiently high in order to ensure that enough
conformers remain after all steps of the COSMOconf calculation.

In conclusion, we have shown that machine learning can be
used to predict chemical potentials of individual conformers of
atmospherically relevant multifunctional organic compounds.
The chemical potentials can be used to find more realistic
condensed-phase conformer distributions for COSMOtherm
calculations, increasing the reliability of thermodynamic
property estimates. COSMOtherm has an enormous potential
for estimating thermodynamic properties of atmospheric
multifunctional compounds, whose properties are experimen-
tally out of reach, and our computationally cheaper calculation
method for selecting conformers will allow for the inclusion of a
larger number of compounds with different thermodynamic
properties to atmospheric aerosol models. Additionally, the
lowest chemical potential conformers can be used to para-
metrize new COSMO-RS implementations, such as the new
open source openCOSMO-RS.38

■ METHODS
The equations used for creating the Many-Body Tensor
Representation (MBTR) are described in Section S4 of the
Supporting Information. The lowest root-mean-square error
(RMSE) between predicted and calculated chemical potentials
in the infinite dilution in water was found by including k = 1
(atomic numbers), k = 2 (atom distances), and k = 3 (angles
between atoms) in the MBTR descriptor. We optimized two
adjustable parameters of the distance and angle tensors: σ and
the scaling factor s. Higher σ values (broadening) mean that
slightly different atom distances (e.g., from different geometry
optimization methods) fit under the same peak, while lower σ
values highlight even small differences between the conformers.
The scaling factor determines the exponential weighting of the
functions based on the atom distances so that higher values of s
give less weight to atom pairs that are farther apart.

The MBTR parameters were optimized using a small fraction
of the whole data (1%), in order to conserve time andmemory in
the generation of the MBTR files. First, 10% of all conformers
were selected at constant intervals (every 10th conformer based
on the conformer numbering of the conformer sampling
program) from the whole data sets. Subsequently, 10% of
those conformers were selected by the Euclidean distances of
their MBTR descriptors using the RS-maximin algorithm
described by Gonzalez39 and Ham̈al̈aïnen et al.40 In short, the
data point closest to the mean of all data points is selected as the
first reference point and all following reference points are
selected so that their distance to the already selected points is
maximized.

The final MBTR parameters selected for the model are σ =
0.025 and s = 0.5 for k = 2 (distance tensors) and σ = 0.12 and s =
0.8 for k = 3 (angle tensors). The k = 1 tensors were included
with σ = 0.04. If k = 3 is left out of the descriptor, the RMSE is
around 55% higher (10% for dimers) than when k = 3 is included
(see Figure S6 of the Supporting Information). It is possible to
use the model containing only k = 1 and k = 2 to decrease the
calculation time, because including k = 3 increases the size of the
MBTR descriptor by 365%. Excluding the k = 3 tensor is
recommended especially if more atoms are added to the current
three-atom model.

The Extreme Minimal Learning Machine (EMLM) is
described in detail in Section S5 of the Supporting Information.
In our calculations, all values in the training data descriptor were
minmax scaled between 0 and 1, and the chemical potentials

Table 1. Root Means Square Errors (RMSE) of the Test Data
Sets for Chemical Potentials in Different Solvents in kcal/
mol

water pure WIOM

test1 0.53 0.46 0.45
test2 0.87 0.73 0.74
test3a 1.37 1.17 1.17

aThe RMSE of test3 was calculated by first scaling the predicted
chemical potentials with a linear fit to all points of test3.
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were minmax scaled between −1 and 1. In the final model, 25%
of the whole training data were used as reference points, selected
using the RS-maximin algorithm (see Figure S9 of the
Supporting Information).
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