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ABSTRACT

Karppinen, Santeri
Non-linear state-space methods for Bayesian time series modelling
Jyväskylä: University of Jyväskylä, 2022, 51 p. (+ included articles)
(JYU Dissertations
ISSN 2489-9003; 572)
ISBN 978-951-39-9226-2 (PDF)

State-space methods are used in many fields of science to solve so called filter-
ing, smoothing, prediction and parameter inference problems using multivariate
time series data. Analytical solutions to these inference problems exist mainly
for linear Gaussian state-space models and discrete state-space models. Outside
these special cases, the inference is typically based on approximate methods, or
simulation-based methods such as particle filters.

This thesis develops new methods for Bayesian inference of general state-
space models and applies existing methods in challenging non-linear problems
involving multivariate time series data. The new methods presented in this the-
sis are conditional particle filters that are relevant for the inference of models that
involve uninformative initial state distributions and models that have slowly-
mixing state dynamics and/or weakly informative observation processes. The
applied problems develop new non-linear state-space models in order to solve a
prediction problem related to childhood acute lymphoblastic leukaemia and a fil-
tering problem related to the identification of wolf territories based on presence-
only citizen science data.

Keywords: non-linear, state-space model, particle filter, Bayesian inference, Feyn-
man–Kac model, Markov chain Monte Carlo, sequential Monte Carlo



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Karppinen, Santeri
Epälineaarisia tila-avaruusmenetelmiä Bayes-aikasarjamallinnukseen
Jyväskylä: Jyväskylän yliopisto, 2022, 51 s. (+ artikkelit)
(JYU Dissertations
ISSN 2489-9003; 572)
ISBN 978-951-39-9226-2 (PDF)

Tila-avaruusmenetelmiä ja moniulotteisia aikasarjoja käytetään useilla tieteena-
loilla parametripäättelyyn sekä niin kutsuttujen suodatus-, tasoitus- ja ennus-
tusongelmien ratkaisuun. Näihin tilastollisen päättelyn ongelmiin on olemassa
analyyttiset ratkaisut pääasiassa lineaaristen sekä diskreettien tila-avaruusmalli-
en tapauksessa. Näiden erikoistapausten ulkopuolella tila-avaruusmalleihin liit-
tyvässä tilastollisessa päättelyssä käytetään yleensä likiarvoisia menetelmiä tai
simulointimenetelmiä, kuten niin kutsuttuja hiukkassuodatusalgoritmeja.

Tässä väitöskirjassa kehitetään uusia Bayes-päättelyn menetelmiä yleisil-
le tila-avaruusmalleille, ja sovelletaan jo olemassa olevia tila-avaruusmenetel-
miä haastaviin moniulotteisiin aikasarjoihin ja epälineaarisiin mallinnusongel-
miin. Väitöskirjassa kehitetyt uudet menetelmät ovat niin kutsuttuja ehdollisia
hiukkassuodattimia. Menetelmät soveltuvat erityisesti tila-avaruusmalleille, joi-
den alkutilan todennäköisyysjakauma on epäinformatiivinen, ja tila-avaruusmal-
leille, joiden tiladynamiikka on hitaasti sekoittuva tai joiden havaintoprosessit
ovat epäinformatiivisia. Soveltavissa mallinnusongelmissa tarkastellaan ennus-
tusongelmaa, joka liittyy lääkityksen säätöön lasten akuutin lymfoblastileuke-
mian hoidossa, sekä suodatusongelmaa, jossa suomalaisia susireviirejä paikan-
netaan kansalaishavaintojen perusteella.

Avainsanat: epälineaarinen, tila-avaruusmalli, hiukkassuodatin, Bayes-päättely,
Feynman–Kac malli, Markovin ketju Monte Carlo, sekventiaalinen
Monte Carlo
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1 INTRODUCTION

The classical example of a time series is that of a financial series of daily stock
prices. In fact, these kinds of univariate time series are so common that it is easy to
treat them as definitions for time series data. In general, however, data observed
in time may be much richer than this. For example, when the movement of an
object is tracked in time using GPS, the resulting time series is two-dimensional
with observations typically made at irregular time intervals. It is therefore more
accurate to say that the defining feature of time series data is the dependence
between consecutive observations, which manifests as serial correlation in time.

State-space models (SSMs) are statistical models commonly used for the
analysis of multivariate time series data [cf. Durbin and Koopman 2012]. SSMs
consist of an unobserved latent state process and an observation process that is
assumed to generate the observed time series. The latent process and the obser-
vation process are linked such that the observation process depends on the latent
process.

This structure of SSMs provides a convenient means of accounting for the
dependence in time series data and allows for modelling the known (the data)
conditional on the unknown (the latent states). Indeed, applications of SSMs
often define the latent state process such that its interpretation and dynamics re-
semble a process of interest. It is then natural to construct the observation process
given the values of the state variables, and to model the data as a realisation of
the observation process.

Perhaps due to their convenient structure, SSMs find a plethora of appli-
cations in diverse fields such as ecology [Wood 2010; Johnson et al. 2008], en-
vironmental sciences [Helske et al. 2013], epidemiology [Rasmussen, Ratmann,
and Koelle 2011], genetics [Mirauta, Nicolas, and Richard 2014], GPS positioning
[Caron et al. 2007], and multi-target tracking [Vo, Singh, and Doucet 2003; Särkkä,
Vehtari, and Lampinen 2007; Vihola 2007], to name a few.

The central inference problem related to SSMs is the computation of proba-
bility distributions of the latent states given the observed time series. In the con-
text of Bayesian statistics, such distributions are called posterior distributions,
and the probabilistic information contained in them describes what is known
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about the latent states based on the data.
Many time series arising in applied fields are generated by processes that

are inherently non-linear, which motivates the need for state-space models and
methods that account for such non-linearities. From the point of view of statis-
tical inference of SSMs, non-linearities pose a problem, since analytical, closed-
form solutions are mainly available for the special cases of linear Gaussian SSMs
[cf. Durbin and Koopman 2012] and discrete state-space models (sometimes also
called hidden Markov models) [Baum and Petrie 1966; see also Rabiner 1989].
Outside these special cases, the inference of SSMs typically involves some form
of (Gaussian) approximation [cf. Särkkä 2013] or is fully based on simulation us-
ing methods such as Markov chain Monte Carlo (MCMC) [cf. Robert and Casella
2004].

Since the early 1990’s, MCMC methods such as the Metropolis-Hastings al-
gorithm [Hastings 1970] and the Gibbs sampler [S. Geman and D. Geman 1984;
Gelfand and Smith 1990] have been successful in the inference of many Bayesian
statistical models. Typically, these algorithms are used to update the unknown
parameters of the model one at a time or in blocks of multiple parameters. How-
ever, it is well-known by practitioners of SSMs that the high dimension and de-
pendence often present in the latent state process can render direct Metropolis-
Hastings or Gibbs updates inefficient [cf. Fearnhead 2011]. Therefore, efficient
inference methods that are tailored to the SSM inference problems are needed.

Fortunately, particle filters or more generally, ‘sequential Monte Carlo’ (SM-
C) methods [cf. Doucet, De Freitas, and Gordon 2001] have emerged as alternative
methods of simulation-based inference. The history of particle filters dates back
to the paper of Gordon, Salmond, and Smith [1993], who were the first to incor-
porate a crucial ‘resampling step’ to their inference algorithm, bridging the gap
from (sequential) importance sampling to particle filtering. Since then, new parti-
cle filters have been developed, extensively applied and theoretically studied [cf.
Godsill 2019; Doucet and Johansen 2011].

Recently, the interest in particle filtering and SMC methods has been further
elevated by the seminal paper of Andrieu, Doucet, and Holenstein [2010] that
introduced particle Markov chain Monte Carlo (PMCMC) methods that involve
using particle filters within MCMC. In particular, the paper introduced a special
kind of particle filter called the ‘conditional particle filter’, which forms the basis
for the methodological developments in this thesis.

This thesis is a mix of methodology and application. Articles II and IV de-
velop new particle MCMC methods for the statistical inference of general state-
space models. These developments are both conditional particle filters that are
suitable for models that have uninformative initial state distributions (Article II)
and for models that have slowly-mixing dynamic models and uninformative ob-
servations (Article IV).

Articles I and III are applications of existing methodology that develop new
non-linear state-space models in order to solve problems in applied fields. Arti-
cle I focuses on a prediction problem where the white blood cell counts of chil-
dren receiving chemotherapy for the treatment of acute lymphoblastic leukaemia
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are modelled using state-space models arising as approximations to non-linear
stochastic differential equations. Article III applies a state-of-the-art particle filter
and tracking model to the estimation of the number and locations of wolf terri-
tories in Finland, using presence-only citizen science observations such as tracks
and sightings of wolves.

The rest of the introductory part of this thesis reviews the methodological
background of Articles I–IV and summarises the research contribution of this the-
sis. Chapter 2 defines state-space models and describes inferential tasks that are
of interest with them. Then, Chapters 3–5 review concrete inference methods
for solving these inferential tasks under various assumptions on the state-space
model. Chapter 3 covers linear Gaussian state-space models and approximate
inference for Gaussian state-space models involving non-linearities using the ex-
tended Kalman filter. Chapter 4 discusses particle filters and the inference of
general state-space models using them. Chapter 5 covers conditionally linear
Gaussian models, the inference of which uses techniques discussed in Chapters
3 and 4. Finally, Chapter 6 summarises the research contribution of this thesis in
relation to Chapters 3–5 and Chapter 7 concludes with a discussion.



2 STATE-SPACE MODELS

2.1 Definition

State-space models (SSMs) are a class of time series models for a p-dimensional
time series y1, y2, . . . , yn, assumed to arise as a realisation of a stochastic obser-
vation process Y1, Y2, . . . , Yn. SSMs assume that each random variable Yi is con-
ditionally independent given Xi, where each Xi is a random variable from a d-
dimensional latent Markov process X0, X1, . . . , Xn, which is commonly referred
to as the state process. An SSM can be written in the following general form:

Xk | (Xk−1 = xk−1) ∼ fk(· | xk−1), for k ≥ 1 and X0 ∼ f0 (1a)
Yk | (Xk = xk) ∼ gk(· | xk), for k ≥ 1, (1b)

where f0 is the prior distribution for the initial state X0, ( fk)k≥1 are Markov tran-
sitions of the state, and gk for k ≥ 1 correspond to the conditional distributions of
Yk given Xk = xk. Equation (1a) is commonly referred to as the state equation or
the dynamic model and (1b) as the observation equation or observation model. Figure
1 visualises the model as a directed acyclic graph.

Often, the distributions fk and gk may also depend on parameters θ. When
this dependence is of particular interest, we will denote the distributions by f (θ)k

and g(θ)k . Furthermore, we shall in general make the assumption that fk and gk ad-
mit densities, and reuse fk and gk to mean their densities instead of distributions.

2.2 Inference tasks

The most common inferential tasks related to SSMs of the form (1) are filtering,
prediction, smoothing and parameter inference [cf. Särkkä 2013]. This section defines
these inference tasks and discusses them on a high level. Hereafter, we denote by
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FIGURE 1 A directed acyclic graph highlighting the dependency structure of state-
space models.

zi:j := (zi, zi+1, . . . , zj) for i ≤ j a sequence of consecutive variables, and by zi:j for
i > j an empty sequence.

Filtering or state filtering is concerned with the computation of the so called
‘filtering distributions’ p(xk | y1:k)

1 for k = 1, . . . , n. The kth filtering distribution
corresponds to the distribution of the state xk given the first k observations y1:k,
and may be expressed as

p(xk | y1:k) =
gk(yk | xk)p(xk | y1:k−1)

p(yk | y1:k−1)
, (2)

where p(yk | y1:k−1) =
∫
X gk(yk | xk)p(xk | y1:k−1)dxk, with X denoting the

domain of a state variable.
Prediction means computing the predictive distributions of future states or ob-

servations, that is, the distributions p(xn+1 | y1:n) or p(yn+1 | y1:n):

p(xn+1 | y1:n) =
∫
X

fn+1(xn+1 | xn)p(xn | y1:n)dxn, and

p(yn+1 | y1:n) =
∫
X

gn+1(yn+1 | xn+1)p(xn+1 | y1:n)dxn+1,
(3)

which may also be recursively used to obtain k > 1 step ahead predictive distri-
butions p(xn+k | y1:n) or p(yn+k | y1:n).

Smoothing or state smoothing refers to the computation of ‘smoothing distri-
butions’: distributions of the states given the full time series. Typically, the inter-
est is in the marginal smoothing distributions p(xk | y1:n) for k = 0, . . . , n, or the
full smoothing distribution p(x0:n | y1:n), which preserves the dependencies be-
tween consecutive state variables. In general, the difference between smoothing
and filtering is that in smoothing, state xk is also conditioned on all observations
after time k.

The transitions ( fk)k≥0 and/or the observation densities (gk)k≥1 of the SSM
(1) may also depend on unknown parameters θ that must — possibly in addition
to the states — also be inferred based on the observed data y1:n. This is known

1 In general, we will use the common notation where p stands for a generic joint, marginal or
conditional distribution/density, and the arguments of p indicate which distribution is in
question. Especially with conditional distributions, when there is possibility of ambiguity
with this notation, we use additional subscripts for p to denote which random variables’
distribution we mean.
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as parameter inference. In the Bayesian setting, the parameters θ are given a prior
distribution pθ and modelled alongside the SSM (1).

Considering parameter inference as part of the inference problem compli-
cates the solution of the filtering, smoothing and prediction problems, since then
the parameters have to be integrated out from the filtering, smoothing and pre-
diction equations. For example, the distribution p(yn+1 | y1:n) above becomes

p(yn+1 | y1:n) =
∫

Θ

∫
X

g(θ)n+1(yn+1 | xn+1)p(xn+1 | θ, y1:n)p(θ | y1:n)dxn+1dθ,

involving an integral over the parameter space Θ. In a fully Bayesian setting,
this complication may be dealt with by inferring joint posteriors of the states and
parameters, such as p(xk, θ | y1:k) for filtering, p(yn+1, θ | y1:n) for prediction or
p(x0:n, θ | y1:n) for smoothing.

It is also possible to obtain a point estimate of θ, and then use the obtained
estimate as the value of θ. A point estimate can be obtained as a maximum a
posteriori (MAP) estimate of θ, by maximising the marginal posterior density

p(θ | y1:n) ∝ p(y1:n | θ)p(θ), (4)

where

p(y1:n | θ) =
n

∏
k=1

p(yk | y1:k−1, θ), (5)

with
p(yk | y1:k−1, θ) =

∫
X

p(yk | xk, y1:k−1, θ)p(xk | y1:k−1, θ)dxk,

is the marginal likelihood. It is also possible to use maximum likelihood, in which
solely the marginal likehood is maximised with respect to the parameters θ. The
use of point estimates might however result in a drastic underestimation of un-
certainty in the inferred distributions, since uncertainty regarding the parameter
value is disregarded.



3 GAUSSIAN STATE-SPACE MODELS WITH
NON-LINEARITIES

This chapter discusses approximate inference for a special case of the SSM (1)
where the distributions fk and gk are Gaussian but involve non-linear functions
of the states. We will begin by reviewing the inference for a linear Gaussian state-
space model, which provides a building block for the approximate inference.

3.1 Linear Gaussian state-space models

Linear Gaussian state-space models (LGSSMs) [cf. Durbin and Koopman 2012;
Harvey 1990] are a special case of the SSM (1) where the distributions fk and
gk are Gaussian with linear dependencies. An LGSSM has the general form:

Xk = TkXk−1 + Rkηk, and X0 ∼ N(µ0, Σ0)

Yk = ZkXk + εk,
(6)

where N(x, C) stands for the multivariate normal distribution with mean vector x
and covariance C, ηk ∼ N(0, Qk) and εk ∼ N(0, Hk) are independent, and µ0 and
Σ0 are the mean vector and covariance matrix of the initial distribution for X0.
The constant matrices (Tk)k≥1, (Rk)k≥1, (Zk)k≥1 and covariances (Qk)k≥1, (Hk)k≥1
have appropriate dimensions. An LGSSM may be placed in to the general form
of the SSM (1) by setting:

f0 = N(µ0, Σ0)

fk(· | xk−1) = N(Tkxk−1, RkQkR
′
k) for k ≥ 1

gk(· | xk) = N(Zkxk, Hk) for k ≥ 1,

where X
′

stands for the transpose of the matrix X.
In the case of an LGSSM, the kth filtering distribution, p(xk | y1:k), is Gaus-

sian with mean and covariance denoted by µk|k and Σk|k, respectively. These may
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be computed for k = 1, 2, . . . , n using the well-known recursive algorithm known
as the Kalman filter [Kalman 1960; Durbin and Koopman 2012, Section 4.3]:

Prediction step:
µk|k−1 = Tkµk−1|k−1

Σk|k−1 = TkΣk−1|k−1T
′
k + RkQkR

′
k

Update step:
vk = yk − Zkµk|k−1

Fk = ZkΣk|k−1Z
′
k + Hk

Kk = Σk|k−1Z
′
kF−1

k

µk|k = µk|k−1 + Kkvk

Σk|k = Σk|k−1 − KkZkΣk|k−1,

(7)

where µi|j := E[Xi | Y1:j = y1:j], Σi|j := Cov[Xi | Y1:j = y1:j], µ0|0 := µ0, Σ0|0 := Σ0

and X−1 stands for the inverse of the matrix X. The Kalman filter proceeds by
computing the predictive state distribution p(xk | y1:k−1) = N(µk|k−1, Σk|k−1)
in the ‘prediction step’, and then updating the predicted distribution to the kth
filtering distribution p(xk | y1:k) = N(µk|k, Σk|k) by conditioning on the latest
observation yk in the ‘update step’.

If at time k the observation yk is missing (at random), the update step can
be omitted, and µk|k = µk|k−1 and Σk|k = Σk|k−1 set instead. This provides a con-
venient mechanism for dealing with missing values in the time series [cf. Durbin
and Koopman 2012, Section 4.10]. In a similar fashion, the predictive distribution
of the states p(xn+k | y1:n) for some k may be computed by considering the ‘fu-
ture values’ of the series, yn+1, yn+2, . . . , yn+k, as missing, and then running the
Kalman filter for the series y1:n+k [cf. Durbin and Koopman 2012, Section 4.11].
In effect, this computes the predictive state distribution

Xn+k | (Y1:n = y1:n) ∼ N(µn+k|n, Σn+k|n). (8)

Since Yn+k = Zn+kXn+k + εn+k, the predictive distributions for observations are
then given by

Yn+k | (Y1:n = y1:n) ∼ N(Zn+kµn+k|n, Zn+kΣn+k|nZ
′
n+k + Hn+k). (9)

The kth marginal smoothing distribution p(xk | y1:n) of an LGSSM is Gaus-
sian with mean and covariance µk|n and Σk|n, respectively. These can be recur-
sively obtained in a backward pass for k = n− 1, n− 2, . . . , 0, which is known as
the Kalman smoother (Rauch-Tung-Striebel smoother) [Rauch, Tung, and Striebel
1965; Särkkä 2013, p. 135–136]:

Gk = Σk|kT
′
k+1Σ−1

k+1|k

µk|n = µk|k + Gk(µk+1|n − µk+1|k)

Σk|n = Σk|k + Gk(Σk+1|n − Σk+1|k)G
′
k.

(10)
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Finally, the marginal likelihood of an LGSSM is available in closed form [cf.
Durbin and Koopman 2012, p. 171], since a computation similar to (9) yields:

log
(

p(y1:n)
)

= log
( n

∏
k=1

p(yk | y1:k−1)
)

= log
( n

∏
k=1

N(yk; Zkµk|k−1, ZkΣk|k−1Z
′
k + Hk)

)
= −np

2
log(2π)− 1

2

n

∑
k=1

[
log(|Fk|) + v

′
kF−1

k vk
]
,

(11)

where p is the dimension of the observations, N(y; µ, Σ) stands for the density of
N(µ, Σ) evaluated at y, and vk and Fk are computed by the Kalman filter (7).

3.2 Introducing non-linearity and the extended Kalman filter

Let us now turn to study a non-linear generalisation of the LGSSM introduced in
Section 3.1:

f0 = N(µ0, Σ0)

fk(· | xk−1) = N(Tk(xk−1), Rk(xk−1)Qk(xk−1)Rk(xk−1)
′
)

gk(· | xk) = N(Zk(xk), Hk(xk)),

(12)

that is
Xk = Tk(Xk−1) + Rk(Xk−1)ηk and X0 ∼ N(µ0, Σ0)

Yk = Zk(Xk) + εk,
(13)

where ηk ∼ N
(
0, Qk(Xk−1)

)
, εk ∼ N

(
0, Hk(Xk)

)
, and Tk, Rk, Qk, Zk and Hk are

now differentiable functions.
There exists a vast literature regarding methods used for approximate in-

ference of models similar to (13) [cf. Särkkä 2013, Sections 5 and 6], including
unscented Kalman filters [Julier, Uhlmann, and Durrant-Whyte 1995; Julier and
Uhlmann 2004], the Gauss-Hermite or quadrature Kalman filter [Ito and Xiong
2000; Arasaratnam, Haykin, and Elliott 2007], and the cubature Kalman filter
[Arasaratnam and Haykin 2009], to name a few. This section reviews the ear-
liest of them, called the extended Kalman filter (EKF) [Jazwinski 1970; Maybeck
1982], which may be seen as a generalisation of the Kalman filter (7).

The EKF may be derived by expanding the functions Tk, Rk, Qk, Zk and Hk in
(13) using Taylor series around µk−1|k−1 (for Tk, Rk and Qk) or µk|k−1 (for Zk and
Hk), and then applying the Kalman filter for the resulting linearised model [cf.
Durbin and Koopman 2012, Section 10.2]. This yields the approximate prediction
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and update equations:

Prediction:
µk|k−1 = Tk(µk−1|k−1)

Σk|k−1 = ṪkΣk−1|k−1Ṫ
′
k + Rk(µk−1|k−1)Qk(µk−1|k−1)Rk(µk−1|k−1)

′

Update:
vk = yk − Zk(µk|k−1)

Fk = ŻkΣk|k−1Ż
′
k + Hk(µk|k−1)

Kk = Σk|k−1Ż
′
kF−1

k

µk|k = µk|k−1 + Kkvk

Σk|k = Σk|k−1 − KkŻkPk|k−1,

(14)

where

Ṫk :=
∂Tk(x)

∂x′

∣∣∣∣
x=µk−1|k−1

and Żk :=
∂Zk(x)

∂x′

∣∣∣∣
x=µk|k−1

are Jacobian matrices evaluated at the points µk−1|k−1 and µk|k−1, respectively.
Approximations to the predictive distributions, marginal smoothing distri-

butions and the marginal log-likelihood may be obtained similarly as in the case
of an LGSSM, using (8)–(11) with the required quantities obtained from (14) and
Tk+1 replaced by Ṫk+1 in (10). The resulting smoothing algorithm is known as the
extended Rauch-Tung-Striebel smoother [Cox 1964; Särkkä 2013, p. 144].



4 INFERENCE OF GENERAL STATE-SPACE MODELS
USING PARTICLE FILTERS

In this chapter, we discuss inference methods for SSMs (1) that do not place any
further assumptions on the distributions ( fk)k≥0 or (gk)k≥1 than those discussed
in Section 2.1. This freedom in specifying ‘any state-space model we want’, rather
generically, leads to inference algorithms that are fully based on Monte Carlo sim-
ulation. The methods discussed in this chapter are most relevant for the inference
of non-linear state-space models (NSSMs), which are SSMs of the form (1) that do
not have the structure of an LGSSM (6).

The main methods of this chapter will be based on so called particle filters
that are Monte Carlo algorithms useful for approximating sequences of probabil-
ity distributions [cf. Doucet, De Freitas, and Gordon 2001]. A particle filter ap-
proximates each distribution in sequence using N weighted values called ‘parti-
cles’, which are propagated using simulation along the sequence of distributions.
The weighted particles can then be used to estimate expected values of interest
with respect to the distributions in the sequence. Particle filters find uses also
outside the context of time series modelling where they are typically called se-
quential Monte Carlo samplers [Chopin and Papaspiliopoulos 2020, Section 17].

Next, Section 4.1 will introduce a basic particle filter. This method will then
be slightly generalised using so called Feynman–Kac models that are the topic of
Section 4.2. Section 4.3 discusses the conditional particle filter that is especially
relevant for solving the smoothing problem. Finally, Section 4.4 introduces two
methods that use particle filters for the joint inference of the states x0:n and pa-
rameters θ of an SSM.

4.1 A basic particle filter

Particle filters are extensions of importance sampling [cf. Geweke 1989], and in
the context of SSMs, the sequence of distributions we are interested in approxi-
mating is the sequence πk(x0:k) := p(x0:k | y1:k) for k = 1, 2, . . . , n. In particular,
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assume that we are interested in approximating the expected value

E[h(X0:k) | Y1:k = y1:k] =
∫
X k+1

h(x0:k)p(x0:k | y1:k)dx0:k,

for some k ≥ 1. A naive, inefficient approximation may be obtained via (‘self-
normalised’) importance sampling with an importance distribution q1, using the
estimator

N

∑
i=1

h(X(i)
0:k)W̃

(i)
k with X(i)

0:k ∼ q, (15)

where W̃(i)
k = W(i)

k / ∑N
j=1 W(j)

k are the normalised importance weights, and W(i)
k

are proportional to πk(X(i)
0:k)/q(X(i)

0:k).
Notice that the distribution πk(x0:k) = p(x0:k | y1:k) can be related to the

distribution πk−1(x0:k−1) = p(x0:k−1 | y1:k−1) via the identity:

p(x0:k | y1:k) =
gk(yk | xk) fk(xk | xk−1)p(x0:k−1 | y1:k−1)

p(yk | y1:k−1)

∝ gk(yk | xk) fk(xk | xk−1)p(x0:k−1 | y1:k−1),
(16)

which may be derived using Bayes’ rule and the conditional independencies aris-
ing from the structure of the model (1).

Furthermore, if the importance distribution q = q0:k is chosen such that

q0:k(x0:k | y1:k) = q0(x0)
k

∏
j=1

qj(xj | xj−1, y1:j), (17)

the importance weights can be computed recursively, since

W(i)
k ∝

πk(X(i)
0:k)

q0:k(X(i)
0:k | y1:k)

∝
gk(yk | X(i)

k ) fk(X(i)
k | X(i)

k−1)

qk(X(i)
k | X(i)

k−1, y1:k)

πk−1(X(i)
0:k−1)

q0:k−1(X(i)
0:k−1 | y1:k−1)

∝
gk(yk | X(i)

k ) fk(X(i)
k | X(i)

k−1)

qk(X(i)
k | X(i)

k−1, y1:k)
W(i)

k−1.

(18)

This form of recursive weight computation applied to (15) is known as sequen-
tial importance sampling (SIS) [cf. Doucet, De Freitas, and Gordon 2001, Section
1.3.2]. Here, for simplicity (and consistency with Section 4.3), we have made the
assumption that in (17) each qj for 1 ≤ j ≤ k only depends on the previous state
xj−1 and the observations y1:j, although in general nothing prevents the qj’s from
depending on the full past ‘trajectory’ x0:j−1 and/or on the observations y1:k.

1 satisfying the support condition q(x0:k) = 0 =⇒ πk(x0:k) = 0 for all x0:k ∈ X k+1.
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In the context of SIS (and particle filters), it is useful to note that the estima-
tor (15) is equal to the expected value of the function h with respect to the empir-
ical distribution placing probability W̃(i)

k for trajectory (particle) X(i)
0:k. Thus, the

normalised weights and particles (W̃(i)
k , X(i)

0:k), i = 1, 2, . . . , N can be interpreted as
an empirical distribution approximating πk(x0:k).

It turns out that SIS suffers from a problem where most of the particles
X(i)

0:k ∼ q0:k for k large will have close to zero (importance) weights, thus pro-
viding a poor approximation of the distribution πk(x0:k) [cf. Cappé, Moulines,
and Rydén 2005, Section 7.3.1]. To circumvent this problem, a particle filter adds
a resampling step to SIS, which probabilistically eliminates and duplicates par-
ticles after weight computation such that particles with small weights are most
likely to be eliminated.

This leads to a basic particle filter (Algorithm 1) targeting an SSM of the
form (1) with transitions ( fk)0≤k≤n, observation densities (gk)1≤k≤n, importance
distribution q0:n and N particles [cf. Särkkä 2013, Section 7.4; or Doucet, De Fre-
itas, and Gordon 2001]. Here, we also introduce a notation where z(i:j)k := (z(i)k ,

z(i+1)
k , . . . , z(j)

k ) for i ≤ j stands for a collection of values of state variables, and

z(i:j)k for i > j stands for an empty collection.

Algorithm 1 progresses for k ≥ 0 by simulating the particles X(1:N)
k from

the proposal qk (lines 1–2 and 6–7), computing their weights W(1:N)
k (lines 3 and

8), and resampling the particles. The resampling operation r occurs on line 5
and outputs so called ‘ancestor indices’ A(1:N)

k−1 that index the particles that were
chosen (not eliminated) in the resampling. As the algorithm progresses, the full
set of ancestor indices A(1:N)

0:n−1 forms an ‘ancestral lineage’, where A(i)
k−1 = j implies

that the ‘ancestor’ of the particle X(i)
k is the particle X(j)

k−1. Note that the particles

X(1:N)
k may be reconstructed from the ‘particle system’ X(1:N)

0:n and ancestor indices

A(1:N)
0:n−1.

The resampling operation can be implemented in many ways, the most
common of which is multinomial resampling, which was the first resampling al-
gorithm used with particle filters [Gordon, Salmond, and Smith 1993]. In multi-
nomial resampling, the ancestor indices A(1:N)

k−1 are drawn from the categorical

distribution Categ(W(1:N)
k−1 ), that is, a discrete probability distribution that places

probability W(i)
k−1/ ∑N

j=1 W(j)
k−1 for outcome i. Another common resampling opera-

tion is systematic resampling [Whitley 1994; Carpenter, Clifford, and Fearnhead
1999] (Algorithm 2), which is popular since it typically works well in practice
and is simple to implement efficiently. Other common resampling algorithms are
stratified [Kitagawa 1996] and residual resampling [Baker 1985; Higuchi 1997].

In fact, Algorithm 1 can be used with any unbiased resampling [Crisan, Del
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Algorithm 1 BASICPARTICLEFILTER(( fk)0≤k≤n, (gk)1≤k≤n, q0:n, N)

1: Simulate X(i)
0 ∼ q0 for i = 1, . . . , N.

2: Set X(i)
0 = X(i)

0 for i = 1, . . . , N.
3: Compute W(i)

0 = f0(X
(i)
0 )/q0(X

(i)
0 ) for i = 1, . . . , N.

4: for k = 1, 2, . . . , n do
5: Simulate A(i)

k−1 ∼ r(· |W(1:N)
k−1 ) for i = 1, . . . , N.

6: Simulate X(i)
k ∼ qk(· | X

(A(i)
k−1)

k−1 , y1:k) for i = 1, . . . , N.

7: Set X(i)
k = (X

(A(i)
k−1)

k−1 , X(i)
k ) for i = 1, . . . , N.

8: Compute W(i)
k =

gk(yk | X(i)
k ) fk(X(i)

k | X
(A(i)

k−1)

k−1 )

qk(X(i)
k | X

(A(i)
k−1)

k−1 , y1:k)

for i = 1, . . . , N.

9: end for
10: return (X(1:N)

0:n , W(1:N)
0:n , A(1:N)

0:n−1)

Algorithm 2 SYSTEMATICRESAMPLING(W(1:N))

1: Set W̃(i) = W(i)/ ∑N
j=1 W(j) for i = 1, 2, . . . , N.

2: Simulate U ∼ Unif(0, 1).
3: Set Ũ(i) = (U + i− 1)/N for i = 1, 2, . . . , N.
4: for i = 1, 2, . . . , N do
5: Set A(i) = j where j is such that ∑

j−1
k=1 W̃(k) < Ũ(i) ≤ ∑

j
k=1 W̃(k).

6: end for
7: return A(1:N)

Moral, and Lyons 1999], that is, a resampling that satisfies:

E
[ N

∑
i=1

1(A(i)
k−1 = j)

]
= N

W(j)
k−1

∑N
i=1 W(i)

k−1

. (19)

With simple modifications to Algorithm 1, it is also possible to resample the
particles ‘adaptively’ [cf. Chopin and Papaspiliopoulos 2020, Section 10.2], only
when the effective sample size of the normalised weights [Liu 1996] reaches some
threshold, but this direction is not studied further in this thesis.

Most importantly, the output of Algorithm 1 provides an approximation of
πk(x0:k) = p(x0:k | y1:k) as the empirical distribution with support points X(i)

k and

associated probabilities W̃(i)
k = W(i)

k / ∑N
j=1 W(j)

k , i = 1, 2, . . . , N. For k ≥ 0, we
may estimate∫

X k+1
h(x0:k)p(x0:k | y1:k)dx0:k using

N

∑
i=1

h(X(i)
k )W̃(i)

k (20a)

p(y1:k) using p̂(y1:k) :=
k

∏
j=0

(
1
N

N

∑
i=1

W(i)
j

)
. (20b)

The estimator (20a) is consistent as N → ∞ under certain technical assumptions
using multinomial [Del Moral 2004], and stratified as well as residual resampling
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[Gerber, Chopin, and Whiteley 2019]. Gerber, Chopin, and Whiteley [2019] fur-
ther discuss that for systematic resampling, a convergence criterion might fail de-
pending on the order of the input particles, based on an example given by Douc
and Cappé [2005]. The example constructed by Douc and Cappé [2005] however
considers only a single isolated resampling operation, and is therefore inconclu-
sive from the point of view of practical applications of the estimator (20a). The
work of Gerber, Chopin, and Whiteley [2019] also features another resampling
(Srinivasan sampling process), which is in a sense ‘close’ to systematic resam-
pling, and leads to a consistent estimator.

In practice, the estimator (20a) typically converges quickly for functions h
that only depend on state variables later in the sequence, that is, h depends on xl:k,
where k − l is small. For estimating expectations involving early state variables
(such as x1) convergence may be slow, and therefore, the methods introduced
later in Section 4.3 are preferable.

The estimator (20b) gives a means of estimating the normalising constant
of p(x0:k | y1:k). It can be shown that the estimator is unbiased given an unbi-
ased resampling (19) [Del Moral 2004; see also Vihola, Helske, and Franks 2017,
Proposition 21 (i)].

Finally, the particle approximation (W̃(i)
n , X(i)

n ), i = 1, 2, . . . , N of p(xn | y1:n)
can also be used for prediction, since for k ≥ 1, we may estimate

p(xn+k | y1:n) using
N

∑
i=1

W̃(i)
n pXn+k|Xn(xn+k | X(i)

n ), and

p(yn+k | y1:n) using
N

∑
i=1

W̃(i)
n pYn+k|Xn(yn+k | X(i)

n ),

(21)

which follow by appropriate choices of h in (20a). If the densities in (21) are not
available analytically, their Monte Carlo approximations can be used instead.

4.2 The Feynman–Kac representation of a state-space model

Next, we will discuss an alternative representation of an SSM of the form (1)
as a so called Feynman–Kac (FK) model [Del Moral 2004; see also Chopin and
Papaspiliopoulos 2020, Section 5] that is used for the remainder of Chapter 4.
FK models are attractive representations of SSMs from many points of view [see
Chopin and Papaspiliopoulos 2020, Section 5.1.3 for a listing], but in particular
they provide a convenient abstraction that allows for separating the statistical
model of interest (the SSM) from its representation in particle filtering algorithms.
As an example of this, we slightly generalise Algorithm 1 of Section 4.1 below.

The idea of FK models is to represent the SSM in terms of

• an (alternative) initial distribution M0 for the state,

• (alternative) state Markov transitions Mk(· | xk−1) for 1 ≤ k ≤ n, and
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• so called ‘potential functions’ G0 : X → [0, ∞) and Gk : X 2 → [0, ∞) for
1 ≤ k ≤ n.

In this thesis, we make the additional assumption that M0:n = (Mk)0≤k≤n admit
densities, which we will also denote using the symbols Mk.

It is assumed that an FK representation (a particular choice of M0:n and G0:n
above) of an SSM has the same joint distribution as the joint posterior distribution
of the states of the SSM. In our setting, this means that given that the observations
y1:n are fixed, the joint density of all latent states x0:n and observations y1:n of the
SSM,

p(x0:n, y1:n) = f0(x0)
n

∏
k=1

fk(xk | xk−1)gk(yk | xk), (22)

is equal to the joint density of the FK model

κ(x0:n) := M0(x0)G0(x0)
n

∏
k=1

Mk(xk | xk−1)Gk(xk−1, xk), (23)

that is,

p(x0:n, y1:n) = κ(x0:n), for any x0:n ∈ X n+1 when y1:n are fixed. (24)

As an example, we can express an SSM of the form (1) using the FK model:

M0(·) = q0

G0(x0) = f0(x0)/q0(x0)

Mk(· | xk−1) = qk(· | xk−1), for 1 ≤ k ≤ n

Gk(xk−1, xk) =
gk(yk | xk) fk(xk | xk−1)

qk(xk | xk−1)
, for 1 ≤ k ≤ n,

(25)

which clearly satisfies assumption (24), and where qk for k ≥ 0 is a ‘proposal
distribution’ as in Section 4.1.

Algorithm 3 details a generic particle filter for the SSM underlying the FK
model FK0:n := (M0:n, G0:n) using N particles and an unbiased resampling r
[Chopin and Papaspiliopoulos 2020, Section 10.1]. With the FK model (25), Al-
gorithm 3 corresponds to the basic particle filter (Algorithm 1) of Section 4.1.
However, we note that Algorithm 3 is less involved and allows us to interpret the
distributions M0:n as distributions for propagating the particles forward (‘pro-
posal distributions’), and the potential functions G0:n as functions for computing
the weights of the particles.

Algorithm 3 is also slightly more general than Algorithm 1. Algorithm 1
only considers models of the form (25), which satisfy

p(x0:k, y1:k) = κ(x0:k), for all 1 ≤ k ≤ n. (26)

In contrast, with Algorithm 3 we may target also models that do not satisfy (26).
As an example, consider the models similar to the ones introduced in [Guarniero,
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Algorithm 3 PARTICLEFILTER(FK0:n, N)

1: Simulate X(i)
0 ∼ M0(·) for i = 1, 2, . . . , N.

2: Set X(i)
0 = X(i)

0 for i = 1, 2, . . . , N.
3: Compute W(i)

0 = G0(X
(i)
0 ) for i = 1, 2, . . . , N.

4: for k = 1, . . . , n do
5: Simulate A(1:N)

k−1 ∼ r(· |W(1:N)
k−1 ).

6: Simulate X(i)
k ∼ Mk(· | X

(A(i)
k−1)

k−1 ) for i = 1, 2, . . . , N.

7: Set X(i)
k = (X

(A(i)
k−1)

k−1 , X(i)
k ) for i = 1, 2, . . . , N.

8: Compute W(i)
k = Gk(X

(A(i)
k−1)

k−1 , X(i)
k ) for i = 1, 2, . . . , N.

9: end for
10: return (X(1:N)

0:n , W(1:N)
0:n , A(1:N)

0:n−1)

Johansen, and Lee 2017], such as

M0(·) = q0

G0(x0) =
f0(x0)

q0(x0)
η0(x0)

Mk(· | xk−1) = qk(· | xk−1), for 1 ≤ k ≤ n

Gk(xk−1, xk) =
fk(xk | xk−1)gk(yk | xk)

qk(xk | xk−1)

ηk(xk)

ηk−1(xk−1)
, for 1 ≤ k ≤ n− 1

Gn(xn−1, xn) =
fn(xn | xn−1)gn(yn | xn)

qn(xn | xn−1)

1
ηn−1(xn−1)

,

(27)

where (ηk)0≤k≤n−1 are suitably chosen ‘twisting’ functions. When (26) does not
hold, however, (20) only holds for k = n for the output of Algorithm 3.

4.3 Particle smoothing using the conditional particle filter

We will now move on to discuss the conditional particle filter (CPF) [Andrieu,
Doucet, and Holenstein 2010], which is a PMCMC method for particle smoothing,
that is, for the inference of the posterior p(x0:n | y1:n).

In a practical sense, the CPF together with a so called ‘traceback’ operation
(discussed below) can be described as an MCMC method for simulating ‘trajec-
tories’ X(i)

0:n, i = 1, 2, . . . , M from p(x0:n | y1:n). The CPF is similar to the particle
filter (Algorithm 3), but features a so called ‘reference trajectory/particle’ that is
never mutated as the algorithm progresses.

Algorithm 4 below details the CPF targeting the FK model FK0:n = (M0:n,
G0:n) using N particles, given that the reference trajectory X∗0:n resides in the in-
dices B0:n of the particle system X(1:N)

0:n . In contrast to Algorithm 3, immutability

of the reference trajectory is ensured on lines 2 and 7 — where X(Bk)
k = X∗k for

k ≥ 0 is enforced — and by the resampling operation that occurs on line 5.
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In fact, the resampling has been written in a slightly nonstandard way that
differs from [Andrieu, Doucet, and Holenstein 2010], who focused on multino-
mial resampling. In contrast, Algorithm 4 works with a generic ‘conditional re-
sampling’ r(a,b), which draws the ancestor indices A(i)

k−1 for i 6= b conditional

on A(b)
k−1 = a, and therefore ensures that the reference indices B0:n are correctly

recorded to the ancestor indices A(1:N)
0:n−1. A sufficient condition which ensures that

r(a,b) is valid for use with Algorithm 4 is given in Article IV (Definition 1), com-
plementing the earlier work of Chopin and Singh [2015]. Article IV also provides
two concrete resamplings that may be used with Algorithm 4: the conditional
killing resampling and conditional systematic resampling with mean partition
(Algorithms 5 and 6 in Article IV, respectively). Furthermore, the work of Chopin
and Singh [2015] provides conditional variants of standard systematic resampling
and residual resampling.2

Algorithm 4 CPF(FK0:n, N, X∗0:n, B0:n)

1: Simulate X(i)
0 ∼ M0(·) for i = 1, 2, . . . , N, i 6= B0.

2: Set X(B0)
0 = X∗0 and X(i)

0 = X(i)
0 for i = 1, 2, . . . , N.

3: Compute W(i)
0 = G0(X

(i)
0 ) for i = 1, 2, . . . , N.

4: for k = 1, 2, . . . , n do
5: Simulate A(1:N)

k−1 ∼ r(Bk−1,Bk)
(
· |W(1:N)

k−1

)
.

6: Simulate X(i)
k ∼ Mk(· | X

(A(i)
k−1)

k−1 ) for i = 1, 2, . . . , N, i 6= Bk.

7: Set X(Bk)
k = X∗k .

8: Set X(i)
k = (X

(A(i)
k−1)

k−1 , X(i)
k ) for i = 1, 2, . . . , N.

9: Compute W(i)
k = Gk(X

(i)
k ) for i = 1, 2, . . . , N.

10: end for
11: return (X(1:N)

0:n , W(1:N)
0:n , A(1:N)

0:n−1)

Algorithm 5 TRACEBACK(X(1:N)
0:n , W(1:N)

n , A(1:N)
0:n−1, TRACEMETHOD)

1: Simulate B̃n ∼ Categ(W(1:N)
n ).

2: B̃0:n−1 ← TRACEMETHOD(X(1:N)
0:n , A(1:N)

0:n−1, B̃n)

3: return (X(B̃0:n)
0:n , B̃0:n)

After running the CPF, a ‘traceback’ algorithm (Algorithm 5) may be run on
the output (X(1:N)

0:n , W(1:N)
0:n , A(1:N)

0:n−1) of the CPF. This yields new indices B̃0:n and

reference X(B̃0:n)
0:n . There are two ways to implement TRACEMETHOD in Algorithm

5: the original ‘ancestor tracing’ variant (Algorithm 6) introduced by Andrieu,
Doucet, and Holenstein [2010] and the ‘backward sampling’ variant (Algorithm
7) [Whiteley 2010].

2 With the additional assumption that the condition in the conditional resampling is always
A(1) = 1.
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In ancestor tracing, the new ancestral path is chosen by backtracking along
the ancestor indices A(1:N)

0:n−1 sampled during the ‘forward pass’ (Algorithm 4). In
contrast, backward sampling employs further sampling to generate the ances-
tral path, whose indices are drawn from Categ(ω(1:N)

k ). The ‘backward sampling

weights’ ω
(i)
k are computed using the FK model, and their computation requires

that the transition densities (Mk)1≤k≤n can be evaluated pointwise. Note that an-
cestor tracing does not require X(1:N)

0:n ; the first argument to Algorithm 6 is only
included for consistency with Algorithm 7 as this allows us to write the generic
Algorithm 5, which will be relevant for Section 4.4.

A single update (X∗0:n, B0:n) → (X(B̃0:n)
0:n , B̃0:n) (that is, Algorithm 4 followed

by Algorithm 5) detailed in Algorithm 8 constitutes a Markov transition that
leaves p(x0:n | y1:n)×Unif({1:N}n+1) invariant. This result was shown first by
Andrieu, Doucet, and Holenstein [2010] in the case of multinomial resampling
and ancestor tracing. Then, Whiteley [2010] noted that the same holds with back-
ward sampling. Chopin and Singh [2015] then showed that the above invariance
holds in the cases of conditional systematic and residual resampling using an-
cestor tracing. Theorems 2 and 8 of Article IV further extend these results to the
‘general case’ of Algorithm 8 where the resampling (within Algorithm 4) is any
valid conditional resampling (satisfies Definition 1 of Article IV) together with
either ancestor tracing or backward sampling.

The invariance of the above Markov update together with mild irreducibil-
ity assumptions [cf. Roberts and Smith 1994] yield the estimator

1
M

M

∑
j=1

h(X̃(j)
0:n)

M→∞−−−→
∫
X n+1

h(x0:n)p(x0:n | y1:n)dx0:n, (28)

for any N ≥ 2 in Algorithm 4. Here, X̃(j)
0:n, j = 1, 2, . . . , M correspond to trajecto-

ries simulated by iterating Algorithm 8.
Chopin and Singh [2015] showed that (under multinomial resampling) the

asymptotic variance of the estimator (28) is smaller with backward sampling than
with ancestor tracing. This suggests that backward sampling should always be
used with Algorithm 8, if the transition densities (Mk)1≤k≤n are tractable. Indeed,
in practice the difference between the methods is typically strikingly obvious,
and the Markov chains sampled using backward sampling often exhibit far better
mixing than with ancestor tracing [cf. Chopin and Singh 2015, Section 6; Lindsten
and Schön 2012, Section 4]. Despite this, ancestor tracing is still relevant when the
densities (Mk)1≤k≤n are intractable or expensive to evaluate.

Algorithm 6 ANCESTORTRACING(X(1:N)
0:n , A(1:N)

0:n−1, B̃n)

for k = n− 1, n− 2, . . . , 0 do
Set B̃k = A(B̃k+1)

k−1 .
end for
return B̃0:n
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Algorithm 7 BACKWARDSAMPLING(X(1:N)
0:n , A(1:N)

0:n−1, B̃n)

1: for k = n− 1, n− 2, . . . , 0 do
2: for i = 1, 2, . . . , N do

3: If k ≥ 1, set X(i)
k = (X

(A(i)
k−1)

k−1 , X(i)
k ); otherwise set X(i)

k = X(i)
k .

4: Compute ω
(i)
k = Gk(X

(i)
k )Gk+1(X(i)

k , X(B̃k+1)
k+1 )Mk+1(X(B̃k+1)

k+1 | X(i)
k ).

5: end for
6: Simulate B̃k ∼ Categ(ω(1:N)

k ).
7: end for
8: return B̃0:n

Algorithm 8 CPF-UPDATE(FK0:n, N, X∗0:n, B0:n, TRACEMETHOD)

1: (X(1:N)
0:n , W(1:N)

0:n , A(1:N)
0:n−1)← CPF(FK0:n, N, X∗0:n, B0:n)

2: (X(B̃0:n)
0:n , B̃0:n)← TRACEBACK(X(1:N)

0:n , W(1:N)
n , A(1:N)

0:n−1, TRACEMETHOD)

3: return (X(B̃0:n)
0:n , B̃0:n)

4.4 Joint parameter and state inference with particle Markov chain
Monte Carlo methods

We conclude this chapter by reviewing the particle marginal Metropolis-Hastings
(PMMH) and particle Gibbs (PG) [Andrieu, Doucet, and Holenstein 2010], which
are PMCMC methods for joint parameter and state inference, that is, the inference
of the joint posterior p(θ, x0:n | y1:n). In other words, we now assume that the
SSM depends on parameters θ ∼ pθ(·) and we are interested in inferring them
together with the states x0:n.

The joint posterior of the parameters and the states has the form

p(θ, x0:n | y1:n) ∝ κ(θ)(x0:n, y1:n)pθ(θ), (29)

where the FK model now depends on the parameters θ and satisfies (24) for all θ,
that is,

κ(θ)(x0:n, y1:n) = p(x0:n, y1:n | θ)

= M(θ)
0 (x0)G

(θ)
0 (x0)

n

∏
k=1

M(θ)
k (xk | xk−1)G

(θ)
k (xk−1, xk).

The superscripts by θ in the transitions and potential functions of the FK model
signify that they may now depend on the parameters.

Algorithm 9 details the PMMH targeting the FK model FK(θ)
0:n := (M(θ)

0:n,

G(θ)
0:n) with N particles and M iterations, with starting value θ(0) and a proposal

distribution q for θ. Lines 1–3 constitute the initialisation of the algorithm, where
the initial trajectory X̃(0)

0:n and initial normalisation constant Ẑ(0) are obtained by
running the particle filter (Algorithm 3) together with ancestor tracing (Algo-
rithm 5 with TRACEMETHOD = ANCESTORTRACING). The computation of Ẑ(0)
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uses (20b), where the estimate p̂(y1:n) now implicitly depends on the value of
θ(0) through the weights W(1:N)

0:n . Each iteration (lines 5–15) then corresponds
to a Metropolis-Hastings step where first a proposal θ∗ for θ is simulated from
q. Then, the proposed normalising constant estimate Ẑ∗ and trajectory X̃∗0:n are
obtained from the output of the particle filter (Algorithm 3) targeting FK(θ∗)

0:n .
Finally, the joint proposal (θ∗, Ẑ∗, X̃∗0:n) is accepted or rejected based on the ac-
ceptance rate computed on line 10.

Algorithm 9 PMMH(FK(θ)
0:n, N, M, θ(0), q)

1: (X(1:N)
0:n , W(1:N)

0:n , A(1:N)
0:n−1)← PARTICLEFILTER(FK(θ(0))

0:n , N)

2: (X̃(0)
0:n , B̃0:n)← TRACEBACK(X(1:N)

0:n , W(1:N)
n , A(1:N)

0:n−1, ANCESTORTRACING)

3: Compute Ẑ(0) = p̂(y1:n) using W(1:N)
0:n in (20b).

4: for k = 1, 2, . . . , M do
5: Simulate θ∗ ∼ q(· | θ(k−1)).
6: (X(1:N)

0:n , W(1:N)
0:n , A(1:N)

0:n−1)← PARTICLEFILTER(FK(θ∗)
0:n , N)

7: (X̃∗0:n, B̃0:n)← TRACEBACK(X(1:N)
0:n , W(1:N)

n , A(1:N)
0:n−1, ANCESTORTRACING)

8: Compute Ẑ∗ = p̂(y1:n) using W(1:N)
0:n in (20b).

9: Simulate U ∼ Unif(0, 1).

10: Compute p =
Ẑ∗p(θ∗)q(θ(k−1) | θ∗)

Ẑ(k−1)p(θ(k−1))q(θ∗ | θ(k−1))
.

11: if U < min(1, p) then
12: Set θ(k) = θ∗, Ẑ(k) = Ẑ∗, X̃(k)

0:n = X̃∗0:n.
13: else
14: Set θ(k) = θ(k−1), Ẑ(k) = Ẑ(k−1), X̃(k)

0:n = X̃(k−1)
0:n .

15: end if
16: end for
17: return (θ(1:M), X̃(1:M)

0:n , Ẑ(1:M))

The PMMH constructs proposals whose components are jointly either ac-
cepted or rejected on each iteration of the algorithm. In contrast, the PG algorithm
proposes changes to the trajectory and parameter individually by approximating
a Gibbs sampler. One iteration of a perfect Gibbs sampler would simulate from
p(θ, x0:n | y1:n) by simulating from the full conditionals of θ and x0:n, as follows:

1. θ∗ ∼ pθ|X0:n,Y1:n
(θ | x0:n, y1:n)

2. x∗0:n ∼ pX0:n|θ,Y1:n
(x0:n | θ∗, y1:n).

However, simulating from the full conditional of x0:n is typically difficult. The PG
algorithm works around this by approximating the draw from full conditional of
x0:n using the CPF (Algorithm 8). The resulting algorithm is detailed in Algo-
rithm 10. The inputs consists of the FK model, amount of particles N, amount of
iterations M, a trace method and the initial value θ(0).

The first two lines of the algorithm correspond to an initialisation phase
where the initial trajectory X̃(0)

0:n is obtained by running the particle filter, although
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Algorithm 10 PARTICLEGIBBS(FK(θ)
0:n, N, M, TRACEMETHOD, θ(0))

1: (X(1:N)
0:n , W(1:N)

0:n , A(1:N)
0:n−1)← PARTICLEFILTER(FK(θ(0))

0:n , N)

2: (X̃(0)
0:n , B̃(0)

0:n)← TRACEBACK(X(1:N)
0:n , W(1:N)

n , A(1:N)
0:n−1, TRACEMETHOD)

3: for k = 1, 2, . . . , M do
4: Simulate θ(k) ∼ pθ|x0:n,y1:n

(· | X̃(k−1)
0:n , y1:n).

5: (X̃(k)
0:n, B̃(k)

0:n)← CPF-UPDATE(FK(θ(k))
0:n , N, X̃(k−1)

0:n , B̃(k−1)
0:n , TRACEMETHOD)

6: end for
7: return (θ(1:M), X̃(1:M)

0:n )

in general X̃(0)
0:n could also be provided as input. Each iteration (lines 4 and 5) then

corresponds to a draw from the full conditional of θ, and the approximate draw
from the full conditional of x0:n. If direct sampling from the full conditional of θ

is infeasible, line 4 of the algorithm can also be changed to an MCMC move for θ

(such as a Metropolis-Hastings step) that leaves the full conditional of θ invariant.
Under unbiasedness of the resampling (19), the PMMH and particle Gibbs

updates (single iterations of the loops in Algorithms 9 and 10) leave p(θ, x0:n |
y1:n) invariant. This, together with additional mild irreducibility assumptions
[cf. Roberts and Smith 1994], yields the estimator

1
M

M

∑
i=1

h(θ(i), X̃(i)
0:n)

M→∞−−−→ E[h(θ, X0:n) | Y1:n = y1:n], (30)

for any N ≥ 2 for both algorithms, where h is a function that depends on both θ

and X0:n.



5 FILTERING CONDITIONALLY LINEAR GAUSSIAN
STATE-SPACE MODELS

This chapter discusses state filtering for conditionally linear Gaussian state-space
models (CLGSSMs) [cf. Särkkä 2013, Section 7.5; Doucet, De Freitas, and Gordon
2001, Section 24]. CLGSSMs are SSMs with latent states L0:n and observations
Y1:n, such that the state Lk consists of components Xk and Uk, that is Lk = (Xk, Uk).
The latent states and observations are assumed to be related such that

Xk = T(Uk)
k Xk−1 + R(Uk)

k η
(Uk)
k , and X0 ∼ N(µ

(U0)
0 , Σ(U0)

0 )

Yk = Z(Uk)
k Xk + ε

(Uk)
k ,

(31)

where η
(Uk)
k ∼ N(0, Q(Uk)

k ) and ε
(Uk)
k ∼ N(0, H(Uk)

k ). In other words, conditioning
on the sequence U0:n yields an LGSSM as in Section 3.1. The dynamics of the
process U0:n are assumed to be characterised by an initial distribution pU0 and
transitions (pUk|Uk−1

(· | uk−1))1≤k≤n, that is:

U0 ∼ pU0

Uk | (Uk−1 = uk−1) ∼ pUk|Uk−1
(· | uk−1).

(32)

Here, we focus on the scenario where the variables Uk have a finite state-space U .

5.1 The Rao-Blackwellised particle filter

Suppose that we are interested in evaluating expectations of a function f involv-
ing the variables Xk and Uk of the model defined by (31) and (32), with respect to
the distribution p(x0:k, u0:k | y1:k). We have

E[ f (Xk, Uk) | Y1:k = y1:k] = ∑
u0:k∈U k+1

∫
X k+1

f (xk, uk)p(x0:k, u0:k | y1:k)dx0:k

= ∑
u0:k∈U k+1

p(u0:k | y1:k)
∫
X

f (xk, uk)p(xk | u0:k, y1:k)dxk,

(33)
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where we have used the factorisation

p(x0:k, u0:k | y1:k) = p(x0:k | u0:k, y1:k)p(u0:k | y1:k).

Given an empirical approximation of p(u0:k | y1:k) with support points U(i)
0:k and

(normalised) weights W̃(i)
k , i = 1, 2, . . . , N, we could therefore estimate (33) with

N

∑
i=1

W̃(i)
k

∫
X

f (xk, U(i)
k )pXk|U0:k,Y1:k

(xk | U(i)
0:k, y1:k)dxk. (34)

Note that (34) involves integrating with respect to the Gaussian distributions
pXk|U0:k,Y1:k

(xk | U(i)
0:k, y1:k) that can be computed analytically using the Kalman

filter (7) of Section 3.1. The integral in (34) can therefore be analytically com-
puted if the form of the function f permits this. Otherwise, numerical integration
methods such as Gauss-Hermite quadrature [cf. Särkkä 2013, Section 6.3] can be
used.

A Rao-Blackwellised particle filter (RBPF) [Akashi and Kumamoto 19771;
see also Särkkä 2013, Section 7.5] — also known as a ‘mixture Kalman filter’ [Chen
and Liu 2000] — uses a particle filter to approximate the distribution p(u0:k | y1:k),
and the Kalman filter in the evaluation of the integrals related to the conditional
distribution of xk (or even x0:k) given u0:k and y1:k. Similarly as in (18), the weights
of a particle filter targeting p(u0:k | y1:k) satisfy

W(i)
k ∝

pYk|U0:k,Y1:k−1
(yk | U(i)

0:k, y1:k−1)pUk|Uk−1
(U(i)

k | U(i)
k−1)

qk(U
(i)
k | U(i)

1:k−1, y1:k)
W(i)

k−1, (35)

where we have used the fact that Uk is conditionally independent from Y1:k−1
given Uk−1, and qk is a proposal distribution for Uk that depends on the full his-
tory U1:k−1 and (possibly) Y1:k.

Algorithm 11 details a basic RBPF targeting the model consisting of (31)
and (32), using proposals q0:n and N particles [cf. Särkkä 2013, Section 7.5]. The
RBPF is similar to Algorithm 1, with the latent states Uk sampled instead of Xk.
In contrast, however, the RBPF makes use of the analytical formulas available
for LGSSMs once U0:k is conditioned on. In particular, the weight computation
on line 9 and the update step on line 10 make use of (9) and the Kalman filter
(7). The update step computes the mean and covariance S(i)

k of the distributions

pXk|U0:k,Y1:k
(xk | U(i)

0:k, y1:k) in (34) for each i. The output of the RBPF may be there-

fore readily used to compute (34) after normalisation of the weights W(1:N)
k .

5.2 The one step optimal proposal distribution

The choice of the proposal distribution q0:n input to Algorithm 11 affects the per-
formance of the estimator (34). When the state-space U of the states Uk is finite,
1 Although this early form of the ‘RBPF’ was published before the first particle filter of Gor-

don, Salmond, and Smith [1993], it did not feature a resampling operation.
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Algorithm 11 BASIC-RBPF(q0:n, N)

1: Simulate U(i)
0 ∼ q0 for i = 1, 2, . . . , N.

2: Compute W(i)
0 = pU0(U

(i)
0 )/q0(U

(i)
0 ) for i = 1, 2, . . . , N.

3: Set U(i)
0 = U(i)

0 for i = 1, 2, . . . , N.

4: Set S(i)
0 = (µ

(U0
(i))

0|0 , Σ(U0
(i))

0|0 ) for i = 1, 2, . . . , N, where µ
(U(i)

0 )

0|0 := µ
(U(i)

0 )
0 , and Σ(U(i)

0 )

0|0 :=

Σ(U(i)
0 )

0 .
5: for k = 1, 2, . . . , n do
6: Simulate A(i)

k−1 ∼ r(· |W(1:N)
k−1 ) for i = 1, 2, . . . , N.

7: Simulate U(i)
k ∼ qk(· | U

(A(i)
k−1)

k−1 , y1:k) for i = 1, 2, . . . , N.

8: Set U(i)
k = (U

(A(i)
k−1)

k−1 , U(i)
k ) for i = 1, 2, . . . , N.

9: Compute W(i)
k =

pYk |U0:k ,Y1:k−1
(yk | U(i)

k , y1:k−1)pUk |Uk−1
(U(i)

k | U
(A(i)

k−1)

k−1 )

qk(U
(i)
k | U

(A(i)
k−1)

k−1 , y1:k)

for

i = 1, 2, . . . , N. Note that pYk |U0:k ,Y1:k−1
(yk | U(i)

k , y1:k−1) = N(yk; µ(U(i)
k ), Σ(U(i)

k )),
where

µ(U(i)
k ) := Z(U(i)

k )

k µ
(U(i)

k )

k|k−1,

Σ(U(i)
k ) := Z(U(i)

k )

k Σ(U(i)
k )

k|k−1

(
Z(U(i)

k )

k

)′
+ H(U(i)

k )

k ,

with µ
(U(i)

k )

k|k−1 and Σ(U(i)
k )

k|k−1 computed using (7):

µ
(U(i)

k )

k|k−1 = T(U(i)
k )

k µ
(U

(A(i)
k−1)

k−1 )

k−1|k−1

Σ(U(i)
k )

k|k−1 = T(U(i)
k )

k Σ
(U

(A(i)
k−1)

k−1 )

k−1|k−1

(
T(U(i)

k )

k

)′
+ R(U(i)

k )

k Q(U(i)
k )

k

(
R(U(i)

k )

k

)′
.

10: Compute S(i)
k = (µ

(Uk
(i))

k|k , Σ(Uk
(i))

k|k ) for i = 1, 2, . . . , N using yk and the update step

in (7).
11: end for
12: Return U(1:N)

0:n , W(1:N)
0:n , A(1:N)

0:n−1, S(1:N)
0:n
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an appealing candidate for the proposal distribution q0:n can be formed from the
one step optimal proposals [Liu and Chen 1998; Akashi and Kumamoto 1977]

qk(uk | U(i)
0:k−1, y1:k) := pUk|U0:k−1,Y1:k

(uk | U(i)
0:k−1, y1:k)

∝ pYk|U0:k,Y1:k−1
(yk | uk, U(i)

0:k−1, y1:k−1)pUk|Uk−1
(uk | U(i)

k−1),
(36)

the unnormalised probabilities of which can be evaluated for all uk ∈ U . Note
that the term pYk|U0:k,Y1:k−1

(yk | uk, U(i)
0:k−1, y1:k−1) above can be evaluated as in line

9 of Algorithm 11. When the proposals (36) are used with Algorithm 11, the
weights of the particles reduce to the normalising constant of (36) as can be seen
from (35).

5.3 The discrete particle filter with optimal resampling

Line 7 of Algorithm 11 simulates a single outcome U(i)
k given the particle U

(A(i)
k−1)

k−1

for each i. Each new particle U(i)
k is then constructed by setting U(i)

k = (U
(A(i)

k−1)

k−1 ,

U(i)
k ), that is, combining the outcome with the ancestor particle U

(A(i)
k−1)

k−1 . There-

fore, if the proposal for U(i)
k spans U , each U(i)

k is chosen among |U | candidates.
To obtain a more efficient method, the proposal and resampling steps of

Algorithm 11 may be modified. This may be done by performing an ‘exhaus-
tive one step lookahead’ at each time step, which constructs all possible ‘future
particles’ Û(1:|U |N)

k based on the particles at time k − 1, U(1:N)
k−1 , and then uses a

resampling step to select again N particles U(1:N)
k among Û(1:|U |N)

k . This explores

the state-space U k+1 more effectively, since now each U(i)
k is chosen among |U |N

candidates.
A method fitting the description above is known as the discrete particle fil-

ter (DPF) [Fearnhead 1998; see also Whiteley, Andrieu, and Doucet 2010]. Algo-
rithm 12 details the DPF using N particles, targeting the model comprised of (31)
and (32). The main difference to Algorithm 11 is that the DPF does not simulate
particles from a proposal distribution, but exhaustively constructs all possible
particles u(i)

0:k, i = 1, 2, . . . , |Dk| given particles that were chosen in the previous re-
sampling operation. The Kalman filter is then used to compute the filtered means
and covariances given each possible particle on line 10).

Algorithm 12 uses a lowercase u for the particles to signify that they are
not simulated from a proposal; the only randomness in them comes from the
resampling operation, which occurs on lines 7–8. The resampling corresponds
to the optimal resampling algorithm of Fearnhead and Clifford [2003], which is
unbiased and optimal in the sense that it minimises a squared error loss function.
Furthermore, the algorithm guarantees that each resampled particle is unique.

Resampling occurs once the number of possible particles at time point k− 1,
|Dk−1|, grows larger than the number of particles N, and entails computing a con-
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Algorithm 12 DPF(N)

1: Set D0 = U .

2: Set µ
(u(i)

0 )

0|0 = µ
(u(i)

0 )
0 and Σ(u(i)

0 )

0|0 = Σ(u(i)
0 )

0 for all u(i)
0 ∈ D0, i = 1, 2, . . . , |D0|.

3: Set S0 = (µ
(u(1:|D0 |)

0 )

0|0 , Σ(u(1:|D0 |)
0 )

0|0 ).

4: Compute W(u(i)
0 )

0 = pU0(u
(i)
0 ) for i = 1, 2, . . . , |D0|.

5: Normalise W(u(1:|D0 |)
0 )

0 to obtain W̃(u(1:|D0 |)
0 )

0 . Set W̃0 = W̃(u(1:|D0 |)
0 )

0 .
6: for k = 1, 2, . . . , n do
7: If |Dk−1| ≤ N, set ck−1 = ∞. Otherwise find ck−1 such that

|Dk−1|

∑
i=1

min(1, ck−1W̃
(u(i)

0:k−1)

k−1 ) = N. (37)

8: Maintain the Lk−1 particles in Dk−1 that have weights strictly greater than 1/ck−1
(‘maintained partition’). Use systematic resampling to select min(N, |Dk−1|) −
Lk−1 from the remaining |Dk−1| − Lk−1 (‘resampling partition’). Denote by D

′
k−1

the total min(N, |Dk−1|) particles that remain.
9: Set Dk = D

′
k−1 ×U .

10: Compute µ
(u(i)

0:k)

k|k and Σ
(u(i)

0:k)

k|k for all u(i)
0:k ∈ Dk, i = 1, 2, . . . , |Dk| using the Kalman

filter. Set Sk = (µ
(u

(1:|Dk |)
0:k )

k|k , Σ
(u

(1:|Dk |)
0:k )

k|k ).
11: Compute

W(u(i)
0:k)

k = pYk |Y1:k−1,U0:k
(yk | y1:k−1, u(i)

0:k)pUk |Uk−1
(u(i)

k | u(i)
k−1)

W̃
(u(i)

0:k−1)

k−1

min(1, ck−1W̃
(u(i)

0:k−1)

k−1 )

,

for i = 1, 2, . . . , |Dk|.

12: Normalise W(u
(1:|Dk |)
0:k )

k to obtain W̃(u
(1:|Dk |)
0:k )

k . Set W̃k = W̃(u
(1:|Dk |)
0:k )

k .
13: end for
14: Return D0:n, W̃0:n, S0:n
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stant, ck−1, satisfying (37). The value of ck−1 acts as a cutoff for the weights and
divides the particles to two partitions: the maintained partition and the resam-
pling partition. The particles in the maintained partition are kept with their orig-
inal weights, and the particles in the resampling partition are resampled using
systematic resampling (Algorithm 2). An algorithm for computing the constant
ck−1 is presented in Fearnhead and Clifford [2003, Appendix C].

If resampling does not occur (that is, ck−1 = ∞ is set) all particles are main-
tained, that is, the resampling partition has zero particles. Note that in theory,
if N were set large enough, resampling would never occur and Dk would equal
U k+1 at time k, that is, all possible particles would have been constructed and the
results of the DPF would be exact.

The output of the DPF consists of the particles D0:n, their weights W̃0:n, and
the filtered means and covariances S0:n. For k = 1, 2, . . . , n, the estimator

|Dk|

∑
i=1

W̃
(u(i)

0:k)

k

∫
X

f (xk, u(i)
k )pXk|U0:k,Y1:k

(xk | u(i)
0:k, y1:k)dxk (38)

estimates (33) and may be computed using the outputs Dk, W̃k and Sk.
Typically, for k moderately large, |Dk| in (38) will equal |U |N. If |U | is large,

an approximation with just N particles may also be obtained by running the re-
sampling of Fearnhead and Clifford [2003] once more, to obtain N particles con-
sisting of the particles in the maintained partition (with original weights), and the
particles resampled from the resampling partition (with weights 1/ck each). An
estimate of the form (34) may be then used with the particles and filtered means
and covariances corresponding to the particles output by the resampling.



6 RESEARCH CONTRIBUTION

This chapter summarises the research contribution of this thesis. We first discuss
the methodological contributions of Articles II and IV that develop new parti-
cle filtering methods. Then, we discuss the applied contributions of Articles I
and III that involve development of NSSMs, approximations and use of existing
methodology for NSSMs.

6.1 Methodological contributions

Article II: smoothing for general state-space models with ‘diffuse’ initial dis-
tributions

Article II focuses on the smoothing problem for general state-space models with
‘diffuse’ initial distributions, that is, models where the variability of the initial
distribution M0 in the Feynman–Kac model (23) is high in comparison to the first
marginal smoothing distribution of the SSM.

For such models, direct use of the conditional particle filter (CPF) (Algo-
rithm 4) – even with the traceback implemented using the often efficient back-
ward sampling (Algorithm 7) – leads to suboptimal mixing of the early state vari-
ables in the Markov chain. Intuitively speaking, this occurs since the initial parti-
cles drawn from the diffuse M0 will likely fall into unlikely (that is, low potential)
regions of the state-space and are thus rarely selected in the traceback. Figure 2
(adapted from Article II) shows how this phenomenon occurs even for a simple
LGSSM, the ‘noisy AR(1)’ model:

xk ∼ N(ρxk−1, σ2
x) for 1 ≤ k ≤ n− 1 and x0 ∼ N(0, σ2

0 )

yk ∼ N(xk, σ2
y ) for 0 ≤ k ≤ n− 1,

(39)
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FIGURE 2 Figure adapted from Article II. Traceplots of the samples from the first
marginal smoothing distribution p(x0 | y0:n−1) of the noisy AR(1) model
(39) with σ0 ∈ {10, 100, 1000}.

represented using the FK model

M0(·) = N(0, σ2
0 )

Mk(· | xk−1) = N(·; ρxk−1, σ2
x) for 1 ≤ k ≤ n− 1

G0(x0) = N(y0; x0, σ2
y )

Gk(xk−1, xk) = N(yk; xk, σ2
y ) for 1 ≤ k ≤ n− 1

where ρ, σx, σy and σ0 are parameters. To draw Figure 2, we set ρ = 0.8, σx =
σy = 0.5 and iterated the conditional particle filter with backward sampling 6000
times with N = 16 for each σ0 ∈ {10, 100, 1000}. A single data set with fifty
observations simulated from the model (39) with the above parameters and x0 =
0 was used in all simulations (see Article II for more details).

To avoid such problems, we introduce a new ‘auxiliary initialisation condi-
tional particle filter’ (AI-CPF) that avoids direct sampling from the diffuse M0.
Instead, we employ a Markov transition Q that is M0-reversible. Such reversible
transitions are easy to define (see Section 3 of Article II). In particular, we focus on
the case where M0 is an improper distribution, namely the uniform distribution
on Rd, in which case Q can be a symmetric Gaussian random walk.

Furthermore, based on advances in the adaptive MCMC literature [Andrieu
and Thoms 2008; Haario, Saksman, and Tamminen 2001], we refine the AI-CPF
to allow for choosing the tuning parameters of Q automatically to facilitate ef-
ficient mixing. In the case mentioned above, with Q(· | x) = N(·; x, cΣ), our
adaptive AI-CPF tunes (i) the scale c such that a desired target acceptance rate is
reached, and (ii) the shape Σ such that it converges to the covariance of the first
marginal smoothing distribution. We also demonstrate how the AI-CPF can be
readily embedded within a particle Gibbs algorithm (Algorithm 10) and provide
a target acceptance rate heuristic that eliminates the need for setting any tuning
parameters to use our method.
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FIGURE 3 Figure from Article II. Traceplots for initial states (E1, I1, R01) and parameters
(σ, p) of a stochastic SEIR model. Left: an adaptive variant of the developed
AI-CPF. Right: a particle Gibbs algorithm that treats the initial state as a
parameter. See Article II for more details.

In our concluding example with an epidemic model (a stochastic suscep-
tible-exposed-infected-removed (SEIR) model) and a real data set, we observe
substantially better mixing compared to a particle Gibbs method that treats the
initial state as a parameter (see Figure 3).

Article IV: smoothing for state-space models with weakly informative obser-
vations and/or slowly-mixing dynamic models

Article IV considers the smoothing problem for state-space models with weakly
informative observations and/or slowly-mixing dynamic models. Such models
arise for example with fine discretisations of continuous-time FK path integral
models [cf. Del Moral and Miclo 2000].

In this setting, the conditional particle filter with backward sampling (CPF-
BS) (Algorithm 8 with TRACEMETHOD = BACKWARDSAMPLING) and multino-
mial resampling suffers from two problems. First, with weakly informative ob-
servations, multinomial resampling introduces excess variance. Second, in the
case of a slowly-mixing dynamic model, the traceback using backward sampling
essentially degenerates to ancestor tracing (Algorithm 6).

Inspired by the recent findings in [Chopin, Singh, et al. 2022], we avoid the
issue with multinomial resampling by introducing two new ‘conditional’ resam-
pling algorithms (briefly mentioned in Section 4.3) that are suitable for the CPF
in the weakly informative context. We further provide a sufficient condition that
guarantees the validity of the CPF with a ‘generic’ conditional resampling algo-
rithm.

To address the degeneracy issue with backward sampling, we develop a
new ‘conditional particle filter with bridge backward sampling’ (CPF-BBS) that
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FIGURE 4 Figure adapted from Article IV. Empirical comparison of the agreement of
the developed estimator P̂LU and PLU computed by iterating the CPF-BBS
for a particular SSM with varying parameters σ and numbers of particles
N. Each point depicts the values of P̂LU and PLU in a particular block of
the blocking sequence. The value on the horizontal axis parameterises the
blocking sequence used.

updates the latent states x0:n in ‘blocks’ xTi−1:Ti for i = 1, 2, . . . , K during backward
sampling. The block bounds [Ti−1, Ti] are parameterised by a ‘blocking sequence’
0 = T0 < T1 < T2 < . . . < TK = n specified by the user. The blocked updates
require that conditional densities related to the dynamic model can be evaluated
and sampled from. The CPF-BBS may be seen as a generalisation of the CPF-BS,
since choosing the blocking sequence T0:n = 0:n yields the CPF-BS.

The blocking sequence is an important tuning parameter of the CPF-BBS
that affects the mixing of the output Markov chain, and for efficient mixing, it
should be chosen based on the model of interest. To make this feasible in prac-
tice, we develop and empirically verify a computationally inexpensive heuristical
procedure for selecting the blocking sequence prior to iterating the CPF-BBS.

The procedure seeks for a blocking sequence that maximises the so called
‘probability of lower boundary updates’ (PLU), which is equal to the probability
that the CPF-BBS update refreshes the value at a particular block lower boundary
Ti−1. Based on our empirical results, PLU is inversely related to the integrated
autocorrelation time of the Markov chain. We develop an approximate estimator
for PLU, denoted by P̂LU, which may be evaluated without iterating the CPF-
BBS. Figure 4 compares P̂LU to PLU computed by iterating the CPF-BBS (see
Article IV for more details).

Our concluding experiment applies the CPF-BBS to a smoothing problem
related to movement modelling (see Figure 5). The experiment models the move-
ment of an object that has a preference for moving in certain types of terrain. The
object has been observed at the blue crosses. The preference for terrain is mod-
elled using the potential functions of the FK model and is depicted in the back-
ground map. Here, there are a finite number of terrain types and the movement
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FIGURE 5 Figure adapted from Article IV. The green lines correspond to 250 trajecto-
ries simulated from the full smoothing distribution of the model that con-
ditions on the observations and the terrain preference. Blue crosses are ob-
served locations and the background map depicts the preference of terrain
with lighter meaning higher preference.

is constrained on land. The experiment demonstrates a substantial efficiency gain
over CPF-BS in the weakly informative regime (see Figure 6).

6.2 Applied contributions

Article I: predicting leukocyte counts using non-linear state-space models

Article I develops new NSSMs for predicting leukocyte (white blood cell) counts
of children diagnosed with acute lymphoblastic leukaemia (ALL). In the final
treatment phase of ALL, patients receive so called ‘maintenance therapy’ for a pe-
riod of up to two years [Schmiegelow et al. 2014]. Maintenance therapy consists
of low-dose chemotherapy involving daily oral 6-mercaptopurine and weekly
methotrexate. The doses of these chemotherapeutic drugs are adjusted weekly or
biweekly based on a ‘target level’ for the leukocyte counts of the patients, which
motivates the interest in the predictive modelling of the leukocyte counts.
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FIGURE 6 Figure adapted from Article IV. Top: Logarithm of the integrated autocorre-
lation time for the horizontal location of the object with respect to time when
the smoothing distribution shown in Figure 5 was simulated using CPF-BS
(black), hand-tuned CPF-BBS (blue) and CPF-BBS with blocking sequence
obtained automatically using heuristical procedure based on PLU (red). Bot-
tom: size of blocks with respect to time for the variants of CPF-BBS used.

The work of Jayachandran et al. [2014] developed a mechanistic model for
the leukocyte counts based on a compartment model of Friberg et al. [2002],
which is considered to be the ‘gold standard’ approach for modelling the pro-
duction of neutrophils under chemotherapy [Craig 2017]. The models of Jay-
achandran et al. [2014] and Friberg et al. [2002] consists of a system of ordinary
differential equations.

We simplify these models and introduce noise in their dynamics, which
leads to state-space models that arise as approximations to non-linear stochas-
tic differential equations. One of our models features a stochastic volatility [cf.
Taylor 2007] type component that is used to incorporate the measured C-reactive
protein (CRP) to the model (see Figure 7). The CRP is a surrogate for a com-
mon treatment adversity, infections, which may affect the leukocyte counts. We
compare our models to the model of Jayachandran et al. [2014] using time series
cross-validation and find that our simplified models appear more robust and are
competitive in terms of the predictive performance.

The model estimation and prediction is an application of the extended Kal-
man filter (14) discussed in Section 3.2, with maximum a posteriori estimates ob-
tained for the model parameters using numerical optimisation.

Article III: using presence-only citizen science data to estimate the number and
locations of animal territories

Article III is an ecological application that develops a modelling framework that
can be used to estimate the number and locations of animal territories using
presence-only citizen science data, under assumptions on the typical territory life-
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FIGURE 7 Figure from Article I. Mean leukocyte count and approximate prediction in-
tervals (50%, 90%) based on the fits of two non-linear state-space models
(top and middle) to the measured leukocyte counts (black points) of a sin-
gle patient during maintenance therapy. The horizontal axis shows the time
in days. The middle plot shows a model fit with the stochastic volatility
component and the top plot without. The mean from the model in the top
plot appears as a dotted line in the middle plot. The bottom plot shows the
log(x + 1)-transformed CRP measurements.

time and size. We apply the framework for identifying wolf territories in Finland.
In particular, our framework features a tracking model [cf. Goodman, Mah-

ler, and Nguyen 1997] that consists of a birth and death submodel for the appear-
ance and removal of the animal territories, and an observation submodel that
links the citizen science observations to the territories.

A key feature of our observation submodel is that it can account for tem-
porally and spatially varying observation intensities that are common for citizen
science observation processes. The model we develop extends the similar mod-
els of Särkkä, Vehtari, and Lampinen [2007] and Vihola [2007] for multiple target
tracking by allowing for the spatial inhomogeneity in the observation model.

We apply the developed framework to analyse citizen-made observations
of wolves from April 2019 to March 2020 in Finland. The data come from a dig-
ital large carnivore observation database named ‘Tassu’ (see [Natural Resources
Institute Finland 2022] for some of the latest data).

We use the discrete particle filter (Algorithm 12) discussed in Section 5.3
with approximate Kalman filter updates to infer the filtering distribution of the
number and locations of Finnish wolf territories in March 2020. The obtained re-
sults resemble those reported in the annual wolf population assessment by the
Natural Resources Institute Finland in March 2020 (see Figure 8). This is promis-
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FIGURE 8 Figure from Article III. Wolf territories (red) found by four model variants
(left to right) using a year of citizen-collected wolf observations from April
2019 to March 2020 in Finland. The polygons outlined in black are wolf terri-
tories found in the annual wolf population assessment of March 2020 by the
Natural Resources Institute Finland.

ing, since the wolf population assessments are expected to be quite accurate as
they are based on more data: citizen-collected observations, non-invasive genetic
samples, tracks of GPS-collared wolves and known wolf mortality.



7 DISCUSSION

This thesis consists of the methodological Articles II and IV that develop new
particle filters, and of Articles I and III that develop new NSSMs and apply them
in challenging practical problems.

The applications of NSSMs in Articles I and III analyse data sets of the type
that are increasingly common and important. In ecology and the environmental
sciences, for example, citizen science data are collected by volunteers at a global
scale that is unattainable by traditional research teams [Silvertown 2009]. In a
similar vein, clinical data and its statistical modelling hold great promise in pre-
cision medicine, where treatments and dosage tailored for the individual patient
are sought [Fröhlich et al. 2018]. A common theme with citizen science data and
clinical data is that they both possess great future potential, but are generated by
processes that are often complex and noisy, complicating the use of the data in
practice. To unlock the potential in these data, the complexities need to be ac-
counted for by careful modelling of the data generating process. Articles I and
III demonstrate that NSSMs provide flexible tools for this: the developed NSSMs
in Article I model the individual responses of patients to chemotherapy, and the
model in Article III accounts for the spatially and temporally varying intensity of
citizen-collected wolf observations.

The (adaptive) AI-CPF of Article II complements the literature on the infer-
ence of SSMs by providing an easy-to-use and efficient method for general SSMs
with diffuse initial distributions. To the best of our knowledge, the diffuse initial-
isation of state-space models has been mostly used in the context of LGSSMs [cf.
Durbin and Koopman 2012, Section 5]. The AI-CPF may be seen as an instance of
a general ‘pseudo-observation’ augmentation scheme for particle MCMC [Fearn-
head and Meligkotsidou 2016], which is based on conjugacy between the associ-
ated probability distributions. In the context of diffuse initialisation, the AI-CPF
is simple to implement and use, since it is not constrained by conjugacy and does
not require the specification of the (tuning) parameters related to the conjugate
probability distributions. Instead, the AI-CPF relies on Markov transitions that
are reversible with respect to the initial distribution of the FK model. Further-
more, the adaptive AI-CPF uses adaptive MCMC methods to reduce the number
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of tuning parameters to a single target acceptance rate, for which a heuristic is
provided, as well.

The CPF-BBS introduced in Article IV is a conditional particle filter that is
efficient with SSMs that have slowly-mixing dynamic models and/or uninfor-
mative observations. These kinds of settings arise in particular with FK models
whose dynamic model corresponds to a fine discretisation of a linear SDE. Such
situations arise for instance with a log-Gaussian Cox process [Møller, Syversveen,
and Waagepetersen 1998] whose driving Gaussian process has Markov dynam-
ics, or with path-integral models [cf. Del Moral and Miclo 2000].

The CPF-BBS might find further applications in modelling animal move-
ment [cf. Johnson et al. 2008] or in so called ‘step selection analyses’ that are con-
ducted to study for example animal resource selection [cf. Thurfjell, Ciuti, and
Boyce 2014] based on telemetry data. In fact, the experiment in Figure 5 — where
the CPF-BBS excelled — is closely related to these fields. We suspect that it is
possible to elaborate the model behind the experiment (see Article IV for details)
and use the CPF-BBS within a method that does full Bayesian inference for the
location and velocity of the object (that is, the latent states) as well as the poten-
tial values for each terrain type, given the observed locations. In effect, this could
provide a simultaneous solution to the animal movement and resource selection
problems, and might lead to an appealing alternative to step-selection analyses.

From a high level perspective, both the AI-CPF and the CPF-BBS improve
the simulation performance in scenarios where the celebrated conditional parti-
cle filter with backward sampling (CPF-BS) works suboptimally. Furthermore,
a common theme in our developments has been the study of heuristics that can
be used to choose their tuning parameters. In our experiments in Articles II and
IV, the developed heuristics worked well ‘out of the box’, but it is important to
keep in mind that further tuning might be necessary in other applications, since
the heuristics are backed by empirical experiments rather than rigorous theory.
We think that the developed heuristics still provide important starting points for
tuning, which in general may be a non-trivial problem in the context of particle
MCMC methods.

Interestingly, the heuristics for both the adaptive AI-CPF and the CPF-BBS
are related to the probability of state updates in a conditional particle filter. In the
adaptive AI-CPF (see for example Algorithm 7 of Article II), the target acceptance
rate controls the desired probability of a change of the initial state, and in the CPF-
BBS the heuristic procedure attempts to maximise the probability of updates at
the block lower boundaries (PLU). Therefore, we suspect that investigation of
the probability of state updates in future works could yield interesting results
from the point of view of tuning a conditional particle filter. In particular, in the
context of the CPF-BBS, the developed estimator for PLU could possibly be used
for developing a criterion for choosing the number of particles such that a near-
optimal trade-off between computational load and statistical efficiency is reached
(see also the related discussion in Article IV).
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Prediction of leukocyte 
counts during paediatric acute 
lymphoblastic leukaemia 
maintenance therapy
Santeri Karppinen , Olli Lohi  & Matti Vihola

modern therapy for acute lymphoblastic leukaemia. The dosage and intensity of therapy are based on 
surrogate markers such as peripheral blood leukocyte and neutrophil counts. Dosage based leukocyte 

an appropriate dosage for the individual patient. We present two Bayesian nonlinear state space 
models for predicting patient leukocyte counts during the maintenance therapy. The models simplify 

model from the literature.

Acute lymphoblastic leukaemia (ALL) is the most common cancer in childhood. In the Nordic countries, approx-
imately 210 children are diagnosed yearly and patients are treated with chemotherapeutic drugs according to 
the ALL protocols of the Nordic Society of Paediatric Haematology and Oncology (NOPHO)1. The last phase of 
the treatment, maintenance therapy (MT), continues until 2 to 3 years from diagnosis. During MT, patients are 
treated orally with daily 6-mercaptopurine (6 MP) and weekly methotrexate (MTX).

Conventional MT starts with a standard 6 MP/MTX dose defined in the protocol. After initialisation of 
treatment, the dosage of the cytotoxic drugs is adjusted to reach a degree of myelosuppression, reflected in the 
NOPHO ALL-2008 protocol by targeting a leukocyte count of 1.5–3.0 × 109/L, while keeping the neutrophil 
count above 0.5 × 109/L2. Individual adjustments of 6 MP/MTX doses are necessary due to substantial interindi-
vidual variability in 6 MP/MTX bioavailability and cellular pharmacokinetics, and a narrow therapeutic index.

Finding the right 6 MP/MTX dosage may be challenging because there is a substantial delay before steady-state 
response in the leukocyte count is reached. Furthermore, many other factors, such as infections, can cause leuko-
cyte fluctuations, and the dosage decisions during MT may be made by clinicians who have limited prior experi-
ence with 6 MP/MTX chemotherapy. Making the right decisions is crucial, as excessive dosage is associated with 
acute toxicity3 and the risk of second cancers4, whereas insufficient dosage results in poor treatment outcomes5–7.

In this work, we develop statistical models for predicting leukocyte counts based on the doses administered 
during MT. One motivation for our work is a potential future application, where predictive modelling would be 
a part of a dosage decision support system, which automatically fits the model with data accumulated for the 
patient so far. The system then provides the clinician with an interactive visualisation of the patient’s data, and 
leukocyte count predictions under alternative future dosing scenarios. This offers the clinician an analytical look 
on the data, and reassurance on her dosage decision. Ideally, the system could provide reliable predictions for 
most of the patients, but the clinician’s expertise would remain essential for decision-making under exceptional 
scenarios such as patients with rare genotypes that affect 6 MP metabolism or patients with an infection.
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The scope of this work is in the development of the predictive models, and in the evaluation of their predictive 
accuracies. We do not consider the implementation of the models into the clinical practice, or suggest alternative 
dosing strategies. We focus on the mathematical modelling related to the prediction of leukocyte counts in the 
context of ALL, but our developments may also be relevant outside this context, for instance in computational 
personalised medicine regarding other myelosuppressive medication. Currently, there are two published works 
where leukocyte counts during ALL MT are predicted8,9. Here, we present two statistical models following a struc-
ture similar to the existing models, but instead of using ordinary differential equation models, we use nonlinear 
Gaussian state space models10 that stem from analogous stochastic differential equations. Our models introduce 
two simplifications, on the pharmacokinetic model for 6 MP11 and on the leukopoiesis model8,12. Our second 
model, an extension of the first, incorporates C-reactive protein (CRP) measurements as a surrogate for infections 
and models the effect of an infection as extra variation in (or discrepancy from) the leukopoiesis model.

Methods
The patient data were collected from historical medical records and consist of 23 patients under the age of 18 
who had received MT under the NOPHO ALL-2000 or ALL-2008 treatment protocols at the Tampere University 
Hospital in Finland. This registry study (R16527) was accepted by the director of the Science Center in the 
Tampere University Hospital according to the local practice, and the data were anonymized before further analy-
sis. The treatment length per patient varies from 227 to 524 days, with most of the patients receiving MT for more 
than 400 days. For each patient, the data contain the daily 6 MP dosage prescribed, as well as the leukocyte count 
and the CRP measurements made typically during weekly or biweekly visits to the hospital or the laboratory. The 
height and weight of each patient is also available at the start of MT. We used the Mosteller formula13 to calculate 
the body surface area (BSA) for all patients during the treatment. The height and weight gain of the patients dur-
ing the treatment was estimated by interpolating median growth curves obtained from the Centers for Disease 
Control and Prevention14. Because the patients’ genders are not available in the data, average growth curves over 
boys and girls aged under 20 years were used. For each patient, the interpolation was begun from the height and 
weight values recorded in the data. The patientwise time series of the leukocyte counts, 6 MP, CRP and BSA are 
in the Supplementary Dataset 1.

To compare the models, we use the root mean squared error (RMSE) and the mean absolute error (MAE). In 
addition, we compute α% coverage probabilities, that is, = ∑ ∈α

α
= y1CP { I }

n i
n

i i
1

1  for α ∈ {50, 90}, where yi 
denotes observation number i and αIi  denotes the α% probability interval for observation yi. This metric is used to 
evaluate the ability of the models to quantify the uncertainty related to the point predictions. All of the metrics are 
computed out-of-sample and in-sample.

The out-of-sample metrics are of most interest, as they are computed using data not used in the model fitting 
and are directly tied to the predictive performance of the models. In a time series context, a natural way to com-
pute them is to use time series cross-validation15 (TSC). In a single round of TSC, we partition the data to a train-
ing set with data up to time t, and a prediction horizon immediately following the training set. The model is fit 
using the training set and the observations that fall into the prediction horizon are predicted using the fitted 
model. The training dataset is then augmented with observations in the prediction horizon and the process 
repeats until the data have been exhausted. After TSC, we compute the metrics using the obtained predictions and 
the corresponding observations. In the in-sample case, the metrics are computed based on model fits to full data-
sets by predicting all of the observations that were also used in the model fitting.

In the following subsections, we discuss the predictive models and estimation methods. We denote model 
state variables with capital letters, and parameters and data values in lowercase. A glossary and details regarding 
symbols used in the model definitions are also given in the Supplementary Tables 1–5.

Jayachandran et al. model (JM). The model from the literature, which we refer to as JM, is a joint 
8-compartment model based on the work of Jayachandran et al.8,11 The model consists of two submodels, the 
first of which is the 3-compartment pharmacokinetic model11 for the metabolisation of 6 MP to red blood cell 
6-thioguanine (TGNRBC):

= − +

= − −
+

=
+

− .

X t k X d t

X t k X k X
k X

k X

X t
v k X
k X

k X

d /d ( )

d /d

d /d
(1)

gut ab gut

plasma ab gut el plasma
cm plasma

plasma

tgn
cm cm plasma

plasma
me tgn

The authors assume TGNRBC to be associated with the toxicity in the bone marrow due to 6 MP and hence 
model the variable as a surrogate for the myelosuppressive effect of 6 MP. The dataset in the article contained the 
administered 6 MP doses and the measured TGNRBC concentrations. The compartments Xgut and Xplasma repre-
sent 6 MP in gut and plasma, Xtgn is the TGNRBC compartment, d t( ) is the dose input at time t and the remaining 
symbols are parameters. The functional form of d t( ) was not given8,11. Hence, we assume d t( ) equals zero unless a 
dose is given exactly at time t.

The second submodel is the leukopoiesis model by Jayachandran et al.8, which is a modification of the widely 
used 5-compartment model introduced by Friberg et al.12. We detail the model for log-transformed state variables:
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Here, the state variables form a maturation chain from stem cells (S) to leukocytes in circulation (L) through three 
maturation phases denoted by the compartments =C i, 1, 2, 3i( ) . TGNRBC (Xtgn) is assumed to diminish the 
rate of stem cell production. The remaining symbols are parameters.

As no information regarding the initial values of (1) or (2) is given8,11, we assume that the patient’s system 
starts in a steady state where no change in the cell concentrations is occuring initially. The steady state initialisa-
tion is obtained by setting the time derivatives at the start of the treatment (time zero) to zero. This is achieved by:
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max. Furthermore, we assume no 6 MP or TGNRBC exists in the patient’s system at the begin-

ning of MT, i.e. = = =X X X(0) (0) (0) 0gut plasma tgn .
The log-leukocyte count measurements of a patient, ≥l( )k k 1, observed at times tk, are assumed i.i.d. with 

Gaussian errors:

θ σ∼ ˆl N L t d( ( , , ), ), (4)k k k leuk1:
2

where θL̂ t d( , , )k k1:  is the solution of the state variable L at time tk, dependent on patient specific parameters θ and 
administered doses up to time index k, d k1: .

Our first model, denoted TCM, can be seen as a K-PD model16. TCM has 
a structure similar to that of JM, which it simplifies in two ways.

First, the pharmacokinetic model (1) is replaced with the pharmacokinetic model
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The model reflects changes in the cytotoxicity induced by 6 MP, M, in response to the 6 MP dose administered 
to the patient. The value of M models the direct effect of chemotherapy, and is the counterpart of the term 

+

e X
e X

max tgn

C tgn50
 

in (2). The value of the drug input function at time t, d t( ), equals the last 6 MP dose administered during the last 
24 (Tdur) hours normalised by the patient’s BSA, and zero if no dose was given. While this leads to noticeably dif-
ferent behaviour compared to (1) in the hourly time scale, the average daily behaviour of M t( ) remains very 
similar to that of Xtgn. A similar observation is made by Le et al.9, who note that varying Tdur  does not have a 
strong influence on the concentration of TGNRBC in a prior pharmacokinetic model introduced by Jayachandran 
et al.8, which is very similar to (1). Like the pharmacokinetic model of JM, (5) concentrates on the cytotoxic effect 
of 6 MP, and does not include MTX. We return to this matter in the discussion.

The parameters etgn and h play roles similar to kcm and k in (1) as is evident from the similar functional form of 
(5) and the differential equation for Xtgn. Furthermore, the parameter kme  is equivalent in (1) and (5). 
Jayachandran et al. reported a very high posterior correlation between the parameters kme and kcm in (1) 11. We 
incorporate kme into the first term of (5) as this reduces the correlation between kme and etgn. The simplified form 
of (5) is motivated by simulation and parameter estimation, which reveal that the functional form of (5) is flexible 
enough to match solutions of Xtgn when most of the parameters in (1) are fixed as in the analysis of Jayachandran 
et al.

The second simplification concerns the leukopoiesis model (2), which is replaced with a stochastic differential 
equation analogue of the equation for S:

ρ
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where Bt
L( ) is the Brownian motion and the parameter σL is the leukopoiesis standard deviation. The parameter ktr 

in the equation for S is substituted by the leukocyte elimination rate kL in (6), as (6) is a model for leukocyte 
counts. The leukopoiesis model (6) eliminates the cell maturation chain in (2) and models the effect of chemo-
therapy directly on the leukocytes in circulation. Unlike in (2), the drug effect is linear.
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To obtain the state equation of TCM, (7), we solve the piecewise linear differential Eq. (5) at each interval 
−t t[ , )k k1  with the initial condition =− −M t M( )k k1 1, and apply the Euler-Maruyama discretisation17 to (6), which 

results in
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where =− −d d t( )k
BSA

k1 1 , Δ = − −t t tk k k 1, and ζk are standard normal random variables for all k. Initial distributions 
∼M N(0, 0)1  and ∼ .L N l( , 0 5)1 1  are assumed for the state variables.
The log-leukocyte counts are related to the state variable L with the observation equation

ε ε σ= + ∼ .l L N, (0, ) (8)k k k
leuk

k
leuk

leuk
2

Our second model, denoted TCM-CRP, 
is an extension of TCM, where the leukopoiesis standard deviation σL is inflated in case of infection, for which the 
patient CRP measurements are taken as a surrogate.

TCM-CRP appends the state Eq. (7) with a third equation concerning an additional state variable, V, the level 
of infection. We model V using an Ornstein-Uhlenbeck process:

θ σ= + =dV V dt dB V v[ ] , , (9)t ou t ou t
V( )

0 0

where t denotes time, Bt
V( ) is the Brownian motion, and θou and σou are parameters. Conditional on the previous 

value in the series, V in (9) is Gaussian18, which leads to the following state equation:

σ θ η= + −θ θ θ
−
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t
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where k denotes the index of the time point and ηk are standard normal random variables for all k. The only mod-
ification to (7) in TCM-CRP is that σL is set to depend on Vk and parameters σL

0 and βcrp by

σ σ β=V V( ) exp( ), (11)L k L crp k
0

making TCM-CRP a stochastic volatility type model. The state equation for TCM-CRP then consists of (7) mod-
ified with (11), and (10). The distribution of V1 is set to the stationary distribution of (9),

σ
θ

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
N 0,

2
,ou

ou

2

and the distributions for M1 and L1 remain as in TCM.
Finally, TCM-CRP incorporates the +xlog( 1)-transformed CRP measurements, vk, into the observation Eq. (8) 

by setting

ε ε σ= + ∼ .v V N, (0, ) (12)k k k
crp

k
crp

crp
2

Naive mean model (NM). The fourth model we consider is a naive mean model (NM), which assumes that 
the leukocyte counts are i.i.d. and follow the normal distribution μ σN( , )nm nm

2 . This model is an oversimplification, 
as it does not take into account the dosage given to the patient. Hence, we consider NM as a baseline for the mod-
els TCM, TCM-CRP and JM, and not as a realistic model candidate for predicting leukocyte counts.

Estimation methods. To estimate the parameters of the models TCM, TCM-CRP and JM, we use maxi-
mum a posteriori (MAP) estimation, where the posterior density

θ θ θ| ∝ |p y p y p( ) ( ) ( ), (13)

is maximised with respect to the logarithm of the free parameters, θ, in the model. In (13), y denotes the dataset 
for a single patient.

The value of θ|p y( ) in (13) for JM and a given θ stems from (4). We use the Rosenbrock23 method19 of the 
DifferentialEquations.jl package20 in the Julia programming language21 to solve the systems of differential equa-
tions. The predictions for JM are obtained by estimating the free parameters with data up to time index k, y k1: , and 
solving the resulting system of differential equations on the interval + +t t[ , ]k k h1 pred

, where hpred denotes the length 
of the prediction horizon.

To compute θ|p y( ) and the predictions for TCM and TCM-CRP, we use the extended Kalman filter (EKF) 
which is an approximate method for computing the filtered state distributions for state space models with nonlin-
ear dynamics in the state and observation equations10,22.
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In all maximisation problems, we assume the joint prior distribution θp( ) in (13) consists of vague independ-
ent N(0, 10) distributions for each free parameter. The Nelder-Mead method23,24 in the Optim.jl package25 is used 
for the computation.

To estimate the parameters of the model NM, we compute the sample mean and variance of the leukocyte 
counts.

Results
With JM, we attempted to reproduce the analysis of Jayachandran et al.8,11 as accurately as possible and hence 
estimated parameters kcm in (1) and ktr, kpl

max, kL, γ and emax in (2). These parameters were found to have the great-
est influence on the fitted values of JM’s submodels in sensitivity analyses conducted in both articles8,11. In addi-
tion, the parameter σleuk was estimated. The remaining parameters were fixed to the values reported by 
Jayachandran et al.

With TCM, the parameters etgn, h, kpl
max, kL and σL were estimated. The common parameters with JM, kpl

max and 
kL, were estimated, but we fixed γ to a value reported by Jayachandran et al.8, because estimating it resulted in fits 
with oscillating behaviour not visible in the datasets. Furthermore, we estimated the leukopoiesis standard devi-
ation σL, but fixed the measurement standard deviation σleuk to a literature value of 0.057 for the accuracy of 
measuring neutrophil counts26. The remaining parameters, kme and ρ, were fixed to the same values as in JM. The 
discretisation Δtk was set to 0.25.

TCM-CRP was treated similarly to TCM, with the parameter σL
0 as the equivalent of σL. However, to maintain 

the same amount of free parameters as in TCM, we fixed the additional parameters σcrp, σou, θou and βcrp. As the 
coefficient of variation for measuring CRP at 3.5 mg/l is close to 10%27 and + ≈x xlog( 1) log( ) when ≥ .x 3 5, 
we fixed σ = .0 1crp  (note that if μ σ∼X N( , )2 , μ > 0 and σ2 sufficiently small, then μ σ μ∼X Nlog( ) (log( ), ( / ) )2  
approximately). The remaining parameters, θ σ θ β= ( , , )V ou ou crp , were fixed to estimates obtained by maximising 
the objective

∏ θ θ θ θ|p y p( , ) ( , )
(14)i

i i V i V

with respect to θ θ θ θ…( , , , , )V1 2 23 . In (14) each patient is indexed with i; yi and θi denote the dataset and the 
parameter vector of the free parameters in TCM for patient i. The joint approach for obtaining an estimate of θV  
was motivated by the fact that if θV  were estimated individually for each patient, inadequate estimates of βcrp were 
obtained for patients with mild or no infections during their treatment.

For all models, TSC was carried out such that the first training dataset for each patient was set to contain the 
first 8 weeks of the patient’s data. In one case however, the first 8 weeks contained only one measured leukocyte 
count, and hence the first training set was extended to include two observations. For all models, TSC was run 
twice, with a prediction horizon of two and four weeks. The TSC schemes were completed successfully for the 
models TCM and TCM-CRP. With the two and four week schemes of JM, there were 31 and 19 TSC rounds where 
optimisation did not converge or prediction failed with a solver error. The patients who had at least one conver-
gence or prediction failure during TSC with any horizon were 1, 4, 6, 7, 8, 11, 12, 20 and 22. Furthermore, when 
the models were fit to the full datasets, the optimisation of the parameters of JM did not converge for patient 6. In 
the summary tables that follow, the problematic TSC rounds and fits have been removed prior to computing the 
metrics. In the patientwise listings, these have not been removed.

The out-of-sample metrics with both of the prediction horizons are given in Table 1. The tabulated values are 
means over the metrics computed for each patient (underlying data available in the Supplementary Dataset 2). To 
compute the values, the logarithmic scale predictions of the models TCM, TCM-CRP and JM have been trans-
formed to the linear scale. In the table, the means of RMSE and MAE suggest that the point predictive accuracies 
of TCM and TCM-CRP are slightly greater than the predictive accuracy of JM regardless of the prediction hori-
zon. The baseline model NM performs surprisingly well and is roughly as accurate as JM.

The widths of the predictive probability intervals are closer to their target values for TCM and TCM-CRP than 
JM: in the case of the two week horizon, we observe discrepancies of 4–6% vs. 8% for CP50 and discrepancies of 
10–11% vs. 14% for CP90. The respective discrepancies increase to about 6–7% vs. 10% for CP50 and 13–14% vs. 
18% for CP90, when the horizon is extended to four weeks. The models TCM, TCM-CRP and JM underestimate 
the width of the intervals. This is likely a consequence of using MAP estimation, which does not account for 

2 weeks 4 weeks
TCM TCM-CRP JM NM TCM TCM-CRP JM NM

CP50 0.457 (0.13) 0.442 (0.13) 0.421 (0.13) 0.514 (0.15) 0.443 (0.15) 0.428 (0.14) 0.402 (0.15) 0.507 (0.15)

CP90 0.795 (0.11) 0.787 (0.11) 0.761 (0.14) 0.873 (0.09) 0.767 (0.13) 0.759 (0.13) 0.722 (0.17) 0.863 (0.09)

MAE 0.860 (0.33) 0.870 (0.35) 0.964 (0.42) 0.986 (0.43) 0.896 (0.34) 0.914 (0.38) 1.016 (0.45) 1.001 (0.44)

RMSE 1.232 (0.51) 1.244 (0.53) 1.387 (0.66) 1.308 (0.57) 1.278 (0.55) 1.309 (0.64) 1.430 (0.68) 1.326 (0.59)

Table 1. The out-of-sample metrics for the models (TCM, TCM-CRP and JM) and the baseline model NM with 
both of the prediction horizons: means of coverage probability (CP), mean absolute error (MAE) and root mean 
squared error (RMSE). Standard deviations are in parentheses. Similar means are obtained if the metrics are 
computed modelwise without considering the patients separately.
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the uncertainty in the model parameters. A more accurate representation of the uncertainty in the predictions 
could be obtained for example by using Markov chain Monte Carlo methods28 that produce samples from the full 
posterior.

The predictive metrics are examined further in Fig. 1, which plots the patientwise MAE of the models in case 
of the two week prediction horizon. The plot shows that for most of the patients, TCM and TCM-CRP deliver pre-
dictions that are 5–20% more accurate than those of JM. For patients 7 and 15, however, the prediction accuracy is 
25% and 35% better, respectively. Compared to TCM and TCM-CRP, JM performs slightly better for patients 11, 
14, 21 and 4, who favour JM by 5–12%. In 13 cases out of 23, the predictive performance of JM appears better than 
that of NM. The figure with the four week prediction horizon, with similar findings, is given in the Supplementary 
Fig. 1.

Table 2 (underlying data available in the Supplementary Dataset 3) shows the in-sample metrics. The 
in-sample RMSE and MAE are computed between the ‘fitted mean‘ and the observed leukocyte counts. For TCM 
and TCM-CRP, we refer to the fitted mean as the exponentiated filtered mean of the state variable L obtained by 
first estimating the model parameters from the patient’s full dataset and then running EKF with all leukocyte 
counts set to missing, conditional on the estimated parameter values. For JM, the fitted mean is simply the expo-
nentiated solution of L conditional on the parameter vector estimated from the full patient dataset, and for NM, 
the fitted mean is the estimate of μnm. The in-sample means of RMSE, MAE and the coverage probabilities are very 
similar for JM, TCM and TCM-CRP, with JM reaching a slightly better value for CP50. As expected, the point 
predictions of TCM, TCM-CRP and JM are better than those of NM.

For many patients, the in-sample fits of JM exhibit oscillating behaviour, which by visual inspection is not 
present in the datasets. An example is shown in Fig. 2, which plots the fit of JM with TCM. In contrast, the fit of 
TCM is smoother and only captures the average behaviour of the leukocyte counts. See Supplementary Figs. 2–24 
for graphical comparisons for all of the patients. The fits of the models TCM, TCM-CRP and JM to the full patient 
datasets are also given in the Supplementary Dataset 4.

Inspecting the predictions made during TSC in a similar manner, we found that the weaker out-of-sample 
metrics for JM are partly explained by the fact that for many patients, the model produces unstable predictions 

Figure 1. The patientwise out-of-sample mean absolute error for the models (TCM, TCM-CRP, JM) and the 
baseline model NM (top), and the relative error with respect to JM (bottom). The black line in the bottom plot 
depicts the line of equal predictive accuracy with JM. The out-of-sample values are from time series cross-
validation with the two week prediction horizon. Each model is represented by a color. The patients have been 
ordered with increasing mean MAE over the models.

TCM TCM-CRP JM NM

CP50 0.571 (0.08) 0.572 (0.08) 0.545 (0.07) 0.583 (0.11)

CP90 0.904 (0.03) 0.906 (0.03) 0.904 (0.03) 0.921 (0.03)

MAE 0.795 (0.31) 0.800 (0.31) 0.812 (0.32) 0.924 (0.36)

RMSE 1.195 (0.56) 1.203 (0.57) 1.199 (0.56) 1.304 (0.58)

Table 2. The in-sample metrics per model: means of coverage probability (CP), mean absolute error (MAE) 
and root mean squared error (RMSE). Standard deviations are in parentheses.
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especially in the beginning of the treatment when only a few measurements are available for parameter estima-
tion. Figure 3 shows an example of this by plotting the predictions of JM and TCM from cross-validation with the 
four week prediction horizon. Here, the predictions of JM appear unstable until treatment day 175 while the pre-
dictions of TCM appear more consistent. The unstability is unfortunate, since in the beginning of the treatment 
there is a lot of uncertainty in how the treatment will affect the patient. Hence, good predictions in this period of 
treatment are particularly important. The figure also shows some of the estimation problems we faced with JM, 
since the differential equation solver was unable to make a prediction for treatment days 275–350. The similar 
figures for all the patients are shown in the Supplementary Figs. 25–47.

Based on Table 1 and Fig. 1, there appears to be little difference between the out-of-sample metrics of TCM 
and TCM-CRP, with TCM reaching slightly better values than TCM-CRP. However, TCM-CRP has an interesting 
property that is not visible in the predictive metrics. This is showcased in Fig. 4 where the fit of TCM is compared 
to that of TCM-CRP in the case of a patient with infections during the treatment. Here, accounting for the infec-
tion induced variability in the leukocyte count results in narrower probability intervals for TCM-CRP, when 
infection is not present. Furthermore, when compared to TCM, the fitted mean of TCM-CRP is slightly shifted 
away from leukocyte counts measured during infection, indicating that the model is downweighting observations 
that occur during infection.

Figure 2. The models TCM (top) and JM (bottom) fit to the full dataset of patient 20 with time in days on the 
x-axis and leukocyte count on the y-axis. The fitted mean is the black line and probability intervals (50%, 90%) 
are plotted in green. The 6 MP dosage for the depicted patient was intensified incrementally to 50 mg during 
the first 200 days of treatment. After this, no dose was given for approximately 20 days. The dosage was then 
incrementally intensified back to 50 mg until treatment day 275 and kept constant until the end of the treatment. 
Further dose intensification was not possible due to low neutrophil counts.

Figure 3. Predictions for patient 7 at each round of time series cross-validation with the four week prediction 
horizon for the models TCM (top) and JM (bottom). The plot for JM lacks predictions for treatment days 
275–350, since the differential equation solver could not solve JM conditional on the parameter estimates found 
during optimisation. The 6 MP dosage for the depicted patient was intensified incrementally to 62.5 mg during 
the treatment. The dosage was not intensified further due to low neutrophil counts.
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Discussion
In this work, we present two Bayesian nonlinear state space models, TCM and TCM-CRP, for predicting leuko-
cyte counts during ALL MT. A predictive comparison between the models, and the model from the literature, 
JM, is then carried out. In prior works, predictive models for leukocyte counts during ALL MT have not been 
compared against each other according to their out-of-sample predictive performance. We argue that the devel-
opment of predictive models should be guided by model comparison using out-of-sample metrics. Whenever 
possible, predictive models can also be validated by relating properties of the models to values available in the 
clinical literature. An approach like this was recently undertaken in a similar work29 related to acute myeloid leu-
kaemia, where leukocyte count recovery times were used to discriminate between model candidates with similar 
predictive power.

The best-performing model according to our results, TCM, simplifies the model from the literature, JM, in 
the pharmacokinetic and the leukopoiesis model, and delivers a prediction accuracy competitive with JM. The 
simplification in the pharmacokinetic model results in a focus on the daily behaviour of the cytotoxicity induced 
by 6 MP, which is in contrast with the pharmacokinetic model of JM that models the pharmacokinetics in the 
hourly granularity. We believe that such a fine time scale is unnecessary, when predictions are required on a daily 
or weekly basis, as in the present application. Similarly, the simplification of the leukopoiesis model changes the 
focus from the daily granularity to the weekly, which is justified since the leukocyte counts are typically measured 
at this rate. Despite these simplifications, we argue that TCM still captures the most important features of the phe-
nomenon: the effect of 6 MP on the level of cytotoxicity, and the effect of the cytotoxicity on the leukocyte counts. 
The simplifications also reduce the number of parameters to be estimated, which allows for robust estimation of 
the model with sparse clinical datasets.

In our experiments, we found that JM was difficult to estimate reliably with our heterogeneous dataset and 
we had issues with optimisation and prediction. In absence of better initial values for the parameters, we used 
the estimates reported by Jayachandran et al.8,11. If these estimates are far from adequate for the patients in our 
dataset, they can play a role in the estimation problems. However, in general almost any variation of the model 
we attempted to fit during the process of preparing this work had estimation problems for at least some patients. 
Perhaps related to the estimation problems, the computation time to produce the cross-validation results with 
the two week prediction horizon, for example, was roughly hundredfold for JM compared to that of TCM 
(16.55 hours vs. 0.15 hours).

A comment by a reviewer led us to realise that the initial values of the state variables of the JM leukopoiesis 
model seem to play a significant role on how the model performs. When we initialised them by estimating a com-
mon value for every state variable, there were less TSC rounds with convergence or prediction issues. However, 
this initialisation resulted in a lower predictive accuracy than the model presented, and hence we chose the steady 
state initialisation. Lately, the impact of the initialisation has also been noted in a similar work29, where models 
similar to the JM leukopoiesis model were investigated. It is possible that the alternative initialisation strategies 
found in the work might further improve the performance of JM.

Another noteworthy point regarding JM is that Jayachandran et al.8,11 had additional TGNRBC measurements 
in their dataset, which our dataset does not contain. Fitting the model without these measurements might have 
implications for the identifiability of the model, and hence the observed predictive performance. Furthermore, 
the dataset of Jayachandran et al.11 contains adults, and the pharmacokinetic profiles of adults and children differ. 
Allometric scaling30 could improve the model, and allow for more immediate interpretation.

Figure 4. The fit of the models TCM (top) and TCM-CRP (middle) to the dataset of patient 4. The +xlog( 1)
-transformed CRP measurements are shown at the bottom. The dotted line in the plot for TCM-CRP is the fitted 
mean of TCM.
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The baseline model NM was found to perform on par with JM and have point predictive metrics not far from 
those of TCM. This is surprising, as the model does not account for the dosage administered to the patient. We 
suspect that the success of this over-simplified model might be explained by our data, where for many patients, 
the treatment was successful and the leukocyte counts were centered around a common value, which makes their 
mean a relatively good prediction. With data having little variation in the leukocyte counts and/or dosage, it is 
difficult to improve the predictive performance.

The model TCM-CRP extends TCM by incorporating C-reactive protein (CRP) measurements into the model 
as a surrogate for infections. To our knowledge, TCM-CRP is the first model to attempt the inclusion of infection 
information to a leukopoiesis model. In our dataset, 65% of the patients have at least one infection during their 
treatment (by counting patients who have at least one CRP measurement greater than or equal to 10 mg/L), high-
lighting the prevalence of infections in MT. Furthermore, as there is an evident relationship between CRP and the 
leukocyte count (see Fig. 4), we argue that infections should be accounted for in ALL MT predictive modelling. In 
previous works, patients with infections during the treatment have been excluded from analysis8,9.

Figure 4 shows a promising fit of TCM-CRP, but in general the parameter estimates computed for the model 
during TSC were similar to those of TCM, leading to similar predictions. This is likely because the state variable 
V in TCM-CRP does not directly influence the mean of the state variable L, but controls its variability instead. 
We modelled infection this way, because the relationship between CRP and the leukocyte count appears hard to 
predict: at least in our data, elevated CRP seems to be associated with both increased and decreased leukocyte 
counts, with no apparent pattern. This is not surprising, since it is well known that CRP is nonspecific and can 
exhibit variable behaviour in different kinds of inflammatory states. Hence, our modelling strategy for infections 
did not aim to utilise CRP as a regressor (or predictor) for leukocyte counts, but rather to improve the robustness 
of the model against infections by downweighting the outlying leukocyte counts when CRP is elevated. Our hope 
was that this would result in a model that better predicts data measured when no infection is present. Based on 
the obtained results, this was not entirely successful, perhaps due to the proposed Ornstein-Uhlenbeck model 
and possibly the functional form of σL being inadequately specified. The approximate nature of EKF can also 
play a role here, and better results for TCM-CRP could possibly be obtained by using more accurate estimation 
methods, such as particle Markov chain Monte Carlo31.

The existing models predicting leukocyte counts during ALL MT use ordinary differential equation models8,9. 
In contrast to that approach, the nonlinear state space models we use allow for additional stochasticity in the state 
equation of the model, which we believe helps account for unmodelled variations in the data more accurately.

The leukopoiesis models of Jayachandran et al.8 and Le et al.9 extend the well-known 5-compartment struc-
ture introduced by Friberg et al.12, for 6 MP (and MTX). It is worth mentioning that the chemotherapy drugs 
considered by Friberg et al. do not include 6 MP (or MTX), and are given in pulses, which is in contrast with the 
continuous low-dose administration of 6 MP in ALL MT. This may explain why our simpler one-compartment 
leukopoiesis model provided an improved predictive model in our experiments, and suggests that the commonly 
used 5-compartment model might not be optimal for all applications.

Little is known about the adequacy of pharmacokinetic models of 6 MP too, as datasets with recorded 6 MP 
doses and metabolites are rare and sparse, making model validation difficult. We are only aware of the works of 
Jayachandran et al.8,11 and Hawwa et al.32 where the dataset contained data on both administered 6 MP doses 
and TGNRBC. Furthermore, out-of-sample model comparison was only performed by Hawwa et al. Although 
TGNRBC was previously found to be associated with myelosuppression33, later research has shown TGNRBC 
to be only weakly related to levels of DNA-thioguanine (TGNDNA), the main mediator of the cytotoxicity of 6 
MP34. Hence, modelling TGNRBC as the end point of the pharmacokinetic model might not provide optimal 
predictions when the model is used in conjunction with a leukopoiesis model.

Recently, there has been increased interest in TGNDNA, as a study has found higher TGNDNA concentra-
tions associated with improved relapse-free survival2 and dosage could potentially be guided better by monitoring 
TGNDNA concentrations, as factors such as age, ethnicity and time of year confound the leukocyte counts35,36. 
However, to our knowledge, pharmacokinetic models for 6 MP with TGNDNA as the end point have not yet 
emerged and present an interesting prospect for future research regarding predictive modelling in the context of 
ALL MT. Moreover, if data with TGNDNA concentrations and leukocyte counts were available, the modelling 
framework of nonlinear state space models used in this work could readily incorporate the metabolite measure-
ments into the model, and would in theory allow for the simultaneous prediction of the leukocyte count and the 
TGNDNA concentration, providing the clinician with extra information for decision-making.

In this work, we considered modelling the leukocyte counts based on 6 MP dosage only. We did not attempt 
to include MTX into our models, because the 6 MP and MTX dosages are strongly linked in our data, making 
reliable estimation of a joint model difficult. The concurrent work of Le et al.9 incorporated patient MTX doses 
into their leukopoiesis model. While a comparison of the model to a model without MTX was not shown, incor-
porating MTX is likely an important step forward in ALL MT predictive modelling. However, we note that the 
rationale of MTX dosage in ALL MT is mainly that the drug increases the bioavailability of 6 MP37,38, and only 
partially the cytotoxic effects of the drug itself. Hence, rather than incorporating the metabolites of MTX into the 
function edrug  as was done by Le et al., our intuition is that the MTX metabolites should rather be a covariate in the 
pharmacokinetic model for 6 MP, perhaps related to the value of the parameter etgn in (7) or similar in another 
model.

Another interesting work in the literature is the work of Hawwa et al.32, who investigated population phar-
macokinetic models for 6 MP. The authors incorporated patient thiopurine methyltransferase (TPMT) genotype 
and BSA as covariates into their model and found that both variables reduced the interindividual variability in 
the model parameters significantly. We did not include the TPMT genotype to our pharmacokinetic model as the 
data were missing for 13 of the 23 patients, and of the remaining patients, 9 were of TPMT wildtype, only one was 
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TPMT heterozygous and there were no TPMT homozygotes. Hence, with the current data available, our model 
is representative of patients who are of TPMT wildtype, the genotype that covers 86–97%39 of the population.

Combining our work with the work of Le et al.9 and Hawwa et al.32, it is possible to envision a model with the 
important covariates taken into account, improving the leukocyte count predictions. However, availability and 
sparseness of datasets remains a problem. Further improvements to the predictive performance could likely be 
obtained with hierarchical models linking the parameter vectors of the individual patients with hyperparameters. 
Such joint modelling has, to our knowledge, only been conducted in the context of ALL MT by Hawwa et al. with 
their pharmacokinetic model. In the course of preparing this work, we attempted to fit such models, but faced 
unresolvable computational problems likely due to the lack of 6 MP metabolite measurements in the dataset. 
Simpler joint models assuming the same values for a subset of parameters across patients were estimatable, but 
did not produce better predictive results than fitting the models to each dataset individually, likely due to the high 
interindividual variability in the parameters.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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Abstract

Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov
models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which are common in statistical
applications. We propose a simple but generally applicable auxiliary variable method, which can be used together with the
CPF in order to perform efficient inference with diffuse initial distributions. The method only requires simulatable Markov
transitions that are reversible with respect to the initial distribution, which can be improper. We focus in particular on random
walk type transitions which are reversible with respect to a uniform initial distribution (on some domain), and autoregressive
kernels for Gaussian initial distributions. We propose to use online adaptations within the methods. In the case of random
walk transition, our adaptations use the estimated covariance and acceptance rate adaptation, and we detail their theoretical
validity. We tested our methods with a linear Gaussian random walk model, a stochastic volatility model, and a stochastic
epidemic compartment model with time-varying transmission rate. The experimental findings demonstrate that our method
works reliably with little user specification and can be substantially better mixing than a direct particle Gibbs algorithm that
treats initial states as parameters.

Keywords Adaptive Markov chain Monte Carlo · Bayesian inference · Compartment model · Conditional particle filter ·
Diffuse initialisation · Hidden Markov model · Smoothing · State space model

1 Introduction

In statistical applications of general state space hidden
Markov models (HMMs), commonly known also as state
space models, it is often desirable to initialise the latent state
of the model with a diffuse (uninformative) initial distribu-
tion (cf. Durbin and Koopman 2012). We mean by ‘diffuse’
the general scenario, where the first marginal of the smooth-
ing distribution is highly concentrated relative to the prior of
the latent Markov chain, which may also be improper.

The conditional particle filter (CPF) (Andrieu et al. 2010),
and in particular its backward sampling variants (Whiteley
2010; Lindsten et al. 2014), has been found to provide effi-
cient smoothing even with long data records, both empirically
(e.g. Fearnhead and Künsch 2018) and theoretically (Lee
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020-09975-1.
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et al. 2020). However, a direct application of the CPF to a
model with a diffuse initial distribution will lead to poor per-
formance, because most of the initial particles will ultimately
be redundant, as they become drawn from highly unlikely
regions of the state space.

There are a number of existing methods which can be used
to mitigate this inefficiency. For simpler settings, it is often
relatively straightforward to design proposal distributions
that lead to an equivalent model, which no longer has a diffuse
initial distribution. Indeed, if the first filtering distribution
is already informative, its analytical approximation may be
used directly as the first proposal distribution. The iteratively
refined look-ahead approach suggested by Guarniero et al.
(2017) extends to more complicated settings, but can require
careful tuning for each class of problems.

We aim here for a general approach, which does not
rely on any problem-specific constructions. Such a gen-
eral approach which allows for diffuse initial conditions
with particle Markov chain Monte Carlo (MCMC) is to
include the initial latent state of the HMM as a ‘parame-
ter’. This was suggested by Murray et al. (2013) with the
particle marginal Metropolis–Hastings (PMMH). The same

0123456789().: V,-vol 123



   24 Page 2 of 14 Statistics and Computing            (2021) 31:24 

approach is directly applicable also with the CPF (using par-
ticle Gibbs); see Fearnhead and Meligkotsidou (2016), who
discuss general approaches based on augmentation schemes.

Our approach may be seen as an instance of the gen-
eral ‘pseudo-observation’ framework of Fearnhead and
Meligkotsidou (2016), but we are unaware of earlier works
about the specific class of methods we focus on here. Indeed,
instead of building the auxiliary variable from the conju-
gacy perspective as Fearnhead and Meligkotsidou (2016), our
approach is based on Markov transitions that are reversible
with respect to the initial measure of the HMM. This
approach may be simpler to understand and implement in
practice, and is very generally applicable. We focus here on
two concrete cases: the ‘diffuse Gaussian‘ case, where the
initial distribution is Gaussian with a relatively uninforma-
tive covariance matrix, and the ‘fully diffuse‘ case, where the
initial distribution is uniform. We suggest online adaptation
mechanisms for the parameters, which make the methods
easy to apply in practice.

We start in Sect. 2 by describing the family of models we
are concerned with, and the general auxiliary variable ini-
tialisation CPF that underlies all of our developments. We
present the practical methods in Sect. 3. Section 4 reports
experiments of the methods with three academic models and
concludes with a realistic inference task related to modelling
the COVID-19 epidemic in Finland. We conclude with a dis-
cussion in Sect. 5.

2 Themodel and auxiliary variables

Our main interest is with HMMs having a joint smoothing
distribution π of the following form:

π(x1:T ) ∝ p(x1)p(y1 | x1)

T∏
k=2

p(xk | xk−1)p(yk | xk), (1)

where �:u denotes the sequence of integers from � to
u (inclusive), x1:T denotes the latent state variables, and
y1:T the observations. Additionally, π may depend on
(hyper)parameters θ , the dependence on which we omit for
now, but return to later, in Sect. 3.4.

For the convenience of notation, and to allow for some
generalisations, we focus on the Feynman–Kac form of the
HMM smoothing problem (cf. Del Moral 2004), where the
distribution of interest π is represented in terms of a σ -finite
measure M1(dx1) on the state space X, Markov transitions
M2, . . . , MT onX and potential functions Gk : Xk → [0,∞)

so that

π(dx1:T )∝ M1(dx1)G1(x1)

T∏
k=2

Mk(xk−1, dxk)Gk(x1:k). (2)

The classical choice, the so-called ‘bootstrap filter’ (Gor-
don et al. 1993), corresponds to M1(dx1) = p(x1)dx1 and
Mk(xk−1, dxk) = p(xk | xk−1)dxk , where ‘dx’ stands for the
Lebesgue measure on X = R

d , and Gk(x1:k) = p(yk | xk),
but other choices with other ‘proposal distributions’ Mk are
also possible. Our main focus is when M1 is diffuse with
respect to the first marginal of π . We stress that our method
accomodates also improper M1, such as the uniform distri-
bution on R

d , as long as (2) defines a probability.
The key ingredient of our method is an auxiliary Markov

transition, Q, which we can simulate from, and which satis-
fies the following:

Assumption 1 (M1-reversibility) The Markov transition
probability Q is reversible with respect to the σ -finite mea-
sure M1, or M1-reversible, if∫

M1(dx0)Q(x0, dx1)1(x0 ∈ A, x1 ∈ B)

=
∫

M1(dx1)Q(x1, dx0)1(x0 ∈ A, x1 ∈ B), (3)

for all measurable A, B ⊂ X.

We discuss practical ways to choose Q in Sect. 3. Assuming
an M1-reversible Q, we define an augmented target distribu-
tion, involving a new ‘pseudo-state’ x0 which is connected
to x1 by Q:

π̃(dx0:T ) = π(dx1:T )Q(x1, dx0)

∝ M1(dx0)Q(x0, dx1)G1(x1)

T∏
k=2

Mk(xk−1, dxk)Gk(x1:k).

It is clear by construction that π̃ admits π as its marginal,
and therefore, if we can sample x0:T from π̃ , then x1:T ∼ π .

Our method may be viewed as a particle Gibbs (Andrieu
et al. 2010) which targets π̃ , regarding x0 as the ‘parame-
ter’, and x1:T the ‘latent state’, which are updated using the
CPF. Algorithm 1 summarises the method, which we call the
‘auxiliary initialisation’ CPF (AI-CPF). Algorithm 1 deter-
mines a π -invariant Markov transition ẋ1:T → X̃ (B1:T )

1:T ; the
latter output of the algorithm will be relevant later, when we
discuss adaptation.

Algorithm 1 AI-CPF(ẋ1:T ; Q, M2:T , G1:T , N )

1: Simulate X0 ∼ Q(ẋ1, · ).
2: Simulate X̃ (2:N )

1 ∼ Q(X0, · ) and set X̃ (1)
1 = ẋ1.

3: (X̃ (1:N )
1:T , W (1:N )

1:T , A(1:N )
1:T −1) ← F-CPF(ẋ2:T , X̃ (1:N )

1 ; M2:T , G1:T ,

N ).
4: (B1:T , V (1:N )) ← PickPath- x(X̃ (1:N )

1:T , W (1:N )
1:T , A(1:N )

1:T −1, M2:T ,

G2:T ).
5: Set x̃1:T = (

X̃ (B1)
1 , X̃ (B2)

2 , . . . , X̃ (BT )
T

)
.

6: output
(
x̃1:T , (B1, V (1:N ), X̃ (1:N )

1 )
)
.
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Line 1 of Algorithm 1 implements a Gibbs step sampling
X0 conditional on X1:T = ẋ1:T , and lines 2–4 imple-
ment together a CPF targeting the conditional of X1:T given
X0. Line 3 runs what we call a ‘forward’ CPF, which is
just a standard CPF conditional on the first state particles
X (1:N )

1 , detailed in Algorithm 2. Line 4 refers to a call of
PickPath- AT (Algorithm 3) for ancestor tracing as in the
original work of Andrieu et al. (2010), or PickPath- BS
(Algorithm 4) for backward sampling (Whiteley 2010).
Categ(w(1:N )) stands for the categorical distribution, that is,
A ∼ Categ(w(1:N )) if Pr(A = i) = w(i).

Algorithm 2 F-CPF(ẋ2:T , X (1:N )
1 ; M2:T , G1:T , N )

1: Set X(1:N )
1 ← X (1:N )

1 .
2: for k = 1, . . . , T − 1 do
3: W̃ (i)

k ← Gk(X
(i)
k ) and W (i)

k ← W̃ (i)
k /

∑N
j=1 W̃ ( j)

k for i ∈ {1:N }.
4: A(2:N )

k ∼ Categ
(
W (1:N )

k

)
and set A(1)

k ← 1.

5: Draw X (i)
k+1 ∼ Mk+1( · | X

(A(i)
k )

k ) for i ∈ {2:N }.
6: Set X (1)

k+1 = ẋk+1.

7: Set X(i)
k+1 = (X

(A(i)
k )

k , X (i)
k+1) for i ∈ {1:N }.

8: end for
9: W̃ (1:N )

T ← GT (X(1:N )
T ) and W (i)

T ← W̃ (i)
T /

∑N
j=1 W̃ ( j)

T for i =
{1:N }.

10: output (X (1:N )
1:T , W (1:N )

1:T , A(1:N )
1:T −1).

The ancestor tracing variant can be used when the tran-
sition densities are unavailable. However, our main interest
here is with backward sampling, summarised in Algorithm 4
in the common case where the potentials only depend on two
consecutive states, that is, Gk(x1:k) = Gk(xk−1:k), and the
transitions admit densities Mk(xk−1, dxk) = Mk(xk−1, xk)

dxk with respect to some dominating σ -finite measure ‘dxk’.

Algorithm 3 PickPath- AT(X̃ (1:N )
1:T , W (1:N )

1:T , A(1:N )
1:T −1, M2:T , G2:T )

1: Draw BK ∼ Categ
(
W (1:N )

T ).

2: output (B1:T , W (1:N )
1 ) where Bk = A

(Bk+1)

k for k = T − 1, . . . , 1.

Algorithm 4 PickPath- BS(X̃ (1:N )
1:T , W (1:N )

1:T , A(1:N )
1:T −1, M2:T , G2:T )

1: Draw BK ∼ Categ
(
W (1:N )

T ).
2: for k = T − 1, . . . , 1 do

3: Ṽ (i)
k ← W (i)

k Mk+1(X̃ (i)
k , X̃

(Bk+1)

k+1 )Gk+1(X̃ (i)
k , X̃

(Bk+1)

k+1 ) for i ∈ {1:N }.
4: Simulate Bk ∼ Categ(V (1:N )

k ), where V (i)
k = Ṽ (i)

k /
∑N

j=1 Ṽ ( j)
k .

5: end for
6: output (B1:T , V (1:N )

1 ).

We conclude with a brief discussion on the general method
of Algorithm 1.

(i) We recognise that Algorithm 1 is not new per se, in
that it may be viewed just as a particle Gibbs applied
for a specific auxiliary variable model. However, we
are unaware of Algorithm 1 being presented with the
present focus: with an M1-reversible Q, and allowing
for an improper M1.

(ii) Algorithm 1 may be viewed as a generalisation of the
standard CPF. Indeed, taking Q(x0, dx1) = M1(dx1) in
Algorithm 1 leads to the standard CPF. Note that Line 1
is redundant in this case, but is necessary in the general
case.

(iii) In the case T = 1, Line 3 of Algorithm 1 is redun-
dant, and the algorithm resembles certain multiple-try
Metropolis methods (cf. Martino 2018) and has been
suggested earlier by Mendes et al. (2015).

(iv) Algorithm 2 is formulated using multinomial resam-
pling, for simplicity. We note that any other unbiased
resampling may be used, as long as the conditional
resampling is designed appropriately; see Chopin and
Singh (2015).

The ‘CPF generalisation’ perspective of Algorithm 1 may
lead to other useful developments; for instance, one could
imagine the approach to be useful with the CPF applied for
static (non-HMM) targets, as in sequential Monte Carlo sam-
plers (Del Moral et al. 2006). The aim of the present paper is,
however, to use Algorithm 1 with diffuse initial distributions.

3 Methods for diffuse initialisation of
conditional particle filters

To illustrate the typical problem that arises with a diffuse
initial distribution M1, we examine a simple noisy AR(1)
model:

xk+1 = ρxk + ηk, ηk ∼ N (0, σ 2
x )

yk = xk + εk, εk ∼ N (0, σ 2
y ), (4)

for k ≥ 1, x1 ∼ N (0, σ 2
1 ), M1(dx1) = p(x1)dx1,

Mk(xk−1, dxk) = p(xk | xk−1)dxk and Gk(x1:k) = p(yk |
xk).

We simulated a dataset of length T = 50 from this model
with x1 = 0, ρ = 0.8 and σx = σy = 0.5. We then ran
6000 iterations of the CPF with backward sampling (CPF-
BS) with σ1 ∈ {10, 100, 1000}; that is, Algorithm 1 with
Q(x0, · ) = M1( · ) together with Algorithm 4, and discarded
the first 1000 iterations as burn-in. For each value of σ1, we
monitored the efficiency of sampling x1. Figure 1 displays the
resulting traceplots. The estimated integrated autocorrelation
times (IACT) were approximately 3.75, 28.92 and 136.64,
leading to effective sample sizes (neff ) of 1600, 207 and 44,
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Fig. 1 Traceplot of the initial state of the noisy AR(1) model, using the
CPF with 16 particles and backward sampling with σ1 = 10 (top), 100
(middle) and 1000 (bottom)

respectively. This demonstrates how the performance of the
CPF-BS deteriorates as the initial distribution of the latent
state becomes more diffuse.

3.1 Diffuse Gaussian initialisation

In the case that M1 in (2) is Gaussian with mean μ and covari-
ance Σ , we can construct a Markov transition function that
satisfies (3) using an autoregressive proposal similar to ‘pre-
conditioning’ in the Crank-Nicolson algorithm (cf. Cotter
et al. 2013). This proposal comes with a parameter β ∈ (0, 1],
so we denote this kernel by QAR

β . A variate Z ∼ QAR
β (x, · )

can be drawn simply by setting

Z =
√

1 − β2(x − μ) + βW + μ, (5)

where W ∼ N (0,Σ). We refer to Algorithm 1 with Q =
QAR

β as the diffuse Gaussian initialisation CPF (DGI-CPF).

In the special case β = 1, we have QAR
1 = M1, and so the

DGI-CPF is equivalent with the standard CPF.

3.2 Fully diffuse initialisation

Suppose that M1(dx) = M1(x)dx where M1(x) ≡ 1 is a
uniform density on X = R

d . Then, any symmetric transition
Q satisfies M1-reversibility. In this case, we suggest to use
QRW

C (x, dy) = qRW
C (x, y)dy with a multivariate normal den-

sity qRW
C (x, y) = N (y; x, C), with covariance C ∈ R

d×d . In
case of constraints, that is, a non-trivial domain D ⊂ R

d , we
have M1 = 1(x ∈ D). Then, we suggest to use a Metropolis–
Hastings type transition probability:

QRW
C (x, dy) = qRW

C (x, y) min

{
1,

M1(y)

M1(x)

}
dy

+ δx (dy)r(x),

where r(x) ∈ [0, 1] is the rejection probability. This method
works, of course, with arbitrary M1, but our focus is with a
diffuse case, where the domain D is regular and large enough,
so that rejections are rare. We stress that also in this case,
M1(x) = 1(x ∈ D) may be improper. We refer to Algo-
rithm 1 with QRW

C as the ‘fully diffuse initialisation’ CPF
(FDI-CPF).

We note that whenever M1 can be evaluated pointwise, the
FDI-CPF can always be applied, by considering the modified
Feynman–Kac model M̃1 ≡ 1 and G̃1(x) = M1(x)G1(x).
However, when M1 is Gaussian, the DGI-CPF can often lead
to a more efficient method. As with standard random walk
Metropolis algorithms, choosing the covariance C ∈ R

d×d

is important for the efficiency of the FDI-CPF.

3.3 Adaptive proposals

Finding a good autoregressive parameter of QAR
β or the

covariance parameter of QRW
C may be time-consuming in

practice. Inspired by the recent advances in adaptive MCMC
(cf. Andrieu and Thoms 2008; Vihola 2020), it is natural to
apply adaptation also with the (iterated) AI-CPF. Algorithm 5
summarises a generic adaptive AI-CPF (AAI-CPF) using a
parameterised family {Qζ }ζ∈Z of M1-reversible proposals,
with parameter ζ .

Algorithm 5 AAI-CPF(ẋ (0)
1:T ; Qζ (0) , M2:T , G1:T , N )

1: for j = 1, . . . , n do
2: (ẋ ( j)

1:T , ξ ( j)) ← AI-CPF(ẋ ( j−1)
1:T ; Qζ ( j−1) , M2:T , G1:T , N ).

3: ζ ( j) ← Adapt(ζ ( j−1), ξ ( j), j).
4: end for
5: output (ẋ (1)

1:T , . . . , ẋ (n)
1:T ).

The function Adapt implements the adaptation, which
typically leads to ζ ( j) → ζ ∗, corresponding to a well-mixing
configuration. We refer to the instances of the AAI-CPF with
the AI-CPF step corresponding to the DGI-CPF and the FDI-
CPF as the adaptive DGI-CPF and FDI-CPF, respectively.

We next focus on concrete adaptations which may be
used within our framework. In the case of the FDI-CPF,
Algorithm 6 implements a stochastic approximation vari-
ant (Andrieu and Moulines 2006) of the adaptive Metropolis
covariance adaptation of Haario et al. (2001).

Here, η j are step sizes that decay to zero, ζ j = (μ j ,Σ j )

the estimated mean and covariance of the smoothing dis-
tribution, respectively, and Qζ = QRW

cΣ where c > 0 is a
scaling factor of the covariance Σ . In the case of random walk
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Algorithm 6 AdaptF DI ,AM
(
(μ, Σ), (B1, W (1:N )

1 , X (1:N )
1 ),

j
)

1: μ∗ ← (1 − η j )μ + η j X (B1)
1 .

2: Σ∗ ← (1 − η j )Σ + η j (X (B1)
1 − μ)(X (B1)

1 − μ)T.
3: output (μ∗,Σ∗).

Metropolis, this scaling factor is usually taken as 2.382/d
(Gelman et al. 1996), where d is the state dimension of the
model. In the present context, however, the optimal value
of c > 0 appears to depend on the model and on the num-
ber of particles N . This adaptation mechanism can be used
both with PickPath- AT and with PickPath- BS, but may
require some manual tuning to find a suitable c > 0.

Algorithm 7 details another adaptation for the FDI-CPF,
which is intended to be used together with PickPath- BS
only. Here, ζ j = (μ j ,Σ j , δ j ) contains the estimated mean,
covariance and the scaling factor, and Qζ = QRW

C(ζ ), where

C(ζ ) = eδΣ .

Algorithm 7 AdaptF DI ,ASW AM
(
(μ, Σ , δ), (B1, W (1:N )

1 , X (1:N )
1 ), j

)
1: μ∗ ← (1 − η j )μ + η j

∑N
i=1 W (i)

1 X (i)
1 .

2: Σ∗ ← (1 − η j )Σ + η j
∑N

i=1 W (i)
1 (X (i)

1 − μ)(X (i)
1 − μ)T.

3: δ∗ ← δ + η j (α − α∗) where α = 1 − W (1)
1 .

4: output (μ∗,Σ∗, δ∗).

Algorithm 8 AdaptDG I ,AS
(
ζ , (B1, W (1:N )

1 , X (1:N )
1 ), j

)
1: ζ∗ ← ζ + η j (α − α∗) where α = 1 − W (1)

1 .
2: output ζ∗.

This algorithm is inspired by a Rao–Blackwellised variant
of the adaptive Metropolis within adaptive scaling method
(cf. Andrieu and Thoms 2008), which is applied with stan-
dard random walk Metropolis. We use all particles with their
backward sampling weights to update the mean μ and covari-
ance Σ , and an ‘acceptance rate’ α, that is, the probability
that the first coordinate of the reference trajectory is not cho-
sen. Recall that after the AI–CPF in Algorithm 5 has been
run, the first coordinate of the reference trajectory and its
associated weight reside in the first index of the particle and
weight vectors contained in ξ ( j).

The optimal value of the acceptance rate parameter α∗ is
typically close to one, in contrast with random walk Metropo-
lis, where α∗ ∈ [0.234, 0.44] are common (Gelman et al.
1996). Even though the optimal value appears to be problem-
dependent, we have found empirically that 0.7 ≤ α∗ ≤ 0.9
often leads to reasonable mixing. We will show empirical
evidence for this finding in Sect. 4.

Algorithm 8 describes a similar adaptive scaling type
mechanism for tuning β = logit−1(ζ ) in the DGI-CPF, with
Qζ = QAR

β . The algorithm is most practical with PickPath-
BS.

We conclude this section with a consistency result for
Algorithm 5, using the adaptation mechanisms in Algo-
rithms 6 and 7. In Theorem 1, we denote (μ j ,Σ j ) = ζ j in
the case of Algorithm 6, and (μ j ,Σ j , δ j ) = ζ j with Algo-
rithm 7.

Theorem 1 Suppose D is a compact set, a uniform mix-
ing condition (Assumption 2 in Appendix A) holds, and
there exists an ε > 0 such that for all j ≥ 1, the small-
est eigenvalue λmin(Σ j ) ≥ ε, and with Algorithm 7 also
δ j ∈ [ε, ε−1]. Then, for any bounded function f : X → ∞,

1

n

n∑
k=1

f (ẋ (k)
1:T )

n→∞−−−→ π( f ). almost surely.

The proof of Theorem 1 is given in Appendix A. The proof
is slightly more general, and accomodates for instance t-
distributed instead of Gaussian proposals for the FDI-CPF.
We note that the latter stability condition, that is, existence
of the constant ε > 0, may be enforced by introducing
a ‘rejection’ mechanism in the adaptation; see the end of
Appendix A. However, we have found empirically that the
adaptation is stable also without such a stabilisation mecha-
nism.

3.4 Use within particle Gibbs

Typical application of HMMs in statistics involves not only
smoothing, but also inference of a number of ‘hyperparame-
ters’ θ , with prior density pr(θ), and with

γθ (x1:T ) = p(y1:T , x1:T | θ) (6)

= M1(x1)G
(θ)
1 (x1)

T∏
k=2

M (θ)
k (xk−1, xk)G

(θ)
k (xk−1, xk).

The full posterior, π̌(θ, x1:T ) ∝ pr(θ)γθ (x1:T ) may be
inferred with the particle Gibbs (PG) algorithm of Andrieu
et al. (2010). (We assume here that M1 is diffuse, and thereby
independent of θ .)

The PG alternates between (Metropolis-within-)Gibbs
updates for θ conditional on x1:T , and CPF updates for x1:T
conditional on θ . The (A)AI-CPF applied with M (θ)

2:T and

G(θ)
1:T may be used as a replacement of the CPF steps in a

PG. Another adaptation, independent of the AAI-CPF, may
be used for the hyperparameter updates (cf. Vihola 2020).

Algorithm 9 summarises a generic adaptive PG with
the AAI-CPF. Line 2 involves an update of θ( j−1) to θ( j)

using transition probabilities Kζθ ( · , · | x1:T ) which leave
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π̌(θ | x1:T ) invariant, and Line 3 is (optional) adaptation.
This could, for instance, correspond to the robust adaptive
Metropolis algorithm (RAM) (Vihola 2012). Lines 4 and 5
implement the AAI-CPF. Note that without Lines 3 and 5,
Algorithm 9 determines a π̌ -invariant transition rule.

Algorithm 9 AAI-PG(θ(0), ẋ (0)
1:T ; QC(ζ (0)), M2:T , G1:T , N )

1: for j = 1, . . . , n do
2: (θ( j), ξ

( j)
θ ) ∼ K

ζ
( j−1)
θ

(θ ( j−1), · | ẋ ( j−1)
1:T ).

3: ζ
( j)
θ ← Adaptθ (ζ

( j−1)
θ , θ ( j), ξ

( j)
θ ).

4: (ẋ ( j)
1:T , ξ ( j)) ← AI-CPF(ẋ ( j−1)

1:T ; Qζ ( j−1) , M (θ( j))
2:T , G(θ( j))

1:T , N ).

5: ζ ( j) ← Adapt(ζ ( j−1), ξ ( j), j).
6: end for
7: output

(
(θ(1), ẋ (1)

1:T ), . . . , (θ(n), ẋ (n)
1:T )

)
.

4 Experiments

In this section, we study the application of the methods
presented in Sect. 3 in practice. Our focus will be on the
case of the bootstrap filter, that is, M1(dx1) = p(x1)dx1,
Mk(xk−1, dxk) = p(xk | xk−1)dxk and Gk(x1:k) = p(yk |
xk).

We start by investigating two simple HMMs: the noisy
random walk model (RW), that is, (4) with ρ = 1, and the
following stochastic volatility (SV) model:

xk+1 = xk + ηk,

yk = exk εk, (7)

with x1 ∼ N (0, σ 2
1 ), ηk ∼ N (0, σ 2

x ) and εk ∼ N (0, σ 2
y ).

In Sect. 4.3, we study the dependence of the method with
varying dimension, with a static multivariate normal model.
We conclude in Sect. 4.4 by applying our methods in a real-
istic inference problem related to modelling the COVID-19
epidemic in Finland.

4.1 Comparing DGI-CPF and CPF-BS

We first studied how the DGI-CPF performs in comparison to
the CPF-BS when the initial distributions of the RW and SV
model are diffuse. Since the efficiency of sampling is affected
by both the values of the model parameters (cf. Fig. 1) and
the number of particles N , we experimented with a range
of values N ∈ {8, 16, 32, 64, 128, 256, 512} for which we
applied both methods with n = 10000 iterations plus 500
burn-in. We simulated data from both the RW and SV mod-
els with T = 50, x1 = 0, σy = 1 and varying σx ∈
{0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 200}. We then

Fig. 2 The log (IRE) resulting from the application of the CPF-BS and
the best case DGI-CPF to the RW model. The horizontal axis depicts
different configurations of σ1 and σx , and in each panel N varies

applied both methods for each dataset with the correspond-
ing σx , but with varying σ1 ∈ {10, 50, 100, 200, 500, 1000},
to study the sampling efficiency under different parameter
configurations (σx and σ1). For the DGI-CPF, we varied
the parameter β ∈ {0.01, 0.02, . . . , 0.99}. We computed
the estimated integrated autocorrelation time (IACT) of the
simulated values of x1 and scaled this by the number of parti-
cles N . The resulting quantity, the inverse relative efficiency
(IRE), measures the asymptotic efficiencies of estimators
with varying computational costs (Glynn and Whitt 1992).

Figure 2 shows the comparison of the CPF-BS with the
best DGI-CPF, that is, the DGI-CPF with the β that resulted
in the lowest IACT for each parameter configuration and N .

The results indicate that with N fixed, a successful tuning
of β can result in greatly improved mixing in comparison
with the CPF-BS. While the performance of the CPF-BS
approaches that of the best DGI-CPF with increasing N , the
difference in performance remains substantial with parame-
ter configurations that are challenging for the CPF-BS.

The optimal N which minimizes the IRE depends on the
parameter configuration. For ‘easy’ configurations (where
IRE is small), even N = 8 can be enough, but more ‘difficult’
configurations (where IRE is large), higher values of N can
be optimal. Similar results for the SV model are shown in
Online Resource 1 (Fig. 1), and lead to similar conclusions.

The varying ‘difficulty’ of the parameter configurations
is further illustrated in Fig. 3, which shows the log (IACT)

for the SV model with N = 256 particles. The CPF-BS
performed the worst when the initial distribution was very
diffuse with respect to the state noise σx , as expected. In
contrast, the well-tuned DGI-CPF appears rather robust with
respect to changing parameter configuration. The observa-
tions were similar with other N , and for the RW model; see
Online Resource 1 (Fig. 2).

The results in Figs. 2 and 3 illustrate the potential of the
DGI-CPF, but are overly optimistic because in practice, the
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Fig. 3 The log (IACT) of the CPF-BS (left) and the best case DGI-
CPF (right) with respect to σ1 and σx in the case of the SV model and
N = 256

Fig. 4 The logarithm of the mean IACT over 5 replicate runs of the
DGI-CPF with respect to varying β. The dataset was simulated from
the SV model with parameters σx = 1 and σ1 = 50 and fixed in each
replicate run of the algorithm. N was set to 128. The horizontal line
depicts the performance of the CPF-BS

β parameter of the DGI-CPF cannot be chosen optimally.
Indeed, the choice of β can have a substantial effect on the
mixing. Figure 4 illustrates this in the case of the SV model by
showing the logarithm of the mean IACT over replicate runs
of the DGI-CPF, for a range of β. Here, a β of approximately
0.125 seems to yield close to optimal performance, but if
the β is chosen too low, the sampling efficiency is greatly
reduced, rendering the CPF-BS more effective.

This highlights the importance of choosing an appropri-
ate value for β, and motivates our adaptive DGI-CPF, that
is, Algorithm 5 together with Algorithm 8. We explored the
effect of the target acceptance rate α∗ ∈ {0.01, 0.02, . . . , 1},
with the same datasets and parameter configurations as
before. Figure 5 summarises the results for both the SV and
RW models, in comparison with the CPF-BS. The results
indicate that with a wide range of target acceptance rates, the
adaptive DGI-CPF exhibits improved mixing over the CPF-
BS. When N increases, the optimal values for α∗ appear to
tend to one. However, in practice, we are interested in a mod-
erate N , for which the results suggest that the best candidates
for values of α∗ might often be found in the range from 0.7
to 0.9.

For the CPF-BS, the mean IRE is approximately constant,
which might suggest that the optimal number of particles
is more than 512. In contrast, for an appropriately tuned

Fig. 5 The logarithm of the mean IRE over the parameter configurations
with the adaptive DGI-CPF and varying target acceptance rates. The
horizontal lines depict the mean performance of the CPF-BS

DGI-CPF, the mean IRE is optimised by N = 32 in this
experiment.

4.2 Comparing FDI-CPF and particle Gibbs

Next, we turn to study a fully diffuse initialisation. In
this case, M1 is improper, and we cannot use the CPF
directly. Instead, we compare the performance of the adap-
tive FDI-CPF with what we call the diffuse particle Gibbs
(DPG-BS) algorithm. The DPG-BS is a standard particle
Gibbs algorithm, where the first latent state x1 is regarded
as a ‘parameter’, that is, the algorithm alternates between
the update of x1 conditional on x2:T using a random walk
Metropolis-within-Gibbs step, and the update of the latent
state variables x2:T conditional on x1 using the CPF-BS. We
also adapt the Metropolis-within-Gibbs proposal distribution
QDPG of the DPG-BS, using the RAM algorithm (cf. Vihola
2020). For further details regarding our implementation of
the DPG-BS, see Appendix B.

We used a similar simulation experiment as with the adap-
tive DGI-CPF in Sect. 4.1, but excluding σ1, since the initial
distribution was now fully diffuse. The target acceptance
rates in the FDI-CPF with the ASWAM adaptation were again
varied in α∗ ∈ {0.01, 0.02, . . . , 1} and the scaling factor in
the AM adaptation was set to c = 2.382. In the DPG-BS, the
target acceptance rate for updates of the initial state using the
RAM algorithm was fixed to 0.441 following Gelman et al.
(1996).

Figure 6 shows results with the RW model for the DPG-
BS, the FDI-CPF with the AM adaptation, and the FDI-CPF
with the ASWAM adaptation using the best value for α∗.
The FDI-CPF variants appear to perform better and improve
upon the performance of the DPG-BS especially with small
σx . Similar to Figs. 2 and 3, the optimal N minimizing the
IRE depends on the value of σx : smaller values of σx call for
higher number of particles.
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Fig. 6 The log (IRE) for the DPG-BS, FDI-CPF with the AM adap-
tation and the best case FDI-CPF with the ASWAM adaptation to the
datasets generated with varying σx from the RW model

The performance of the adaptive FDI-CPF appears similar
regardless of the adaptation used, because the chosen scaling
factor c = 2.382 for a univariate model was close to the
optimal value found by the ASWAM variant in this example.
We experimented also with c = 1, which led to less efficient
AM, in the middle ground between the ASWAM and the
DPG-BS.

The IACT for the DPG-BS stays approximately constant
with increasing N , which results in a log (IRE) that increases
roughly by a constant as N increases. This is understandable,
because in the limit as N → ∞, the CPF-BS (within the
DPG-BS) will correspond to a Gibbs step, that is, a perfect
sample of x2:T conditional on x1. Because of the strong cor-
relation between x1 and x2, even an ‘ideal’ Gibbs sampler
remains inefficient, and the small variation seen in the panels
for the DPG-BS is due to sampling variability. The results
for the SV model, with similar findings, are shown in Online
Resource 1 (Fig. 3).

Figure 7 shows the logarithm of the mean IRE of the FDI-
CPF with the ASWAM adaptation with respect to varying
target acceptance rate α∗. The results are reminiscent of Fig. 5
and show that with a moderate fixed N , the FDI-CPF with the
ASWAM adaptation outperforms the DPG-BS with a wide
range of values for α∗. The optimal value of α∗ seems to tend
to one as N increases, but again, we are mostly concerned
with moderate N . For a well-tuned FDI-CPF the minimum
mean IRE is found when N is roughly between 32 and 64.

4.3 The relationship between state dimension,

number of particles and optimal target

acceptance rate

A well chosen value for the target acceptance rate α∗ appears
to be key for obtaining good performance with the adaptive
DGI-CPF and the FDI-CPF with the ASWAM adaptation.
In Sects. 4.1–4.2, we observed a relationship between N and

Fig. 7 A comparison of the FDI-CPF with the ASWAM adaptation
against the DPG-BS. The horizontal axis shows the target acceptance
rate α∗ used in the adaptive FDI-CPF. The logarithm of the mean IRE
on the vertical axis is computed over the different σx values. The black
horizontal lines show the performance with the DPG-BS

the optimal target acceptance rate, denoted here by αopt, with
two univariate HMMs. It is expected that αopt is generally
somewhat model-dependent, but in particular, we suspected
that the methods might behave differently with models of
different state dimension d.

In order to study the relationship between N , d and αopt

in more detail, we considered a simple multivariate nor-
mal model with T = 1, M1(x) ∝ 1, and G1(x1) =
N (x1; 0, σ Id), the density of d independent normals. We
conducted a simulation experiment with 6000 iterations plus
500 burn-in. We applied the FDI-CPF with the ASWAM
adaptation with all combinations of N ∈ {24, 25, . . . , 211},
α∗ ∈ {0.01, 0.02, . . . , 1}, σ ∈ {1, 5, 10, 50, 100}, and with
dimension d ∈ {1, 2, . . . , 10}. Unlike before, we monitor the
IACT over the samples of x1 as an efficiency measure.

Figure 8 summarises the results of this experiment. With
a fixed state dimension, αopt tended towards 1 with increas-
ing numbers of particles N , as observed with the RW and
SV models above. With a fixed number of particles N , αopt

appears to get smaller with increasing state dimension d, but
the change rate appears slower with higher d. Again, with
moderate values for N and d, the values in the range 0.7–0.9
seem to yield good performance.

Figure 9 shows a different view of the same data:
logit(αopt) is plotted with respect to log (N ) and d. Here,
we computed αopt by taking the target acceptance rate that
produced the lowest IACT in the simulation experiment, for
each value of σ , N and d. At least with moderate αopt and
N , there appears to be a roughly linear relationship between
logit(αopt) and log(N ), when d is fixed. However, because
of the lack of theoretical backing, we do not suggest to use
such a simple model for choosing αopt in practice.
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Fig. 8 The effect of state dimension d, number of particles N and
target acceptance rate α∗ on the logarithm of the mean IACT in the
multivariate normal model. The means are computed over the different
σ in the simulation experiment

Fig. 9 The best target acceptance rate αopt with respect to the number
of particles N and state dimension d on the multivariate normal model

4.4 Modelling the COVID-19 epidemic in Finland

Our final experiment is a realistic inference problem arising
from the modelling of the progress of the COVID-19 epi-
demic in Uusimaa, the capital region of Finland. Our main
interest is in estimating the time-varying transmission rate,
or the basic reproduction number R0, which is expected to
change over time, because of a number of mitigation actions
and social distancing. The model consists of a discrete-time

‘SEIR’ stochastic compartment model, and a dynamic model
for R0; such epidemic models have been used earlier in dif-
ferent contexts (e.g. Shubin et al. 2016).

We use a simple SEIR without age/regional stratification.
That is, we divide the whole population Npop to four separate
states: susceptible (S), exposed (E), infected (I ) and removed
(R), so that Npop = S + E + I + R, and assume that Npop is
constant. We model the transformed R0, denoted by ρ, such
that R0 = R0

maxlogit−1(ρ), where R0
max is the maximal

value for R0. The state vector of the model at time k is,
therefore, Xk = (Sk, Ek, Ik, Rk, ρk). One step of the SEIR
is:

Sk+1 = Sk − ΔEk+1,

Ek+1 = Ek + ΔEk+1 − ΔIk+1,

Ik+1 = Ik + ΔIk+1 − ΔRk+1,

Rk+1 = Rk + ΔRk+1,

ρk+1 = ρk + Δρk+1,

where the increments are as distributed as follows:

ΔEk+1 ∼ Binomial(Sk, pβ), pβ = 1 − exp (−βk(Ik/Npop)),

ΔIk+1 ∼ Binomial(Ek, pa), pa = 1 − exp (−a),

ΔRk+1 ∼ Binomial(Ik, pγ ), pγ = 1 − exp (−γ ),

Δρk+1 ∼ Normal(0, σ 2).

Here, βk = R0
maxlogit−1(ρk)pγ is the time-varying infec-

tion rate, and a−1 and γ −1 are the mean incubation period
and recovery time, respectively. Finally, the random walk
parameter σ controls how fast (ρk)k≥2 can change.

The data we use in the modelling consist of the daily num-
ber of individuals tested positive for COVID-19 in Uusimaa
(Finnish Institute for Health and Welfare 2020). We model
the counts with a negative binomial distribution dependent
on the number of infected individuals:

Yk ∼ NegativeBinomial

(
epγ

p

1 − p
Ik, p

)
. (8)

Here, the parameter e denotes sampling effort, that is, the
average proportion of infected individuals that are observed,
and p is the failure probability of the negative binomial dis-
tribution, which controls the variability of the distribution.

In the beginning of the epidemic, there is little information
available regarding the initial states, rendering the diffuse
initialisation a convenient strategy. We set

M1(S1, E1, I1, R1, ρ1)

=1(S1+E1+ I1 = Npop)1(S1, E1, I1 ≥0)1(R1 =0), (9)
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where the number of removed R1 = 0 is justified because
we assume all were susceptible to COVID-19, and that the
epidemic has started very recently.

In addition to the state estimation, we are interested in
estimating the parameters σ and p. We assign the prior
N (−2.0, (0.3)2) to log (σ ) to promote gradual changes in
R0, and an uninformative prior, N (0, 102), for logit(p).
The remaining parameters are fixed to Npop = 1638469,
R0

max = 10, a = 1/3, γ = 1/7 and e = 0.15, which are in
part inspired by the values reported by the Finnish Institute
for Health and Welfare.

We used the AAI-PG (Algorithm 9) with the FDI-CPF
with the ASWAM adaptation, and a RAM adaptation (Vihola
2012) for σ and p, (i.e. in the Lines 2–3 of Algorithm 9).
The form of (9) leads to the version of the FDI-CPF dis-
cussed in Sect. 3.2 where the initial distribution is uniform
with constraints. We use a random walk proposal to gen-
erate proposals (ρ1, E1, I1) → (ρ∗

1 , E∗
1 , I ∗

1 ), round E∗
1

and I ∗
1 to the nearest integer, and then set R∗

1 = 0 and
S∗

1 = Npop − E∗
1 − I ∗

1 − R∗
1 . We refer to this variant of the

AAI-PG as the FDI-PG algorithm. Motivated by our findings
in Sects. 4.1–4.3, we set the target acceptance rate α∗ in the
FDI-CPF (within the FDI-PG) to 0.8.

As an alternative to the FDI-PG we also used a particle
Gibbs algorithm that treats σ , p as well as the initial states
E1, I1 and ρ1 as parameters, using the RAM to adapt the
random walk proposal (Vihola 2012). This algorithm is the
DPG-BS detailed in Appendix B with the difference that the
parameters σ and p are updated together with the initial state,
and pDPG additionally contains all terms of (6) which depend
on σ and p.

We ran both the FDI-PG and the DPG-BS with N = 64
a total of n = 500, 000 iterations plus 10, 000 burn-in, and
thinning of 10. Figures 10 and 11 show the first 50 auto-
correlations and traceplots of E1, I1, (R0)1, σ and p, for
both methods, respectively. The corresponding IACT and
neff as well as credible intervals for the means of these vari-
ables are shown in Table 1. The FDI-PG outperformed the
DPG-BS with each variable. However, as is seen from Online
Resource 1 (Fig. 4), the difference is most notable with the
initial states, and the relative performance of the DPG-BS
approaches that of the FDI-PG with increasing state index.
The slow improvement in the mixing of the state variable R
occurs because of the cumulative nature of the variable in
the model, and the slow mixing of early values of I . We note
that even though the mixing with the DPG-BS was worse, the
inference with 500, 000 iterations leads in practice to sim-
ilar findings. However, the FDI-PG could provide reliable
inference with much less iterations than the DPG-BS. The
marginal density estimates of the initial states and param-
eters are shown in Online Resource 1 (Fig. 5). The slight
discrepancies in the density estimates of E1 and I1 between

Fig. 10 The first 50 autocorrelations for the model parameters and
initial states with the FDI-PG and the DPG-BS computed after thinning
the total 500000 samples to every 10th sample

Fig. 11 Traceplots for the initial states and model parameters for the
SEIR model with the FDI-PG and the DPG-BS. The 5000 samples
shown per method and parameter correspond to every 100th sample of
the total 500000 samples simulated

the methods are likely because of the poor mixing of these
variables with the DPG-BS.

We conclude with a few words about our findings regard-
ing the changing transmission rate, which may be of some
independent interest. Figure 12 displays the data and a pos-
terior predictive simulation, and the estimated distribution
of R0 computed by the FDI-PG with respect to time, with
annotations about events that may have had an effect on
the spread of the epidemic, and/or the data. The initial R0

is likely somewhat overestimated, because of the influx of
infections from abroad, which were not explicitly modelled.
There is an overall decreasing trend since the beginning of
‘lockdown’, that is, when the government introduced the first
mitigation actions, including school closures. Changes in the
testing criteria likely cause some bias soon after the change,
but no single action or event stands out.

Interestingly, if we look at our analysis, but restrict our
focus up to the end of April, we might be tempted to quan-
tify how much certain mitigation actions contribute to the
suppression of the transmission rate in order to build pro-
jections using scenario models (cf. Anderson et al. 2020).
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Table 1 The integrated
autocorrelation time, effective
sample size and credible
intervals of the mean for the
initial states and parameters in
the SEIR model

Variable IACT neff 95% mean CI

FDI-PG DPG-BS FDI-PG DPG-BS FDI-PG DPG-BS

E1 30.087 882.583 1661.838 56.652 (353.888, 374.054) (301.379, 423.106)

I1 14.296 626.963 3497.603 79.75 (165.697, 172.388) (155.374, 203.458)

(R0)1 32.168 436.755 1554.331 114.481 (3.41, 3.513) (3.266, 3.636)

σ 41.261 114.919 1211.796 435.088 (0.15, 0.154) (0.147, 0.154)

p 5.18 38.178 9652.794 1309.647 (0.134, 0.135) (0.133, 0.135)

Fig. 12 The distribution of the basic reproduction number R0 (top) and
a posterior predictive simulation (bottom) based on the posterior distri-
bution computed with the FDI-PG. The plot for R0 shows the median
in black and probability intervals (75% and 95%) in shades of grey. The

black points in the bottom plot represent the data used. The grey points
represent observations simulated conditional on the posterior distribu-
tion of the model parameters and states

However, when the mitigation measures have been gradually
lifted by opening the schools and restaurants, the openings
do not appear to have had notable consequences, at least until
now. It is possible that at this point, the number of infections
was already so low, that it has been possible to test all sus-
pected cases and trace contacts so efficiently, and that nearly
all transmission chains have been contained. Also, the public
may have changed their behaviour, and are now following the
hygiene and social distancing recommendations voluntarily.
Such a behaviour is, however, subject to change over time.

5 Discussion

We presented a simple general auxiliary variable method
for the CPF for HMMs with diffuse initial distributions and
focused on two concrete instances of it: the FDI-CPF for a
uniform initial density M1 and the DGI-CPF for a Gaussian
M1. We introduced two mechanisms to adapt the FDI-CPF
automatically: the adaptive Metropolis (AM) of Haario et al.

(2001) and a method similar to a Rao–Blackwellised adaptive
scaling within adaptive Metropolis (ASWAM) (cf. Andrieu
and Thoms 2008), and provided a proof of their consistency.
We also suggested an adaptation for the DGI-CPF, based on
an acceptance rate optimisation. The FDI-CPF or the DGI-
CPF, including their adaptive variants, may be used directly
within a particle Gibbs as a replacement for the standard CPF.

Our experiments with a noisy random walk model and a
stochastic volatility model demonstrated that the DGI-CPF
and the FDI-CPF can provide orders of magnitude speed-ups
relative to a direct application of the CPF and to diffuse ini-
tialisation using particle Gibbs, respectively. Improvement
was substantial also in our motivating practical example,
where we applied the adaptive FDI-CPF (within particle
Gibbs) in the analysis of the COVID-19 epidemic in Finland,
using a stochastic ‘SEIR’ compartment model with chang-
ing transmission rate. Latent compartment models are, more
generally, a good example where our approach can be use-
ful: there is substantial uncertainty in the initial states, and it
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is difficult to design directly a modified model that leads to
efficient inference.

Our adaptation schemes are based on the estimated covari-
ance matrix and a scaling factor which can be adapted
using acceptance rate optimisation. For the latter, we found
empirically that with a moderate number of particles, good
performance was often reached with a target acceptance rate
ranging in 0.7–0.9. We emphasise that even though we found
this ‘0.8 rule’ to work well in practice, it is only a heuristic,
and the optimal target acceptance rate may depend on the
model of interest. Related to this, we investigated how the
optimal target acceptance rate varied as a function of the num-
ber of particles and state dimension in a multivariate normal
model, but did not find a clear pattern. Theoretical verifi-
cation of the acceptance rate heuristic, and/or development
of more refined adaptation rules, is left for future research.
We note that while the AM adaptation performed well in our
limited experiments, the ASWAM may be more appropriate
when used within particle Gibbs (cf. Vihola 2020). The scal-
ing of the AM remains similarly challenging, due to the lack
of theory for tuning.
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Appendix

A Proof of Theorem 1

For a finite signed measure ξ , the total variation of ξ is defined
as ‖ξ‖tv = sup‖ f ‖∞≤1 ξ( f ), where ‖ f ‖∞ = supx | f (x)|,
and the supremum is over measurable real-valued functions
f , and ξ( f ) = ∫

f dξ . For Markov transitions P and P ′,
define d(P, P ′) = supx ‖P(x, · ) − P ′(x, · )‖tv.

In what follows, we adopt the following definitions:

Definition 1 Consider Lines 3 and 4 of Algorithm 1 with
X̃ (1:N )

1 = x̃ (1:N )
1 and ẋ2:T , and define:

(i) PCPF(x̃ (1:N )
1 , ẋ2:T ; · ) as the law of X̃ (B1:T )

1:T , and

(ii) (In case PickPath- BS is used:) P̃CPF(x̃ (1:N )
1 , ẋ2:T ; · )

as the law of
(
X̃ (B1:T )

1:T , (B1, V (1:N ), X̃ (1:N )
1 )

)
.

Consider then Algorithm 1 with parameterised Q = Qζ , and
define, analogously:

(iii) Pζ is the Markov transition from ẋ1:T to X̃ (B1:T )
1:T .

(iv) P̃ζ is the Markov transition from from (ẋ1:T , · ) to(
X̃ (B1:T )

1:T , (B1, V (1:N ), X̃ (1:N )
1 )

)
.

Lemma 1 We have d(Pζ , Pζ ′) ≤ Nd(Qζ , Qζ ′) and d(P̃ζ ,

P̃ζ ′) ≤ Nd(Qζ , Qζ ′).

Proof Let (P̂CPF, P̂ζ ) ∈ {(PCPF, Pζ ), (P̃CPF, P̃ζ )} and take
measurable real-valued function f on the state space of P̂ζ

with ‖ f ‖∞ = 1.
We may write

P̂ζ (ẋ1:T , f )

=
∫

Qζ (ẋ1, dx0)

[ ∫
δẋ1(dx̃ (1)

1 )

N∏
k=2

Qζ (x0, dx̃ (k)
1 )P̂CPF(x̃ (1:N )

1 , ẋ2:T , f )

]
, (10)

and therefore, upper bound

|P̂ζ (ẋ1:T , f ) − P̂ζ ′(ẋ1:T , f )|
≤ |Qζ (ẋ1, g(ẋ1:T )

0 ) − Qζ ′(ẋ1, g(ẋ1:T )
0 )|

+
N∑

i=2

∫
Qζ ′(ẋ1, dx0)|Qζ (x0, g(ẋ1:T ,x0)

i )

−Qζ ′(x0, g(ẋ1:T ,x0)
i )|
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with functions defined below, which satisfy ‖g(ẋ1:T )
0 ‖∞ ≤ 1

and ‖g(ẋ1:T ,x0)
i ‖∞ ≤ 1:

g(ẋ1:T )
0 (x0) =

∫
δẋ1(dx̃ (1)

1 )

N∏
k=2

Qζ (x0, dx̃ (k)
1 )

PCPF(x̃ (1:N )
1 , ẋ2:T , f ),

g(ẋ1:T ,x0)
i (x̃ (i)

1 ) = δẋ1(dx̃ (1)
1 )

i−1∏
k=2

Qζ ′(x0, dx̃ (k)
1 )

N∏
k=i+1

Qζ (x0, dx̃ (k)
1 )PCPF(x̃ (1:N )

1 , ẋ2:T , f ).

��
The following result is direct:

Lemma 2 Let QΣ stand for the random walk Metropolis type
kernel with increment proposal distribution qΣ , and with
target function M1 ≥ 0, that is, a transition probability of
the form:

QΣ(x, A) =
∫

A
qΣ(dz) min

{
1,

M1(x + z)

M1(x)

}

+1(x ∈ A)

(
1 −

∫
qΣ(dz) min

{
1,

M1(x + z)

M1(x)

})
.

Then, ‖QΣ(x, · ) − QΣ ′(x, · )‖tv ≤ 2‖qΣ − qΣ ′ ‖tv.

The following result is from (Vihola 2011, proof of Propo-
sition 26):

Lemma 3 Let qΣ(x, dy) stand for the centred Gaussian dis-
tribution with covariance Σ , or the centred multivariate
t-distribution with shape Σ and some constant degrees of
freedom ν > 0. Then, for any 0 < b� < bu < ∞ there exists
a constant c = c(b�, bu) < ∞ such that for all Σ,Σ ′ with
all eigenvalues within [b�, bu],

‖qΣ − qΣ ′ ‖tv ≤ c‖Σ − Σ ′‖,

where the latter stands for the Frobenius norm in R
d .

Assumption 2 (Mixing) The potentials are bounded:

(i) ‖Gk‖∞ < ∞ for all k = 1, . . . , T .

Furthermore, there exists ε > 0 and probability measures νζ

such that for all ζ ∈ Z:

(ii) Qζ (x0, A) ≥ ενζ (A) for all x0 ∈ X and measurable
A ⊂ X.

(iii)
∫

νζ (dx0)Qζ (x0, dx1)

G1(x1)
∏T

k=2 Mk(xk−1, dxk)Gk(xk−1, xk)dx1:T ≥ ε.

Lemma 4 Suppose that Assumption 2 holds, then the kernels
Pζ and P̃ζ satisfy simultaneous minorisation conditions, that
is, there exists δ > 0 and probability measures νζ , ν̃ζ , such
that

Pk
ζ (x1:T , · ) ≥ δνζ ( · ) and P̃k

ζ (x̃1:T , · ) ≥ δν̃ζ ( · ),

for all x1:T ∈ X, x̃ (1:N )
1 ∈ XN , and ζ ∈ Z.

Proof For P̂ζ ∈ {Pζ , P̃ζ }, we may write as in the proof of
Lemma1

P̂ζ (x1:T , · ) =
∫

Qζ (x1, dx0)P̂∗
CPF,ζ,x0

(x1:T , · ),

where the latter term refers to the term in brackets in (10) —
the transition probability of a conditional particle filter, with
reference x1:T , and the Feynman–Kac model M̌ (ζ,x0)

1 (dx1) =
Qζ (x0, dx1), M2:T and G1:T , whose normalised probabil-
ity we call π∗

ζ,x0
. Assumption 2, 2 and 2 guarantee that

P∗
CPF,ζ,x0

(x1:T , dx ′
1:T ) ≥ επ∗

ζ,x0
(dx ′

1:T ), where ε̂ > 0 is inde-
pendent of x0 and ζ (Andrieu et al. 2018, Corollary 12). Note
that the same conclusion holds also with backward sampling,
because it is only a further Gibbs step to the standard CPF.
Likewise, in case of P̃ζ , the result holds because we may
regard P̃ζ as an augmented version of Pζ (e.g. Franks and
Vihola 2020). We conclude that

P̂ζ (x1:T , · ) ≥ εε̂

∫
νζ (dx0)π

∗
ζ,x0

( · ),

where the integral defines a probability measure independent
of x1:T . ��

We may write the k:th step of Algorithm 5 as:

(i) (Xk, ξk) ∼ P̃ζk−1(Xk−1, · ),
(ii) ζ ∗

k = ζk−1 + ηk H(ζk−1, Xk, ξk),

where H correspond to Algorithm 6 or 7, respectively.
The stability may be enforced by introducing the following
optional step:

(iii) ζk = ζ ∗
k 1(ζk ∈ Z) + ζk−11(ζ ∗

k /∈ Z),

which ensures that ζ ∈ Z, the feasible set for adaptation.

Proof (Proof of Theorem 1) The result follows by (Saksman
and Vihola 2010, Theorem 2), as (A1) is direct, Lemma 4
implies (A2) with V ≡ 1, λn = 0, bn = 1, δn = δ and
ε = 0, Lemmas 2 and 3 imply (A3), and (A4) holds trivially,
as ‖H( · )‖∞ < ∞, thanks to the compactness of D. ��
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B Details of the DPG-BS algorithm

The diffuse particle Gibbs algorithm targets (2) by alternating
the sampling of x2:T given x1, and x1 given x2:T . Hence, the
algorithm is simply particle Gibbs where the initial state is
treated as a parameter. Define

pDPG(x1 | x2:T ) ∝ M1(x1)G1(x1)M2(x2 | x1)G2(x1, x2).

With this definition, the DPG-BS algorithm can be written as
in Algorithm 10. Lines 3–5 constitute a CPF-BS update for
x2:T , and Line 6 updates x1. A version of the RAM algorithm
(Vihola 2012) (Algorithm 11) is used for adapting the normal
proposal used in sampling x1 from pDPG.

Algorithm 10 DPG-BS(X (0)
1 , ẋ (0)

2:T ;π, N )
1: Set S0 = I , α∗ = 0.441, ηmax = 0.5, γ = 0.66.

2: for j in 1, . . . , n do

3: Simulate X̃ (2:N )
2 ∼ M2( · | X ( j−1)

1 ) and set X̃ (1)
2 = ẋ(0)

2 .

4: (X̃ (1:N )
2:T , W (1:N )

2:T , A(1:N )
2:T −1) ← F-CPF(ẋ3:T , X̃ (1:N )

2 ; M3:T , G2:T , N ).

5: (B2:T , ξ) ← PickPath- BS(X̃ (1:N )
2:T , W (1:N )

2:T , A(1:N )
2:T −1, M3:T , G3:T )

6: (X ( j)
1 , S j ) ← RAM(pDPG( · | X̃

(B2:T )

2:T ), X ( j−1)
1 , S j−1, α∗, ηmax, γ ).

7: Set X( j) = (X ( j)
1 , X̃

(B2)

2 , X̃
(B3)

3 , . . . , X̃
(BT )

T ).

8: end for
9: output X(1:n)

Algorithm 11 RAM(p, θ(n−1), Sn−1, α∗, ηmax, γ ) (iteration n)

1: Simulate Un ∼ N (0, Id ).
2: Propose θ∗ = θ(n−1) + Sn−1Un .

3: Compute αn = min

{
1,

p(θ∗)

p(θ(n−1))

}
.

4: With probability αn , set θ(n) = θ∗; otherwise set θ(n) = θ(n−1).
5: Set ηn = min{ηmax, dn−γ }.
6: Compute Sn such that Sn S

′
n = Sn−1

(
I + ηn (αn − α∗)

UnU
′
n

‖Un‖2

)
S
′
n−1.

7: output θ(n), Sn .
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A B S T R A C T

Citizens, community groups and local institutions participate in voluntary biological monitoring of population
status and trends by providing species data e.g. for regulations and conservation. Sophisticated statistical
methods are required to unlock the potential of such data in the assessment of wildlife populations.

We develop a statistical modelling framework for identifying territories based on presence-only citizen
science data. The framework can be used to jointly estimate the number of active animal territories and their
locations in time. Our approach is based on a data generating model which consists of a dynamic submodel for
the appearance/removal of territories and an observation submodel that accounts for the varying observation
intensity and links the data to the territories. We first estimate the observation intensity using past presence-
only observations made by citizens, conditioning on previously known territories. We then infer the territories
using a state-of-the-art sequential Monte Carlo method, which extends earlier approaches by allowing for
spatial inhomogeneity in the observation process.

We verify our data generating model and inference method successfully in synthetic scenarios. We apply
our framework for estimating the locations and number of wolf territories in March 2020 in Finland using one
year of confirmed citizen-made wolf observations. The observation intensity is estimated using wolf observation
data collected in 2011–2019, conditioning on official territory estimates and data from GPS-collared wolves.

Our experiments with synthetic data suggest that the estimation of territories can be feasible with presence-
only data. Our location and territory count inferences for March 2020 based on past data are comparable to
the official wolf population assessment of March 2020 by the Natural Resources Institute Finland. The results
suggest that the framework can provide useful information for assessing populations of territorial animals.
Furthermore, our methods and findings, such as the developed data generating model and the estimation of
the spatio-temporal observation intensity can be relevant also beyond the strictly territorial setting.

1. Introduction

Volunteers contribute to many wildlife monitoring programs but
standardised monitoring schemes are available for only a small num-
ber of taxa in a few countries (Gregory et al., 2005; Isaac, 2014).
Citizens, community groups and local institutions participate in bio-
logical monitoring of population status and trends by providing species
data e.g. for regulations and conservation (Conrad and Hichley, 2011;
Lawrence, 2006). The involvement of citizens as data collectors has
demonstrated its ability to gather massive amounts of data at a spatio-
temporal scale unattainable by research teams and state authorities
active in biodiversity monitoring (Silvertown, 2009). For instance, in
many European countries, hunters are integrated as data-providers in

∗ Corresponding author.
E-mail address: santeri.j.karppinen@jyu.fi (S. Karppinen).

wildlife management structures that are intended to support sustainable
harvest (Bragina et al., 2015; Cretois et al., 2020; Linnell et al., 2015).

Statistical developments in data integration as well as more rigorous
protocols for data collection are needed to unlock further the potential
that volunteers’ data holds (Cretois et al., 2020; Isaac, 2014). The
statistical interpretation of citizen-collected data faces problems less
frequently encountered in traditional scientific research. For example,
the spatio-temporal sampling effort of citizens is usually not known
nor controllable. Sophisticated methods that model the data collection
process offer the greatest potential to estimate e.g. timely trends (Isaac,
2014).

In this paper, we propose a statistical modelling framework that can
be used to make inferences about animal populations with territorial

https://doi.org/10.1016/j.ecolmodel.2022.110101
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behaviour, using observations reported voluntarily by citizens. More
specifically, our focus is on the following scenario:

• Citizens report presence-only observations of territorial animals.
Each observation consists of a GPS coordinate and an approximate
time stamp.

• We wish to estimate the number and locations of the animal
territories within some area and time interval using the data
collected by the citizens.

• Prior knowledge on the territorial behaviour of the species is
assumed to exist in the form of a typical territory size and on
the rate of appearance and disappearance of territories.

Because of the high spatio-temporal variability common in citizen
science observation processes, modelling of the varying sampling effort,
that is, the observation intensity, is a crucial first part of our framework.
We take this variation into account by modelling the intensity based
on past data. This yields intensity functions that capture the spatio-
temporal variation in the observations reported by citizens. These
functions are then fed into a data generating model consisting of
two submodels that model the appearance and removal of territories,
and the generation of citizen science observations from the territories,
respectively. To estimate the number of territories and their locations,
we use the latest available citizen science data and perform Bayesian
inference for the data generating model.

The data generating model jointly approximates the evolution of the
number of active territories and their locations in time, characterised by
a sequence of posterior distributions conditioned on observation sets of
increasing size. In the engineering literature, similar models are called
‘tracking models’ (cf. Goodman et al., 1997). Indeed, the inference
algorithm we develop is a Rao-Blackwellised particle filter similar to
those developed for tracking (Särkkä et al., 2007; Vihola, 2007). We
further elaborate these methods by employing a state-of-the-art optimal
resampling of Fearnhead and Clifford (2003), and further refine the
inference algorithm so that it can incorporate the spatial inhomogeneity
arising from our observation model.

Our data generating model is similar to dynamic occupancy models
(Royle and Kéry, 2007) and open N-mixture models (Zhao et al., 2017)
in the sense that it has a latent process model for the appearance and
disappearance (‘‘occupancy’’) of animal territories, and a variable ob-
servation intensity. However, unlike in the work of Zhao et al. (2017),
the principal objects of analysis in our model are animal territories
rather than individual animals. In addition, our model does not assume
a fixed set of potentially occupied sites but operates in continuous
space, where territories are delineated without a pre-defined grid.
Finally, our model is formulated in continuous-time, which allows the
estimation of the state of the population at any time points within the
interval of interest. For example, our model can be used to track the
state of the population at daily or weekly time steps. In contrast, the
methods of Royle and Kéry (2007) and Zhao et al. (2017) operate in
discrete time, and are typically used for annual data with a considerably
smaller number of time steps.

The motivation for the development of our modelling framework
has been to aid in the task of assessing the Finnish wolf (Canis lupus)
population, although the framework can be relevant for other territorial
species as well. Currently, the Finnish wolf population is assessed
annually in March by the Natural Resources Institute Finland (Luke).
In the assessments, wolf observations provided by citizens from the
beginning of August to the end of February are combined with non-
invasive genetic samples, tracks of GPS collared wolves and records
of known mortality (Kojola et al., 2018). The assessments are carried
out in two phases. In the first phase a panel of experts conducts a
systematic review of all the data and judges territory boundaries that
are potentially occupied by wolf packs or pairs in March. In the second
phase, a Bayesian state–space model is used to infer the number of
wolves living in each territory by combining wolf observations, DNA
-recaptures and known mortality (Heikkinen et al., 2020). In particular,

we envision that the developed framework can work as a useful tool in
the first phase, providing a statistical look at the citizen science data
and an aid in judging the territory boundaries.

We examine the performance of the developed particle filter with
a sequence of simulation experiments, where we start from simple
simulated conditions and work towards conditions that resemble more
closely our concluding experiment, which is a realistic situation that
could be faced in the assessment of the Finnish wolf population. Here,
we use previous estimates of territory locations and citizen-provided
observations to estimate the spatio-temporal variation of the condi-
tional probability of wolf observations given known existence of wolf
territories. Even though similar approaches have been used for species
abundance estimations (e.g. Renner et al., 2015; Ver Hoef et al., 2021;
Tang et al., 2021), the conditioning requirement provides a novel
challenge. Using the results of said intensity modelling, we apply our
data generating model to a real data set consisting of wolf observations
made by Finnish citizens between April 2019 and March 2020. We
estimate the number and locations of wolf territories and compare
the result to the official estimates by the Natural Resources Institute
Finland (Luke) which are based on the method discussed above.

The main contributions of this paper are as follows. First, we believe
that the developed framework is of interest in assessing populations of
territorial species using presence-only citizen science data. We focus
on the application to wolves, but our methods are readily adaptable
for other territorial species. Second, we believe that the observation
intensity estimation is of its own independent interest, because it
addresses the problem of estimating the conditional spatio-temporal
intensity of presence-only citizen science observations. Third, from a
methodological point of view, the developed data generating model and
particle filter might be relevant also in the context of ‘general purpose’
target tracking (e.g Vihola, 2007; Särkkä et al., 2007) applications
where a spatially varying observation process is needed.

2. Materials and methods

The general modelling framework proposed in this paper can be
summarised into four successive analysis steps numbered from one
to four. The flowchart in Fig. 1 depicts their dependencies and re-
lation with each other, highlighting the inputs, outputs and datasets
associated with each step. The following subsections will explain how
we apply the framework in the context of wolf territory estimation.
Section 2.1 discusses the Datasets A, B and C. Section 2.2 then describes
the data generating model, which motivates the intensity estimation
consisting of steps 1 and 2, which in turn are discussed in Sections 2.3
and 2.4, respectively. Section 2.5 describes step 3 of the analysis,
the statistical inference based on the data generating model, using a
particle filter we have developed for the problem. Finally, in Section 2.6
we conclude with a description of step 4 where we extract the number
and locations of the territories from the output of the particle filter.

2.1. Data

In this Section, we will discuss the Datasets A, B and C seen in the
framework of Fig. 1. In summary, the Datasets A and B contain past
data used in the construction of the data generating model, and Dataset
C contains the latest data to be processed by the particle filter. Each
datum in Datasets A and C is a spatio-temporal point, that is, it has the
form (𝑡, 𝑦), where 𝑡 is the time of observation, and 𝑦 is a two-dimensional
point on a domain we denote by 𝐷y. The difference between Datasets
A and C is that Dataset A is past data, and Dataset C corresponds
to the latest data we wish to infer the territories with. In contrast,
Dataset B is more heterogeneous and contains all additional data such
as covariates and expert knowledge required in the construction of the
data generating model.
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Fig. 1. A flowchart of the proposed general modelling framework. The rectangles depict the analysis steps 1–4. The elliptical shapes denote inputs and outputs of the analysis
steps. Input datasets are marked with the gray fill. The symbols 𝜆

(𝜏)
obs and 𝜆

(𝑠)
obs denote the intensity functions and 𝜃 stands for the other parameters of the data generating model.

2.1.1. Datasets A and C

We extract the spatio-temporal points in Datasets A and C from a
digital large carnivore observation database named ‘‘Tassu’’ (meaning
a ‘‘paw’’ in Finnish) (Kojola et al., 2018). The observations enter the
database through a network of approximately 2000 large carnivore
contact persons (LCCPs), who are nominated by management asso-
ciations and educated by the Finnish Wildlife Agency and Luke in
the biology, ecology and movement behaviour of wolves as well as
footprint identification. There are, however, no formal exams used in
the nomination process.

The LCCPs have their own local trusted network of people who
report their observations of wolves to the LCCP. These networks consist
mostly of hunters that are proficient in identifying wolves based on
sightings, tracks, prey kills and camera-trap documents. In addition, it
is in principle possible for any citizen to report their observations, since
the contact details of the LCCPs are publicly available and known in
local rural societies (Pellikka and Hiedanpää, 2017). However, the net-
works of the LCCP are particularly relevant for wolf sightings in snow-
free conditions because such observations usually cannot be verified
afterwards.

Wolf observations found to be valid by the LCCPs are saved into
the Tassu database. Each saved datum includes information about the
time and location of the observation, the type of observation (such as
wolf track, sighting, droppings, game camera photograph, prey kill site
or livestock predation) and the estimated count of wolves observed
simultaneously. The count estimate is based on the judgement of the
LCCP based on the information available. Since the observations saved
to the database are subject to the confirmation of the LCCP (possibly
days after the initial report), we consider the observation times to be
accurate on a daily granularity. In total, Datasets A and C contain
all observations from the Tassu database that reported two or more
wolves between January 2011 and March 2020. Since the purpose of
our framework is to infer the number and locations of wolf territories,
we only focus on observations that report more than one wolf, since
this indicates that the observed wolves form a wolf pack and very likely
exhibit territorial behaviour. In contrast, observations of single wolves
can originate from lone, vagrant wolves, that do not yet maintain a
territory. Furthermore, for simplicity, we make no distinction for data
points with different observation types; we regard each observation
simply as a spatio-temporal point. We return to this matter in the
discussion.

We split the data such that Dataset C contains the observations
made between April 1st 2019 and March 31st 2020, and Dataset A the
observations before this. The locations in Dataset C are illustrated in
Fig. 2 (top left). The domain of the locations, 𝐷y, is mainland Finland
south of the reindeer husbandry region in the north. The wolf territories
in the reindeer husbandry region are few and short-term owing to

lethal control that is justified by the prevention of damages to reindeer
husbandry.

We organise the Datasets A and C according to so-called ‘‘wolf
years’’. A wolf year starts April 1st and ends in March 31st of the next
year. Hence, Dataset C consists of the observations made during the
wolf year 2019–2020. The organisation of the data to wolf years has
two reasons. First, as described in the introduction, the annual Finnish
wolf population assessments describe the state of the wolf population in
March. Second, the data indicate that the highest observation intensity
is reached during the winter season and declines towards the spring.
Year-by-year changes in the observation activity are expected to occur
between the winter seasons, rather than between calendar years. We
will also use the term ‘‘wolf month’’ to refer to the months within a wolf
year such that the first wolf month corresponds to April, the second to
May, and so on.

2.1.2. Dataset B

Dataset B contains two kinds of information. Most importantly,
Dataset B contains information about past known wolf territories until
March 2019, that is, before the wolf year associated with Dataset C. In
addition, Dataset B also contains covariates.

Dataset B is primarily used in the intensity modelling described
in Section 2.3, but also for setting certain parameters in the data
generating model. The details on how the data sources described below
are used in the intensity modelling are given in Section 2.3. The relation
of Dataset B to the parameters of the data generating model is discussed
in the results of Section 3.3.

The information about past wolf territories was constructed from
two sources of data, independently of Datasets A and C. We call the
resulting territories ‘auxiliary territories’. The first source consists of
the space–time trajectories of 34 GPS-collared wolves that were tracked
between 2011 and 2019. The transmitters in the collars stored the
wolf’s position at one- or four-hour intervals, depending on the season.
The capture, handling and immobilisation protocols of these wolves are
described in Kojola et al. (2016).

We assumed that each collared wolf was part of a wolf territory.
The trajectories contain outlier recordings, such as test measurements
at a lab or ‘glitch’ jumps of hundreds of kilometres occurring due
to device malfunction or other reason. Some trajectories also cover
two clearly separate territories. We therefore preprocessed the data as
follows. First, the recorded GPS trajectories were divided into separate,
contiguous trajectories at temporal jumps of more than two weeks
or spatial jumps of more than 100 km. Trajectories less than 24 h
were rejected. Second, each contiguous trajectory was processed by
assigning to each trajectory point a probability of being an outlier.
The probability was given by the velocity density 𝑣 ∼ 𝐸𝑥𝑝(28.8) with
median at 20 km/h, multiplied by the function 𝑤(𝑑𝑐 = 𝑥) = 1(𝑥 <



S. Karppinen et al.

Fig. 2. Top left: The observed locations in Dataset C, that is, the locations of the Tassu observations (black points) that reported two or more wolves from April 2019 to March
2020. The blue overlay shows the domain of interest (the study area). Bottom left: Wolf territories found in the wolf population assessment of April 2019 by the Natural Resources
Institute Finland. The point within each territory represents the centroid of the territory polygon. Right: The study area highlighted on a map of Europe. The distance scales are
approximate due to coordinate transformations applied in drawing the maps.

(5𝜎)) + 1(𝑥 > (5𝜎)) exp[−0.5(𝑥−5𝜎)2∕400002], where 𝑑𝑐 denotes a point’s
distance from the trajectory’s centre of mass and 𝜎 is the 90%-truncated
standard deviation of the centre of mass-distances. Points with proba-
bility less than 50% were excluded from the trajectory. Finally, the first
and second steps were repeated to account for significant gaps after
the outlier detection second step. From each remaining trajectory, an
auxiliary territory was constructed as a polytope in 𝐷y × 𝑇𝐵 , where 𝑇𝐵
denotes the time span 2003-03-04–2019-03-31, by taking the Cartesian
product of the convex hull of the spatial locations and the time interval
of the trajectory. In total, 59 auxiliary territories were constructed from
the GPS trajectories, covering approximately 74,000 km2 and with time
spans that add up to approximately 36.5 years.

The second type of auxiliary territories were constructed based on
expert knowledge using the official population assessments of Luke
from 2017 onwards. The assessments include estimates of active wolf
pack territories as polygons in 𝐷y, during March of the corresponding
years. Fig. 2 (bottom left) shows the active pack territory location
estimates of experts in the assessment of March 2019. We assumed
that these territories were active also during January and February.
We then constructed polytopes in 𝐷y × 𝑇𝐵 as the Cartesian products
of the polygons and January-March-intervals of each year between
2017–2019. The resulting 203 expert judgement auxiliary territories
covered approximately 180,000 km2 with time spans that add up to
approximately 35.3 years.

The additional covariates in Dataset B consist of two datasets. The
first of these is the CORINE land cover data for 2018 (Finnish Envi-
ronment Institute SYKE, 2018). The dataset comes as a raster covering
Finland and contains an approximate land use class (e.g. river, small
road) for each of its 20 by 20 metre cells. The original 49 classes were
first reclassed down to 8: Residential areas, other build areas, roads,
cultivated fields, lakes and rivers, swamps and other wetlands, closed
forests, and open forests. For each of the 8 classes, we aggregated
their frequency in 1 km2 cells, and to slightly reduce the amount of
zeros, applied smoothing with a Gaussian blur with standard deviation
3 km. Each cell of the resulting 8-layer raster stack then contained
a vector giving the (smoothed) frequencies of each land use class in
(and near) the 1 km2 cell. Since the resulting vector for each cell 𝑘,
[Corine𝑘,1,… ,Corine𝑘,8], is (nearly) a simplex, we dropped the first
class, residential areas, and kept the remaining 7 as frequencies. A
log-ratio transformation, which is a popular approach in compositional
data analysis, might have been more suitable here but was not done
due to numerous zeros in all classes.

The CORINE road information capture larger streets and highways,
and to describe accessible forest areas we computed an additional forest
road frequency variable to Dataset B. This variable is derived from the
national road and street database Digiroad (Finnish Transport Infras-
tructure Agency, 2021). From the database we extracted the polyline
feature class ‘12’, roads and paths traversable by offroad vehicle. We
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binarised the polylines on to the 20 by 20 metre cells of the CORINE
land cover data, and then computed the frequencies of those cells on a
1 × 1 km raster. We denote the value of this variable in the 𝑘th 1 km2

cell by 𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑜𝑎𝑑𝑘.

2.2. Data generating model

In this section, we discuss the data generating model we have
developed for citizen science observations of a territorial species. The
model we have developed is more general than the instance of it that
we use for modelling the wolf data. Therefore, this section will also
highlight certain modelling decisions we make in the present applica-
tion. Furthermore, the data generating model we describe here is ‘ideal’
in the sense that it must be approximated further to be tractable for our
inference method. We will discuss this in more detail in Section 2.5
that is devoted to the filtering algorithm. For the interested reader, the
mathematical details of the general data generating model are given in
Sections 1.1 and 1.2 of the supplementary material.

The data generating model consists of two submodels, the birth
and death process and the observation model, which we will discuss
in Sections 2.2.1 and 2.2.2, respectively. In summary, the birth and
death process models how new territories emerge and disappear, and
the observation model describes how each existing territory produces
citizen science observations (spatio-temporal points as in Dataset C).

2.2.1. Birth and death process

Our model assumes that the territories of interest exist and emerge
within a domain denoted by 𝐷𝜇 ⊂ R

2, with 𝐷𝜇 ⊆ 𝐷y. The location
of the territory 𝑖 is represented by its centroid, 𝜇𝑖 ∈ 𝐷𝜇 , which is
assumed to be constant in time. New territories emerge within 𝐷𝜇

with the instantaneous birth intensity 𝜆b(𝑢)𝑁𝑢 + 𝜆b0 where 𝜆b(𝑢) is
the (known) birth intensity function and 𝑁𝑢 stands for the number of
existing territories at time 𝑢. The function 𝜆b(𝑢) can be interpreted as
birth intensity per each existing territory. The baseline birth intensity
parameter 𝜆b0, on the other hand, models additional birth intensity due
to external factors such as inflow from outside 𝐷𝜇 . For modelling of
the wolf data, we simplify 𝜆b(𝑢) to a constant, denoted by 𝜆b, and set
𝜆b0 = 0. As a new territory emerges, its centroid follows the uniform
distribution on 𝐷𝜇 .

Similarly, each existing territory disappears with the instantaneous
death intensity 𝜆d(𝑢), that is, the total instantaneous death intensity
induced by all territories equals 𝜆d(𝑢)𝑁𝑢. In case of the wolf data, we
fix 𝜆d(𝑢) to a constant that we denote by 𝜆d. Therefore, the lifetime of
a single territory follows an exponential distribution with mean 𝜆−1d .
Furthermore, in a similar fashion as was done in Vihola (2007), we
‘symmetrise’ the birth and death process by setting 𝜆b = 𝜆d = 𝜆bd,
where 𝜆bd then remains the only birth/death intensity parameter. This
minimises the bias in the birth and death process, and a priori leads to
a constant conditional expectation for the number of territories in time.

The initial distribution of the model is a joint distribution of the
number of territories and the locations of their centroids. The initial
locations of the territory centroids can either be distributed uniformly
on 𝐷𝜇 or subject to Gaussian error (truncated to 𝐷𝜇) around some
location estimate.

2.2.2. Observation model

The observation model, conditional on the territory locations and
lifetimes generated by the birth and death process, describes how each
territory with its centroid on 𝐷𝜇 produces citizen science observations.

The ‘baseline’, underlying model for an observation from a single
territory 𝑖 that exists at any given time point, is bivariate normal
𝑁(⋅;𝜇𝑖, 𝛴obs), where 𝛴obs describes the size and shape of the territories.
We assume that the territories are roughly circular in shape by setting
𝛴obs = 𝜎2obs𝐼 , where 𝐼 denotes the 2 × 2 identity matrix and 𝜎obs > 0 is
a standard deviation related to the territory size.

It is useful to interpret this territory model using the circular con-
tours of the distribution 𝑁(𝜇𝑖, 𝜎

2
obs𝐼). A circle of radius√

𝜒2
𝛼,2𝜎obs (1)

centred at 𝜇𝑖 is assumed to enclose the instantaneous location of
the wolves belonging to the territory with probability 𝛼. Here, 𝜒2

𝛼,2
corresponds to the 100𝛼% quantile of the chi-squared distribution with
two degrees of freedom.

Because of the temporal and spatial variability inherent to citi-
zen science observation processes, the observation model modulates
the number of observations produced from the territories based on a
temporal intensity function 𝜆

(𝜏)
obs, defined on a time interval of interest

[0, 𝑇 ), and a spatial intensity function 𝜆
(𝑠)
obs defined on the domain of the

observed locations, 𝐷y. These intensity functions are assumed spatio-
temporally separable, since there is limited data for their estimation,
which is further discussed in Section 2.3. The values of these functions
are tied to the number of observations the territories produce in time
and space. For constant functions 𝜆(𝑠)obs(𝑦) = 𝑙𝑥 ∈ [0,∞) and 𝜆

(𝜏)
obs(𝑢) = 𝑙𝑡 ∈

[0,∞), our model assumes that the expected number of observations
that a single territory produces on 𝐷y in a unit of time is approximately
𝜆obs𝑙𝑥𝑙𝑡, where 𝜆obs is a scalar multiplier for the intensity functions. The
intensity functions 𝜆

(𝜏)
obs and 𝜆

(𝑠)
obs are assumed known (fixed), and we

discuss their estimation in Sections 2.3–2.4.
In addition to the observations originating from the territories, the

observation model also accommodates so called ‘clutter’ observations,
that are understood as ‘erroneous’ observations not originating from
actual territories. These observations are assumed to be distributed
uniformly on 𝐷y and their intensity is likewise modulated by 𝜆

(𝜏)
obs and

𝜆
(𝑠)
obs, but multiplied by a different scalar parameter, 𝜆c. The relative
values of the scalar multipliers 𝜆obs and 𝜆c can be used to model the
rate of the total number of observations believed to originate from the
territories.

Mathematically, conditional on the territory locations and lifetimes,
our observation model defines a three-dimensional inhomogeneous
Poisson process in time and space, whose intensity function is given
in Equation (5) of the supplementary material. The data generating
model parameters in Fig. 1 are given by 𝜃 = (𝜆obs, 𝜆bd, 𝜆c, 𝜎obs, 𝐷y , 𝐷𝜇)
and the intensity functions 𝜆(𝜏)obs and 𝜆

(𝑠)
obs.

2.3. Observation intensity modelling

The following two sections discuss how we estimate the intensity
functions 𝜆(𝜏)obs and 𝜆

(𝑠)
obs in the observation model of Section 2.2.2. This

section focuses on step 1 of the modelling framework in Fig. 1, detailing
the intensity model we fit to the past Datasets A and B discussed in
Section 2.1. The primary data for this step are the spatio-temporal
points in Dataset A discussed in Section 2.1.1. We assume that each
of these observations originated from an active wolf territory. In this
section, we denote by 𝜓 = {[𝑠𝑖; 𝑡𝑖]} the spatio-temporal point pattern
of the wolf observations in Dataset A with locations 𝑠𝑖 ∈ 𝐷y and dates
𝑡𝑖 ∈ 𝑇𝐴 =[2011-01-01, 2019-03-31].

We assume the arrival of Tassu reports 𝜓 can be approximated by an
inhomogeneous Poisson process (Illian et al., 2008). Note that reporting
depends on two consecutive events: An observer is at a territory, and
they make and report an observation. The data contains no information
if an observer was on a territory but did not observe wolf activity.
The observer and reporting intensities are therefore confounded. The
situation is notably different from presence–absence citizen science
data, such as for birding analysed with point processes by Tang et al.
(2021), as in addition to absences not being measured, the observers
cannot be assumed to have been actively looking for wolf activity in the
first place. Our situation is more akin to presence-only analysis (Renner
et al., 2015; Ver Hoef et al., 2021), with the nuance that instead of
estimating species abundances the goal is to estimate the connection
between a wolf territory’s presence and the emergence of the Tassu-
reports. To account for the conditioning on a wolf territory’s presence
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in this estimation, we constrain the Tassu-observations to the auxiliary
territories in Dataset B, detailed in Section 2.1.2.

Given the observations on the auxiliary territories, we estimate the
intensities by aggregating the observations and then using standard
Poisson regression in the generalised additive models (GAM) frame-
work. More specifically, we fit the model on observation units given
by spatio-temporal grid cells 𝐶𝑘 = {𝑉𝑘 × 𝑡𝑘} with temporal resolution|𝑡𝑘| = 1 month and spatial resolution |𝑉𝑘| = 1 km × 1 km. From
this discretisation of 𝐷y × 𝑇𝐴 we only consider the subset of cells that
intersect the auxiliary territories, which is ≈ 11.9 million cells, and then
count the Tassu reports in each such cell, denoted by 𝑛𝑘 = #(𝜓 ∩ 𝐶𝑘),
resulting in 4816 non-empty cells. The auxiliary territory (polytope)
which a cell 𝐶𝑘 overlaps is denoted by 𝐴𝑘. For each cell 𝐶𝑘 we let 𝑢𝑘
and 𝑦𝑘 represent its centroid in time and space, respectively, and finally
define 𝜆

(𝜏)
𝑘

∶= ∫
𝑡𝑘
𝜆
(𝜏)
obs(𝑢)𝑑𝑢 and 𝜆

(𝑠)
𝑘

∶= ∫
𝑉𝑘

𝜆
(𝑠)
obs(𝑦)𝑑𝑦.

Then the counts in the grid cells are modelled with a Poisson
regression model of the following form

𝑛𝑘 ∼ Poisson

(
𝜆
(𝜏)
𝑘
𝜆
(𝑠)
𝑘|𝐴𝑘|

)
log(𝜆(𝜏)

𝑘
𝜆
(𝑠)
𝑘
) = month(𝑢𝑘) + year(𝑢𝑘) +𝑋(𝑦𝑘)𝛽 + smooth(𝑦𝑘)

𝑋(𝑦𝑘) = [1expert(𝐴𝑘),Corine𝑘, forestroad𝑘]𝑇 .

(2)

The offset |𝐴𝑘| is the area of the territory that grid cell 𝐶𝑘 belongs to,
and accounts for an assumption of the instantaneous location of the
wolves following a uniform distribution within 𝐴𝑘, i.e. a pack on a
larger territory is harder to observe.

The ‘year’ and ‘month’ effect were included as factors to model
seasonal effects and year to year differences. We used ‘wolf years’
as discussed in Section 2.1.1 for the factors ‘year’ and ‘month’. We
did not include weather station information (e.g. snow depth), mainly
because their monthly aggregates are highly correlated with month-
effects but also in order to avoid spatio-temporal interaction terms to
reduce model complexity given we have only <1% non-zero units.

The spatial effects are modelled with covariates 𝑋 and a resid-
ual smooth term. The indicator 1expert(𝐴𝑘) was included to adjust
for potential discrepancies between the different types of auxiliary
territories (GPS tracks & expert estimates). The numerical covariates
Corine𝑘 = [Corine𝑘,2,… ,Corine𝑘,8] and forestroad𝑘 were described in
Section 2.1.2 and capture environmental variability.

The estimation was carried out using the statistical software R
and the GAM function mgcv::bam with a smooth term ‘smooth(𝑦𝑘)’
defined as a tensor product te-term in 𝑥 and 𝑦 coordinates of the
cell centroid 𝑦𝑘. The smoothness penalty choice was left to the default
which is generalised cross validation (Wood, 2017).

2.4. Computing intensity functions for the data generating model

Next, we discuss how we compute the intensity functions 𝜆(𝜏)obs and
𝜆
(𝑠)
obs based on the intensity model of Section 2.3 fit to the past Datasets
A and B. This section focuses on step 2 in the modelling framework of
Fig. 1. The aim is to obtain intensity functions for the data generating
model that anticipate the spatio-temporal intensity of the observations
in Dataset C. We model the intensity functions as piecewise constant
such that 𝜆(𝜏)obs takes on the value 𝑐𝑡𝑖 during wolf month 𝑖, 𝑖 = 1,… , 12,
and 𝜆

(𝑠)
obs takes on the value 𝑐𝑉𝑗 in each cell 𝑉𝑗 ∈ 𝐷y. In summary,

the 𝑐𝑡𝑖 ’s and 𝑐𝑉𝑗 ’s are computed by using quantities calculated from the
predictions of the intensity model (2) in Eq. (4) below.

The computation proceeds as follows. First, assume that the inten-
sity model (2) is fit using the Datasets A and B. Then, using the fitted
model, we predict the spatial effect 𝜆(𝑠)

𝑘
, excluding the term 1expert(𝐴𝑘)

for all 1 km2 grid cells 𝑉𝑘 ∈ 𝐷y. This grid is then smoothed using
Gaussian blur, and we denote the value in the smoothed grid cell 𝑉𝑘

by 𝜆̃
(𝑠)
𝑘
. More specifically, we use a ‘border preserving’ Gaussian blur

that only smooths cells that are within 𝐷𝑦 and normalises the blur
weights in the smoothing window such that only non-zero intensity

values contribute to the smoothed grid. We use 𝜎obs as the standard
deviation in the Gaussian blur and set the window size to the first
integer larger than 2𝜎obs (in kilometres). We report the 𝜎obs value used
in this step together with the results of Section 3. The smoothing of
the predicted grid is motivated by an assumption of smoothness that
our inference method places on the spatial intensity function. We will
discuss this (Assumption C) in more detail in Section 2.5.

After computing the predicted and smoothed spatial effect, we also
predict the temporal effect for the wolf year associated with Dataset C
by setting

𝜆̃
(𝜏)
𝑖

= exp (𝛽∗year + 𝛽month,i),

where 𝜆̃(𝜏)
𝑖
is the predicted temporal effect for wolf month 𝑖 = 1, 2,… , 12

during the wolf year of interest. Here, 𝛽∗year corresponds to a predicted
(wolf) year regression coefficient obtained by running a linear regres-
sion on the previous (wolf) years’ regression coefficients (available
from fitting model (2)). The coefficients 𝛽month,i, on the other hand,
correspond to the estimated (wolf) month coefficients from model
(2). The linear regression for the year coefficients was carried out to
take into account a slight increasing trend in the yearly regression
coefficients of model (2).

To compute the distinct values 𝑐𝑡𝑖 and 𝑐𝑉𝑗 that the piecewise con-

stant functions 𝜆
(𝜏)
obs and 𝜆

(𝑠)
obs take, we match the predicted intensities

such that

𝜆̃
(𝜏)
𝑖
𝜆̃
(𝑠)
𝑗|𝐴𝑗 | = ∫𝑡𝑖

∫𝑉𝑗

𝜆
(𝜏)
obs(𝑢)𝜆

(𝑠)
obs(𝑦)∕|𝐴𝑗 |d𝑦d𝑢, (3)

where 𝐴𝑗 is defined as in Section 2.3.
Evaluating the integral (3) and taking the logarithm yields

log (𝜆̃(𝜏)
𝑖
) + log (𝜆̃(𝑠)

𝑗
) = log(|𝑡𝑖|) + log(|𝑉𝑗 |) + log(𝑐𝑡𝑖 ) + log(𝑐𝑉𝑗 ).

To obtain equality in this equation, 𝑐𝑡𝑖 and 𝑐𝑉𝑗 can be chosen such that

𝑐𝑡𝑖 = exp(log(|𝑡𝑖|−1) + log (𝜆̃(𝜏)
𝑖
) −𝐾)

𝑐𝑉𝑗 = exp(log(|𝑉𝑗 |−1) + log (𝜆̃(𝑠)
𝑗
) +𝐾),

(4)

where 𝐾 is a constant that needs to be chosen. Our choice for 𝐾 is

𝐾 = −max
𝑗

{log(|𝑉𝑗 |−1) + log (𝜆̃(𝑠)
𝑗
)},

which scales 𝜆(𝑠)obs ∈ (0, 1].
Finally, for the purposes of Sections 3.3 and 3.4 we note that when

𝜆
(𝑠)
obs is computed as discussed above, one of the territory centroids seen
in Fig. 2 is outside the domain of 𝜆(𝑠)obs. Therefore, in the case of the wolf
territory estimation, we additionally widen the domain of 𝜆(𝑠)obs by 27
kilometres at the boundaries by repeating the maximal intensity value
found in the neighbouring cells of the borders.

2.5. Filtering algorithm and its constraints

This section discusses step 3 of the framework in Fig. 1, the sta-
tistical inference of the territories given Dataset C, assuming the data
generating model of Section 2.2. This section gives an overview of the
inference, and the mathematical details are given in Section 1.6 of the
supplementary material. In summary, given Dataset C and the data
generating model of Section 2.2 with fixed parameters and intensity
functions, the inference procedure outputs a sequence of joint filtering
distributions of the territory centroid locations and their number at
chosen times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 that are also input to the procedure. The
filtering distribution at time 𝑡 is the distribution of the locations of the
territory centroids and their number, conditional on the observations
of Dataset C up to time 𝑡.

The inference method we use is somewhat involved and computa-
tionally intensive, and based on sequential Monte Carlo/particle filter-
ing (cf. Doucet et al., 2000). More specifically, the method is a Rao-
Blackwellised particle filter similar to the works of Särkkä et al. (2007),
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Vihola (2007), but employing a state-of-the-art optimal resampling
algorithm developed by Fearnhead and Clifford (2003).

A summary of the method’s operation can be given as follows.
Denote by 𝑦̃1∶𝐾 = (𝑦̃1, 𝑦̃2,… , 𝑦̃𝐾 ) the 𝐾 temporally ordered observations
with observation times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝐾 . Here, the input timepoints
𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 are among the 𝑡𝑖’s and each 𝑦̃𝑖 is a spatial location
from Dataset C, or 𝑦̃𝑖 = ∅ (see also discussion on Assumption A below).
The method works by processing the observations 𝑦̃1∶𝐾 sequentially,
such that the processing of 𝑦̃𝑘 yields the filtering distribution at time
𝑡𝑘. During the algorithm, each filtering distribution is characterised by
a set of 𝑀 weighted particles. More specifically, at time index 𝑘 − 1,
each of the𝑀 particles represents a hypothesis about the locations and
number of territory centroids on 𝐷𝜇 , conditional on the observations
𝑦̃1∶𝑘−1 seen so far (with 𝑦̃1∶0 understood as the empty set).

The observation 𝑦̃𝑘 is processed such that first a set of possible
territory birth, territory death and observation association outcomes is
built, which consist of all one step ‘futures’ that could happen for any
existing hypothesis at time index 𝑘− 1, conditional on 𝑦̃𝑘 and the time
passed since 𝑦̃𝑘−1. This set of outcomes is then probabilistically pruned
using the optimal resampling algorithm of Fearnhead and Clifford
(2003), which yields a set of 𝑀 chosen outcomes and their normalised
weights. Finally, based on the chosen outcomes and the previous hy-
potheses, a new set of 𝑀 updated and weighted hypotheses (particles)
is constructed by adding and deleting territories and ‘associating’ 𝑦̃𝑘
(if 𝑦̃𝑘 ≠ ∅) to a territory using an approximate Kalman filter update.
The filtering distribution at time index 𝑘 is characterised by these 𝑀

particles. The process then repeats for the observation 𝑦̃𝑘+1.
The ideal data generating model of Section 2.2 is time-discretised

and approximated before the filter can be used. The approximations
used can be justified by introducing a set of additional assumptions,
some of which are primarily computational, and some of which help
reduce the discrepancy between the approximate and the ideal model.
The following list highlights these assumptions, which we will refer to
as Assumptions A to D.

(A) The observed data can be processed sequentially, one at a time.
In other words, each datum has an associated time, and the
observation times are strictly increasing.

(B) Compared to the rate of observations arriving from the territo-
ries, birth and death events of territories are rare.

(C) The spatial intensity function 𝜆
(𝑠)
obs is ‘smooth’/‘slowly varying’

with respect to the territory size parameter 𝛴obs. This means that
for any centroid 𝜇 ∈ 𝐷𝜇 , 𝜆

(𝑠)
obs(𝜇) is a good approximation for

𝜆
(𝑠)
obs(𝑥) in the region where the distribution 𝑁(𝜇,𝛴obs) has most
of its probability mass.

(D) For most territories, the territory centroid 𝜇𝑖 is not close to the
boundary of 𝐷𝜇 , in the sense that a region of high probability of
𝑁(𝜇𝑖, 𝛴obs) is contained within 𝐷𝜇 .

We conclude this section with a brief discussion on these assumptions.
Assumption A is satisfied for many datasets that are collected in real
time. However, as mentioned in Section 2.1, the observation times
in Dataset C are pooled with a granularity of one day. In order to
make Assumption A hold, we introduce a preprocessing step before the
filtering that artificially disperses the daily pooled observations in time,
generating a ‘pseudotime’ for each observation within the day that it
occurred. This step introduces a bias, which is small, since the arrival
intensity of the observations still remains practically the same as with
the pooled data. The preprocessing of the data is related to the time
discretisation of the model, which we make fine enough so that during
filtering we may assume that practically at most one territory birth
or death may occur during each time-discretised interval, and that the
time-discretised model approximates the ideal model sufficiently well.
We ensure this by introducing ‘discretisation points’ to the dataset that
contain no spatial location (that is, 𝑦̃𝑘 = ∅). For further discussion on
these matters, see Sections 1.3–1.4 in the supplementary material.

Assumption B is necessary for the identification of the territories
based on the data. In the present application, Assumption B holds since
the births and deaths of wolf territories are relatively rare events on the
daily timescale at which the observations in Dataset C arrive.

Assumption C is necessary for approximating certain intractable
integrals that arise in the filtering algorithm and are related to the
spatial intensity function 𝜆

(𝑠)
obs. In Section 2.4 we described a smoothing

step for the predicted spatial grid, which was carried out in order to
satisfy Assumption C.

Finally, Assumption D arises since our method does not involve
explicit edge correction. The computations in the particle filter are
approximate for territories and observations close to the boundary of
the finite domain 𝐷𝜇 . This may entail some bias, which is small under
Assumption D. We investigate empirically the bias caused by the edge
effect in Section 3.2.

2.6. Extracting the number and locations of the territories from the output

of the particle filter

This section focuses on the final step of the framework of Fig. 1 and
describes how we extract the number and locations of the territories
from the filtering result. Our estimate for the number of territories at
time 𝑡 is the marginal filtering distribution of the number of territories
at time 𝑡, computed as follows. Denoting by 𝑛𝑖, 𝑖 = 1, 2,… , 𝑝 the
unique numbers of territories found among the 𝑀 particles at time 𝑡,
the marginal filtering distribution for the number of territories consists
of the tuples (𝑛1, 𝜋1), (𝑛2, 𝜋2),… , (𝑛𝑝, 𝜋𝑝), where 𝜋𝑖 is the sum of the
normalised weights of the particles having exactly 𝑛𝑖 territories. In
Section 3.4, we will summarise these distributions by taking their mean,
mode and standard deviation, and by computing probability intervals
𝐼𝛼 , that is, intervals whose end points are given by the (100 − 𝛼)% and
𝛼% quantiles of the distribution, where 𝛼 is a given percentage point.

A common way to visualise the probabilistic location information
of an unknown number of objects is to plot the so-called probability
hypothesis density (Goodman et al., 1997) (PHD) of the filtering dis-
tribution, which in the present context corresponds to the expected
intensity of territory centroids. More specifically, the PHD is defined
for the territory centroids at time 𝑡 by

PHD(𝜇) =
𝑀∑
𝑗=1

𝑤(𝑗)
∑
𝑖∈𝐼 (𝑗)

𝑡

𝑓𝑗𝑖(𝜇).

Here, 𝑤(𝑗) is the 𝑗th normalised particle weight at time 𝑡, 𝐼 (𝑗)
𝑡
enumer-

ates the territories in particle 𝑗 at time 𝑡, and 𝑓𝑗𝑖 is the 𝑖th density
in particle 𝑗 at time 𝑡. The densities 𝑓𝑗𝑖, 𝑖 ∈ 𝐼

(𝑗)
𝑡
, each represent the

knowledge about a particular territory centroid location within one of
the particles (hypotheses). In the context of our model, these densities
are either normal densities 𝑁(𝜇;𝑚𝑗𝑖, 𝐶𝑗𝑖), with known means 𝑚𝑗𝑖 and
covariances 𝐶𝑗𝑖 computed by our particle filter, or uniform densities
𝑈 (𝜇;𝐷𝜇). The form of the density, uniform or normal, depends on
whether an observation has been ‘associated’ with a particular territory
centroid in the particle. For more details regarding this, see Section 1
of the supplementary material.

Our approach for visualising the territory locations differs slightly
from ‘standard’ PHD, and is as follows. First, we compute the PHD,
but with the 𝑓𝑗𝑖’s ‘at the observation level’, meaning that for terri-
tories associated at least once, 𝑓𝑗𝑖 corresponds to the normal density
𝑁(𝑦;𝑚𝑗𝑖, 𝐶𝑗𝑖 + 𝛴obs). For territories never associated, we take 𝑓𝑗𝑖(𝑦) =
𝑈 (𝑦;𝐷𝜇). After computing the PHD in this manner, we furthermore
truncate the PHD values from above to the density value 𝑁(0; 0, 𝛴obs).
This value corresponds to the maximal contribution to the PHD value
from a single territory which is known to exist and whose location has
been estimated with maximal precision. In Section 3.4 we will visualise
the estimated territory locations on the map using this computation.
The rationale for this procedure is clearer visualisation of the regions
where the filtering algorithm places the territories.
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In Section 3 we focus mostly on the estimation of the number of
territories, because it is relevant from the point of view of assessing the
reproductive capacity of a wolf population. The number of territories
is also easy to work with from a model validation perspective, since
it is straightforward to compare it numerically to ‘ground truths’ of
simulation experiments and to results of other estimation methods. In
contrast, the PHD is important for graphical validation, visualisation
and interpretation of the filtering result.

3. Results

We first discuss results regarding the observation intensity mod-
elling in Section 3.1. We then move on to the experiments with the
data generating model and the developed particle filter, starting with
a synthetic scenario in Section 3.2, and then moving on to a semisyn-
thetic scenario in Section 3.3 that resembles the situation with Dataset
C but is still based on simulated observations. We conclude with the
real data scenario based on Dataset C in Section 3.4.

3.1. Tassu observation arrival intensity estimation

Fig. 3 displays the estimated intensity functions 𝜆(𝜏)obs and 𝜆
(𝑥)
obs as well

as the predicted spatial effect of the intensity model (2). Based on the
figure, the temporal intensity function 𝜆

(𝜏)
obs is seen to capture the rise

in observation intensity in the winter time, and the spatial intensity
function 𝜆

(𝑠)
obs especially accounts for the high observation intensities in

western Finland.
The overdispersion of the Poisson regression modelling of the ob-

servation intensities (Eq. (2)) fit was 1.83. After accounting for the
overdispersion the yearly effects were not statistically significant (at
5% level), but monthly effects were clear: The fluctuations with respect
to the baseline month of April ranged from a 78% (95% confidence
interval [54, 91]) reduction in May to 371% ([206, 592]) increase in
November, with smooth transitions in between.

The CORINE landcover variable effects were mostly increasing.
When considering a 1% increase in the proportion of each cover class
in turn, the estimated increase in intensity was: Cultivated fields 19%
([9, 29]); Closed forests 18% ([8, 28]); Open forests 16% ([7, 27]);
Rivers and lakes 16% ([6, 26]); and Other wetlands 19% ([10, 30]).
Effect of larger roads was not significant, but a 1% increase in forest
roads increased the intensity by 5% ([1, 8]). The smooth component
was significant, with a clear reduction effect in the central region and
an increase in the west, south-west and south regions.

The explained deviance was 12.6%. For diagnostics we first checked
the Pearson residuals aggregated at a month resolution, dropping the
spatial dimension (see Figure 4 in the supplementary material). The
cell counts showed slightly higher proportion of 0’s than the model
predictions, otherwise the overall quantiles were reasonably matched.
There were no obvious patterns in time, apart from a potential posi-
tive trend during 2015. The residual variability was the same during
2011–2016 with only GPS tracking auxiliary territories and during
2017–2019 when both auxiliary territory-types were available. Pearson
residuals exceeded +-2 during five months (2014-10, 2017-12, 2018-
01, 2018-09, 2019-02) with no clear pattern, with three over-estimates
(predicted v observed counts: 39 v 14, 257 v 175, 543 v 475), and two
under-estimates (6 v 21, 9 v 21).

We then studied the Pearson residuals in space without the time
dimension. To visually check troubling areas we aggregated the ob-
served and predicted counts to 10 × 10 km cells. Observed counts had
again slightly larger amount of 0’s, and also some higher-than-expected
values, the latter mostly from the 2017–2019 period. No obvious spatial
structure was visible in the Pearson residual map, with large residuals
dotted around the domain (see Figure 4 in the supplementary material).
We checked a version where the largest count in the temporal sum per
cell was omitted (before aggregation in space). The residual sizes were
greatly reduced (max.abs. from 12 to 3). This sensitivity suggests that

the observation counts are more concentrated in time and space than
what we can capture with the model. Additionally, spatially contigu-
ous regions of underestimation, particularly on the west coast, were
revealed, indicating insufficient information in the spatial components
of the model. A further check of before and after 2017 spatial sums
revealed a tight cluster of unexpectedly high observation counts in the
border region of eastern Kainuu.

3.2. Synthetic scenario and the edge effect

Our first territory estimation experiment is a purely synthetic, sim-
ple scenario. The purpose of the experiment is to ensure that the
estimation algorithm works correctly. We also investigate explicitly the
bias caused by the edge effect, as discussed in Section 2.5.

In this experiment we skip the intensity modelling discussed in
Sections 2.3–2.4 and focus on the filtering of simulated datasets. We
define the data generating model such that 𝐷𝜇 = [0, 100] × [0, 100],
𝜆
(𝜏)
obs(𝑢) = 1 and 𝜆

(𝑠)
obs(𝑦) = 1 for all 𝑢 ∈ [0, 50] and 𝑦 ∈ 𝐷y = R

2. For
the remaining parameters we set 𝜆bd = 0.0015, 𝜆c = 0, 𝜆obs = 1. This
configuration corresponds to a simple scenario for our particle filter,
since there is no spatial inhomogeneity, and the largest approximation
in the filtering arises from the finite domain.

Under these settings, for all combinations of the number of particles
𝑀 ∈ {128, 256, 512, 1024, 2048} and 𝜎obs ∈ {1, 2, 5, 10, 15} we simulated
450 datasets as follows. First, we simulated the territory locations from
the ideal birth and death model, and then conditional on the territories,
simulated the observations from the ideal observation model, each
time preprocessing the observations with the method discussed in Sec-
tion 2.5. The initial distribution for the number of territories in the birth
and death process was Poisson(20) truncated to the interval [10, 30]. For
each sampled initial territory, we set the uniform distribution on 𝐷𝜇 as
the initial distribution for the centroid of the territory.

We filtered each simulated dataset assuming that the initial distri-
bution above was known, and computed the deviations 𝑁̂𝑡 − 𝑁𝑡, for
𝑡 = 1,… , 50, where 𝑁̂𝑡 is the estimated mean number of territories
at time 𝑡 from the particle filter, and where 𝑁𝑡 is the true number of
territories for the dataset. We investigated the bias E[𝑁̂𝑡 − 𝑁𝑡], which
would be zero for an ideal Bayes estimator, by computing the empirical
mean of the 450 deviations per 𝑡, 𝑀 and 𝜎obs. Fig. 4 summarises the
results of this experiment. With a small territory size compared to the
size of the domain 𝐷𝜇 , we observe little or no bias in the estimation
of the number of territories, given that a sufficient 𝑀 is used in the
filtering algorithm. For greater values of the territory size, the bias is
more significant and appears to only slightly diminish with increasing
𝑀 . This is expected, since with higher territory sizes, Assumption D of
Section 2.5 is more likely to be violated, leading to observations outside
or near the boundary of 𝐷𝜇 .

3.3. Semisynthetic scenario and feasibility of territory estimation

Next, we consider a more realistic ‘semisynthetic’ scenario with
closer resemblance to the situation with Dataset C. In this scenario, the
idea was to fix the territory centroids to realistic locations, use plausible
parameter values and the intensity functions estimated as discussed in
Sections 2.3–2.4. We then simulated data to see how well the particle
filter can recover the true number of territories under a more realistic
setting.

More specifically, we assumed that 𝐷𝜇 corresponds to the domain
of the Tassu data (Fig. 2 top left), and the territory centroid locations
were fixed to the centroids (Fig. 2 bottom left) of the territories found
by Luke in the wolf population assessment of 2019. We further assumed
that each of these 47 territory centroids existed for a period of one year,
and that the territory count did not change.

We used the intensity functions in Figs. 3(c) and 3(b) as 𝜆
(𝜏)
obs and

𝜆
(𝑠)
obs in the data generating model. To set the value for the territory
size parameter 𝛴obs = 𝜎2obs𝐼 , we examined the shapes and sizes of the
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Fig. 3. Outputs of the intensity modelling of Sections 2.3–2.4. Plots (b) and (c) show the estimated spatial intensity function 𝜆
(𝑠)
obs and temporal intensity function 𝜆

(𝜏)
obs, respectively.

Plot (a) shows the predicted spatial effect 𝜆(𝑠)
𝑘
from the intensity model of Section 2.3 before applying the Gaussian blur as discussed in Section 2.4. The blur standard deviation

was set to 𝜎obs = 13376.67 m and the domain of 𝜆(𝑠)obs was additionally widened by 27 kilometres at the borders as discussed in Section 2.4.

territory (polygons) in Dataset B discussed in Section 2.1.2. As many of
these territories were noncircular in shape (see Fig. 2 (bottom left) for
some similar polygons) we estimated 𝜎obs as follows. First, we computed
the 95% quantile, 𝑑0.95, from the empirical distribution of the diameters
of the territory polygons in Dataset B. Then, we used Eq. (1) with
𝛼 = 0.95 to compute the 𝜎obs value that corresponds to a radius of
𝑑0.95∕2, yielding the value 𝜎obs = 13376.67 m. Here, the ‘diameter of
a polygon’ means the maximal length between any two points of the
polygon. This procedure guarantees that typical territories ‘fit’ inside
the 95% probability region of the territory model.

For the remaining filter parameters, we used the values 𝜆obs = 1.0,
𝜆c = 0.475 and 𝜆bd = 0.0015. The choice of the relative values of 𝜆obs and
𝜆c here corresponds to a situation where 1% of the total observation
intensity is assumed to arise from clutter observations, when the spatial
and temporal intensity functions are constant one, and there are 47
territories for a period of one year.

The choice of 𝜆bd corresponds to a mean territory lifetime of
1

0.0015 ≈
667 days, a little less than two years. This choice averages between
the fact that in reality some wolf territories are short-lived, but some
can exists for years. The chosen value also a priori predicts reasonable
changes in the territory count over a period of one year, while main-
taining a good agreement between the ideal and approximate birth and
death models (see Figure 1 in the supplementary material).

With these settings, we simulated a total of 240 datasets for each
particle count 𝑀 ∈ {27,… , 212}, and applied the particle filter to each,
estimating the mean number of territories at approximately weekly
intervals. Each time, the filter was initialised with the initial number
of territories following Poisson(47) truncated to [37, 57], with each
territory centroid initially following the uniform distribution on 𝐷𝜇 .
Fig. 5 shows the deviations computed by subtracting the true number of
territories from the estimated mean territory count trajectories for each
simulation and all particle counts. In addition, the average deviation
and the average absolute deviation are shown. On average, the particle
filter appears to recover the true number of territories quite accurately.
With increasing numbers of particles, a slight underestimation of the
true territory count is revealed. The average absolute deviation further
indicates that the discrepancy from the true territory count is typically
less than 3 given that a moderate amount of data has been processed.

3.4. Application to the Tassu dataset

Next, we applied the developed particle filter with 16 384 particles
to Dataset C. As the initial distribution for the territory centroids, we
used the centroids seen in Fig. 2 (bottom left), with Gaussian noise with
covariance 𝛴obs added to each. This way, the prior knowledge from the
population assessment of March 2019 can be utilised in the filter.
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Fig. 4. The estimated bias based on 450 simulations for each 𝑀 , 𝜎obs and 𝑡 in the simulation experiment described in the text.

Fig. 5. The true number of territories subtracted from territory count estimates (on black) obtained by applying the particle filter to 240 datasets simulated conditional on the
intensity functions in Fig. 3 and territory locations fixed to the centroids of the territory polygons in Fig. 2 (bottom left) for a period of one year. The orange and light blue lines
represent the average deviation and the average absolute deviation between the true territory count and estimates, respectively.

We report results for four model variants, as follows. Models 1
and 2 correspond to the same model configuration we used in the
semisynthetic experiment, but with Model 1 having 𝜆c = 0. Models 3
and 4 correspond to models 1 and 2, respectively, but with another
set of intensity functions 𝜆(𝜏)obs and 𝜆

(𝑠)
obs, obtained by dropping the terms

Corine𝑘, forestroad𝑘 and smooth(𝑦𝑘) from the intensity model (2), and
then estimating 𝜆

(𝜏)
obs and 𝜆

(𝑠)
obs as before, as described in Section 2.4. The

resulting spatial intensity function in models 3 and 4 is constant one in
𝐷𝑦. For a plot of 𝜆

(𝑠)
obs and 𝜆

(𝜏)
obs for models 3 and 4, see Figure 2 in the

supplementary material.

Fig. 6 displays the estimated territory locations, and Table 1 shows
summary statistics of the filtering distribution for the number of ter-
ritories based on models 1–4 at the end of March 2020, after the
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Fig. 6. The estimated territory locations (red) at the end of March 2020 and the territory polygons of the wolf territories in March 2020 (black) from the assessment by Luke.
Higher intensities of the red colour depict higher plausibility of a territory location. The intensity of the red colour is computed such that the opaque red colour corresponds to
the truncated PHD value discussed in Section 2.6. The individual maps show the results for models 1 through 4 from left to right.

Table 1

Mean, mode, standard deviation and probability intervals of the estimated distribution
for the number of wolf territories in March 2020. The estimate ‘Luke’ corresponds to
the estimate by the Natural Resources Institute Finland (Heikkinen et al., 2020). 𝐼𝛼
denotes the 𝛼% probability interval.

Estimate Mean Mode St. Dev. 𝐼90 𝐼95 𝐼99

Luke 46.49 47 1.93 [43, 50] [43, 50] [41, 51]
Model 1 49.44 49 1.55 [47, 52] [46, 52] [46, 53]
Model 2 44.38 44 1.14 [43, 46] [42, 47] [42, 48]
Model 3 55.47 55 1.60 [53, 58] [53, 59] [52, 60]
Model 4 55.37 53 2.12 [52, 59] [52, 59] [51, 60]

full Dataset C has been filtered. The computations underlying these
quantities were carried out as explained in Section 2.6.

The overlaid territory polygons in Fig. 6 correspond to the territories
found by Luke in the wolf territory assessment of spring 2020. The
plots show that each of the models 1–4 seem to find many of the
wolf territories found by Luke. However, it appears that models 1
and 3 with 𝜆c = 0 place multiple ‘extra’ territories to central and
southeast Finland, that are not found among the official territories.
These territories are most likely not real wolf territories, since only a
small number of observations have been reported from these areas; see
Fig. 2 (top left). The territories most likely arise since the observation
intensity is low (see Fig. 3(b)), and perhaps underestimated in these
regions, causing the filter to attempt to explain these observations with
additional territories. Based on the plots for model 2 and 4, setting
𝜆c = 0.475 seems to mitigate this issue a bit, as these observations are
no longer interpreted as real observations from wolf territories. We also
experimented with a higher value for 𝜆c, but this resulted in a territory
count distribution not well aligned with the count estimates by Luke
(see also discussion below). There is also no reason to believe that a
substantial proportion of the data would not originate from the wolf
territories.

Another observation from Fig. 6 is that models 3 and 4, with the
simplified intensity functions, seem to somewhat better capture the
cluster of territories in west and southwest Finland, in comparison to
models 1 and 2. This difference in the results occurs since the spatial
intensity function for models 1 and 2 assumes that in these regions, the
reporting intensity of the observations is higher than in other parts of
Finland. This in turn results in less territories being needed to explain
the observations arriving from these regions, under models 1 and 2.

Based on the territory count distributions summarised in Table 1,
the territory counts for models 1 and 2 are best aligned with the
estimate of Luke. In comparison, the territory count for models 3
and 4 is somewhat overestimated. Fig. 7 reports the sample standard
deviations of the obtained mean territory counts at approximately
weekly time points when we repeated the filtering of the Tassu data 195
times with the configuration of model 2 and different particle counts.
The observation is that the variability in the estimated mean territory

counts is seen to diminish with increasing numbers of particles, but still
remains noticeable even with 16384 particles. We also experimented
with different 𝜆bd, 𝛴obs and intensity functions, but the phenomenon
persisted. In contrast, when a dataset is simulated from the model, the
results of this experiment are markedly different, as is seen from the
second pane in the figure. Similarly, there is also some variability in the
estimated territory locations. Figure 3 in the supplementary material
shows the estimated territory locations after 10 independent runs of
the filter to the Tassu data.

4. Discussion

We presented a statistical modelling framework for the analysis
of citizen science data from territorial animals. At the core of our
framework is the data generating model discussed in Section 2.2, that
consists of a birth and death model giving rise to the animal territories,
and an observation model that links the citizen science observations
to the territories. In the developed data generating model, the high
variability common to citizen science observation processes is modelled
through a temporal and a spatial intensity function, which are assumed
fixed and known. The Rao-Blackwellised particle filter described in
Section 2.5, estimates the sequence of filtering distributions for the
locations and number of territories that describe the knowledge of the
animal territories in time as more data is brought in.

We found that the fitted intensity model and the estimated intensity
functions were able to capture general trends in the arrival of the
citizen science observations as is seen from the estimated intensity
functions in Fig. 3. Clearly, the model captures the higher arrival
intensity of observations in the winter, which mainly occurs because of
snow that leaves wolf tracks visible for potentially long periods of time.
The estimated spatial intensity function, on the other hand, captures the
high intensity of observations in western Finland and the low intensity
of observations in middle Finland compared to other regions.

The intensity model did, however, struggle to explain some charac-
teristics adequately. For instance, sometimes the observations arrived
in unexpected bursts, or were highly localised in space, and these
features the model was not flexible enough to capture (cf. Figure 4
in the supplementary material). A potential remedy for this might be
the addition of random effects e.g. an additional noise component to
each spatial pixel, but it would be better to include interpretable rare-
event overdispersion components based on the social analysis of the
mechanisms for reporting the wolf observations. In fact, the outliers are
worth a closer look to gain such insight. The model also struggled with
an excess of 0-count cells due to how the conditioning on the auxiliary
territories in Dataset B was constructed.

Another improvement for the intensity model could be a zero-
inflation component with its own regression structure on, for example,
environmental covariates. However, an even better option would be to
forgo the aggregation and model the data as a spatio-temporal (marked)
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Fig. 7. Sample standard deviations over estimates of the mean territory count obtained by running the particle filter 195 times to Dataset C (Tassu dataset) and a single simulated
dataset, for varying numbers of particles 𝑀 .

point pattern (Sicacha-Parada et al., 2021; Tang et al., 2021). Modelled
this way, events such as an observation being exactly on a road, or
snow cover of previous days would not be averaged out, yet coarser
resolutions for downstream analysis could still be easily computed.
Other possible improvements include using the type of observation
(sightings, paw prints, game-cameras etc.) in the intensity model and
the improvement of the process of deriving the auxiliary wolf territories
from the GPS trajectories. Finally, it might be beneficial to investigate
the possibility to relax the space–time separability assumption, which
would allow for the incorporation of weather data such as snow cover
and/or allow for individual time trends for western and eastern Finland,
for example. Such complex models could then be estimated from longer
period or more frequent observation series, if available.

Our synthetic experiment in Section 3.2 investigated the mean terri-
tory count estimates of our particle filter under a simple data generating
model, and found that our method works as expected when Assumption
D of Section 2.5 holds. With high territory sizes, this assumption is
violated, and there is some bias in the estimation of the mean territory
count. This edge effect arises due to the finiteness of the domain 𝐷𝜇 .
In particular, the violation of Assumption D reduces the accuracy of
the approximation (25) (in the supplementary material), which likely
causes the bias. In this experiment, territory parameters on a scale of
1%–2% of the width of the rectangular region led to small bias. Noting
that the distance between the western and eastern borders of Finland is
approximately 500 kilometres, we therefore expect that the bias caused
by the edge effect should be small in the realistic experiments discussed
in Sections 3.3–3.4.

The semisynthetic experiment of Section 3.3 showed that under
realistic conditions resembling the situation with the Tassu dataset,
the estimation of the territory count is possible. There was a slight
underestimation of the true territory count with increasing numbers of
particles, which we think occurs because of the discrepancy between
the scenario and the ideal model, or the approximations used. This
experiment was a proof of concept that showed that the territory
estimation can be feasible even with presence-only data, when the
model is correct.

While experimenting with different parameter values for the data
generating model, we found that in general the model and especially
the count estimation is most sensitive to the values of the territory size
parameter 𝛴obs and the intensity functions, and least sensitive to the
choice of the constant and equal birth rate 𝜆bd. This is expected, since
large territory sizes increase the probability of an observation being

associated with a territory that is far away, decreasing the relative
probability of a new territory emerging. In a similar vein, the intensity
functions are directly tied to the amount of territories needed to explain
the number of observations arriving. With a fixed dataset, lowering the
observation intensity results in more births, since a higher number of
territories is then needed to explain the data.

The concluding analysis in Section 3.4 applied the developed data
generating model and particle filter to analyse citizen science obser-
vations of wolves from April 2019 to March 2020. The results show
similar patterns as the counts and locations reported by the Natural
Resources Institute Finland (Luke) in the official assessment of March
2020. However, the results do not reach the accuracy of expert judge-
ment. This cannot be expected, because the official assessment also
incorporated additional information sources, such as DNA samples, GPS
collared wolves and mortality records.

Based on Table 1, the inference of Model 2 incorporating the
estimated spatial intensity function and clutter observations resulted
in a slightly smaller estimated territory count and smaller variability
than the official estimate by Luke. In general, such differences can occur
because the estimates of Luke are based on a very different model and
assumptions, and also take advantage of additional data. When using
the citizen science data only, it is also possible that the particle filter
might not find territories which rarely produce observations, leading
into underestimation of the territory count. Furthermore, the uncer-
tainty reported by the particle filter can be underestimated, because
the results are based on a single particle filter run. If Monte Carlo
variability is taken into account, the uncertainty is inflated (see also
discussion below).

We noticed that with models using a constant one spatial intensity,
the cluster of territories in the west and southwest Finland was captured
better than with models that used the estimated intensity functions, as
was seen from Fig. 6. This might suggest that the observation intensities
in the more complex models are overestimated in these regions at
the time of the observations arriving. Indeed, based on the Pearson
residuals in Figure 4 of the supplementary material, the intensity model
fit could not capture all of the variation in these regions. Despite this, it
appears that using the spatially varying intensity improves and is likely
a requirement for the accurate estimation of the territory count. This is
supported by the territory count distribution in Table 1, which indicates
that the territory count estimates of the more complex models were
better aligned with the official territory count estimates of Luke.



S. Karppinen et al.

In general, we found that estimating the territory count and lo-
cations of the territories reliably is challenging by only using the
citizen science observations from the Tassu database. The challenges
faced may be partly explained by unsatisfactory observation intensity
modelling, but it appears that the inference algorithm is also strug-
gling with real data. Fig. 7 (and 3 in the supplementary material)
show repeated runs of the filter in our concluding analysis, indicating
some Monte Carlo variability. We believe that the main challenge for
the inference is the presence-only nature of the observations. These
observations are quite informative about the births of new territories
since a territory needs to exists so that an observation may occur. In
contrast, the observations are not very informative about the deaths
of the territories, because the information about a death of a territory
is indirect and only mediated by the absence of observations arriving
from a particular area. This difficulty with the data might explain
the Monte Carlo variability in our particle filter, and further suggests
that it could still benefit from further specialisation to the territory
estimation task. For instance, this specialisation could come in the form
of further heuristics that eliminate territories more efficiently, when no
observations have been associated for a long time.

All in all, we think that the results obtained suggest that the de-
veloped modelling framework might be useful as an additional tool
in the annual wolf population assessment, reducing the amount of
subjectivity in the estimation process by providing a preliminary sta-
tistical interpretation of the citizen-made observations. Integration of
the DNA samples, GPS collared wolves and other data with the results
of the particle filter would still remain a task for the panel of experts.
Our analysis with Datasets A, B and C of Section 2.1 showcased the
intended use of the modelling framework in the context of the wolf
population assessments. First, the intensity functions required by the
data generating model are estimated based on the latest historical
data. Then, the particle filter is initialised with the territory count and
location distribution available from the latest population assessment.
Finally, the yearly observations are analysed in a batch to obtain a
model-based view on the status of the wolf population at the time of
the next population assessment.

Filtering a year of data from April 2019 to March 2020 allowed both
the comparison to the official wolf population assessment of 2020 and
the use of prior information from the assessment of 2019. However, this
yearly batch estimation is not the only way in which the developed
data generating model and particle filter could be used. In fact, one
of the motivations for the development of the data generating model
and the particle filter was that the developed modelling framework
could also be used in an online fashion. This way, smaller batches of
new observations could be used to update the posterior distribution of
the territory locations and track the population in finer timescales. In
the context of the wolf territory estimation, the results from such an
online estimation could provide dynamic feedback for the volunteers
collecting the data, highlighting that their work is important. Such
feedback might also be used to direct the effort of the volunteers to
areas with the most uncertainty about the existence of territories.

We envision that our modelling scheme could also be a noteworthy
tool for refining the population assessment of other large carnivores.
For example, the female Eurasian lynx (Lynx lynx) are known to
show territorial behaviour with cubs. This could be exploited in the
estimation of lynx reproduction. It might also be possible to couple
the developed framework with other developments for assessing animal
populations, such as the spatial capture–recapture (SCR) model which
estimates wolf density based on DNA samples (Bischof et al., 2020).
For example, the two approaches might be used sequentially. The SCR
model could be used first to estimate the spatial wolf density based
on DNA samples, and then the density could provide another source
of prior information about potential territory locations for our data
generating model. On the other hand, in case that the DNA samples
are collected by volunteers, the modelling of the sampling effort in the
SCR model could be done by similar techniques as in this work.

Besides the context of territorial animals, our methods might be
relevant in target tracking where the modelling of the temporal and
spatial variability of the observation process is required. The methods
may also be regarded as a form of ‘dynamic clustering’. In different
applications, the modular nature of the developed framework can be
exploited to carry out the intensity modelling in a way that fits the
application.

There are a number of ways how the developed data generating
model and the inference algorithm could be improved in future works.
The core of the filtering computation consists of evaluating the pos-
terior probabilities for the birth, death and association variables (see
Section 1.6 of the supplementary material). The main approximations
made in the computation arise from the intractable integrals related to
the spatial domains 𝐷𝜇 and 𝐷y and the spatial intensity function 𝜆

(𝑠)
obs.

We concentrated on the situation where 𝜆
(𝑠)
obs may be assumed to be

slowly varying by Assumption C, allowing for straightforward approxi-
mation of the intractable integrals in the probability computations and
the measurement update. Introducing a numerical integration scheme
could mitigate the bias from the approximations in the former. It might
also be possible to incorporate a ‘no-overlap’ condition to the model
that penalises large ‘overlaps’ of the territories.

The developed particle filtering approach assumes fixed parameter
values. Even with the limited and noisy citizen science data, it might
be possible to estimate some parameters of the data generating model,
such as the intensity scaling parameter 𝜆obs and/or parameters related
to the birth and death intensity functions 𝜆b and 𝜆d. This could result in
a better fit of the data and model, and might result in improved location
and count estimates. In theory, estimating the model parameters is
possible using for example the particle marginal Metropolis–Hastings
algorithm (Andrieu et al., 2010) similar to Kokkala and Särkkä (2015).
Using these methods would however require the derivation of an
unbiased estimate of the marginal likelihood of the observed data under
the employed optimal resampling scheme of Fearnhead and Clifford
(2003). For the current model and a moderate to large dataset, such
estimation procedures are also computationally intensive and would
likely require a tailored parallel implementation. The methods might
also be difficult to tune in practice.

The data generating model could, in principle, readily incorporate
moving territories as well, perhaps using an Ornstein–Uhlenbeck-type
movement model as in the work of Johnson et al. (2008). We did
not attempt this with the wolf territory estimation, because our main
interest was in immobile territories. In addition, we suspect that the
additional flexibility in the model allowing for movement would make
the inference task substantially more difficult or even infeasible. Fur-
thermore, we do not believe that in our dataset each territory is
observed frequently enough to make the inference with an additional
movement model practical.

The observation model could also be further refined. We did not
separate between the different observation types, but some observa-
tion types can be more reliable than others and may be subject to
different observation intensity (‘detectability’); consider for instance
tracks vs. sightings. We chose to simplify since we do not believe that
adequate intensity estimation is possible for the different observation
types separately with our dataset. In another context, however, it
would in principle be possible to modify the observation model to
also accommodate different observation types. The intensity function
of the observation model (see Equation (5) in the supplementary ma-
terial) could be augmented with ‘independent data streams’ for the
different observation types, each with their own spatio-temporal and
clutter intensities. This could lead to interesting observation models,
such as ones that designate higher clutter intensity for more uncertain
observations types such as sightings.

Another means of model improvement are more fine-grained birth–
death models. In ecological applications, for example, further informa-
tion such as mating seasons or typical lifespans of the species could
be encoded into the birth and death intensity functions 𝜆b and 𝜆d
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in the general model described in the supplementary material. How-
ever, these kinds of models would likely achieve their full potential
when coupled with parameter estimation discussed above. In our wolf
territory estimation, we did not investigate time-varying birth/death
intensity functions and opted for a model where a territory can emerge
at any time. Even though wolves only reproduce in the spring, new
wolf territories can form at any time of the year when vagrant wolves
pair up and establish new territories. Furthermore, the majority of the
citizen science wolf observations are made in the winter time, and it is
possible that the first observation from a territory formed in the spring
comes later, in the winter.
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AND MATTI VIHOLA

1. Mathematical details of the data generating model and particle filter

This section gives more thorough mathematical descriptions of the ideal model, its approx-
imate version and the particle filtering algorithm (Sections 2.2 and 2.5 of the main text, re-
spectively).

1.1. Ideal birth and death process. The birth and death process governs how the territories
emerge and disappear in a time interval of interest, which we denote by [0, T ). In this section,
we will use natural numbers to distinguish between the territories. This numbering of the
territories is arbitrary and exists mainly for the purposes of this section as a convenience for
describing the model.

Let μ
(j)
t be the territory centroid of territory j at time t ∈ [0, T ). Recall that we assume

that the territory centroids are constant; the time subscript will be relevant later. At time 0
we assume that the initial number of territories N0 follows some distribution on the natural
numbers. Conditional on N0, the density of the territory centroids has the form

N0∏
i=1

fi(μ
(i)
0 ),

where each (known) component fi is either N(μ
(i)
0 ; xi,Σi) (truncated to Dμ) with some known

location estimate xi and constant diagonal covariance matrix Σi, or Unif(Dμ), where Dμ is the
domain of the territories. We enumerate these initial territories from 1 to N0 (in some order),
and in general we will denote by βj the birth time of the jth territory, and by δj the death
time of the jth territory.

With these definitions, the indices of the territories alive at any time t are given by

It = {j ∈ N : βj ≤ t < δj},
and in particular, I0 = {1, 2, . . . , N0}. Furthermore, in general we will denote the number of
territories at time t with Nt, noting that Nt = |It|, the cardinality of the set It. For any new

territory j ∈ N emerging at time t, the territory centroid μ
(j)
t follows Unif(Dμ).

We assume that for the territories j = N0 + 1, N0 + 2, . . . (since βj = 0 for all initial
territories), the birth time βj has the cumulative distribution function

(1) P(βj ≤ t) = 1− exp

(
−
∫ t

βj−1

λb(u)Nu + λb0du

)
, for t ≥ βj−1

1
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where λb(u) is a birth intensity function that gives the birth intensity induced by a single
existing territory at time u, and λb0 is a constant baseline birth intensity. Here, it is assumed
that the probability of a new territory being born increases with growing number of existing
territories, modulated by the function λb, which can for example be used to model seasonal
variation in the amount of new territories appearing.
Based on (1), it follows that

(2) P(βj ≤ t | βj > τ) = 1− exp

(
−
∫ t

τ

λb(u)Nu + λb0 du

)
, for t ≥ τ > βj−1.

This corresponds to the probability that the jth territory is born before time t given that it
has not been born before time τ .
Similarly, but independent of the other territories, we assume that each territory dies with

rate given by the death intensity function λd(u). This means, that the time of death for
territory j, δj, has the cumulative distribution function:

(3) P(δj ≤ t) = 1− exp

(
−
∫ t

βj

λd(u)du

)
, for t ≥ βj,

which again gives

(4) P(δj ≤ t | δj > τ) = 1− exp

(
−
∫ t

τ

λd(u)du

)
, for t ≥ τ > βj.

Note that the number of territories Nu in the birth and death process described by (2) and
(4) depends in principle on all births and deaths, but the process can be simulated sequentially
by applying the inverse distribution method, because Nu for u ≤ βn+1 depends only on (βj, δj)
for j ≤ n.
The absolute values of the birth and death rates are related to the ‘persistence’ of the model:

lower values mean fewer births and deaths. For constant rates λb(u) = λb and λd(u) = λd, it
holds that:

• If λb0 = 0, and λb = λd > 0, then (Nt) has constant conditional expectation, given that
Nt has not reached zero yet.

• If λb > λd, then the process Nt can drift to infinity; in case λb0 > 0, then it almost
surely does.

• If λb0 > 0 and λb < λd, then the process Nt has a nontrivial stationary distribution.

1.2. Ideal observation model. Conditional on the territory lifetimes consisting of the loca-
tions of the centroids μ[0,T ) and indices I[0,T ), we assume that the observation times and locations
are generated by a three-dimensional inhomogeneous Poisson process (IPP). The intensity of

the IPP is assumed to depend on a time-varying intensity function λ
(τ)
obs and a spatially varying

intensity function λ
(s)
obs, which are key in accounting for the spatial and temporal variability

in citizen science observation processes. We allow for two types of observations: observations
that originate from the territories, and observations that are “erroneous” clutter observations
that do not originate from any territory. The total intensity at time u ∈ [0, T ) at the point
y ∈ Dy ⊂ R

2 (Dμ ⊆ Dy) is assumed to be

(5) λobs,tot(u, y | Iu, μu) =
∑
i∈Iu

λobsλ
(τ)
obs(u)N(y;μ(i)

u ,Σobs)λ
(s)
obs(y) + λcλ

(τ)
obs(u)U(y;Dy)λ

(s)
obs(y),
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where N(y; x,Σ) and U(y;Dy) are the Gaussian density with mean x and covariance Σ and
the uniform density with domain Dy, evaluated at the point y, respectively. The parameter
Σobs controls the territory size, and the parameters λobs and λc scale the relative intensity of
the territory and clutter observations, respectively.

It follows from (5) that the likelihood function for the observation times τ (0 = τ0 < τ1 <
· · · < τK < T ) and locations y (y1, y2, . . . , yK) is given by
(6)

p(τ1:K , y1:K |I[0,T ), μ[0,T )) =

[
K∏
k=1

λobs,tot(τk, yk | Iτk , μτk) exp

(
−
∫
Dy

∫ τk

τk−1

λobs,tot(u, x)dudx

)]

× exp

(
−
∫
Dy

∫ T

τK

λobs,tot(u, x)dudx

)
,

where the dependence on the parameters is left implicit for brevity.
For the purposes of the filtering algorithm described in Section 1.6, we note that we can

decompose this likelihood as follows

p(τ1:K , y1:K |I[0,T ), μ[0,T )) = p(τ1:K | I[0,T ), μ[0,T ))p(y1:K | τ1:K , I[0,T ), μ[0,T )),

where

(7)

p(τ1:K | I[0,T ), μ[0,T )) =

∫
DK

y

p(τ1:K , y1:K | I[0,T ), μ[0,T ))dy1dy2 . . . dyK

=

[
K∏
k=1

λobs,tot(τk | Iτk , μτk) exp

(
−
∫
Dy

∫ τk

τk−1

λobs,tot(u, x)dudx

)]

× exp

(
−
∫
Dy

∫ T

τK

λobs,tot(u, x)dudx

)
,

with

(8) λobs,tot(τk | Iτk , μτk) =

∫
Dy

λobs,tot(τk, y | Iτk , μτk)dy.

Furthermore, we remark that

p(y1:K | τ1:K , I[0,T ), μ[0,T )) ∝
K∏
k=1

λobs,tot(τk, yk | Iτk , μτk),

which allows us to write

p(y1:K | τ1:K , I[0,T ), μ[0,T )) =
K∏
k=1

p(yk | μ(Iτk )
τk ),

where
p(yk | μ(Iτk )

τk ) =
∑

ck∈{0}∪Iτk

p(ck | μ(Iτk )
τk )p(yk | ck, μ(Iτk )

τk ),

with

(9) p(yk | ck, μ(Iτk )
τk ) ∝

{
U(yk;Dy)λ

(s)
obs(yk), ck = 0

N(yk | μ(ck)
τk ,Σobs)λ

(s)
obs(yk), otherwise,
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and

(10) p(ck | μ(Iτk )
τk ) ∝

{
λcλ

(τ)
obs(τk)

∫
Dy

U(y;Dy)λ
(s)
obs(y)dy, ck = 0

λobsλ
(τ)
obs(τk)

∫
Dy

N(y | μ(ck)
τk ,Σobs)λ

(s)
obs(y)dy, otherwise.

Here, the variables ck are ‘association variables’ which denote the territory (or clutter, in case
ck = 0) from which the observation yk originated from.

1.3. Time discretisation and data preprocessing. We begin our discussion of the time-
discretised approximate model by discretising the time interval of interest, [0, T ), to intervals
Δk = [tk−1, tk) such that the maximal length of any Δk is Δmax and the Δk’s need not be of
equal length. When the discretisation is fine, we may use the simple Euler-type approximation
to approximate the integral of a function f :

(11) |Δk|f(tk−1) ≈
∫ tk

tk−1

f(u)du ≈ |Δk|f(tk).

Discretising [0, T ) with the maximal interval length set to Δmax introduces a new set of
observations ỹ1:K̃ , each of which is either of two different types: the observation can contain both
the observation time and a location datum, that is, ỹk = (tk, yk), or in case two observations
are more than Δmax apart, only the time point, that is, ỹk = (tk, ∅). We will refer to the second
type of observations as discretisation points. Furthermore, we introduce auxiliary variables
Ek = 0 or Ek = 1 to differentiate between these two types of observations, that is, Ek = 1
when observation k is a discretisation point.
By Assumption A in Section 2.5 of the main text, we assume that the observations arrive

sequentially. With the wolf data, as discussed in the main text, the observation times are
not recorded accurately, leading to data which is pooled with a granularity of approximately
one day. Because of this, we introduce a data preprocessing step given in Algorithm 1, that
artificially disperses the pooled observations in time by dividing the time horizon [0, T ) to
intervals of length Δmax and places the observations (if any) within each interval equidistantly
in random order. If no observations fall within any such interval of length Δmax, the process
also adds a discretisation point, ensuring that |Δk| ≤ Δmax for all k. With the wolf data, we
set Δmax = 1. The preprocessing of the data introduces a bias, which is small, because its
effect on the intensity of the arrival times of the observations will in practice be small.
After the preprocessing step, we denote the obtained time-discretisation with τ̃ = t0:K̃ , where

t0 = 0 and tK̃ = T . If the preprocessing step is not required (that is, the data has accurate
time stamps), τ̃ can be interpreted as the original dataset that simply has discretisation points
added as required. Note that a discretisation point may also need to be added to the data in
the case that the filtering distribution at a certain time point is of interest. In the following
sections, we will assume that τ̃ is distributed according to the IPP of Section 1.2.

1.4. Approximate birth and death model. The exact transition probability for the birth
and death process of Section 1.1 is intractable, since there are an infinite number of possible
birth and death scenarios that could potentially occur during each Δk. Under a fine time
discretisation, the following simplifications are justified:

(i) At most one birth can occur during any Δk.
(ii) At most one death can occur during any Δk.
(iii) It is not possible for both a birth and a death to occur during any Δk.
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Algorithm 1 The preprocessing algorithm for pooled observations; Yi denotes the vector of
observations falling to the interval [Δmax(i− 1),Δmaxi).

Set k = 0
Set Tcur = 0.0
for i = 1, 2, . . . do

n∗
i = max{1,#Yi}

if #Yi = 0 then
Set yk+1 = φ (‘no observations’)

else
Set yk+1:k+n∗

i
← Yi (by picking a random order)

end if
for j = 1, . . . , n∗

i do
Set tk+j = Tcur +Δmax/n

∗
i

Set Tcur = tk+j

end for
k ← k + n∗

i

end for
return locations y, timepoints t

Note that the events where the number of births or deaths is more than one have probabilities
of order |Δk|2 in contrast with a single birth or a death, which has a probability of order |Δk|.
Furthermore, in light of the data preprocessing described in Section 1.3, the maximal value for
any |Δk| is controlled by Δmax.
To construct the approximate birth and death model, three probabilities must be specified

with respect to the time interval Δk: the probability that a new territory is born, the probability
that territory i dies, and the probability that the amount of territories remains the same.
We define the probability of a birth, pbirth, by setting

pbirth := P(at least one birth occurs during Δk)P(no deaths occur during Δk)

≈ (1− e−|Δk|(λb(tk−1)Ntk−1
+λb0))e−|Δk|λd(tk−1)Ntk−1 ,

where we have used (11) to approximate the integral in (2). Here, pbirth is defined conditional
on no deaths occuring, by assumption (iii).
Similarly, we define the probability for the death of territory i, pdeath, as follows:

pdeath := P(no birth during Δk)P(at least one death during Δk)/Ntk−1

≈ e−|Δk|(λb(tk−1)Ntk−1
+λb0)(1− e−|Δk|Ntk−1

λd(tk−1))/Ntk−1
,

where we have again used (11) on (4) to compute the last term. Here, the probability of at
least one death occuring during Δk is distributed evenly among the territories that were alive
at time tk−1.
Finally, the probability that no births or deaths occur, pnothing, is the complement of pbirth

and (Ntk−1
times) pdeath:

pnothing = 1 + 2e−|Δk|((λb(tk−1)+λd(tk−1))Ntk−1
+λb0)

− e−|Δk|λd(tk−1)Ntk−1 − e−|Δk|(λb(tk−1)Ntk−1
+λb0).
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To summarise, the approximate birth and death model can be written as the discrete probability
distribution:

(12) p(bk, dk | Itk−1
) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pbirth, bk = 1, dk = 0

pdeath, bk = 0, dk ∈ Itk−1

pnothing, bk = 0, dk = 0

0, otherwise,

where bk ∈ {0, 1} indicates whether a birth occurs during Δk, and dk ∈ {0} ∪ Itk−1
indicates

which territory (if any) died during Δk.
Given the values of bk and dk, the value of Itk is deterministic,

(13) Itk =

⎧⎪⎨
⎪⎩
Itk−1

∪ L, if bk = 1, dk = 0

Itk−1
\ dk, if bk = 0, dk ∈ Itk−1

Itk−1
, if bk = 0, dk = 0,

where L is the next index in the numbering of the territories. Finally, the centroids of the
territories alive at time tk are given by:

(14) μ
(Itk )
tk

| μ(Itk−1
)

tk−1
, bk, dk =

⎧⎪⎪⎨
⎪⎪⎩
μ
(Itk−1

)

tk−1
∪ μnew, bk = 1, dk = 0

μ
(Itk−1

\{i})
tk−1

, bk = 0, dk = i ∈ Itk−1

μ
(Itk−1

)

tk−1
, bk = 0, dk = 0,

where μnew ∼ Unif(Dμ).
The approximate birth and death model behaves similarly to the ideal birth and death

process. Empirical evidence for this can be seen from Figure 1 which compares the sample
standard deviations of the number of territories at 365 time points spaced by intervals of
unit length. The standard deviations were computed over 50000 simulated trajectories for
the number of territories under the ideal and approximate models, when the initial number
of territories was each time set to 47. The figure depicts the models in the configuration we
use with the wolf data, that is, λb(u) = λd(u) = λbd for all u ∈ [0, 365) and λb0 = 0. Note
that under this configuration the ideal and approximate model also have the same expected
numbers of territories at any time point. If higher birth and death intensities are used, |Δk|
should be decreased to ensure a good approximation.

1.5. Approximate observation model. We use (11) to approximate the inner integrals of
(7) and obtain the time-discretised likelihood of the observation times

(15)

p
(
τ̃
∣∣ (It1 , μt1 , . . . , ItK̃ , μtK̃

)
) ≈

⎡
⎣ ∏
{k:Ek=0}

λobs,tot(tk | Itk , μtk)

⎤
⎦

×
⎡
⎣ K̃∏
k=1

exp
(
− |Δk|λobs,tot(tk | Itk , μtk)

)⎤⎦ .
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Figure 1. Comparison of the standard deviations of the number of territories
between the ideal and approximate birth death models based on 50000 simula-
tions with small, constant and equal birth and death intensities. The interval
length |Δk| was set to 1 for all k in the simulation.

From here onwards, without explicit reference to Ek, we shall use p(tk | Itk , μtk) to denote the
individual factors of this approximate likelihood, as follows:

p(tk | Itk , μtk) = λobs,tot(tk | Itk , μtk) exp
(− |Δk|λobs,tot(tk | Itk , μtk)

)
, if Ek = 0(16)

p(tk | Itk , μtk) = exp
(− |Δk|λobs,tot(tk | Itk , μtk)

)
, if Ek = 1,(17)

where λobs,tot(tk | Itk , μtk) is given by (8) with τk replaced by tk. Finally, the densities (9) and
(10) remain as in the ideal model, again replacing τk with tk.

1.6. State estimation using a Rao-Blackwellised particle filter. Next, we discuss the

inference of the distribution of the territory centroid locations μ
(Itk )
tk

for k = 1, 2, . . . , K̃ given
the observed data ỹ. This section will only consider the time-discretised model detailed in the
previous sections, and therefore we will index the state variables interchangeably with time or
time index (that is, Itk = Ik, for example).

We are interested in the filtering distributions p(μ
(Ik)
k | ỹ1:k) for k = 1, . . . , K̃. Let rk denote

(bk, dk, ck) for k ≥ 1, and I0 for k = 0. That is, the sequence r0:k contains all knowledge about
the births, deaths and associations that occurred until time tk, and the territory indices that
were alive at any time up to tk.
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The filtering distribution of the territory centroid locations given the data can be inferred
using a Rao-Blackwellised particle filter (RBPF) [cf. Doucet et al., 2001]. More specifically, our
method is very similar to the particle filter using the optimal resampling strategy described in
the work of Fearnhead and Clifford [2003].
A key building block of their particle filter is the computation of the posterior probabilities

(18) p(rk | r0:k−1, ỹ1:k) =
p(rk, ỹk | r0:k−1, ỹ1:k−1)∑
r′k
p(r′k, ỹk | r0:k−1, ỹ1:k−1)

.

We will next discuss how we can approximately evaluate the probabilities (18) in the context
of our model. To begin, we note that

(19) p(rk, ỹk | r0:k−1, ỹ1:k−1) =

∫
D

Nk
μ

p(rk, ỹk, μ
(Ik)
k | r0:k−1, ỹ1:k−1)dμ

(Ik)
k ,

where DNk
μ is the Nk-dimensional (Nk = |Ik|) Cartesian product of Dμ. Then, since Ik−1 is

deterministic given r0:k−1, the integrand can be written as

(20)
p(rk, ỹk, μ

(Ik)
k | r0:k−1, ỹ1:k−1)

= p(bk, dk | Ik−1)p(μ
(Ik)
k | bk, dk, r0:k−1, y1:k−1)p(tk | Ik, μk)p(ck | μ(Ik)

k )p(yk | μ(Ik)
k , ck),

where

p(μ
(Ik)
k | bk, dk, r0:k−1, y1:k−1) =

∏
i∈Ik

fi(μ
(i)
k ).

Here, the territory-specific densities fi are either N(·;m(i)
k , C

(i)
k ) where m

(i)
k , C

(i)
k are the predic-

tive mean and covariance of territory i, which are functions of bk, dk, r0:k−1, y1:k−1, or fi(μ
(i)
k ) =

U(·;Dμ) in case the territory has not been associated with an observation yet. Next, we shall
consider the approximate evaluation of the integral (19), which by (20) can be written as

p(bk, dk | Ik−1)

∫
D

Nk
μ

p(μ
(Ik)
k | bk, dk, r0:k−1, y1:k−1)p(tk | Ik, μk)p(ck | μ(Ik)

k )p(yk | μ(Ik)
k , ck)dμ

(Ik)
k .

Noting the cancellation of normalisation constants and factors in the product

p(tk | Ik, μk)p(ck | μ(Ik)
k )p(yk | μ(Ik)

k , ck),

(by Equations (9), (10) and (16)) a direct computation yields

(21)

∫
D

Nk
μ

p(μ
(Ik)
k | bk, dk, r0:k−1, y1:k−1)p(tk | Ik, μk)p(ck | μ(Ik)

k )p(yk | μ(Ik)
k , ck)dμ

(Ik)
k

= [λ
1(ck>0)
obs (λcU(yk;Dy))

1(ck=0)λ
(τ)
obs(tk)λ

(s)
obs(yk)]

1(Ek=0) exp (−|Δk|λcλ
(τ)
obs(tk)C̃U)

×
∫
D

Nk
μ

∏
i∈Ik

[fi(μ
(i)
k ) exp (−|Δk|λobsλ

(τ)
obs(tk)C̃N(μ

(i)
k ))]N(yk;μ

(ck)
k ,Σobs)

1(Ek=0,ck>0)dμ
(Ik)
k ,
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where C̃U =
∫
Dy

λ
(s)
obs(y)U(y;Dy)dy, C̃N(μ

(i)
k ) =

∫
Dy

λ
(s)
obs(y)N(y;μ

(i)
k ,Σobs)dy and 1(·) stands for

the indicator function. The integral on the last line can also be written as

(22)

∏
i∈Ik\{ck}

∫
Dμ

[fi(μ
(i)
k ) exp (−|Δk|λobsλ

(τ)
obs(tk)C̃N(μ

(i)
k ))]dμ

(i)
k

×
[∫

Dμ

fck(μ
(ck)
k ) exp (−|Δk|λobsλ

(τ)
obs(tk)C̃N(μ

(ck)
k ))N(yk;μ

(ck)
k ,Σobs)

1(Ek=0)dμ
(ck)
k

]1(ck>0)

:=

⎛
⎝ ∏

i∈Ik\{ck}
Ĩ
(i)
1

⎞
⎠ Ĩ

(ck)
2 ,

which highlights the fact that territories not associated with yk each contribute Ĩ
(i)
1 to the

posterior probability, whereas the associated territory contributes Ĩ
(ck)
2 (given Ek = 0 and yk

not clutter).

To evaluate (21), we approximate the two different kinds of integrals Ĩ
(i)
1 and Ĩ

(ck)
2 in (22).

We will begin by considering the approximation of Ĩ
(i)
1 . Assume first that fi = N(m

(i)
k , C

(i)
k ).

Then, by using Assumptions C (twice) and D in Section 2.5 of the main text, we approximate

(23)

Ĩ
(i)
1 =

∫
Dμ

N(μ
(i)
k ;m

(i)
k , C

(i)
k ) exp (−|Δk|λobsλ

(τ)
obs(tk)C̃N(μ

(i)
k ))dμ

(i)
k

≈
∫
Dμ

N(μ
(i)
k ;m

(i)
k , C

(i)
k ) exp (−|Δk|λobsλ

(τ)
obs(tk)λ

(s)
obs(μ

(i)
k ))dμ

(i)
k

≈ exp (−|Δk|λobsλ
(τ)
obs(tk)λ

(s)
obs(m

(i)
k )).

Consider then that fi = U(Dμ). We approximate

(24)

Ĩ
(i)
1 =

∫
Dμ

U(μ
(i)
k ;Dμ) exp (−|Δk|λobsλ

(τ)
obs(tk)C̃N(μ

(i)
k ))dμ

(i)
k

≈
∫
Dμ

U(μ
(i)
k ;Dμ) exp (−|Δk|λobsλ

(τ)
obs(tk)λ

(s)
obs(μ

(i)
k ))dμ

(i)
k

≈ exp

(
−|Δk|λobsλ

(τ)
obs(tk)

∫
Dμ

λ
(s)
obs(μ

(i)
k )U(μ

(i)
k ;Dμ)dμ

(i)
k

)
,

where the first approximation can be justified again by using Assumption C, and the second
one using the first order Taylor series exp (−x) ≈ 1 − x (twice, first from left to right, then

from right to left). In summary, (23) and (24) together give the approximation for Ĩ
(i)
1 :

(25) Ĩ
(i)
1 ≈

{
exp

(
−|Δk|λobsλ

(τ)
obs(tk)

∫
Dμ

λ
(s)
obs(μ

(i)
k )U(μ

(i)
k ;Dμ)dμ

(i)
k

)
, if fi = U(Dμ),

exp (−|Δk|λobsλ
(τ)
obs(tk)λ

(s)
obs(m

(i)
k )), if fi = N(m

(i)
k , C

(i)
k ),

where the integral in the first case can be precomputed.

Next, we consider the approximation of the integral Ĩ
(ck)
2 in (22). First note that if Ek 
= 0

or ck = 0, Ĩ
(ck)
2 = Ĩ

(ck)
1 and we can use approximation (25). Otherwise, assuming Ek = 0 and
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ck > 0, and denoting

CĨ2
=

∫
Dμ

fck(μ
(ck)
k )N(yk;μ

(ck)
k ,Σobs)dμ

(ck)
k ,

Ĩ
(ck)
2 may be approximated by

(26)

Ĩ
(ck)
2 =

∫
Dμ

fck(μ
(ck)
k ) exp (−|Δk|λobsλ

(τ)
obs(tk)C̃N(μ

(ck)
k ))N(yk;μ

(ck)
k ,Σobs)dμ

(ck)
k

= CĨ2

∫
Dμ

exp (−|Δk|λobsλ
(τ)
obs(tk)C̃N(μ

(ck)
k ))

N(yk;μ
(ck)
k ,Σobs)fck(μ

(ck)
k )

CĨ2

dμ
(ck)
k

≈ exp (−|Δk|λobsλ
(τ)
obs(tk)λ

(s)
obs(m

(ck)
k,+ ))

∫
Dμ

fck(μ
(ck)
k )N(yk;μ

(ck)
k ,Σobs)dμ

(ck)
k ,

where the approximation may be justified by Assumption C. Here, m
(ck)
k,+ is the mean of the

Gaussian distribution p(μ
(ck)
k | y1:k, r0:k) if fck = N(m

(ck)
k , C

(ck)
k ) (available from the Kalman

update step), and m
(ck)
k,+ = yk if fck = U(Dμ). Furthermore,

(27)

∫
Dμ

fck(μ
(ck)
k )N(yk;μ

(ck)
k ,Σobs)dμ

(ck)
k ≈

{
K

(ck)
l , if fck = N(m

(ck)
k , C

(ck)
k )

1/|Dμ|, if fck = U(Dμ),

where K
(ck)
l is the likelihood of the observation, again available from the Kalman update step.

The approximation (27) is accurate when yk is within Dμ, and not close to its boundary.
Taking everything together, (19) equals

(28)

p(bk, dk | Ik−1)[λ
1(ck>0)
obs (λcU(yk;Dy))

1(ck=0)λ
(τ)
obs(tk)λ

(s)
obs(yk)]

1(Ek=0)

× exp (−|Δk|λcλ
(τ)
obs(tk)C̃U)

⎛
⎝ ∏

i∈Ik\ck
Ĩ
(i)
1

⎞
⎠ Ĩ

(ck)
2 ,

which we approximate using (25), (26) and (27). Note that in this expression, the values of bk
and dk influence the cardinality of the set Ik.
We utilise the approximate unnormalised probabilities in Equation (28) in the particle filter

of Fearnhead and Clifford [2003] which couples an exhaustive one step lookahead for each
particle with a clever resampling step that guarantees the uniqueness of the particles in each
filtering distribution and is optimal among resampling algorithms that minimise a squared
error loss function. A single step of the method, starting from a set of M weighted particles
and processing the next observation ỹk, can be summarised as follows:

(1) For each particle, construct the set of outcomes that can occur to it in the next time
interval. For particle i in the case that Ek = 0, there are R(Ni,k−1) = O(N2

i,k−1)
outcomes (consisting of all valid combinations of bk ∈ {0, 1}, dk ∈ {0} ∪ Ii,k−1, ck ∈
{0} ∪ Ii,k), where Ni,k−1 = |Ii,k−1|, the number of territories in particle i prior to
processing observation ỹk. If Ek = 1, the values of ck do not have to be considered,
and R(Ni,k−1) = O(Ni,k−1). In total, there are K =

∑M
i=1 R(Ni,k−1) outcomes. Denote

the (normalised) weights of these K outcomes (possible future particles) by q(j), j =
1, . . . , K. Each (unnormalised) q(j) is computed by multiplying the value of (28) for
the outcome by the original weight of the particle.
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(2) Compute the unique value for a constant, denoted by c, such thatM =
∑K

j=1 min (cq(j), 1).
This computation is discussed in detail in Section 1.7.

(3) Partition the new set of K outcomes to two sets, set 1 and set 2. For j = 1, . . . , K, if
q(j) ≥ 1/c, place outcome j to set 1; otherwise place outcome j in set 2. Denote by L
the number of outcomes placed to set 1.

(4) Use stratified resampling to resample M − L outcomes from set 2. The stratified
resampling algorithm is given in Appendix B of [Fearnhead and Clifford, 2003].

(5) Output a set of M weighted particles that have been constructed based on the L
outcomes in set 1, each with original weights, and based on the M − L outcomes
resampled from set 2, each assigned the weight 1/c.

Each particle in the M output particles sampled by this method represents a hypothesis of

(29) p(μ
(Ik)
k | r0:k, y1:k) =

∏
j∈Ik

p(μ
(j)
k | r0:k, y1:k),

where each factor of the product is computed as follows. If ck points to a territory that has
been associated at least once before, we have

(30) p(μ
(ck)
k | y1:k, r0:k) ≈ N(μ

(ck)
k ;m

(ck)
k,+ , C

(ck)
k,+ ),

where m
(ck)
k,+ , C

(ck)
k,+ refer to the mean and covariance available from the Kalman filter update

step, when the normal distribution p(μ
(ck)
k | bk, dk, r0:k−1, y1:k−1) is updated with the observation

yk.
Similarly, if ck points to a newborn territory,

(31) p(μ
(ck)
k | y1:k, r0:k) ≈ N(μ

(ck)
k ; yk,Σobs),

when Dμ is large and yk is sufficiently far from the boundary of Dμ. Finally, for j 
= ck, we
have

p(μ
(j)
k | y1:k, r0:k) = p(μ

(j)
k | bk, dk, r0:k−1, y1:k−1),

since the observation yk is only informative about the territory it was associated with.

1.7. Computing the constant c. The following computation was described by Fearnhead
and Clifford [2003]. Denote by J the set of normalised weights,

J = {q(1), . . . , q(K)}.
Furthermore, define

I(M) :=

{
κ ∈ J :

K∑
j=1

min

(
q(j)

κ
, 1

)
≤ M

}
.

By splitting the sum in the definition for I(M) to two parts, the inequality in the condition can
also be written as

(32) κ−1Bκ + Aκ ≤ M,

where Aκ is the number of elements in J that are greater or equal to κ, and Bκ is the sum of
the remaining elements in J . The value for c is given as follows

(33) c =

{
M, if I(M) = ∅
(M − Aκmin

)/Bκmin
, if I(M) 
= ∅,
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where κmin is the smallest weight in the set I(M). The values of Aκ and Bκ (or determining
that I(M) = ∅) can be found using a selection algorithm, which has an average running time of
O(M).

In the description of this algorithm, two helper routines given in Algorithms 2 and 3 (see
Cormen et al. [2009] p. 171 and p. 179, respectively) are used.

Algorithm 2 partition(array A, index l, index u)

x = A[u]
i = l − 1
for j = l to u− 1 do

if A[j] ≤ x then
i = i+ 1
Exchange A[i] with A[j].

end if
end for
Exchange A[i+ 1] with A[u].
return i + 1

Algorithm 3 random-partition(array A, index l, index u)

i = random(l, u)
Exchange A[u] with A[i]
return partition(A, l, u)

In Algorithm 3, random(l, u) draws an index at random between l and u (inclusive). Algo-
rithm 2 returns an index k such that for the array A and index k, the condition

(34)
A[j] ≤ A[k] for j = 1, . . . k − 1, and

A[j] > A[k] for j = k + 1, . . .M.

holds. In other words, Algorithm 2 splits the elements in A to ‘partitions’ less than A[k] and
greater than A[k]. Note that the two partitions themselves are not necessarily in order, and
that here it is assumed that the array A is mutated ‘in place’. The only difference in random-
partition is that the ‘pivot element’ x is chosen at random between l and u before calling
partition.
With the help of Algorithms 2 and 3, pseudocode for computing the constant c is as follows:

• Initialise l = 1, u = M .
• Loop while l < u || i 
= u.

– Partition the weights in q by calling random-partition(q, l, u). The output is an
index i. Set κ = q[i]. Note that (34) holds for the array q and index i.

– Check if the condition (32) is satisfied for κ. Note that Aκ = M − i + 1 and
Bκ = sum(q[1 : (i− 1)]).

– If (32) is satisfied, we know κmin ≤ κ, so we set u = i; otherwise we set l = i+ 1.
• If l > u, I(M) = ∅; otherwise κmin has been found and I(M) 
= ∅. Use (33) to compute
the constant c.
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2. Additional figures

(a)
(b)

Figure 2. The temporal intensity function λ
(τ)
obs (a) and spatial intensity func-

tion λ
(s)
obs (b) estimated for models 3 and 4 in Section 3.4 of the main text. The

computation was done as discussed in Sections 2.3–2.4 of the main text, but
with the terms Corinek, forestroadk and smooth(yk) dropped from the inten-

sity model (2). The domain of λ
(s)
obs was additionally widened by 27 kilometres

at the borders as described in Section 2.4 of the main text.

Figure 3. Estimated territory locations obtained by filtering Dataset C ten
times with the filter configuration corresponding to model 2 in Section 3.4 of the
main text.
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Figure 4. Fit diagnostics for the intensity model in Section 3.1 of the main text.
Top: Pearson residuals of monthly counts. Bottom: Observed counts (left) and
magnitudes of Pearson residuals of counts (right) in spatial cells of size 10x10km.
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CONDITIONAL PARTICLE FILTERS WITH BRIDGE BACKWARD
SAMPLING

SANTERI KARPPINEN, SUMEETPAL S. SINGH, MATTI VIHOLA

Abstract. The performance of the conditional particle filter (CPF) with backward sam-
pling is often impressive even with long data records. Two known exceptions are when
the observations are weakly informative and the dynamic model is slowly mixing. These
are both present when sampling finely time-discretised continuous-time path integral mod-
els, but can occur with hidden Markov models too. Multinomial resampling, which is
commonly employed in the (backward sampling) CPF, resamples excessively for weakly
informative observations and thereby introduces extra variance. A slowly mixing dynamic
model renders the backward sampling step ineffective. We detail two conditional resam-
pling strategies suitable for the weakly informative regime: the so-called ‘killing’ resampling
and the systematic resampling with mean partial order. To avoid the degeneracy issue of
backward sampling, we introduce a generalisation that involves backward sampling with
an auxiliary ‘bridging’ CPF step, which is parameterised by a blocking sequence. We
present practical tuning strategies for choosing an appropriate blocking. Our experiments
demonstrate that the CPF with a suitable resampling and the developed ‘bridge backward
sampling’ can lead to substantial efficiency gains in the weakly informative regime.

1. Introduction

Conditional particle filter (CPF) with multinomial resampling and backward sampling
(BS) [1, 33] can perform well with challenging state-space models and long data records
[23]. However, when the observations are weakly informative, its multinomial resampling
steps introduce excess noise, and when the dynamic model is slow mixing, its backward
sampling step has only a limited effect. The aim of this paper is to devise a more effective
CPF for such ‘weak potentials’ and slowly mixing scenarios, which arise for instance with
time-discretisations of Feynman–Kac (FK) path integral models.

Motivated by successes of CPF with BS (hereafter CPF-BS) in the discrete time domain,
we were interested to seek for a BS analogue which is stable with respect to refined time-
discretisations. It is relatively easy to see that the direct application of BS degenerates under
such refined discretisations, except for limited cases such as when the driving Markov process
admits jumps, such as considered in [26], or in a univariate case where the trajectories
can cross with positive probability. To address the inherent inefficiency of multinomial
resampling, we draw inspiration from the recent works of [2] and [5] where other types of
resampling are shown to be more effective for weakly informative potentials. Arnaudon
and Del Moral [2] propose a continuous-time version of the CPF with ‘killing’ resampling,
however, this is an idealised algorithm in the sense that practical diffusion models need
to be time-discretised. The work of [5] studies the stability of resampling for particle
filters (and not the CPF) as the time discretisation is refined. There, a new systematic
resampling method is proposed, which incorporates a ‘mean partition’ step, which has not
been developed for the CPF yet. The mean partition step does further decrease superfluous
resampling [5], and thus reduces the so-called particle degeneracy.

1
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The main contributions of this paper are as follows.

• We detail two new conditional resampling algorithms: the ‘killing’ and system-
atic resampling with mean partition (Section 5). These are conditional versions
of resampling algorithms, which are stable in the weak potentials setting (in the
continuous-time limit) [5]. We also detail a generic sufficient condition for condi-
tional resamplings (Assumption 7), which guarantees validity of the CPF (Theorem
2), and complements the result of [4].
• We introduce a new CPF with bridge backward sampling (CPF-BBS) (Section 6),

which may be regarded as a generalisation of BS to an arbitrary ‘blocking sequence,’
and which can avoid the degeneracy problem of CPF-BS with refined discretisations.
• The performance of the CPF-BBS relies on an appropriately chosen blocking se-

quence, which depends on the model at hand. Therefore, a significant portion of
our work focuses on finding practical, computationally inexpensive and robust tun-
ing criteria for choosing such a sequence (Section 7). We introduce a method for
blocking sequence selection that requires a small number of independent runs of the
standard particle filter for the model of interest.

Our developments related to blocking sequence selection can be of independent interest,
and potentially useful with other methods based on blocking, such as the blocked particle
Gibbs [29]. Systematic resampling in the context of CPF has been proposed before [4]
but not the more efficient mean partition version. Furthermore, [4] does not discuss or
demonstrate efficiency in the context of weak potentials, which is our primary motivation.

The CPF-BBS is a general method, but requires evaluation of and simulation from the
conditional distributions of (multiple steps of the) proposal distributions. In practice, this
typically means that the proposals are linear-Gaussian, arising for instance from a linear
stochastic differential equation (SDE). The latter can occur in single molecule studies [7],
and one of our numerical examples demonstrates how animal movement modelling based
on telemetry data [21] can be combined with a path integral model for the so-called step-
selection analyses [cf. 30]. Linear-Gaussian state dynamics are common with structural
time series models [14] too, and smoothing distribution approximations can lead to weak
potentials [cf. 32].

The CPF-BBS features ‘bridging’ CPF steps, which resemble the intermediate block
importance sampling suggested in [24], and the MCMC rejuvenation considered in [24, 3];
there are similarities also with the bridging particle filter suggested in [12]; see also [27]. We
believe that our approach is more efficient than direct importance bridging, and because
our approach can be intuitively related to a continuous-time analogue (through [5]), it is
expected to behave well with respect to refinement of time-discretisation, unlike the MCMC
bridging.

Our experiments (Section 9) demonstrate how the developed resamplings outperform
standard multinomial resampling in the weak potential setting, and we establish empirically
an order between their performance, which follows a similar pattern as the results of [5] for
the standard particle filter applied to FK path integral models. Empirical results using the
CPF-BBS show a significant improvement over CPF-BS in the weak potential setting, and
reveal how the method is stable with respect to refined discretisation. Finally, our tuning
algorithm appears to deliver blocking sequences that reach near-optimal performance with
little additional specification from the user.
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2. Preliminaries and notation

We aim at inference of a probability density on XT with the following form:

(1) π(x1:T ) =
η(x1:T )

Z
, where η(x1:T ) := M1(x1)G1(x1)

T∏
k=2

Mk(xk | xk−1)Gk(xk−1:k).

The model above, defined in terms of M1:T and G1:T , is often referred to as a Feynman-
Kac (FK) model [10]. Here, M1(x1) and Mk(xk | xk−1) define, respectively, an initial
distribution and ‘proposal’ transition densities of a Markov chain on X, and G1 : X →
[0,∞) and Gk : X2 → [0,∞) for k ≥ 2 are called ‘potential’ or ‘weight’ functions (see the
discussion below). The probability π is well-defined assuming that the normalising constant
Z :=

∫
η(x1:T )dx1:T ∈ (0,∞).

Above, and hereafter, ‘dx’ stands for a σ-finite dominating measure on X, integers are
equipped with the counting measure, and product spaces are equipped with products of
the dominating measures. We use the shorthand notation for sequences: for {xi}i, {yj}j
and {zji }i,j we write xa:b = (xa, . . . , xb), y

(a:b) = (y(a), . . . , y(b)) and z
(ja:b)
a:b = (z

(ja)
a , . . . , z

(jb)
b ).

We also denote [N ] := {1, . . . , N}. Test and potential functions are implicitly assumed
measurable.

The FK model can be seen as a slight generalisation of the hidden Markov model (HMM),
which has a latent Markov state X1:T with initial (prior) density m1(x1) and transition
probability densities mk(xk | xk−1), and conditional independent observations y∗1:T with
observation densities gk(yk | xk). The posterior (or smoothing) distribution of X1:T | y∗1:T is
of form (1) if we choose Mk ≡ mk and Gk( · ) ≡ gk(y

∗
k | · ). However, it is often beneficial to

choose another ‘proposal’ family Mk 6≡ mk, in which case the ‘weights’ are G1(x1) := g1(y∗k |
x1)m1(x1)/M1(x1) and Gk(xk−1, xk) := gk(y

∗
k | xk)mk(xk | xk−1)/Mk(xk | xk−1) for k ≥ 2.

3. The particle filter

The particle filter is a sequential Monte Carlo algorithm, which includes sampling from
Markov dynamics Mk, and resampling proportional to weights arising from Gk. The resam-
pling operation r(a(1:N) | g(1:N)) defines a probability distribution on [N ]N which depends
on non-negative ‘unnormalised weights’ g(1:N). That is, if A(1:N) ∼ r( · | g(1:N)) in [N ], then
P(A(1:N) = a(1:N)) = r(a(1:N) | g(1:N)). We will only consider unbiased resamplings [6] r,
which means that for all j ∈ [N ]:

(2)

(
N∑
i=1

g(i)

)
Er( · |g(1:N)))

[
1

N

N∑
i=1

1
(
A(i) = j

) ]
= g(j).

Algorithm 1 describes the particle filter targetting the FK model (1) using N particles,

and an unbiased resampling r( · | g(1:N))). The boldface notation X
(i)
1 = X

(i)
1 and X

(i)
k+1 =

(X
(A

(i)
k )

k , X
(i)
k+1) stands for the latest particles augmented with their ancestors, generated

during the algorithm. In what follows, we use underline to denote ‘all particles’ at one time

instant, so for instance Xk = X
(1:N)
k .

Consider then the following density on XNT × [N ]N(T−1) which corresponds to all the
random variables generated during Algorithm 1:

(3) ζ(N)(x1:T , a1:T−1) =
N∏
i=1

M1(x
(i)
1 )

T−1∏
k=1

(
r
(
ak | Gk(xk)

) N∏
i=1

Mk+1(x
(i)
k+1 | x

(a
(i)
k )

k )

)
.
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Algorithm 1 PF(r,M1:T , G1:T , N)

1: Draw X
(i)
1 ∼M1(·) for i ∈ [N ].

2: Set X
(i)
1 = X

(i)
1 for i ∈ [N ].

3: for k = 1, . . . , T − 1 do

4: Set W
(i)
k = Gk(X

(i)
k ) for i ∈ [N ].

5: Draw A
(1:N)
k ∼ r(· |W (1:N)

k )

6: Draw X
(i)
k+1 ∼Mk+1(· | X(A

(i)
k )

k ) for i ∈ [N ].

7: Set X
(i)
k+1 = (X

(A
(i)
k )

k , X
(i)
k+1) for i ∈ [N ].

8: end for
9: Set W

(i)
T = GT (X

(i)
T ) for i ∈ [N ].

10: output (X
(1:N)
1:T , A

(1:N)
1:T−1,W

(1:N)
1:T )

The normalising constant estimate calculated from X1:T and A1:T−1 in the output of
Algorithm 1, is defined as follows:

(4) Ẑ(x1:T , a1:T−1) =
T∏
k=1

(
1

N

N∑
i=1

Gk(x
(i)
k )

)
.

Thanks to the unbiasedness of the resampling (2), the following ‘unbiasedness property’ [cf.
10] holds, which is key for the validity of particle Markov chain Monte Carlo [1]:

(5) E[Ẑ(X1:T , A1:T−1)f(X∗1:T )] = ZEπ[f(X1:T )].

Equation (5) holds for any test function f : XT → R for which the expectation on the right

is well-defined, as long as the trajectory X∗1:T = X
(B1:T )
1:T is chosen among all particles in a

suitable manner, that is, with suitably generated indices B1:T .

The most direct approach is to draw BT ∼ Categ(ω
(1:N)
T ) with (unnormalised weights)

ω
(i)
T = GT (X

(i)
T ), and to set the rest of the indices recursively by ‘ancestor tracing ’: Bk :=

A
(Bk+1)
k . In our case, where the potentials depend on at most two consecutive states, it is

possible to replace ancestor tracing by ‘backward sampling ’: for k = T − 1, . . . , 1:

(6) Bk ∼ Categ
(
ω

(1:N)
k

)
, ω

(i)
k := Gk(X

(i)
k )Gk+1(X

(i)
k , X

(Bk+1)
k+1 )Mk+1(X

(Bk+1)
k+1 | X(i)

k ).

The unbiasedness (5) was shown in [9] for ancestor tracing and multinomial resampling, and
has been extended for other unbiased resamplings [e.g. 1]. For the context of the present
work, we refer the reader to [31, Appendix D] for a proof of the unbiasedness in (5) assuming
only unbiasedness of resampling (2), and which accomodates backward sampling with any
resampling.

4. The conditional particle filter

The CPF introduced in [1] implements a π-invariant Markov transition kernel from an
input so called ‘reference’ path X∗1:T ∈ XT to a newly chosen path X̃∗1:T ∈ XT . The original
scheme of [1] assumed multinomial sampling with ancestor tracing, and [33] suggested,
in a discussion note to [1], that backward sampling may also be used (with multinomial
resampling); later an algorithmic variant of BS called ‘ancestor sampling’ (AS) [25] was
also introduced. In fact, the corresponding Markov kernels are reversible with respect to
π, and BS/AS is guaranteed to outperform AT in the asymptotic variance sense [4]. The
improvement has been found substantial in many empirical studies; see also [23] for a
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theoretical result supporting such findings. Finally, other resampling schemes are presented
in [4], but not the ones devised in this work.

Algorithm 2 presents a generic version of the CPF with N particles and with ancestor
tracing, using a generic conditional resampling r(p,n). The conditional resampling scheme

Algorithm 2 CPF-AT(r(p,n), X∗1:T , B1:T ;M1:T , G1:T , N)

1: (X1:T , A1:T−1, B̃T )← CPF(r(p,n), X∗1:T , B1:T ;M1:T , G1:T , N)

2: B̃1:T−1 ← AncestorTrace(A1:T−1, B̃T ).

3: output (X̃∗1:T , B̃1:T ) where X̃∗1:T = X
(B̃1:T )
1:T .

Algorithm 3 CPF(r(p,n), X∗1:T , B1:T ;M1:T , G1:T , N)

1: Draw X
(−B1)
1 ∼M1( · ) and set X

(B1)
1 ← X∗1 and X

(i)
1 = X

(i)
1 for i ∈ [N ].

2: for k = 1, . . . , T − 1 do

3: A
(1:N)
k ← r(Bk,Bk+1)

(
· | Gk(X

(1:N)
k )

)
4: Draw X

(i)
k+1 ∼Mk+1( · | X(A

(i)
k )

k ) for i 6= Bk+1 and set X
(Bk+1)
k+1 = X∗k+1.

5: Set X
(i)
k+1 = (X

(A
(i)
k )

k , X
(i)
k+1) for i ∈ [N ].

6: end for
7: Draw B̃T ∼ Categ

(
GT (X

(1:N)
T )

)
.

8: output (X1:T , A1:T−1, B̃T )

Algorithm 4 AncestorTrace(a`:u−1, bu)

for v = u− 1, u− 2, . . . , ` do bv ← a
(bv+1)
v

output b`:u−1.

draws the ancestor indices (on line 3 of Algorithm 3) conditional on the ancestor of the
reference. This makes it possible to write Algorithm 2 such that the reference trajectory
can be located at arbitrary indices B1:T , unlike earlier formulations, which assume reference
at index 1 [e.g. 4]. The arbitrary reference indices turn out to be convenient for us, when
we introduce the bridge backward sampling CPF in Section 6. Definition 1 gives a sufficient
condition that r(p,n) is a valid conditional resampling for use with Algorithm 2.

Definition 1. The conditional resampling scheme r(p,n)( · | g(1:N)) is valid, if it is a condi-
tional of an unconditional unbiased symmetric resampling scheme r( · | g(1:N)). That is, for

all g(1:N) ≥ 0 such that
∑N

`=1 g
(`) > 0, and all p, n ∈ {1:N},

(i) Pr(p,n)( · |g(1:N))(A
(n) = p) = 1,

(ii) r(p,n)(a(1:n) | g(1:N)) = Pr( · |g(1:N))(A
(−n) = a(−n) | A(n) = p),

(iii) Pr( · |g(1:N))(A
(n) = p) = g(p)∑N

i=1 g
(i) .

Theorem 2. Algorithm 2 with a valid conditional resampling r(p,n) defines a Markov update
(X∗1:T , B1:T )→ (X̃∗1:T , B̃1:T ) that is reversible with respect to π × U([N ]T ).

Theorem 2, whose proof is given in Appendix A, complements the result of [4] by acco-
modating our version of the CPF, where the reference is placed at arbitrary position, and
allows for the resamplings which we discuss next.
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5. Conditional resamplings for the weak potentials scenario

The simplest unbiased resampling, that is, satisfying (2) is multinomial resampling, where
A(k) are drawn independently from the categorical distribution Categ(w(1:N)) with nor-

malised weights w(j) = g(j)∑N
i=1 g

(i) . However, in the context of this work, multinomial resam-

pling is wasteful, and we focus instead on conditional versions of two resampling algorithms,
that were found stable in refined discretisations [5].

The first of these is the ‘killing’ resampling, defined as follows [cf. 11]:

rkill(a
(1:N) | g(1:N)) :=

N∏
i=1

[
1
(
a(i) = i

) g(i)

g∗
+
(

1− g(i)

g∗

) N∑
j=1

1
(
a(i) = j

) g(j)∑N
`=1 g

(`)

]
,(7)

where g∗ = maxi∈{1:N} g
(i) (and in case g∗ = 0, ρ may be defined arbitrarily). The killing

resampling is valid also with any other choice of g∗ as long as g(j) ≤ g∗, but we consider the
above one minimising the resampling rate. Like multinomial resampling, the components
of the random vector A(1:N) are independent but not identically distributed.

Killing resampling is simple and stable, but [5] found two resamplings that yield a smaller
resampling rate, and appear to admit slightly better performance: the Srinivasan sampling
process (SSP) and systematic resampling, both with a mean partition order (to be defined
below). It seems difficult to implement a conditional version of SSP (in an efficient man-
ner), but systematic resampling with mean partition can be implemented by extending the
algorithm of [4].

The systematic resampling with mean partition (Definition 5) is a variant of ‘standard’
systematic resampling (Definition 3) where the weights w1:N are processed in a particular
‘mean partition’ order (Definition 4). The mean partition may be found in O(N) time, and
our implementation is based on Hoare’s scheme [20]; see Algorithm 12 in Appendix E.

Definition 3. (Systematic resampling). Input normalised weights w1:N . Simulate a single
Ũ ∼ U(0, 1), set Ǔ i := (i−1+ Ũ)/N and define the resampling indices as Ai := F−1(Ǔ i) for
i ∈ [N ]. Here, the generalised inverse F−1(u) is defined for u ∈ (0, 1) as the unique index

i ∈ [N ] such that F (i− 1) < u ≤ F (i), with F (i) :=
∑i

j=1 w
j.

Definition 4. (Mean partition order) Suppose that u1:N ∈ RN . A permutation $ :
[N ] → [N ] is a mean partition order for u1:N , if the re-indexed vector ui$ := u$(i) sat-
isfies u1

$, . . . , u
m
$ ≤ ū and um+1

$ , . . . , uN$ > ū for some m ∈ [N ], with ū denoting the mean
of the vector u.

Definition 5. (Systematic resampling with mean partition). Let F−1
$ denote the generalised

inverse distribution function corresponding to the re-indexed weights w1:N
$ , where $ is a

mean partition order as in Definition 4. Set A$(i) := $(F−1
$ (Ǔ i)), where Ǔ1:N are defined

as in Definition 3.

Algorithms 5 and 6 describe the conditional variants of killing resampling and systematic
resampling with mean partition, respectively.

Lemma 6. The following define valid conditional resamplings (Definition 1):

(i) conditional killing ρ
(i,k)
kill ( · | g(1:N)) of Algorithm 5, and

(ii) conditional systematic resampling with mean partition ρ
(i,k)
syst of Algorithm 6.

Proof of Lemma 6 is given in Appendix A.
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Algorithm 5 Conditional killing resampling ρ
(i,k)
kill ( · | g(1:N)).

1: Draw Ā(1:N) ∼ ρkill( · | g(1:N)).

2: Draw J ∈ [N ] such that P(J = j) = h(j | i) :=

 1
N

(
1 +

∑
` 6=i g

(`)

g∗

)
, j = i

1
N

(
1− g(j)

g∗

)
, j 6= i.

3: Set S := JJ − kKN , where J`KN := 1 + (`− 1 mod N).

4: Set Ā(Jk+SKN ) ← i.
5: output A(1:N) where A(j) = Ā(Jj+SKN )

Algorithm 6 Conditional systematic resampling with mean partition ρ
(i,k)
syst ( · | g(1:N)).

1: For j ∈ [N ], define W j :=
g(j)∑N
i=1 g

(i)
and U j :=

j − 1 + U

N
, where U ∼ U(0, 1).

2: Set r = NW i − bNW ic and p =
r(bNW ic+ 1)

NW i
.

3: With probability p, draw Ū ∼ U(0, r) and set N i = bNW ic+ 1; otherwise draw Ū ∼ U(r, 1)
and set N i = bNW ic.

4: Set $ ←MeanPartitionOrder(W 1:N ) . Algorithm 12 in Appendix E
5: Set s = $−1(i) and $̃ = σ1−s($), so that $̃(1) = $(s) = i.

6: Draw Ā$̃(1:N) = $̃(F−1
$̃ (U [N ])).

7: Draw C ∼ U([N ]) and set Aj = Āσk−C(j), for j ∈ [N ].
8: output A1:N .

6. The conditional particle filter with bridge backward sampling

The backward/ancestor sampling CPF [33, 25] often has impressive performance even
with large T [23]. The selection probabilities in the backward sampling step (6) include

the transition density Mk+1(X
(Bk+1)
k+1 | X(i)

k ). When Mk+1 is slowly mixing, this density is

typically very small for all i except for the ancestor i = A
(Bk+1)
k , and therefore the backward

sampling step reduces to ancestor tracing.
We discuss next the conditional particle filter with bridge backward sampling (CPF-BBS),

which is a generalisation of CPF with backward sampling (CPF-BS) [33] suitable for slowly
mixing Mk. The backward sampling step is replaced by a ‘bridging‘ procedure which spans
over multiple time steps, and requires tractable dynamics {Mk}, in the following sense:

Assumption 7. Denote M`:u(x`:u) :=
∏u

k=`+1 Mk(xk | xk−1) for any 2 ≤ ` < u ≤ T . Then,
we are able to simulate from and evaluate the density of the conditional distribution of x`
given x`−1 and xu:

M̄`(x` | x`−1, xu) :=

∫
M`−1:u(x`−1:u)dx`+1:u−1

Mu|`−1(xu | x`−1)
.

We further assume that we are able to evaluate the conditional density of xu given x`:

Mu|`(xu | x`) :=

∫
M`:u(x`, z`+1:u−1, xu)dz`+1:u−1.

Algorithm 7 gives the pseudocode of the CPF-BBS algorithm.
The first step (line 1) invokes the forward CPF (Algorithm 3). To facilitate the bridging

procedure (line 5) that replaces the usual backward sampling step in CPF-BS, a fixed
‘blocking sequence’ 1 = T1 < · · · < TL = T is utilised that gives rise to the blocks
(Ti−1, Ti), i = 2, . . . , L, where Ti−1 and Ti are referred to as the block lower and upper
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Algorithm 7 CPF-BBS(X∗1:T , B1:T ;T1:L)

1: (X1:T , A1:T−1, B̃T )← CPF(X∗1:T , B1:T ) and set X̃∗T ← X
(B̃T )
T

2: for k = L,L− 1, . . . , 2 do
3: `← Tk−1; u← Tk; B

∗
u ← B̃u.

4: B∗`:u−1 ← AncestorTrace(A`:u−1, B
∗
u)

5: (X̃∗`:u−1, B̃`:u−1)← BridgeCPF(X`, B
∗
`:u−1, X

(B∗`+1:u)

`+1:u )
6: end for
7: output (X̃∗1:T , B̃1:T )

boundaries, respectively. Algorithm 8 is invoked (line 5) to attempt to change the ancestor

of state X
(B∗u)
u at time l from B∗l to a different particle from the pool X l. Success of this

step hinges on Algorithm 8 being able to generate particles that could equally well explain

the future state X
(B∗u)
u being conditioned on (see line 8 of Algorithm 8), for which the condi-

tional densities of Assumption 7 are needed in its forward simulation procedure (lines 1–7).
The new ancestor from the pool X l is then found by ancestral tracing (line 9). Success in
this step relies on an efficient resampling strategy (line 3) to avoid particle degeneracy so
that many particles from X l survive to line 8. Clearly the choice of the blocking sequence
is also important and for this a practical design choice procedure is devised in Section 7.1.

Algorithm 8 BridgeCPF(x`, b
∗
`:u−1, x

∗
`+1:u)

1: W
(1:N)
` ←Mu|`(x

∗
u | x`)

1
u−` ; X̃` ← x`

2: for v = `+ 1 : u− 1 do

3: Ã
(1:N)
v−1 ← r(b∗v−1,b

∗
v)
(
·
∣∣ Gv−1(X̃

(1:N)
v−1 )W

(1:N)
v−1

)
4: Draw X̃

(i)
v ∼ M̄v( · | X̃

(Ã
(i)
v−1)

v−1 , X̃∗u) for i 6= b∗v and set X̃
(b∗v)
v = x∗v

5: Set X̃
(i)
v ← (X

(Ã
(i)
v−1)

v−1 , X̃
(i)
v ) for i ∈ [N ].

6: W
(1:N)
v ←W

(Ã
(1:N)
v−1 )

v−1
7: end for

8: Draw B̃u−1 ∼ Categ(ω̃
(1:N)
u−1 ) where ω̃

(j)
u−1 = Gu−1(X̃

(j)
u−1)Gu(X̃

(j)
u−1, x

∗
u)W

(j)
u−1

9: B̃`:u−2 ← AncestorTrace(Ã`:u−2, B̃u−1)

10: output
(
(x

(B̃`)
` , X̃

(B̃`+1:u−1)
`+1:u−1 ), B̃`:u−1

)
We record the following consistency result, ensuring the CPF-BBS is valid, whose proof

is given in Appendix B:

Theorem 8. Consider Algorithm 7 as a Markov update (X∗1:T , B1:T )→ (X̃1:T , B̃1:T ). Then,
it leaves π × U([N ]T ) invariant.

With dense blocking sequence T1:T = 1:T , the bridging CPF and its tracing (lines 2–7
and 9 of Algorithm 8, respectively) are eliminated, and therefore the CPF-BBS simplifies
to the backward sampling CPF (CPF-BS) of [33]. This means that the CPF-BBS can be
viewed as a true generalisation of CPF-BS for arbitrary blockings.

The other extreme case, that is, the trivial blocking sequence T1 = 1, T2 = T leads
to running a CPF and then another CPF with same initial particles and targeting the
conditional distribution π(x1:T−1 | X̃∗T ) (cf. Lemma 12). This may not be practically useful,
but can give insight about what the ‘bridge CPF’ is about.

We conclude this section with two remarks about methods related to Algorithm 7.
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(i) If we modify the algorithm by replacing BridgeCPF by the following algorithm:

1: Set X̃
(B∗` )

k = X
(B∗k)

k for k = `:(u− 1).

2: For i 6= B∗` , set X̃
(i)
` = X

(i)
` and X̃

(i)
k ∼ M̄v( · | X̃(i)

k−1, X
(B∗u)
u ) for k = (`+ 1):(u− 1).

3: Choose X̃
(i)
`:u−1 with probability proportional to Mu|`(X̃

∗
u | X̃

(i)
` )
∏u−1

v=` Gv(X̃
(i)
v ),

then we get a CPF version of the extended importance sampling for particle filters
suggested in [13].

(ii) Algorithm 7 has similarities with the blocked particle Gibbs (or blocked CPF) of [29]
but differs in two crucial points:
• We suggest a block-wide ‘lookahead’ which is possible to implement thanks to

Assumption 7, instead of using a modified potential only at the last time instant.
• The block update is not conditioned on a single start point, but all particles which

were generated by the ‘forward’ CPF. (Algorithm 3).
While these differences may seem technical, they can have substantial effect on the
efficiency of the method. We believe that CPF-BBS often leads to more efficient
algorithm in the same computational complexity, but note that the blocked particle
Gibbs is directly parallelisable unlike the CPF-BBS.

Finally, we note that the reverse update order of the blocks occurs since a block’s update
depends on the value at the lower boundary of the subsequent block. Although not pursued
here, it is possible that a forward only implementation (following [25]) could be devised to
achieve a similarly better mixing CPF algorithm.

7. Blocking sequence selection

The CPF-BBS (Algorithm 7) is valid with any choice of the blocking sequence T1:L.
However, its choice affects simulation efficiency, that is, the mixing of the Markov chain. In
this section, we discuss a computationally inexpensive method that can be used in practice to
determine a suitable blocking sequence prior to running the CPF-BBS in order to facilitate
efficient mixing.

We begin in Section 7.1 by discussing a proxy for the integrated autocorrelation time
(IACT) of the Markov chain output by the CPF-BBS. Then, Section 7.2 details an estimator
we have developed for the proxy. Finally, Section 7.3 describes a practical algorithm for
blocking sequence selection that is based on the estimator of Section 7.2. We will study the
methods presented in this section empirically in Section 9.

7.1. The probability of lower boundary updates (PLU). A theoretically attractive
candidate strategy for blocking sequence selection is monitoring the IACT for variables of
interest, based on the output of the CPF-BBS. Efficient inference could then be obtained
by choosing the blocking sequence that minimises the IACT. However, this approach is
typically computationally demanding or even infeasible, since the estimation of the IACT
is notoriously difficult and often requires extensive simulation of Markov chains.

For these reasons, we base the selection of the blocking sequence on a proxy for IACT
that is easier to work with. We call the proxy the ‘probability of lower boundary updates’
(PLU), and its definition for the block (`, u), using the notation of Algorithm 8, is:

(8) PLU(`, u) := P(X
(B̃`)
` 6= X

(b∗` )

` ).

In other words, PLU(`, u) measures the probability that the bridge CPF (Algorithm 8) on
block (`, u) updates the value at the block lower boundary `. Intuitively, higher values of
PLU should be associated with lower IACT, and our experiments in Section 9 support this.
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7.2. Approximate estimator for the PLU. Even though PLU(`, u) is much easier to
estimate than IACT, it still requires iterating the CPF-BBS for each candidate blocking,
which is computationally demanding. We have developed an estimator for PLU(`, u) which

avoids this, and is based on a single ’stationary’ CPF state (the generated particles X
(1:N
1:T

and reference indices B1:T ), which is used for any block boundaries `, u. The practical
algorithm postponed to Section 7.3 will be based on this idea, but assumes further that
such a stationary CPF state can be well approximated by an independent particle filter.

The estimator from a single CPF state is presented in (12) below and is based on two
‘asymptotic’ characterisations for PLU, for small and large blocksizes, respectively. The

idea behind the characterisations is that the event X
(B̃`)
` 6= X

(b∗` )

` occurs when a trajectory
traced back from the generated particle tree in the bridge CPF has a different value at the
block lower boundary than the reference.

Consider first the case of a small blocksize, that is, u − ` ≈ 1. In this case, PLU is
approximately characterised by:

(9) PLUM(`, u) := 1−
Mu|`(X

∗
u | X∗` )∑N

j=1 Mu|`(X∗u | X
(j)
` )

,

where X∗` := X
(B`)
` and X∗u := X

(Bu)
u refer to the `th and uth value of a reference trajectory.

The rationale for (9) comes from CPF-BS being a special case of the CPF-BBS for the
dense blocking with unit blocksizes. Letting bt and bt+1 denote the indices of the current
reference, the probability of choosing bt in backward sampling [33] is given by:

P(Bt = bt | Bt+1 = bt+1) ∝ w
(bt)
t Mt+1(X

(bt+1)
t+1 | X(bt)

t )Gt+1(X
(bt)
t , X

(bt+1)
t+1 ).

Here, under the weak potential setting with approximately constant potentials, the right

hand side approximately reduces to Mu|`(X
(bu)
u | X(b`)

` ) since ` = t, u = t + 1 with a unit
blocksize. The probability of choosing a non-reference is therefore approximately given by
(9).

On the other hand, if the blocksize is large, PLU(`, u) is approximately characterised by:

(10) PLUG(`, u) :=

(
1− 1

N

)
u−1∏
k=`

(
1− pkN

(N − 1)2

)
,

where the quantity pk equals the probability that a resampling event occurs, divided by N .

In the case of systematic resampling with mean partitioned weights W
(1:N)
k , (see Appendix

A, Lemma 28 of [5]) and the weak potential setting, pk may be calculated as follows (for

normalised W
(1:N)
k ):

(11) pk =
1

2

N∑
i=1

∣∣∣W (i)
k −

1

N

∣∣∣.
The justification of (10) comes from a calculation detailed in Appendix F, which shows
that PLUG(`, u) approximately equals the expected proportion of particles whose ancestor
at time ` is not the reference after an ‘artificial’ conditional particle system has evolved
for u − ` time steps from time `. Therefore, PLUG(`, u) maybe loosely interpreted as
approximating the probability of choosing nonreference at time `, when the ancestry of a
particle chosen uniformly at time u is traced back until time `.
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Our estimator for PLU(`, u) is constructed by ‘interpolating’ (9) and (10) such that

(12) P̂LU(`, u) := PLUG(`, u)PLUM(`, u)

(
1− 1

N

)−1

,

where the scaling is added so that the estimator approximately reduces to (9) and (10) for
short and long blocks, respectively, in the weak potential setting.

The estimator in (12) was derived assuming an access to CPF state with N particles. It

is also possible to estimate the P̂LU(`, u) from a CPF (or particle filter) state which has
a different number of particles N0 (which is often useful to take ‘large’ in practice so that
N0 � N). In this case, we can estimate PLUG and PLUM as follows, and then use (12)
with the desired N in the scaling.

To estimate PLUG, we simply compute pk using (11) from the N0 particles and substitute
it directly to (10) with the desired N < N0. For PLUM we use the alternative estimator of
the form

(13) PLUM(`, u) = 1− c(`, u)

c(`, u) +N − 1
,

which follows by assuming that

(14) Mu|`(X
∗
u | X∗` ) ≈ c(`, u)M

(T )
u|` ,

where

(15) M
(T )
u|` =

1

N0 − 1

∑
j 6=B`

Mu|`(X
∗
u | X

(j)
` ).

In other words, the block transition density for the reference is assumed to be approximately
equal to a constant c(`, u) times a ‘typical’ value of the block transition densities for particles
not including the reference. The estimator (13) may be derived by appropriate substitution
of (14) and (15) into (9).

7.3. Algorithm for blocking sequence selection. In this section we describe a practical
method based on (12) to choose the blocking sequence. Algorithm 9 describes a method

that uses (12) to evaluate S candidate blocking sequences (T
(s)

1:L(s))s=1,2,...,S in the context of
the FK model (M1:T , G1:T ). The additional parameters N and n stand for the number of

Algorithm 9 EvaluateBlockingCandidates({T (1)

1:L(1) , . . . , T
(S)

1:L(S)}, M1:T , G1:T , N , n)

1: for j = 1, . . . , n do
2: X1:T , A1:T−1,W 1:T ← PF(ρsyst,M1:T , G1:T , N)

3: Draw BT ∼ Categ(W
(1:N)
T ); B1:T−1 ← AncestorTrace(A

(1:N)
1:T−1, BT )

4: φPLU[:, :, j]← EstimatePLU({T (1)

1:L(1) , . . . , T
(S)

1:L(S)}, X1:T ,W 1:T−1, B1:T )
5: end for
6: for s = 1, . . . , S do
7: Set φ̄PLU[i, s] = Mean(φPLU[i, s, :]) for i = 1, . . . , L(s) − 1.
8: end for
9: return φ̄PLU

particles and number of iterations, which are tuning parameters of the blocking candidate
evaluation. Here, we use indexing notation where A[i, j, k] stands for the element in row i,
column j and slice k in an array A. Furthermore, the columns of arrays need not have the
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same number of rows, and indexing operations with ‘:’ mean ‘all elements’ in the particular
dimension.

One iteration of the main loop in Algorithm 9 consists of running the standard particle
filter (Algorithm 1) with mean partitioned systematic resampling followed by a traceback
using ancestor tracing (Algorithm 4) in lines 2–3. Then, given the output of the particle
filter, we estimate PLU using Algorithm 10 (see below) on line 4 for each block (`, u) within
each blocking sequence. The computation is a straightforward application of Equations (9)–
(12) using the particle filtering results. Finally, lines 6–8 summarise the estimates of PLU
by taking their mean over the n replicate runs of the particle filter. The element φ̄PLU[i, s]
in the output of Algorithm 9 describes in terms of PLU, how efficient the ith block in the
blocking sequence s was.

Algorithm 10 EstimatePLU({T (1)

1:L(1) , . . . , T
(S)

1:L(S)}, X1:T ,W 1:T−1, B1:T )

1: Compute pk for k = 1, . . . , T − 1 using (11).
2: for s = 1, . . . , S do
3: for i = 1, . . . , L(s) − 1 do

4: Set ` = T
(s)
i ; u = T

(s)
i+1; X∗` = X

(B`)
` ; X∗u = X

(Bu)
u

5: Compute PLUM (`, u) using (9) and PLUG(`, u) using (10)

6: Set φPLU[i, s] = P̂LU(`, u) given in (12)
7: end for
8: end for
9: return φPLU

Algorithm 9 may in principle be used to evaluate any blocking sequence, but we suggest to
use it with Algorithm 13 given in Appendix E.2 that constructs blocking sequences where
the blocksizes Tk+1 − Tk are powers of two. More precisely, if T = 2p

∗
+ 1 for some p∗,

Algorithm 13 returns blocking sequences T
(i)

1:L(i) for i = 1, 2, . . . , p∗+ 1, where the blocksizes

of the ith sequence are all constant 2i−1. If T 6= 2p
∗

+ 1, similar sequences are returned, but
with a possible ‘residual block’ of length < 2i−1 as the last block in each sequence i.

Finally, Algorithm 11 describes a method based on Algorithms 9 and 13 for choosing a
single blocking sequence to be used with the CPF-BBS and a given FK model. In summary,
Algorithm 11 first constructs the candidate blocking sequences using Algorithm 13. Then,
Algorithm 9 is run to obtain φ̄PLU given these sequences. The data φ̄PLU is then reinterpreted
as a set of elements DPLU, whose element (`, b, p) describes the estimated PLU, p, of the
block with lower boundary ` and upper boundary ` + b. Finally, DPLU is processed such
that blocking sequences with largest blocksizes are considered first, and at each block lower
boundary, the best performing blocksize in terms of the estimated PLU is selected to the
output blocking sequence.

8. Linear diffusions with path integral weights

We discuss next a class of continuous-time models and their discretisations, for which the
methods of Section 6–7 are particularly useful. We will consider instances of these models
also in the experiments (Section 9).

We start with the continuous-time model on a time interval [0, τ ]. The prior dynamics
M correspond to the solution of a linear stochastic differential equation (SDE):

(16) dXt = FXtdt+ KdBt, X0 ∼ N(µinit,Σinit)
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Algorithm 11 ChooseBlocking(M1:T , G1:T , N, n)

1: {T (1)

1:L(1) , . . . , T
(p)

1:L(p)} ← DyadicCandidateBlockings(T )

2: φ̄PLU ← EvaluateBlockingCandidates({T (1)

1:L(1) , . . . , T
(p)

1:L(p)},M1:T , G1:T , N, n)

3: Compute DPLU, a container with elements of the form (`, b, p) based on φ̄PLU.
4: Initialise D, an empty container for elements of the form (`, b).
5: for s = p, p− 1, . . . , 1 do

6: Get lower boundaries and blocksizes (`k, bk) for k = 1, . . . , L(s) − 1 from T
(s)

1:L(s) .

7: for k = 1, . . . , L(s) − 1 do

8: Denote by D
(`k)
PLU all elements of DPLU whose block lower boundary equals `k.

9: if maximal p is reached when blocksize equals bk among elements of D
(`k)
PLU then

10: Add (`k, bk) to D.
11: Remove all elements of DPLU with ` such that `k ≤ ` < `k + bk.
12: end if
13: end for
14: end for
15: return Blocking sequence constructed from elements of D.

where Bt is a d-dimensional Brownian motion and F and K are matrices of appropri-
ate dimension, and µinit and Σinit are the mean and covariance of the initial distribu-
tion, respectively. The law of interest is M weighted by non-negative weights of the
form w(x[0,τ ]) = exp(−

∫ τ
0
V (xu)du), where V : X → [0,∞] are ‘potential’ functions that

‘penalise’ the trajectories of M. That is, the distribution of interest is proportional to
M(dx[0,τ ])w(x[0,τ ]).

In practice, we assume a time discretisation of [0, τ ], 0 = t1 < t2 < · · · < tT = τ ,
which leads to the discrete-time FK-model (1). The dynamics M1:T in (1) correspond to
the marginals of X[0,τ ] ∼M, that is:

(17)
M1 = Law(Xt1) = N(µinit,Σinit)

Mk( · | x) = Law(Xtk | Xtk−1
= x) for 2 ≤ k ≤ T,

which are linear-Gaussian. Appendix C details how Mk can be derived from the parameters
of the SDE, and also how their necessary conditional distributions required by Assumption
7 can be determined. The potential functions G1:T in (1) stem from approximating the path
integral by a Riemann sum:

(18) w(x[0,τ ]) =
T−1∏
k=1

exp

(
−
∫ tk+1

tk

V (xu)du

)
≈

T−1∏
k=1

exp

(
− |∆k|V (xtk)

)
,

where ∆k = [tk, tk+1) and |∆k| = tk+1 − tk. This leads to potentials of the following form:

(19)
G1(xt1) = exp

(
− (t2 − t1)V (xt1)

)
Gk(xtk−1

, xtk) = exp
(
− (tk+1 − tk)V (xtk)

)
for 2 ≤ k ≤ T − 1, and GT ≡ 1.

Remark 9. The scenario detailed above can be generalised and/or modified in a number of
ways. Indeed, the potentials Gk can also include purely discrete-time elements, as in our
Cox process experiment (Section 9.2). The law M, or equivalently Mk, can also correspond
to the law of linear SDE conditioned on a number of linear-Gaussian observations. In
such a case, the distributions Mk are still linear-Gaussian, and we can derive the required
conditional laws. This can be useful in many practical settings, and indeed was essential
for our movement model example (Section 9.3).
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9. Experiments

9.1. Comparing conditional resamplings with Algorithm 7. We first investigate the
performance of the CPF-BBS (Algorithm 7) using the conditional resamplings ρkill and ρsyst.
For reference, we also study conditional multinomial resampling with conditioning indices i

and k, ρ
(i,k)
mult. This conditional resampling may be simply implemented by first drawing the

ancestor indices A(1:N) ∼ Categ(w(1:N)) as in standard multinomial resampling, and then
enforcing the condition A(k) = i (since A(1:N) are independent).

In this section, we study a correlated random walk incorporating a path integral type
potential function, hereafter called the CTCRW-P model. The dynamics of the model
Xt = (Vt Lt)

T are driven by the SDE

(20)
dVt = −βvVtdt+ σdBt

dLt = [−βxLt + Vt]dt,

where Bt is the standard Brownian motion, σ, βv and βx are parameters, and (Lt)t≥0 and
(Vt)t≥0 represent location and velocity processes, respectively. The FK representation (17)
& (19) of CTCRW-P is given by M1 := N(0, S), Mk( · | x) := N(Ttk−1,tkx,Qtk−1,tk), for 2 ≤
k ≤ T and V (Xt) := L2

t/(2η
2). Here, η is a parameter, and Ttk−1,tk , Qtk−1,tk and S are

the transition matrix, conditional covariance matrix and stationary covariance matrix, re-
spectively, arising in the solution of the linear SDE (20). Their expressions are given in
Appendix D.1, in Equations (44), (45)–(46) and (47)–(48), respectively.

We ran the CPF-BBS targetting CTCRW-P with the configurations N ∈ {2, 4, 8, 16, 32},
blocktime ∈ {2−7, 2−6, . . . 26} and r ∈ {ρsyst, ρkill, ρmult}. Here, blocktime parameterises
the blocking sequence in terms of the ‘physical time’ of the discretised SDE. The blocksizes
Tk+1−Tk in Algorithm 7, may simply be obtained by dividing blocktime by |∆k| (see below).
For each run of the CPF-BBS, we used 21000 iterations with the first 1000 discarded as
burnin.

We set τ = 26, |∆k| = 2−7, η = 1.0 and σ ∈ {0.125, 0.5, 2.0}, which controls the variability
in the velocity process. Each time, given σ, we solved for the parameters βx and βv such
that the stationary covariance matrix (47) had unit variances on the diagonal. This was
done to ensure that the variability of the process remains similar as σ changes.

The simulations were run with all combinations of the algorithm and model configurations
described above. We estimated PLU (discussed in Section 7.1) by tallying iterations where

x
(B̃`)
` 6= x

(b∗` )

` and dividing by their total, and estimated the IACT for L0.0 using batch
means [17]. Figure 1 summarises the results of this experiment. The mean PLU shown in
the top row is computed over the number of blocks (given here by τ/blocktime). The figure
shows systematic and killing resampling performing better than multinomial resampling,
which can be seen from the lower IACTs and higher mean PLU. The performance with
multinomial resampling is poor here, as expected, since the model has weak potentials
with |∆k| = 2−7. In contrast, killing and systematic resampling behave nearly uniformly,
with systematic resampling performing slightly better. This finding aligns well with the
theoretical and empirical findings in [5] for the particle filter in a similar context of path
integral potentials and |∆k| close to 0.

The CPF-BBS coincides with the CPF-BS when blocktime = |∆k|, which corresponds
to the first value on the horizontal axis. Even though increasing N naturally improves
the performance of the CPF-BS too, the CPF-BBS has better simulation efficiency with an
appropriately chosen blocktime, for any N in the simulation. Note that the estimation of the
IACT is quite noisy here, since the mixing is poor especially with multinomial resampling
and with poorly chosen blocking sequences induced by the value of blocktime. In contrast,
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Figure 1. The estimated mean PLUs and the logarithm of IACT with varying
σ for the location state variable at time 0.0 in the CTCRW-P model. The value
of |∆k| was set to 2−7. The performance of CPF-BS is seen at the far left, with
blocktime = 2−7.

the computed mean PLU appears less noisy, and in the case of systematic and killing
resampling the best blocktime in terms of IACT is identified.

We also investigated the relationship of PLU with IACT32.0, and the findings were similar.
A further experiment fixing σ = 1.0 and varying η ∈ {0.125, 0.5, 2.0} instead also resulted
in similar findings (see supplementary Figure 8).

9.2. Choice of the blocking sequence. As already illustrated empirically with Figure 1
and discussed in Section 7, the choice of the blocking sequence is a tuning parameter affect-
ing the sampling efficiency of the CPF-BBS. Figure 2 exemplifies this further by showing
another look at the results obtained from the experiment in the previous section. Here,
the logarithm of the inverse relative efficiency (IRE) is plotted at each timepoint when
systematic resampling was used. The IRE is obtained by scaling the IACT by the number
of particles, and measures the asymptotic efficiencies of estimators with varying compu-
tational costs [18]. The panes from left to right show the results with varying blocktime
and represent a range of algorithms from the CPF-BS (blocktime = 2−7) to an algorithm
similar to running the CPF twice (blocktime = 26). The optimal algorithms use only 4
particles, motivating the search for an appropriate blocktime (or blocking sequence). By
visual inspection, it appears the optimal blocktimes here are around 21 − 22 for σ = 2.0,
22− 23 for σ = 0.5 and 23− 24 for σ = 0.125. Here, a decrease in the value of σ results in a
larger optimal blocktime, since decreasing σ leads to increased ‘stiffness’ in the dynamics of
M1:T . The optimal blocktimes represent balances where the blocks are large enough so that
bridging between the lower and upper boundaries is sufficiently likely, and small enough so
that degeneracy of the particle tree within the block is avoided.

Next, we investigate how well the estimates of φ̄PLU computed using Algorithm 9 coincide
with PLU. We studied the relationship of φ̄PLU and PLU with respect to blocktime (that is,
with blocking sequences constructed with constant blocksizes) using the CTCRW-P model
with N ∈ {21, 22, . . . , 210} and the parameter σ ∈ {0.03125, 0.125, 0.5, 2, 4}. The rest of
the model configuration was as in Section 9.1. To estimate PLU, we ran 1100 iterations of
Algorithm 7 with the first 100 discarded burnin, monitoring for each block the proportion of

iterations where x
(B̃`)
` 6= x

(b∗` )

` . In Algorithm 9, we used n = 50 runs of the particle filter and
N as reported above. Figure 3 visualises the results for N ≤ 27 (the results for N > 27 yield
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Figure 2. The logarithms of inverse relative efficiency obtained at each timepoint
with conditional systematic resampling in the experiment discussed in Section 9.1.
The columns show the results with varying blocktime in Algorithm 7.

Figure 3. The PLU (orange) and φ̄PLU (light blue) for each block induced by the
blocktime on the horizontal axis for the CTCRW-P. The points are slightly jittered
for visualisation.

no further conclusions). The estimated PLU and φ̄PLU appear to be in close agreement,
with only slight discrepancies seen for large blocktimes. This finding motivates the use of
φ̄PLU as a maximisation criterion for finding a blocksize that likely results in a high overall
PLU as well.

Next, we turned to study Algorithm 11 for selecting the blocking sequence based on φ̄PLU.
We investigated this with a model that slightly differs from the form (19), and is a Cox
process model incorporating a reflected Brownian motion (CP-RBM) first appearing in [5]
and briefly detailed (with minor changes) below.

The CP-RBM model assumes an inhomogeneous Poisson process (IPP) in time, generat-
ing observation sequences τ̃ . The intensity function of the IPP is piecewise constant, and
given by

(21) λ(t) = β exp (−αXtk), for t ∈ [tk, tk+1).
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The process (Xtk)k=1,...,T is distributed such that

(22) Xt1 ∼ N (r)(0, 1, a, b), and Xtk | Xtk−1
= xtk−1

∼ N (r)(xtk−1
, |∆k|σ2, a, b),

where N (r)(µ, σ2, a, b) is a distribution we call the ‘reflected normal distribution’, with pa-
rameters µ, σ and bounds a and b. To simulate from N (r)(µ, σ2, a, b), one first draws
Z ∼ N(µ, σ2) and then sets X = reflect(Z, a, b), where ‘reflect’ is an operation that recur-
sively reflects (that is, mirrors over a boundary) Z with respect to a (if Z < a) or b (if
Z > b) until a value within (a, b) is obtained and outputted.

To apply the CPF-BBS with the CP-RBM, we use the following FK representation that
differs from that of [5] such that the reflection of the process X is accounted for in the
potential functions:

(23)

M1 := N(0, 1), and Mk( · | x) := N(x, |∆k−1|σ2), for 2 ≤ k ≤ T

G1(x) :=
N (r)(x; 0, 1, a, b) exp (−|∆1|β exp (−αx))

N(x; 0, 1)
(β exp (−αx))1(∃i s.t τ̃i∈∆1)

Gk(x, y) :=
N (r)(y;x, |∆k−1|σ2, a, b) exp (−|∆k|β exp (−αy))

N(y;x, |∆k−1|σ2)
×

(β exp (−αy))1(∃i s.t τ̃i∈∆k), for 2 ≤ k ≤ T

where |∆T | = 0. This FK model is valid for the inference of the CP-RBM in the situation
that the time discretisation is made fine enough such that each ∆k contains at most one
observation. The density N (r)(x;µ, σ2, a, b) contains an infinite sum, which we truncate to
the first ten terms; the formula is given in Appendix D.2.

We first drew a realisation of the process X using (22) with |∆k| = 2−6, σ = 0.3, a = 0,
b = 3 and time interval length τ = 28. Then, conditional on this realisation, we simulated
one dataset, τ̃ , from the IPP defined by (21) with α = 1 and β = 0.5. Finally, we refined
the time discretisation such that (23) could be used.

For the blocking sequences, we considered the sequences induced by the constant block-
times {2−6, 2−5, . . . , 25} and a (nonhomogeneous) blocking sequence constructed using Al-
gorithm 11 with n = 50 and N = 8. Here, a minor change to the choice of candidate
blockings (that is, Algorithm 13) was done: instead of constructing them using blocksizes
(integers) in powers of two as discussed in Section 7, we constructed them using the power
of two blocktimes 2−6 − 25 as this is more natural for a continuous-time model. For each
blocking sequence, we then applied the CPF-BBS with N = 8 for 26000 iterations with the
first 1000 discarded as burnin.

Figure 4 summarises the results of the experiment. The top pane shows the true simulated
state, the observations τ̃ and the 50% and 95% credible intervals of the distributions Xt | τ̃
for t ∈ t1, t2, . . . , tT . The middle pane compares the IACTs obtained from the samples of
said distributions with the different blocking strategies; the nonhomogeneous blocking is
highlighted in red. The IACTs for the blocking sequences constructed for blocktimes > 23

were greater than for the depicted blocking strategies. Finally, the bottom pane visualises
the nonhomogeneous blocking sequence obtained using Algorithm 11.

In terms of the IACT the blocking sequence returned by Algorithm 11 appears to perform
similarly to the best choices for the blocking sequences constructed with constant block-
times, indicating that the method here provides adequate performance without trial runs of
the CPF-BBS. The bottom pane shows how the blocktime of the nonhomogeneous blocking
switches between 1/2, 1 and 2.

9.3. Movement modelling with terrain preference. We conclude with an application
of the CPF-BBS to a movement modelling scenario. Here, we are interested in modelling
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Figure 4. Top: the observations τ̃ , the true simulated state and the 50% and
95% credible intervals for Xt | τ̃ (shaded) of the CP-RBM model. Middle: the
IACTs with homogeneous blocking with H(blocktime) (shades of gray), and with
the nonhomogeneous blocking NH (red). Bottom: the nonhomogeneous blocking
from Algorithm 11 using n = 50 and N = 8.

the movement of an object on a plane based on noisy observations and knowledge of terrain
in which the object moves. We assume that the object has a ‘preference’ for spending time
in certain types of terrain.

To model such a setting, we build on the continuous-time correlated random walk
(CTCRW) model developed for animal movement modelling based on telemetry data [21].
The dynamics of the CTCRW model arise from a special case of the SDE (20), obtained by
setting βx = 0 and denoting β := βv. Using this SDE independently in x and y dimensions

yields a 4-dimensional state Xt = (V
(x)
t , L

(x)
t , V

(y)
t , L

(y)
t )T and a movement model on the

plane, which we call the CTCRW SDE. The full CTCRW model also incorporates two-
dimensional location observations y = (yk)k=1,2,...,Ky observed at times (t̃k)k=1,2,...,Ky . Each

observation is related to the location state variables, Lt = (L
(x)
t , L

(y)
t )T , with yk = Lt̃k

+ εk,
where εk ∼ N(0, η2I2), where η is a standard deviation and I2 stands for the 2 × 2 iden-
tity matrix. We use the initial distribution Xt1 ∼ N((0, y11, 0, y12)T , diag(σ2

V , σ
2
L, σ

2
V , σ

2
L)),

where y11 and y12 are the first and second coordinates of the first observation, respectively,
σ2
V = σ2/(2β) (the stationary variance of the velocity component) and σ2

L is a parameter.
The details regarding the solution of the CTCRW SDE are given in Section D.3.

Our model, which we denote CTCRW-T (T standing for ‘terrain’) differs from the
CTCRW model of [21] by incorporating the effect of terrain. We use a discretisation of
the CTCRW SDE conditioned on the observations as the sequence of Mk’s in the FK rep-
resentation of the CTCRW-T. More specifically, we define

(24)
M1 = Law(Xt1 | Y = y),

Mk( · | x) = Law(Xtk | Xtk−1
= x, Y = y), for 2 ≤ k ≤ T,

where Xt stands for the state of the CTCRW model at time t and Y stands for all ob-
servations and y their realised values. The distributions in (24) are Gaussian, and their
computation can be carried out by very similar conditioning as discussed in Appendix C.

The CTCRW-T models terrain preference through its potential that is of the form (18)
with V (x) = − log (vi) when x is in terrain i. We call the values vi ∈ [0, 1], i = 1, . . . , KT ,
‘terrain coefficients’, which induce the potential values for each of the KT terrain types.
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Figure 5. Comparison of CTCRW (left) and CTCRW-T (right) with 250 simu-
lated location trajectories. The observations used by both models are shown with
crosses. The CTCRW-T also uses terrain, which includes lakes (black).

We apply the CTCRW-T model in a region of Finland containing lakes, plotted in the
background of Figure 5. The colors of the background map depict the value of V , with
black representing larger values, that is, lower potential. We define the terrain types based
on the Corine Land Cover classification [16] which classifies each 20 × 20 metre cell in
Finland to one of five classes. The terrain types and their associated terrain coefficients
(in parentheses) are ‘Artificial surfaces’ (0.2), ‘Agricultural areas’ (0.6), ‘Forests and semi-
natural areas’ (0.5), ‘Water bodies’ (0.0) and ‘Wetlands’ (0.5). The terrain coefficient of
‘Water bodies’ is set to zero, since we want to constrain the movement on land only.

With the potential map constructed this way, we set τ = 16 and handpicked 16 observed
locations in a clockwise pattern around the lakes, spacing the observation times equidis-
tantly in time. The observed locations appear as crosses in Figure 5. The CTCRW model
parameters β and σ were fit via maximum likelihood, and we set η = 50 and σL = 50.

We then applied the CPF-BBS with systematic resampling, N = 16 and blocktime = 1.0
for 11000 iterations, discarding the first 1000 as burnin. |∆k| was set to 2−7. The right pane
of Figure 5 shows 250 of the simulated location trajectories from the CTCRW-T model. In
comparison, the left pane shows trajectories simulated from the CTCRW model conditioned
on the observed locations, simulated using (24). We observe that the trajectories simulated
from the CTCRW-T model are influenced by the conditioning on the observations, while
avoiding water bodies, as desired.

We also tested the performance of the CPF-BBS with the blocking sequence obtained
using Algorithm 11 (using N = 512 and n = 25), as well as CPF-BS in this example. Here,
the number of particles for Algorithm 11 had to be set slightly higher to ensure that a suffi-
cient number of particles end up in regions of positive potential (due to the hard constraint
induced by ‘Water bodies’). Figure 6 compares the three algorithms by plotting the IACT

of the state variable L
(x)
t with respect to time. The plots for the other state variables were

similar. Clearly, the simulation efficiencies of both variants of the CPF-BBS are superior
here in comparison to the CPF-BS. Between the optimised blocking and constant blocking,
the finding is similar as with the CP-RBM model: the blocking optimisation via Algorithm
11 yields similar results as the ‘hand tuned’ constant blocking with blocktime = 1.0. The
supplementary material also includes an animation that visualises the values of all sampled
trajectories at each timepoint of the simulation, showing slower exploration of the target
distribution using the CPF-BS.
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Figure 6. The logarithmic IACT (top) of the state L
(x)
t in the CTCRW-T model

with |∆k| = 2−7 for CPF-BS and the CPF-BBS with blocktime 1.0 and the blocking
from Algorithm 11 (bottom).

We also experimented with the three algorithms using a higher value for |∆k|, a situation
where a greater discretisation error in the approximation (18) may be tolerated. We found

that when |∆k| was increased to 0.125, the resulting IACTs of L
(x)
t were similar between

the three algorithms (see Figure 7 in the supplementary material).

10. Discussion

The methods presented in this paper make inference more efficient (and feasible) for an im-
portant class of statistical models, which includes hidden Markov models (HMMs) involving
weakly informative observations and, in particular, time-discretisations of continuous-time
path integral models.

Our first contribution was presenting two new conditional resampling algorithms for CPFs
in such a context: the killing resampling ρkill, and the systematic resampling with mean par-
titioned weights ρsyst. Our empirical experiments with the developed resampling algorithms
revealed that ρsyst performs slightly better than ρkill, coinciding with the recent findings of
[5] for the standard particle filter in a similar context. Based on our findings, we recommend
to use ρsyst with the CPF in the weak potential regime.

Our main contribution is a new CPF, which we call the conditional particle filter with
bridge backward sampling (CPF-BBS), which may be regarded as a generalisation of the
celebrated CPF with backward sampling (CPF-BS) [33]. The key ingredient of the CPF-
BBS which avoids performance issues of the CPF-BS in the weak potentials and slowly
mixing context, is the bridging CPF step that updates the latent trajectory subject to a
blocking sequence that acts as a tuning parameter of the method. Since tuning the blocking
sequence by ‘trial and error’ is laborous and costly, we presented a computationally cheap
procedure for finding an appropriate blocking sequence. The procedure is based on a proxy
of the integrated autocorrelation time of the output Markov chain, the so-called probability
of lower boundary updates (PLU), which measures the probability that the bridge CPF
updates the value at the block lower boundary. We derived an estimator for PLU that we
suggest to use for blocking sequence tuning via Algorithm 11 that uses a small number
of trial runs of the standard particle filter with ancestor tracing to estimate PLU prior to
running the CPF-BBS.

The CPF-BBS is generally applicable, assuming that the conditional distributions Mu|`
and Mk|k−1,u related to the individual blocks (`, u) and the dynamics M1:T may be com-
puted. This may seem restrictive, but it is important to note that Mk need not necessarily
correspond to the model, but may be any ‘proposal’ distributions satisfying Assumption
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7. Careless choice of Mk might however result in informative potentials Gk and therefore
poor performance. The contrary is also possible: with suitably chosen Mk, the Gk can be
weakly informative, even if the HMM observations are informative. This can be achieved by
designing Mk by suitable ‘lookaheads’ [19], such as an approximate smoothing distribution
from a Laplace approximation [cf. 32, Section 8.1].

The experiments suggested that our estimator for PLU is in good agreement with the true
PLU. Algorithm 11, which finds an appropriate blocking automatically, showed promising
behaviour in our experiments, leading to performance similar to ‘hand tuning’ the blocking
sequence. Using Algorithm 11 is easy: it only requires the user to specify the number of
iterations and number particles used in the selection to obtain adequate performance ‘out
of the box’. In all of the examples we studied, we found 50 iterations to suffice for block
selection, but we presume that the number of particles has to be chosen in a model by
model basis.

The performance of the CPF-BBS in practice was promising: we found that the method
can provide a substantial performance improvement over CPF-BS in the weak potential
setting. This was particularly clear with our movement modelling experiment, which can
be of independent interest for certain applications.

We believe that PLU and the ideas in the estimator we derived for it can be of interest
in other contexts, too. In Section 7.2 we discussed the possibility of obtaining estimates for
PLU for N 6= N0, where N0 is the number of particles used for the necessary computations.

We found empirically (results not reported) that the agreement between PLU and P̂LU
remains similar as in Figure 3 if we use this alternative estimation procedure. This method
could potentially be elaborated to a heuristic for choosing the number of particles N for
the CPF-BBS. One potential way forward is to determine a ‘cutoff level’ for how large a
PLU is ‘large enough,’ and the smallest N reaching this level would be chosen. However,
further developments of these ideas are out of the scope of the present paper.

Finally, we note that in some applications relevant for the weakly informative context,
the initial distribution M1 can be diffuse (relative to the smoothing distribution) — even
an (improper) uniform measure. In such a case, the CPF and also the CPF-BBS will suffer
from poor mixing, but there are relatively direct extensions that are applicable also with
the CPF-BBS. Indeed, [15] discuss general state augmentations that can be useful, and a
straightforward implementation is often possible in terms of M1-reversible transitions [22].
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SUPPLEMENTARY MATERIAL

Appendix A. Validity of CPF with killing and systematic resampling

We start by stating an easy lemma, whose proof is immediate.

Lemma 10. For a valid conditional resampling scheme r(p,n)( · | g(1:N)) and its uncondi-
tional version r, it holds that:

(i) Er( · |g(1:N))

[∑N
i=1 1

(
A(i) = j

) ]
= N g(j)∑N

i=1 g
(i) for all j ∈ {1:N}, and

(ii) r(a(1:N) | g(1:N))1 (a(n) = p) = g(p)∑N
`=1 g

(`) r
(p,n)(a(1:N) | g(1:N)) for all a(i), n and p in

{1:N}.

In what follows, we denote M1(x1) =
∏N

i=1 M1(x
(i)
1 ) and Mk(xk | x

(a)
k−1) =

∏N
i=1Mk(x

(i)
k |

x
(a(i))
k−1 ).

Proof of Theorem 2. Assume that X∗1:T ∼ π and B1:T ∼ U({1:N}T ) independently. The
joint distribution of B1:T , the particles X1:T , and the ancestories A1:T−1 generated by the
CPF, may be written as

M1(x1)

ZNT

[ T∏
k=2

r(bk−1,bk)
(
ak−1 | Gk−1(xk−1)

)
Mk(xk | x

(ak−1)

k−1 )Gk−1(x
(bk−1)
k−1 )

]
GT (x

(bT )
T )

=
M1(x

(1:N)
1 )

Z

( T∏
k=1

1

N

N∑
`=1

Gk(x
(`)
k )

)
( T∏
k=2

1
(
a

(bk)
k−1 = bk−1

)
r(ak−1 | Gk−1(xk−1)

)
Mk(xk | x

(ak−1)

k−1 )

)
GT (x

(bT )
T )∑N

`=1GT (x
(`)
T )

,(25)
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by Lemma 10. Including the variables B̃1:T to (25) adds the following factor:

(26)

[ T∏
k=2

1
(
a

(b̃k)
k−1 = b̃k−1

)] GT (x
(b̃T )
T )∑N

`=1GT (x
(`)
T )

The joint distribution—product of (25) and (26)—is clearly symmetric with respect to

(b1:T , x
(b1:T )
1:T ) and (b̃1:T , x

(b̃1:T )
1:T ). �

Proof of Lemma 6 (i). Suppose that Ā(1:N) ∼ ρ( · | g(1:N)), where ρ is given in (7). We first
observe that ρ is unbiased:

(27) E

[
N∑
i=1

1
(
Ā(i) = j

)]
=
g(j)

g∗
+

N∑
i=1

(
1− g(i)

g∗

)
g(j)∑N
`=1 g

(`)
= N

g(j)∑N
`=1 g

(`)
.

Let S ∈ {1:N} be an independent uniformly distributed random variable, and consider
A(1:N) = Ā(σS(1:N)), where

σs(i) := Ji+ sKN , with JjKN := 1 + (j − 1 mod N)

is a cyclic permutation of 1:N . Then A(1:N) ∼ ρ̂( · | g(1:N), where

(28) ρ̂(a(1:N) | g(1:N)) :=
1

N

N∑
s=1

ρ(a(σs(1:N)) | g(1:N)),

which also clearly unbiased, and from (27), it follows that

(29) P(A(k) = j) =
1

N
E
[ N∑
i=1

1
(
Ā(i) = j

) ]
=

g(j)∑N
`=1 g

(`)
.

Next we derive the conditional distribution of A(−k) given A(k) = i. First, because A(k) =
Ā(σS(k)), we have

P
(
σS(k) = j | A(k) = i

)
=

P(σS(k) = j)P(Ā(j) = i)∑N
`=1 P (σS(k) = `)P

(
Ā(`) = i

) =

∑N
`=1 g

(`)

Ng(i)
P
(
Ā(j) = i

)
,

and P(Ā(j) = i) = g(i)

g∗
1 (j = i) +

(
1− g(j)

g∗

)
g(i)∑N
`=1 g

(`) , so a simple calculation yields

(30) P(σS(k) = j | A(k) = i) = h(j | i), where h(j | i) :=


1
N

(
1 +

∑
` 6=i g

(`)

g∗

)
, j = i

1
N

(
1− g(j)

g∗

)
, j 6= i.

Note that σS(k) = j is equivalent with S = Jj + (N − k)KN .
We conclude that A(1:N) ∼ ρ̂( · | g(1:N)) may be drawn by first drawing B from the

marginal distribution of A(k), that is, P(B = i) = g(i)/
∑N

`=1 g
(`), drawing J ∼ h( · | B),

setting S = JJ − kKN and Ā(σS(k)) = B and A(j) = Ā(σS(j)) for i ∈ {1:N}. �

Lemma 11. Suppose that $ is a permutation of [N ], and $∗ is a cyclic shift of $, that is,
$∗(i) = $(σs(i)) for some s ∈ [N ], and that

Ā1:N = $(F−1
$ (U1:N))

Ā1:N
∗ = $∗(F

−1
$∗ (U1:N)),

where U j =
j − 1 + U

N
with U ∼ U(0, 1).
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Then, it holds that A1:N and A1:N
∗ have the same distribution, where

Aj = ĀσC(j)

Aj∗ = ĀσC(j)
∗ ,

and C ∼ U([N ]) is a random shift offset.

Proof. Without loss of generality, we may consider the case s = 1 and $(i) = i, in which
case $∗(i) = σ1(i).

Define Ũ i := (U i − w1 mod 1), let j = arg mini Ũ
i, and let Ũ i

∗ = Ũσj(i). Observe
that Ũ1:N

∗ and U1:N have the same distribution, so the claim follows once we show that
Ā1:N = F−1(U1:N) and Ā1:N

∗ = σ1(F−1
σ1

(Ũ1:N
∗ )) are equal, up to a cyclic shift. Indeed, we

will see that for all i ∈ [N ] and 0 ≤ k ≤ N − 1:

Ā
σ−j(i)
∗ = σ1(F−1

σ1
(Ũ i)) = k + 1 ⇐⇒ Āi = k + 1.

Let us first assume k ≥ 1, then the expression on the left is equivalent to

Fσ1(k − 1) < Ũ i ≤ Fσ1(k) ⇐⇒ F (k) < Ũ i + w1 ≤ F (k + 1),

because Fσ1(`) = F (` + 1) − w1. Whenever U i − w1 ≥ 0, we have Ũ i + w1 = U i, and the
expression on the right simplifies to Āi = F−1(U i) = k + 1, as desired.

Suppose then that U i − w1 < 0, in which case Āi = F−1(U i) = 1. But then also
Ũ i = U i − w1 + 1 ∈ (1− w1, 1), which is equivalent to F−1

σ1
(Ũ i) = N . �

Proof of Lemma 6 (ii). Assume that $ is a permutation (such as the mean partition order).
Let I1:N = F−1

$̃ (U1:N), with

U i =
i− 1 + U

N
,

with U ∼ U(0, 1), that is, standard systematic resampling (Definition 3) with weights W 1:N
$̃ ,

where W j
$̃ = W $̃(j) and $̃(j) = $(σs−1(j)), with s = $−1(i).

Hence, $̃ satisfies

(31) $̃(1) = $(σs−1(1)) = $(s) = i.

Define Ā1:N such that
Āj = $̃(Ij).

Then, by Lemma 11, it holds that

Aj = ĀσC(j), for j ∈ [N ], with C ∼ U([N ]),

have the same distribution as the indices from systematic resampling with order $ that
have been shifted by σC . In particular, note that Definition 1 (iii) holds for the latter.

Consider then the count of indices equal to i:

N i = #{j : Aj = i}.
Since Aj = i ⇐⇒ IσC(j) = 1 and the indices I1:N are ascending, it holds that

N i = max{j ≥ 1 : Ij = 1},
where max is zero in case the set is empty. The event N i = n is equivalent with

n− 1 + U

N
< F$̃(1) ≤ n+ U

N
⇐⇒ n− 1 + U < Nwi ≤ n+ U

⇐⇒ Nwi − (n− 1) > U ≥ Nwi − n.
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We deduce that only two values of n have nonzero probability (for U ∈ (0, 1)), since:

n = bNwic ⇐⇒ U ∈ [r, 1)

n = bNwic+ 1 ⇐⇒ U ∈ (0, r),

where r = Nwi − bNwic. Furthermore, the conditional probabilities for the events N i = n
are given as:

P(N i = n | Ak = i) =
P(N i = n,Ak = i)

P(Ak = i)
=

P(N i = n,Ak = i)

wi
,

where the numerator satisfies

P(N i = n,Ak = i) =
N∑
c=1

P(C = c, Ak = i | N i = n)P(N i = n)

=
N∑
c=1

P(Ak = i | C = c,N i = n)P(C = c | N i = n)P(N i = n).

Since

• P(N i = bNwic+ 1) = r and P(N i = bNwic) = 1− r (from above),
• P(C = c | N i = n) = 1/N (because C is independent of I1:N and therefore N i),
• P(Ak = i | C = c,N i = n) are deterministic, either zero or one, and precisely n are

one,

it holds that

P(N i = bNwic+ 1 | Ak = i) =
(bNwic+ 1)r

Nwi
:= p,

and

P(N i = bNwic | Ak = i) = 1− p.
Observe also that the random variable U conditional on Ak = i and N i = n has the density
U(0, r) if N i = bNW ic+ 1 and U(r, 1) if n = bNW ic. This follows since U is conditionally
independent from the event Ak = i given N i = n, since U only depends on Ak = i through
N i. Similarly,

P(C = c | Ak = i, N i = n, U) = P(C = c | Ak = i, N i = n) =
1

n
1(σC(k) ∈ [1, n]).

In practice, we can simulate C from this distribution as follows:

(1) Draw C̄ ∼ U{1, . . . , n} corresponding to σC(k) in the above probability,
(2) set C = C̄ − k,

since σC(k) = σC̄−k(k) ∈ [1, n] is equivalent to C̄ ∈ [1, n]. �

Appendix B. Validity of CPF-BBS

We start by two auxiliary results about marginal distributions after partial ancestor
tracing and a partial CPF. In what follows, we assume that Gk(x1:k) = Gk(xk−1:k) for
k ∈ {2:T}. Using the definition of Mk as in Appendix A, let us fix some notation: for

u = 1, . . . , T , denote by π̌
(N)
u (x1:u, a1:u−1, bu):

1

Z
M1(x1)

u−1∏
k=1

[(
1

N

N∑
j=1

Gk(x
(j)
k )

)
r
(
ak | Gk(xk)

)
Mk+1(xk+1 | x

(ak)
k )

]
Gu(x

(bu)
u )

N
,
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and ηu:T (xu:T ) :=
∏T

k=u+1 Mk(xk | xk−1)Gk(xk−1:k) with ηT :T (xT ) ≡ 1, then the following
define probability distributions for u = 1, . . . , T :

µ(N)
u (x1:u, a1:u−1, bu, x

∗
u+1:T ) := π̌(N)

u (x1:u, a1:u−1, bu)ηu:T (x(bu)
u , x∗u+1:T ).

Lemma 12. Suppose that r(p,n) is a valid conditional resampling scheme, with respect to

resampling r in Definition 1. Suppose (X1:u, A1:u−1, Bu, X
∗
u+1:T ) ∼ µ

(N)
u , and ` ∈ {1:u− 1}.

(i) If B`:u−1 ← AncestorTrace(A`:u−1, Bu), then the marginal density of X1:`, A1:`−1,

X
(B`+1:u)
`+1:u , B`:u and X∗u+1:T is

µ
(N)
` (x1:`, a1:`−1, b`, x

(b`+1:u)
`+1:u , x∗u+1:T )/Nu−`.

(ii) If further (X∗`:u−1, B̃`:u−1) ← BridgeCPF(X`, B`:u−1, X
B`:u
`:u ), B̃u = Bu and X∗u =

X
(Bu)
u , then the marginal density of X1:`, A1:`−1, X∗`+1:u and B̃`:u is

µ
(N)
` (x1:`, a1:`−1, b̃`, x

∗
`+1:T )/Nu−`.

Proof. In the case (i), the joint density of all variables may be written as

π̌(N)
u (x1:u, a1:u−1, bu)

( u−1∏
k=`

1
(
bk = a

(bk+1)
k

))
ηu:T (x(bu)

u , x∗u+1:T )

=
π̌

(N)
` (x1:`, a1:`−1, b`)

G`(x
(b`)
` )

[ u−1∏
k=`

(
1

N

N∑
i=1

Gk(x
(i)
k )

)
1
(
bk = a

(bk+1)
k

)
r(ak | Gk(xk)

)
Mk+1(xk+1 | x

(ak)
k )

]
Gu(x

(bu)
u )ηu:T (x(bu)

u , x∗u+1:T )

=
π̌

(N)
` (x1:`, a1:`−1, b`)η`:T (x

(b`:u)
`:u , x∗u+1:T )

Nu−`

u−1∏
k=`

r(bk,bk+1)(ak | Gk(xk)
)∏
i 6=bk+1

Mk+1(x
(i)
k+1 | x

(a
(i)
k )

k ),

by Lemma 10 (ii). The result (i) follows as we marginalise x
(i)
u for i 6= bu, au−1, x

(i)
u−1 for

i 6= bu−1, . . . , a`.

For (ii), define G̃
(`,u)
k (x1:k | xu) = Gk(xk−1:k)Mu|`(xu | x`)(u−`)−1

, and notice that

G`(x`−1:`)η`:T (x`:T ) =

( u∏
k=`+1

G̃
(`,u)
k−1 (x1:k−1 | xu)M̄k(xk | xk−1, xu)

)
Gu(xu−1:u)ηu:T (xu:T ),

where M̄u(xu | · , xu) ≡ 1. Adding the variables generated in lines 2–7 of Algorithm 8 leads
to

π̌
(N)
` (x1:`, a1:`−1, b`)

Nu−`G`(x
(b`)
` )

[ u−1∏
k=`+1

G̃k−1(x̌
(bk−1)
k−1 | x(bu)

u )r(bk−1,bk)
(
ãk−1 | G̃k−1(x̌k−1 | x(bu)

u )
)

(32)

( N∏
i=1

M̄k(x̃
(i)
k | x̃

(ã
(i)
k−1)

k−1 , x(bu)
u )

)]
G̃u−1(x̌

(bu−1)
u−1 | x(bu)

u )Gu(x
(bu−1:u)
u−1:u )ηu:T (x(bu)

u , x∗u+1:T ),

where x̌` = x` and x̌
(i)
k = (x̌

(ã
(i)
k−1)

k−1 , x̃
(i)
k ). Thanks to Lemma 10 (ii)

G̃k−1(x̌
(bk−1)
k−1 | x(bu)

u )r(bk−1,bk)
(
ãk−1 | G̃k−1(x̌k−1 | x(bu)

u )
)

=

( N∑
i=1

G̃k−1(x̌
(i)
k−1 | x

(bu)
u )

)
1
(
bk−1 = ã

(bk)
k−1

)
r
(
ãk−1 | G̃k−1(x̌k−1 | x(bu)

u )
)
.
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Because the fraction in (32) does not depend on b`, we may now marginalise over

b`, . . . , bu−1 and add the distribution of B̃u−1 ∼ Categ(ω̃
(1:N)
u−1 ) where ω̃

(j)
u−1 =

G̃u−1(X̌
(j)

u−1)Gu(X̃
(j)
u−1, X

(Bu)
u ), leading into

π̌
(N)
` (x1:`, a1:`−1, b`)

Nu−`G`(x
(b`)
` )

[ u−1∏
k=`+1

( N∑
i=1

G̃k−1(x̌
(i)
k−1 | x

(bu)
u )

)
r
(
ãk−1 | G̃k−1(x̌k−1 | x(bu)

u )
)

( N∏
i=1

M̄k(x̃
(i)
k | x̃

(ã
(i)
k−1)

k−1 , x(bu)
u )

)]
G̃u−1(x̌

(b̃u−1)
u−1 | x(bu)

u )Gu(x
(b̃u−1,bu)
u−1:u )ηu:T (x(bu)

u , x∗u+1:T ).

Introducing b̃`:u−2 by AncestorTrace leads to addition of terms 1 (b̃k−1 = ã
(bk)
k−1). Then,

calculations similar as above, but in reverse order, lead to (32) with b`:u−1 replaced with

b̃`:u−1. The result follows by marginalising over X̃`+1:u−1, Ã`+1:u−2. �

Proof of Theorem 8. We start by observing that by Theorem 2, (X1:T , AT−1, B̃T ) ∼ π̌
(N)
T =

µ
(N)
T . Then, the proof relies on an iterative application of Lemma 12 (i) and (ii), with (`, u) =

(TL−1, TL), . . . , (T1, T2), which concludes that (X1, X
∗
2:T , B̃1:T ) ∼ µ

(N)
1 (x1, b̃1, x

∗
2:T )/NT−1 so

(X̃∗1:T , B̃1:T ) ∼ Z−1η1:T (x̃1:T )/NT = π(x̃1:T )/NT . �

Appendix C. Computing the conditional distributions in Assumption 7 for
discretisations of linear SDEs

The practical application of Algorithm 7 requires for each block the computation of the
conditional distributions Mu|` and Mk|k−1,u, where k is a time index, and ` and u refer
to the block lower and upper boundaries, respectively. This section discusses how these
distributions may be computed when:

• M1:T stem from a discretisation of a linear SDE
• M1:T stem from a discretisation of a linear SDE that is conditioned on a set of noisy

linear Gaussian observations.

Note that it is enough to only consider the second case, since the first one may be obtained
by omitting the conditioning on the observations (see discussion at the end of this section).

Following [28], the conditional means and variance (matrices) of the SDE (16) are given
for t > s by

E[Xt | Xs = xs] = expm(F(t− s))xs(33)

Var[Xt | Xs = xs] =

∫ t

s

expm(F(t− τ))KKT expm(F(t− τ))Tdτ,(34)

where expm denotes the matrix exponential. We introduce the notation

(35) Ts,t := expm(F(t− s)), Qs,t := Cov[Xt | Xs = xs].

Assuming a Gaussian initial distribution, we have:

(36)
Xtk | Xtk−1

= xtk−1
∼ N(Ttk−1,tkxtk−1

, Qtk−1,tk)

Xt1 ∼ N(µinit,Σinit),

where the time discretisation corresponds to

(37) 0 = t1 < t2 < · · · < tT = τ

as in Section 8, and where µinit and Σinit are the initial mean and variance, respectively.
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Suppose then that there are observations Ỹ = (Ỹk)k=1,...,Ky observed at times t̃k,
k = 1, . . . , Ky, where each observation time is one of the times in time discretisation (37).

Further suppose the Ỹk are distributed as

(38) Ỹk | Xt̃k
= xt̃k ∼ N(Zkxt̃k , Hk),

where Zk and Hk are matrices and observation variances, respectively. We may then define
the augmented observations Y = (Yk)k=1,...,T with times (37). The random vector Y is

distributed like the observations Ỹ at their respective times, and has missing elements
otherwise.

Consider then the joint distribution of Xtk , Xtk−1
and Xtu for k = ` + 1, . . . , u − 1,

conditioned on the observations Y1:T = y1:T . Since all variables involved are jointly Gaussian,
this conditional distribution is:

(39) N

 µk|T
µk−1|T
µu|T

 ,
 Σk|T Σk,k−1|T Σk,u|T

Σk−1,k|T Σk−1|T Σk−1,u|T
Σu,k|T Σu,k−1|T Σu|T

 ,

where we have used the notation

µk|n := E[Xtk | Y1:n = y1:n],

Σk|n := Var[Xtk | Y1:n = y1:n],

Σp,s|n := Cov[Xtp , Xts | Y1:n = y1:n].

Here, conditioning on a missing observation should be understood as the observation being
removed from the condition.

To obtain the (cross)covariances in (39), the following backwards recursion for s = t −
1, t− 2, . . . from [8] may be used (with a matrix transpose applied to the result as needed):

(40) Σs,t|T = Σs|sT
T
ts,ts+1

Σ−1
s+1|sΣs+1,t|T .

An inspection of Equations (39) and (40) reveals that all the quantities required are com-
puted routinely by the Kalman filter and smoother [cf. 14] applied to the linear Gaussian
state space model composed of (36) and (38). Note that the Kalman filter automatically
handles any missing values in the observation sequence.

For k = ` + 1, by elementary properties of the Gaussian distribution, the distribution
Mu|`, that is Xtu | Xt` = xt` , Y1:T = y1:T , is

(41)
N
(
µu|T + ΣT

`,u|TΣ−1
`|T (xt` − µ`|T ),

Σu|T − ΣT
`,u|TΣ−1

`|TΣ`,u|T

)
.

Similarly, for k = ` + 1, . . . , u − 1, the distribution Mk|k−1,u, that is, Xtk | Xtk−1
=

xtk−1
, Xtu = xtu , Y1:T = y1:T , is

(42)

N

(
µk|T + Σk,(k−1,u)|TΣ−1

(k−1,u)|T ((xtk−1
xtu)T − µ(k−1,u)|T ),

Σk|T − Σk,(k−1,u)|TΣ−1
(k−1,u)|TΣT

k,(k−1,u)|T

)
,
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where

(43)

µ(k−1,u)|T := (µk−1|T µu|T )T ,

Σk,(k−1,u)|T := [Σk,k−1|T Σk,u|T ],

Σ(k−1,u)|T :=

[
Σk−1|T Σk−1,u|T

Σu,k−1|T Σu|T

]
.

In the case where M1:T simply corresponds to a discretisation of the linear SDE (16), the
above computations can be repeated with the conditioned means, variances and covariances
replaced with their unconditional counterparts. In practice, an easy way to compute the
unconditional means and variances is to set all observations missing in the Kalman filter.
The unconditional covariances can then be obtained from (40) as before.

Appendix D. Models

This section gives additional details related to the models appearing in Section 9.

D.1. CTCRW-P. The CTCRW-P SDE (20) may be placed into the form of the linear
SDE (16) by setting

Xt = (Vt Lt)
T , F =

[
−βv 0

1 −βx

]
and K =

[
σ 0
0 0

]
.

The expressions for Ts,t and Qs,t in (35) are given as follows. A direct computation yields

(44) expm(Ft) =

 exp (−βvt) 0
exp (−βxt)− exp (−βvt)

βv − βx
exp (−βxt)

 ,
when βv 6= βx. If βv = βx, the first element of the second row is replaced by t exp (−βvt).
The transition matrix Ts,t may be obtained from (44) by substituting t− s for t.

If βv 6= βx, the elements qij, 1 ≤ i, j ≤ 2 of Qs,t are given by
(45)

q11 =
σ2

2βv
(1− exp (−2βv(t− s)))

q12 = q21 =
σ2

βv − βx

[
1

βv + βx
(1− exp (−(βv + βx)(t− s)))−

1

2βv
(1− exp (−2βv(t− s)))

]

q22 =
σ2

(βv − βx)2

[
1

2βx
(1− exp (−2βx(t− s))) +

1

2βv
(1− exp (−2βv(t− s)))

− 2

βx + βv
(1− exp (−(βx + βv)(t− s)))

]
.

If βv = βx, the element q11 remains as in (45), but the elements q12 and q22 become:

(46)

q12 =
σ2

4β2
v

[
1 + exp

(
− 2βv(t− s)

)(
− 2βv(t− s)− 1

)]
,

q22 =
σ2

4β3
v

[
1− exp

(
− 2βv(t− s)

)(
1 + 2βv(t− s)(βv(t− s) + 1)

)]
.
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Finally, the stationary covariance matrix S with elements sij used in the initial distribu-
tion of the CTCRW-P model is obtained by taking the limit (t − s) → ∞ in the previous
equations:

(47)

s11 =
σ2

2βv

s12 = s21 =
σ2

βv − βx

[
1

βv + βx
− 1

2βv

]

s22 =
σ2

(βv − βx)2

[
1

2βx
+

1

2βv
− 2

βx + βv

]
,

when βv 6= βx. When βv = βx, the elements s12 and s22 are

(48) s12 =
σ2

4β2
v

and s22 =
σ2

4β3
v

.

D.2. CP-RBM. The density of the reflected normal distribution N (r)(µ, σ2, a, b), for any
point x in the support (a, b), is given by

(49) N (r)(x;µ, σ2, a, b) = N(x;µ, σ2) +
∞∑
k=1

N(g(k)
a (x);µ, σ2) +N(g

(k)
b (x);µ, σ2),

where

(50)
g(k)
a (x) := (−1)kx+ ka− kb+ (a+ b)1 (k odd)

g
(k)
b (x) := (−1)kx+ kb− ka+ (a+ b)1 (k odd) .

Equation (49) may be derived by noting that the density of any point x ∈ (a, b) is equal to
the sum of normal densities at points that (eventually) reflect to x. These points consist of
x itself and the reflection points outside (a, b) given by the sequences in (50). In practice,
we truncate the infinite sum in (49) to the first 10 terms, which provides a reasonable
approximation for the values of σ, a and b we use.

D.3. CTCRW. The CTCRW SDE can be placed in the form of the linear SDE (16) by
setting

Xt = (Vt Lt)
T , F =

[
−β 0
1 0

]
and K =

[
σ 0
0 0

]
.

The expressions for Ts,t and Qs,t in (35) are then given as follows.

(51) Ts,t =

 exp (−(t− s)β) 0
1− exp (−(t− s)β)

β
1

 ,
and the matrix Qs,t has elements qij, i, j = 1, 2, such that

(52)

q11 =
σ2

2β

(
1− exp (−(t− s)2β)

)
,

q21 = q12 =
σ2

2β2

(
1− 2 exp (−(t− s)β) + exp (−(t− s)2β)

)
,

q22 =
σ2

β2

(
(t− s)− 2

β

(
1− exp (−(t− s)β)

)
+

1

2β

(
1− exp (−(t− s)2β)

))
.
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Appendix E. Miscellanneous algorithms

E.1. Algorithm for finding mean partition order of weights. The following algorithm
finds a mean partition order I of the input weights w1:N . Note that the algorithm does not
modify the weights w1:N and that the operation ‘break’ means exiting from the current
(innermost) ‘while’ loop.

Algorithm 12 MeanPartitionOrder(w1:N )

1: Set p = Mean(w1:N ) (‘pivot’).
2: Set i` = 0 and iu = N + 1.
3: Initialise I as the index set [N ].
4: while True do
5: while i` < min(iu, N) do
6: Set i` = i` + 1.

7: Break if wI
(i`) > p.

8: end while
9: while iu > i` do

10: Set iu = iu − 1.

11: Break if wI
(iu)

< p.
12: end while
13: Break if i` equals iu.
14: Swap indices i` and iu of I.
15: end while
16: output I

E.2. Algorithm for constructing dyadic blocking sequences.

Algorithm 13 DyadicCandidateBlockings(T ∈ {2, 3, . . .})
1: Denote by p∗ the largest p such that 2p + 1 ≤ T .
2: for i = 1, . . . , p∗ + 1 do
3: Set blocksize = 2i−1

4: Set ` = 1;u = 0.
5: Set k = 0 (block index)
6: while l < T do
7: Set k = k + 1
8: Set u = `+ blocksize
9: Set T

(i)
k = `;T

(i)
k+1 = min (u, T )

10: Set ` = u
11: end while
12: end for
13: return Candidate blocking sequences T

(i)

1:L(i) for i = 1, 2, . . . , p∗ + 1

Appendix F. Derivation of PLUG

Consider the following artificial conditional particle system that approximates a contin-
uous time conditional particle filter with near constant weights:

• The system has N particles.
• One of the particles corresponds to the ‘reference’, which can not die.

• At most one resampling event occurs at any time k, with probability p
(k)
R .

• If a resampling event occurs:
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– a dying particle is chosen uniformly among the N − 1 particles (excluding the
reference).

– a particle is selected for ‘reproduction’ uniformly among the N − 1 particles
(excluding the dying particle).

• If a resampling event does not occur, no particles die or reproduce.

Further suppose that the particle population is divided into two groups, ‘ill’ and ‘healthy’,
where the ill population is to be interpreted as the particles having reproduced from the
reference or any of its descendants. Denote by Hk and Ik := N −Hk the number of healthy
and number of ill (including reference) at time k, respectively. Initially, H1 = N − 1.

Theorem 13. For the artificial particle system of this section, it holds for any T ≥ 1 that

(53) E[HT ] = (N − 1)
T−1∏
k=1

(
1− p

(k)
R

(N − 1)2

)
.

Proof. For any k ≥ 2 we have

Hk | Hk−1 =


Hk−1 + 1, prob. p

(k−1)
increase

Hk−1 − 1, prob. p
(k−1)
decrease

Hk−1, prob. p
(k−1)
nothing,

where

p
(k−1)
increase = p

(k−1)
R

Ik−1 − 1

N − 1
· Hk−1

N − 1
(resampling occurs, ill dies, healthy reproduces)

p
(k−1)
decrease = p

(k−1)
R

Hk−1

N − 1
· Ik−1

N − 1
(resampling occurs, healthy dies, ill reproduces),

p
(k−1)
nothing = 1− p(k−1)

increase − p
(k−1)
decrease.

Therefore,

E[HT | HT−1] = HT−1 + E[HT −HT−1 | HT−1]

= HT−1 + p
(T−1)
R

IT−1 − 1

N − 1
· HT−1

N − 1
− p(T−1)

R

HT−1

N − 1
· IT−1

N − 1

=
(

1− p
(T−1)
R

(N − 1)2

)
HT−1,

and

E[HT ] = E[E[HT | HT−1]] =
(

1− p
(T−1)
R

(N − 1)2

)
E[HT−1],

which yields (53) by repeated application. �

The direct consequence of this result is that PLUG(`, u) equals E[Hu/N ] with p
(k)
R = pkN

(defined in Section 7) and ` considered as the ‘first’ time point.
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Appendix G. Supplementary figures

Figure 7. The logarithmic IACT (top) of the state L
(x)
t in the CTCRW-T model

with |∆k| = 0.125 for CPF-BS and the CPF-BBS with blocktime 1.0 and the
blocking from Algorithm 11 (bottom).

Figure 8. The estimated mean PLUs and the logarithm of IACT with varying
η for the location state variable at time 0.0 in the CTCRW-P model. The value
of |∆k| was set to 2−7. The performance of CPF-BS is seen at the far left, with
blocktime = 2−7.
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