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Abstract

We present the detection potential for the diffuse supernova neutrino background (DSNB) at

the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD)

detection channel on free protons. We employ the latest information on the DSNB flux predic-

tions, and investigate in detail the background and its reduction for the DSNB search at JUNO.

The atmospheric neutrino induced neutral current (NC) background turns out to be the most

critical background, whose uncertainty is carefully evaluated from both the spread of model pre-

dictions and an envisaged in situ measurement. We also make a careful study on the background

suppression with the pulse shape discrimination (PSD) and triple coincidence (TC) cuts. With

latest DSNB signal predictions, more realistic background evaluation and PSD efficiency opti-

mization, and additional TC cut, JUNO can reach the significance of 3σ for 3 years of data

taking, and achieve better than 5σ after 10 years for a reference DSNB model. In the pessimistic

scenario of non-observation, JUNO would strongly improve the limits and exclude a significant

region of the model parameter space.

Keywords: diffuse supernova neutrino background, detection potential, JUNO
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1 Introduction

The explosion of the massive core-collapse supernova (SN) is one of the most powerful astrophysical

phenomena in the Universe, which can release around 1053 ergs of energy, among which 99% is in

the form of neutrinos and antineutrinos. Galactic SNe are rather rare [1], and thus the chance of a

detection during the lifetime of an experiment is low. The diffuse supernova neutrino background

(DSNB), which is the integrated neutrino signal from all the SN explosions in the Universe, is

expected to be visible in large underground neutrino detectors. The detection of DSNB signals

is important for the cosmology. It holds the precise information on the average core-collapse SN

neutrino spectrum, the cosmic star-formation rate and the fraction of failed black-hole forming

SNe [2–4].

The existing and future large water-Cherenkov and liquid-scintillator (LS) detectors have promis-

ing potential to first observe the DSNB via the inverse-beta-decay (IBD) reaction, νe + p→ e+ + n,

which consists of a prompt signal of positron and a delayed signal of neutron capture on Hydrogen or

Gadolinium. Super-Kamiokande (SK) has searched for the DSNB [5–8], but no signal has been found

yet. The new Gadolinium-doped SK (SK-Gd) will greatly improve the neutron tagging efficiency

and hence significantly reduce the background level, increasing the sensitivity of the DSNB [9–12].

Compared to the water-Cherenkov detectors, the LS detectors have lower energy thresholds, higher

energy resolution, and more than 98% neutron tagging capability [19]. The DSNB search in LS

detectors has been previously taken up by KamLAND [13,14] and Borexino [15], whose observation

of the IBD-like signal in the selected energy range is highly consistent with the expected background,

setting the upper limits on the total DSNB flux.

The Jiangmen Underground Neutrino Observatory (JUNO) [16], which is under construction in

South China and will be online in 2023, would be the largest ever LS detector. In this work, we

give a comprehensive study on the prospects for detecting the DSNB signal at JUNO, updating

the results obtained in 2015 in Ref. [16]. Firstly, we revisit the DSNB signal predictions at JUNO

based on the latest properties of large-scale SN numerical simulation. Then relevant background

budgets will be investigated. The dominant one is from the neutral-current (NC) interaction of

atmospheric neutrinos with 12C nuclei, which surpasses the DSNB signal by more than one order of

magnitude. The systematic uncertainty of the NC background is evaluated from both the spread of

model predictions and an envisaged in situ measurement. We provide a detailed evaluation of the

efficiencies of the pulse-shape discrimination (PSD) technique and the triple-coincidence (TC) cut

for the NC background. We find that the prospects for detecting the DSNB signal at JUNO are

promising. For a reference DSNB flux model, the significance can reach the level of 3σ for around 3

years of data taking, and better than 5σ after 10 years. A non-observation would strongly improve

the limits of the DSNB flux and exclude a significant region of the DSNB model space.

This paper is organized as follows. In Sec. 2 we give a brief introduction of the JUNO detector.

Then we present the DSNB signal prediction in Sec. 3 and the background budget evaluations in

Sec. 4. Sec. 5 is devoted to the background suppression techniques, including the PSD and TC

cuts. Finally, we present the sensitivity study of the DSNB signal in Sec. 6 and conclude with a few

remarks in Sec. 7.

2 JUNO Detector

The JUNO experiment is located at Jiangmen in Guangdong province, China at equal distance

from the Taishan and Yangjiang nuclear power plants, with the primary goals of determining the

7
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Figure 1: Schematic of the JUNO detector complex, which is composed of the Central Detector

(CD), water buffer, and the veto detectors. See the text for more details.

neutrino mass ordering [16–18] and the precision measurement of oscillation parameters [19] with

reactor antineutrinos, together with other physics program, including studies of neutrinos from the

Sun [20], the planet Earth [21], the atmosphere [22], and the core collapse SNe [23] as well as the

exploration of physics beyond the Standard Model [16].

JUNO is an underground LS detector of 20 kton with an overburden of around 700 meter of

rock (1800 meter water equivalent) for shielding of the cosmic rays. This results in a muon rate of

0.004 Hz/m2 and an average muon energy of 207 GeV at the detector location. The JUNO detector

complex is composed of the Central Detector (CD), water buffer, and the veto detectors, which are

illustrated in Fig. 1. From the inner to outer layers, the CD contains 20 kton LS filled in an acrylic

shell with an inner diameter of 35.4 m. It is immersed in a cylindrical water pool with the diame-

ter and height of both 43.5 m. There are 17,612 high-quantum-efficiency 20-inch photomultipliers

(PMTs) closely packed around the LS sphere. Another 25,600 3-inch PMTs are installed in the gaps

between the 20-inch PMTs to further improve the neutrino energy measurements. The water buffer

is filled between the acrylic shell and PMTs supported with the stainless steel structure. The Veto

System is designed to tag muons with high efficiency and precisely reconstruct their tracks for ef-

fective background reduction. The Veto System includes the water-Cherenkov detector surrounding

the CD to shield the neutrons and the natural radioactivity from the rock and the Top Tracker. The

water-Cherenkov detector contains 35 kton ultrapure water, which is supplied and maintained by

a circulation system. The Cherenkov light is detected by 2400 20-inch PMTs. Its muon detection

efficiency is expected to be greater than 99%. The Top Tracker is made from the reused plastic

scintillator from the OPERA experiment. It covers half of the water pool on the top with a 3-layers

8



configuration. Each detector module is read out at both ends by multi-anode PMTs.

3 DSNB signal prediction

The DSNB signal calculation depends on a variety of important ingredients [24–26]. The first one

is the cosmological SN rate as a function of the progenitor mass and redshift, which is the link to

the cosmic history of the star formation. The second ingredient is the average energy spectrum of

SN neutrinos. According to the latest large-scale SN numerical simulation [25, 26], there are more

astrophysical or physical effects which may alter the DSNB signals, including the fraction of failed

black-hole-forming SNe [24, 25] and binary interactions [26]. In this paper we shall consider the

contribution of the failed SNe, which will feature a hotter neutrino energy spectrum compared to

the neutron-star-forming SNe (i.e., successful SNe), and they could represent a fraction of all the

SNe ranging from around 20% to 40% [25].

The isotropic DSNB flux is obtained by an integration of the cosmic redshift z by

dφ

dEν
=

∫ zmax

0
RSN(z)

dN (E′ν)

dE′ν
(1 + z)

∣∣∣∣cdtdz
∣∣∣∣ dz, (1)

where c is the speed of light, zmax is the maximal redshift boundary to be covered in the in-

tegration, |dt/dz|−1 = H0(1 + z)[ΩΛ + Ωm(1 + z)3]
1
2 includes the present-day Hubble constant

(H0 ' 67.4 km · s−1 ·Mpc−1 [27]), the ratios of the energy density of matter and the cosmological

constant (Ωm ' 0.3 and ΩΛ ' 0.7). Due to the redshift, a neutrino detected at the energy Eν was

emitted at a higher energy E′ν = Eν(1 + z).

In the DSNB flux, dN/dEν is the average SN neutrino spectrum, which has contributions from

both successful and failed SNe:

dN(Eν)

dEν
= (1− fBH)

dNSN(Eν)

dEν
+ fBH

dNBH(Eν)

dEν
, (2)

where fBH is the fraction of the failed SNe where we take a reference value of fBH = 27% [24] and

scan a reasonable region from 0 to 40% for the sensitivity study.

The average energy spectrum for both successful and failed SNe is given as [24]

dNν

dEν
=
Etotal

〈Eν〉2
(1 + γα)1+γα

Γ(1 + γα)

(
Eν
〈Eν〉

)γα
exp

(
−(1 + γα)

Eν
〈Eν〉

)
, (3)

where Etotal is the total energy and the 〈Eν〉 is the average energy of the SN neutrinos, and the

spectral index

γα =
〈E2

ν〉 − 2〈Eν〉2

〈Eν〉2 − 〈E2
ν〉

. (4)

For the failed SNe, we follow the model described in Ref. [24] and assume the model parameters of

Etotal = 8.6× 1052 erg, 〈Eν〉 = 18.72 MeV and 〈E2
ν〉 = 470.76 MeV2. Meanwhile, for the successful

SNe, we take the reference value of Etotal = 5.0× 1052 erg, γα = 3 and 〈Eν〉 = 15 MeV, but scan a

range of 〈Eν〉 from 12 to 18 MeV in the sensitivity study. Notice that in general the failed SNe will

have relatively larger average energies and thus hotter neutrino energy spectrum compared to the

successful SNe.

RSN(z) is the SN rate at the redshift z, which can be derived from the star formation (SF) rate.

RSF, which can be written as [28,29]:

RSN(z) = RSF(z)

∫ 125
8 ψ(M)dM∫ 125

0.1 Mψ(M)dM
, (5)

9



where M is the stellar mass in the unit of solar mass, [0.1, 125] and [8, 125] are the mass integration

ranges of all the stars and those undergo core collapse SN explosions, respectively. ψ(M) ∝M−2.35 is

the initial mass function (IMF) [28]. In the current study, we employ the relative redshift dependence

as

RSF(z) ∝ (a+ bz)h

1 + (z/c)d
, (6)

which is an empirical parametrization based on astrophysical observations, with the best fit values of

a = 0.0170, b = 0.13, c = 3.3, d = 5.3 and h = 0.7 [29]. A reference value of the absolute present SN

rate at z = 0 is taken as RSN(0) = 1.0× 10−4 yr−1 Mpc−3 [11]. However, due to many astrophysical

factors the SN rate is still uncertain, we take a wide range of RSN(0) varying the reference value by

a factor of two, i.e., 0.5× 10−4 yr−1 Mpc−3 ≤ RSN(0) ≤ 2.0× 10−4 yr−1 Mpc−3.

Finally, in order to calculate the observed DSNB energy spectrum at JUNO, we need to consider

the IBD cross section, the target mass and detector response. We take the free proton number in

the JUNO LS as 7.15× 1031 kton−1 [16], whose mass fraction is around 12%. The differential IBD

cross section is taken from Ref. [30], and an energy resolution of 3% is assumed [16].

4 Background evaluation

In this section, we turn to the background calculation relevant for the DSNB search at JUNO. First,

there are two important IBD backgrounds from other νe sources. In the vicinity of the low-energy

part of the DSNB νe spectrum, an irreducible background originates from νe’s emitted from nearby

nuclear reactors, whose fluxes are highly suppressed above the neutrino energy of around O(10) MeV.

The high-energy part of the indistinguishable background is composed of the IBD interactions of

the atmospheric νe, which gradually increases as the neutrino energy grows. Therefore, the optimal

energy window for the DSNB is between these two backgrounds.

Second, there are also non-IBD backgrounds from the cosmic muon spallation process. It can

be well controlled by proper muon veto strategies. The fast neutron (FN) background is generated

by muon spallation in the rock surrounding the detector. The event rate is higher at the surface

of the CD, and can be effectively reduced by a fiducial volume cut. When energetic cosmic muons

travel through the LS, they can interact with 12C nuclei and produce radioactive isotopes, among

which the β-n decays of 9Li and 8He can mimic the νe IBD reaction, which is called the 9Li/8He

background.

Finally we have to face the non-IBD background induced by atmospheric neutrino interactions

with the 12C nuclei. When high energy atmospheric neutrinos interact with the 12C nuclei via

the charged-current (CC) or neutral-current (NC) interaction channel, copious neutrons, protons,

γ’s and α’s are generated together with the associated leptons, where the interactions with one

single neutron capture may contaminate the IBD signals. The CC background on 12C is usually

accompanied by a high energy charged lepton, whose prompt energies are relatively higher and can

be removed by a proper selection of the signal energy window. The most critical background is the

NC background, which has been carefully studied in a general way in Refs. [31,32], and is estimated

to be one order of magnitude higher than the typical DSNB signal.

4.1 Reactor νe

Reactor νe’s are emitted from the β-decays of neutron-rich fission fragments, mainly from four

fission isotopes, 235U, 238U, 239Pu and 241Pu. Here we consider eight reactors from the Yangjiang

and Taishan nuclear power plants, with a total thermal power of 26.6 GWth, and an average baseline
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of around 52.5 km. Contributions from other reactors are sub-dominant and neglected in the current

study. Our calculation of the IBD rate and spectrum from reactor νe’s follows the description in

Ref. [16]. The IBD rate with the oscillation effect is expected at 1514.8 yr−1kt−1. The spectral

shape is taken from the Huber-Muller model [33, 34], with the energy range up to 12 MeV. Since

the yield and spectrum of high energy reactor νe’s are rather uncertain, we currently take the low

energy threshold as 12 MeV and neglect the background from reactor νe’s. Lowering this threshold

shows negligible effects on the DSNB sensitivity.

4.2 Atmospheric νe

Atmospheric νe’s below 100 MeV can also induce the IBD signals. The atmospheric neutrino flux

at low energies has been calculated by several different groups from Battistoni et al. [35], Gaisser

et al. [36] and Honda et al. [37] for the location of SK, showing significant model variations. A

recent study calculated the new atmospheric neutrino flux from stopped muons in the Earth [38].

We employ a new calculation of low energy fluxes from the Honda group for the JUNO site [39],

and assume a systematic uncertainty of 50% to cover the large flux variations for neutrino energies

below 100 MeV. The rate and energy spectrum of the atmospheric neutrino induced IBD signal can

be calculated in the same way as the DSNB and reactor νe’s.

4.3 Cosmogenic 9Li/8He

The cosmogenic production rates of 9Li and 8He have been measured in KamLAND [40] and Borex-

ino [41]. The yield of the radioactive isotopes 9Li and 8He is proportional to Rµ · E0.74
µ [42] where

Rµ is the muon rate and Eµ is the average muon energy at the detector. The 9Li/8He yield is also

related to the LS density and the average path length of muons in the LS. Our calculations of the
9Li and 8He yields are extrapolated from KamLAND for their muon rates, average muon energies,

and the detector configurations, and the corresponding rates are 117 and 37 per day per 20 kton,

respectively.

The 9Li/8He background stems from the β-n decays of the isotopes, where the half-lives of 9Li

and 8He are 0.178 s and 0.119 s, and the branching ratios of their β-n decay mode are 51% and

16%, respectively. The total β-n decay rate is about 1200 yr−1kt−1. We take the prompt energy

spectra of 9Li and 8He β-n decays from Ref. [16], which have the Q values of 11.9 MeV and 8.6 MeV,

respectively. Finally, we note that the 9Li/8He background can be effectively suppressed by muon

veto strategies [18, 20]. In the end, taking into account all the above considerations, the 9Li/8He

background is negligible above a prompt energy of 12 MeV.

4.4 Fast neutron

Muons passing through the JUNO LS or through the water buffer will be tagged with almost 100%

and 99.8% efficiency [16] respectively. Neutrons associated with tagged muons can be rejected by

muon veto with an efficiency of 100% and a livetime of 93.6% [18, 20]. Neutrons associated with

untagged muons, which include muons only passing through surrounding rocks and corner clipping

muons with the track length in water shorter than 0.5 m, might enter the LS and produce a prompt

signal before being captured on the proton or carbon with a delayed signal. They contribute to the

FN background.

We have performed a muon simulation with the JUNO simulation framework. In order to accel-

erate the simulating speed, we focus on untagged muons in the surrounding rocks and water pool

and neglect the simulation of optical photons. Due to the specific geometry of the JUNO detector,

11



0 5 10 15 20
 [m]XYr

20−

15−

10−

5−

0

5

10

15

20

 [
m

]
Z

Fast neutron MC

FV1

FV2

15 16 17
 [m]cutr and cutZ

0.5

1.0

1.5

0.5

1.0

1.5

]
-1

yr×
-1

 [
kt

FN ex
pe

ct
ed

R
15 16 17

 cut [m]XYr and Z

16

17

18

19

20

16

17

18

19

20

T
ar

ge
t m

as
s 

[k
to

n]

Figure 2: Left panel: Spatial vertex distributions of the simulated FN background, where the dark

and light pink colors represent the regions of FV1 and FV2 respectively, and the grey and blue points

refer to the events in the whole prompt energy range and within [12, 30] MeV respectively. Right

top panel: the event rate of FN background in terms of the Z and rXY cut for the prompt energy

of [12, 30] MeV, where the grey band refers to the statistical uncertainty. Right bottom panel: the

target mass in terms of the Z and rXY cut.
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Figure 3: Left panel: event rates of the NC background as a function of the prompt energy using

six different neutrino interaction models. Right panel: event rates of the NC background for specific

channels with different final-state nuclei in the prompt energy range from 12 to 30 MeV.

most of the FN will be captured at the equator and upper regions of the LS. They can be effectively

removed by a fiducial volume cut in terms of the vertical position Z and the horizontal distance to

the detector centre rXY. The spatial vertex distributions of the FN events are illustrated in the left

panel of Fig. 2, where the grey and blue points refer to the FN events of the whole prompt energy

range and within [12, 30] MeV respectively. We define two fiducial volume (FV) regions based on

the values of Z and rXY, where the first one (FV1), as shown in the left panel of Fig. 2, is defined

with R ≡
√
Z2 + r2

XY < 16 m, and the other (FV2) refers to the region with R > 16 m and Z < 16

m, rXY < 16 m. The right top panel of Fig. 2 illustrates the event rate of the FN background as

a function of the Z and rXY cut with the prompt energy of [12, 30] MeV, where the grey band is

the statistical uncertainty of the simulated data. The corresponding target mass is shown in the

right bottom panel of Fig. 2. Note that FV2 is designed to enlarge the effective target mass but

still avoiding high FN rates. It will be shown in the next section that the efficiencies of the PSD

and TC cuts are different for these two regions. Finally the energy spectrum of the FN background

is taken as flat in the selected prompt energy window from 12 to 30 MeV according to the detector

simulation outputs.

4.5 Atmospheric ν NC background

The atmospheric neutrino fluxes at JUNO for the neutrino energies from 100 MeV to 104 GeV

have been calculated by the Honda group [39], where the flux uncertainty is less than 10% in the

energy range of (1 − 10) GeV, but gradually increases for both lower and higher energies [43, 44].

For the DSNB analysis, we have performed a systematic study on the CC and NC backgrounds

induced by atmospheric neutrino interactions on 12C. The CC background is negligible for prompt

energies below 100 MeV due to the suppression of neutron production. The general method of the

NC background calculation has been carefully studied in Ref. [31]. In this work the NC background

with the JUNO software framework using full detector simulation has been accomplished to study

properties of this important background.

Two widely-used neutrino generators GENIE [45] and NuWro [46] are used to model the NC interac-

tion between the atmospheric neutrinos and 12C, and TALYS [47] is employed to describe deexcitations
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Figure 4: The relative uncertainty of the NC background as a function of the detector exposure by

taking account of the envisaged in situ measurement at JUNO. The bands are obtained by assuming

different levels of natural radioactivity and cosmogenic 11C in the accidental background.

of the final-state nuclei. Between the two steps, we include a statistical configuration model of 12C

to determine the probability distribution of excited states in the final-state nuclei. Five typical

neutrino interaction models have been selected to evaluate the systematic uncertainty of the model

prediction, as shown in the left panel of Fig. 3, where the prompt energy is obtained with the JUNO

detector simulation including the full chain of detector response. The first model (G) is from GENIE,

and the other five (Ni with i = 1, · · · , 5) are different realization of NuWro with distinct nuclear

models and input parameters. The event rates with different final state nuclei in the prompt energy

range from 12 to 30 MeV are illustrated in the right panel of Fig. 3, where one can notice that

the NC background with 11C is the dominant NC background. By taking the average of six model

calculations as the prediction, and the combination of the flux uncertainty and model variations as

the total uncertainty, we arrive at (3.0± 0.5) kt−1 yr−1 for the NC background within the prompt

energy range from 12 to 30 MeV.

To test the theoretical prediction and further reduce the uncertainty of the NC background, we

can measure the NC background in situ with the JUNO detector. In the neutrino NC interactions,

some of the final state nuclei, such as 11C and 10C, may undergo delayed β decays, forming a

distinct three-fold signature in the detector. The three-fold signature can be measured with reduced

backgrounds and excellent accuracy is shown to be achievable using the JUNO simulation data.

Then the two-fold NC background is converted from the three-fold signature measurement by using

their correlated ratios of model predictions [32]. Therefore the NC background uncertainty from the

in situ measurement is obtained with both the statistical and conversion uncertainties, where the

conversion uncertainty is from the model variations of neutrino generators. The relative uncertainty

of the NC background as a function of the detector exposure by using the in situ measurement

is illustrated in Fig. 4, where the uncertainty can be decreased from 35% of one-year data to less

than 15% after around ten years of running. The bands are obtained by assuming different levels

of natural radioactivity and cosmogenic 11C in the accidental background. The difference between
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Figure 5: The averaged true (black) and reconstructed (red) profiles of the photon emission time

(PET) are illustrated for both the DSNB signal (solid) and NC background (dashed). The upper

panel is shown for the normalized time profiles and the lower panel for the relative ratios of the

DSNB signal and NC background.

GENIE and NuWro is mainly driven by the different branching ratios of the 11C channel. In the

following calculation, we take the NC background uncertainty as 35% for the first 3 years of data

taking, and an uncertainty of 25% (15%) after three (nine) years.

5 Background suppression

In this section we discuss the background suppression strategies for the DSNB sensitivity study.

Firstly, we follow the muon veto strategy as studied in Ref. [18], where the efficiency of the live

time can reach 93.6%. Secondly, since different types of particles depositing energies in LS will

have distinct photon emission time profiles, the PSD technique will be powerful to distinguish the

backgrounds with different profiles of time distributions. Here we present our detailed simulation

on the PSD efficiency, and apply for the suppression of the FN and atmospheric ν NC backgrounds.

Finally as mentioned before, the atmospheric ν NC background associated with the final-state nuclei
11C is the most significant background, which undergoes a β+ decay with a lifetime of 20.39 min

and a decay energy of 1.98 MeV. Therefore we make an additional TC cut to effectively reduce this

category of the NC background.

5.1 PSD cut

In organic LS, the fluorescence time profile is characterized by typical decay time constants ranging

from several ns to several hundred ns. The probability of photon emission as a function of time is

described by the weighted sums of exponential functions of several components. The time profiles

of different kinds of particles are featured by the distinct time constants and the corresponding

weights, which are the foundation of the PSD technique. During the full detector simulation of

the signal or background events, an optical photon starts from the emission time in LS, to the

photon propagation before detected by one specific PMT, then it is converted to an electrical signal

to be read out and reconstructed. The simulation is based on the JUNO offline framework, and

includes a full chain of the event generator, detector simulation, electronics simulation, waveform
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reconstruction and event reconstruction. The reference DSNB flux model discussed in Sec. 3, the

NC background from the GENIE model and the FN background are used to simulate the data. The

statistics of the simulation corresponds to around two million events of the signal and background to

avoid any bias of the fluctuation. In Fig. 5 the averaged true (black) and reconstructed (red) profiles

of the photon emission time (PET) for both the DSNB signal (solid) and NC background (dashed)

are illustrated. The upper panel is shown for the normalized time profiles and the lower panel for the

relative ratios of the DSNB signal and NC background. We note that the difference between the true

and reconstructed profiles is pretty significant between around 50 and 300 ns, which is due to the

time-of-flight smearing induced by multiple hits and total reflection. There are different methods to

implement the PSD technique in LS detectors, including the tail-to-total ratio (TTR) method [48],

the multivariate machine learning technique with the Boosted Decision Tree (BDT) option [49], and

the advanced Neural Network (NN) method [50]. In the following, we would like to summarize the

general properties of our simulation results on the PSD performance.

Firstly, due to the detector non-uniformity, the performance with the position dependent method

is much better than the simple calculation applied to the whole detector. Secondly, since the prompt

signal of the NC background contains not only the kinetic energies of nuclei, but also the deposited

energies of possible deexcited γ’s, the BDT method utilizing both the tail and peak signatures

surpasses the TTR method that employs the tail information. The DSNB signal efficiency in the

BDT method can reach the level of around 80% while keeping the residual NC background (denoted

as the background inefficiency) as low as 1%, which will be our baseline option for the sensitivity

study. Finally the Scikit-learn toolkit [50] is used as an independent NN analysis. By using the same

simulation as the BDT method, we show that the NN method can achieve consistent performance

for the background suppression, demonstrating the reliability of the PSD efficiencies.

In Fig. 6, we illustrate the PSD efficiencies as the functions of the prompt energy by requiring

the average background inefficiency as 1% with the BDT method. The left and right panels are

for the signal efficiencies and background inefficiencies in the regions of FV1 and FV2 respectively.

The black solid lines are for the signal efficiency after the PSD cut, and the red lines are for the

background inefficiencies of the atmospheric ν NC backgrounds with (solid) and without (dashed)
11C. The shadowed bands are shown for the statistical uncertainty of simulated data samples. Note

that the choice of the 1% average background inefficiency has been optimized with higher signal-to-

background ratio and better DSNB sensitivity.

From the figure, several comments can be provided as follows. Firstly, the PSD performance

is detector position dependent, the average efficiencies for the DSNB signal are 84% and 77% in

FV1 and FV2 respectively, where the energy dependence of the signal efficiencies and background

inefficiencies is shown in the red and black curves of Fig. 6. Because of the detector non-uniformity,

the total reflection in FV2 would affect the photon time profile and reduce the PSD performance.

Secondly, the PSD efficiencies are particle-type and energy dependent. In Fig. 6 we observe that the

inefficiencies for the NC background with 11C are higher than those NC background without 11C,

in particular for the events with the prompt energy smaller than 18 MeV, where a sharp increase

emerges for both FV1 and FV2 regions. The NC background with 11C is pure neutrons with high

energies, and the corresponding prompt energy includes both the elastically recoiled protons and

other inelastic products from the neutron interactions with 12C. Below a threshold energy at around

18 MeV, the inelastic products are dominant by deexcited γ’s, and above the threshold the processes

with heavy final-state particles become more effective, such as the proton, α, d, which are relatively

easier to recognized in the LS time profile. For the NC background without 11C, one can also look

into the component of the prompt signal, which includes more heavy final-state particles than the
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Figure 6: PSD efficiencies as functions of the prompt energy with the BDT method. The left and

right panels are shown for the signal and background efficiencies in the regions of FV1 and FV2.

The black solid lines are for the signal efficiency after the PSD cut, and the red lines are for the

background inefficiencies of the atmospheric ν NC backgrounds with (solid) and without (dashed)
11C. The shadowed bands are shown for the statistical uncertainty of simulated data samples.

NC background with 11C, and thus results in better PSD background rejection power.

Finally we evaluate the associated systematic uncertainty of the PSD cut. Several event samples

in future JUNO measurements could be used to directly measure the PSD efficiencies and/or indi-

rectly as inputs of detector simulation tuning. The first candidate sample is the spallation neutrons,

which have similar prompt energies as the DSNB observation window. The spallation neutrons with

muons crossing the outer veto region but without track in the CD can be selected to form a con-

trol sample for the NC background. A detailed study corresponding to around 180 days of muon

simulation data has been performed. The event rate of this control sample is around 2 per day in

the DSNB search region from 12 to 30 MeV. Considering the average PSD inefficiency of 1% for the

NC background, the statistical uncertainty of this selected sample is at the level of 30%, 20%, and

10% for 1 year, 3 years, and 9 years of data taking, respectively. Note that other control samples

including neutron calibration source of the low energy region [51], samples of the muon capture and

Michael electrons can also be used to control the systematic uncertainty of the PSD cut.

5.2 TC cut

The signature of the NC background with 11C are three-fold, which typically consists of a prompt

signal of the fast neutron recoil, a delayed signal of neutron capture on hydrogen, and an additional

signal from beta decay of the unstable 11C. To optimize the efficiency for the TC cut, we use the

same simulation data as in the PSD study and we also consider the accidental coincidence of the

muon-induced 11C or natural radioactivity with a preceding IBD-like signal. By varying the time

and distance between the third delayed signal and the first prompt one, we have obtained an optimal

choice for the best sensitivity of the DSNB search, which corresponds to a TC inefficiency of 25.5%

for the NC background with 11C and an efficiency of 93.6% for all the other components. Notice that

the optimal TC cut is stable for different detector exposures and the TC cut can only be applied in

FV1 because of the rather high background level in FV2.

To summarize this section, in the following DSNB sensitivity study, we use the energy dependent

PSD performance in FV1 and FV2 to suppress the NC background. By splitting the NC background

into two categories with and without 11C, one can also consider an additional TC cut to further

suppress the NC background with 11C in FV1. It is shown that the PSD performance of the FN
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background is the same as that of the NC background with 11C. Finally, we remark that the model

of LS scintillation time profiles in this work is particle-type dependent, and thus measurements with

low energy events have been used for the DSNB energy range. However, the time profile model and

resulting PSD performance may also be energy dependent. In this respect, the efficiencies of the

DSNB signal and inefficiencies of the NC background might be revised. We defer this study to a

future separated work.

6 Sensitivity

Signal Rate[147 kt× yr] muon veto PSD TC cut

12 MeV 16.2

93.6%

15.2 12.9

93.6%

12.1

15 MeV 20.8 19.4 16.7 15.6

18 MeV 25.2 23.6 20.4 19.1

21 MeV 29.0 27.2 23.7 22.1

Backgrounds

Fast neutron 12.5 11.7 0.2 0.2

Atm-ν CC 2.0 1.9 1.6 1.5

Atm-ν NC without 11C 258.2 241.7 0.9 0.9

Atm-ν NC with 11C 186.7 174.8 3.6 25.5% 0.9

Total backgrounds 459.4 430.0 6.3 3.5

Table 1: Event rates of the DSNB signal and corresponding backgrounds in FV1 with the prompt

energy in [12, 30] MeV. For the DSNB signal, we have assumed the black hole fraction of 0.27, the

SN rate at z = 0 of 1.0× 10−4 yr−1Mpc−3, and four different SN average energies of 12, 15, 18 and

21 MeV.

Signal Rate[36 kt× yr] muon veto PSD

12 MeV 3.9

93.6%

3.6 2.8

15 MeV 5.0 4.6 3.6

18 MeV 6.0 5.6 4.4

21 MeV 6.9 6.5 5.1

Backgrounds

Fast neutron 31.2 29.2 0.5

Atm-ν CC 0.5 0.4 0.4

Atm-ν NC without 11C 62.5 58.5 0.2

Atm-ν NC with 11C 42.3 39.6 0.8

Total backgrounds 136.5 127.8 1.9

Table 2: The same as Tab. 1 but for the region of FV2. Note that the PSD efficiencies are different

and the TC cut is not applied for FV2.

In this section we discuss the DSNB sensitivity at JUNO. To begin with, we provide a summary

of the DSNB signal and background evaluations. The event rates of the signal and background for

10 years of data taking are given in Tab. 1 and Tab. 2 for the fiducial regions of FV1 and FV2

respectively, where we have assumed the black hole fraction of 0.27 and the present SN rate of

1.0× 10−4 yr−1Mpc−3. The signal rates with different average energies of SN neutrinos are provided
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Figure 7: The prompt energy spectra of the reference DSNB signal with RSN(0) = 1.0 ×
10−4 yr−1Mpc−3, 〈Eν〉 = 15 MeV, and fBH = 0.27 versus all the backgrounds before (left) and

after (right) the background reduction techniques. The upper and lower panels are shown for the

regions of FV1 and FV2 respectively.
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for the prompt energy within [12, 30] MeV, where both the lower and higher boundaries of the prompt

energy range have been optimized with the DSNB discovery potential for the whole DSNB parameter

space. The signal and background rates using the background reduction techniques of muon veto, the

energy dependent PSD cut and the TC cut (only in FV1) are also shown in the tables. Meanwhile, the

prompt energy spectra of the reference DSNB signal with RSN(0) = 1.0× 10−4 yr−1Mpc−3, 〈Eν〉 =

15 MeV, and fBH = 0.27 and all the backgrounds before (left) and after (right) the background

reduction techniques are illustrated in Fig. 7. The upper and lower panels are shown for the regions

of FV1 and FV2 respectively. We can notice that after the background suppression, the DSNB signal

becomes visible in the prompt energy window between 12 to 30 MeV.

In order to calculate the DSNB sensitivity, we employ the Poisson-type log-likelihood ratio (de-

noted as χ2) as our test statistics:

χ2(〈Eν〉, fBH, RSN(0)) =
∑
i

−2 log

P
ni,Φsi +

∑
j

fjbj,i

+
∑
j

(fj − 1)2

σ2
j

(7)

where, P is the Poisson probability to obtain ni events in the i-th bin based on the signal prediction

si and background bj,i with j being the background index. Φ and fj are the spectral normalization

of the signal and backgrounds, respectively, where σj are the systematic uncertainties, which have

been specified in the previous section. In this work, the Asimov data set is used to derive the median

sensitivity. The DSNB discovery sensitivity (σ) is defined as square root of the difference between

minimal values of χ2 with (Φ = 1) and without (Φ = 0) the DSNB signal after marginalization of

other parameters:

σ =
√

∆χ2
min =

√
|χ2

min(Φ = 0)− χ2
min(Φ = 1)| (8)

The discovery sensitivity is a function of the DSNB physical parameters, where we have taken as

the SN rate, the SN average energy, and the black hole fraction.

In Fig. 8 we illustrate the DSNB discovery potential at JUNO as a function of the running time.

The reference DSNB signal model is taken as RSN(0) = 1.0× 10−4 yr−1Mpc−3, 〈Eν〉 = 15 MeV, and

fBH = 0.27, which is represented with black solid line in the left panel and black circle points in

the middle and right panels respectively. In the left panel, the model variations with represented

SN rates from 0.5 to 2.0× 10−4yr−1Mpc−3 are adopted by using short dashed and long dashed lines

respectively. The dark grey and grey regions are illustrated for different choices of the systematic

uncertainty of the NC background, which, by the quadratic combination of the uncertainties from

the in situ measurement and the PSD cut, is taken as 50%, 30% and 20%, for 1-3 years, 4-9 years

and 10-20 years of data taking, respectively. In the middle and right panels, the model variations

for the SN average energy from 12 to 18 MeV (middle) and the black hole fraction from 0 to 0.40

(right) are illustrated for 10 and 20 years of data taking. From the figure we can conclude that, for

the reference DSNB signal model, JUNO can achieve the sensitivity of 3σ for around 3 years of data

taking and better than 5σ after ten years. The discovery potential will increase for higher SN rates,

larger SN average energies, and greater black hole fraction, where even for the most pessimistic

DSNB model, the sensitivity will arrive at the level of 3σ for 10 years of data taking.

To further illustrate the model dependence of the DSNB sensitivity, we illustrate in Fig. 9 the

DSNB discovery potential as a function of model parameters for ten years of data taking, where the

bottom left plot shows the plane of (RSN(0), 〈Eν〉) with fBH = 0.27, the bottom right plot shows the

plane of (fBH, 〈Eν〉) with RSN(0) = 1.0 × 10−4yr−1Mpc−3 and the top left plot shows the plane of

(RSN(0), fBH) plane with 〈Eν〉 = 15 MeV. These two-dimensional plots with two degrees of freedom

are obtained after the marginalization of all the nuisance parameters. The blue, yellow and red
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Figure 8: DSNB discovery potential (σ) at JUNO as a function of the running time. The reference

DSNB signal model is represented with black solid line in the left panel and black circle points in

the middle and right panels respectively. In the left panel, the model variations with represented

SN rates from 0.5 to 2.0× 10−4yr−1Mpc−3 are adopted by using short dashed and long dashed lines

respectively. The dark grey and grey regions are illustrated for different choices of the systematic

uncertainty of the NC background. In the middle and right panels, the model variations for the SN

average energy from 12 to 18 MeV (middle) and the black hole fraction from 0 to 0.40 (right) are

illustrated for 10 and 20 years of data taking.
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Figure 9: DSNB discovery potential (σ) at JUNO as a function of DSNB model parameters for ten

years of data taking. The bottom left plot shows the plane of (RSN(0), 〈Eν〉, with fBH = 0.27, the

bottom right plot shows the plane of (fBH, 〈Eν〉) with RSN(0) = 1.0× 10−4yr−1Mpc−3 and the top

left plot shows the plane of (RSN(0), fBH) plane with 〈Eν〉 = 15 MeV. The blue, yellow and red

curves stand for 3σ, 4σ and 5σ confidence levels respectively. The black stars of better than 5σ

discovery potential show the locations of the reference DSNB model.
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Figure 10: 90% confidence level upper limits on the DSNB fluxes for 18 equal neutrino energy bins

from 12 to 30 MeV. The grey, red and blue bands with dashed lines are shown for the DSNB flux

predictions with (〈Eν〉 = 12 MeV, fBH = 0), (〈Eν〉 = 15 MeV, fBH = 0.27) and (〈Eν〉 = 18 MeV,

fBH = 0.40) respectively. The width of these three bands are taken with RSN(0) ranging from 0.5

to 2.0 × 10−4yr−1Mpc−3. The red and blue triangle points are shown for the DSNB flux limits

obtained from SK-I,II,III [6] and SK-IV [7] respectively. The pink square points are taken from

the KamLAND detection limits [13]. The orange diamond points are shown for the limits from

Borexino [15].

curves stand for the 3σ, 4σ and 5σ confidence levels of the discovery potential respectively. The

black stars of better than 5σ discovery potential show the locations of the reference DSNB signal

model. Comparing to the results of JUNO (2015) in Ref. [16], we can conclude that with the latest

DSNB signal prediction, more realistic background evaluation and PSD efficiency optimization, and

additional TC cut, even greater discovery potential can be obtained for the DSNB observation at

JUNO.

If there is no positive DSNB detection, JUNO can also significantly improve the current best

limits on the DSNB fluxes. Assuming the observation equals to the expected background, there are

two different and complimentary ways to report the exclusion limits.

The first method is to select a small energy window and directly derive the upper limit of the

DSNB flux in this window using the rate counting method and the Feldman-Cousins statistics [52].

In Fig. 10, we derive the 90% confidence level upper limits on the DSNB fluxes for 18 equal energy

bins from 12 to 30 MeV. The grey, red and blue bands with dashed lines are shown for the DSNB

flux predictions with (〈Eν〉 = 12 MeV, fBH = 0), (〈Eν〉 = 15 MeV, fBH = 0.27) and (〈Eν〉 = 18

MeV, fBH = 0.40) respectively. The width of these three bands are taken with RSN(0) ranging

from 0.5 to 2.0 × 10−4yr−1Mpc−3. The red and blue triangle points are shown for the DSNB flux

limits obtained from SK-I,II,III [6] and SK-IV [7] respectively. The pink square points are taken

from the KamLAND detection limits [13]. The orange diamond points are shown for the limits

from Borexino [15]. From the figure, we can observe that it is very promising for JUNO to reach
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dashed blue line is the limit with fBH = 0.27 and 10 years of data taking. The solid grey line is

reproduced for the results of JUNO (2015) in Ref. [16] and the dashed grey line is reproduced for

the current best limit from SK [6,8].

the parameter space of the DSNB model in the whole neutrino energy range from 12 to 30 MeV.

In the low energy part, it can improve the KamLAND and Borexino limits by around two orders

of magnitude. Compared to the SK limit, the improvement is also significant, from one order of

magnitude for low energy bins to around three times near the high energy boundary. It should be

noted that the advantage of this method is totally model-independent and much conservative, where

only the background budgets are required in the analysis.

Another complementary method of setting the upper limits is to assume a DSNB flux model and

use the spectral analysis. To illustrate we simplify the DSNB flux model by fixing the parameter

of fBH, and show in Fig. 11 the 90% confidence level upper limits on the DSNB signal in terms of

the present SN rate RSN(0) as a function of the average energy of SN neutrinos at JUNO. The solid

red and blue lines are shown for the limits with fBH = 0 and running time of 3 years and 10 years,

respectively. The dashed blue line is the limit with fBH = 0.27 and 10 years of data taking. The

solid grey line is reproduced for the results of JUNO (2015) in Ref. [16] and the dashed grey line is

reproduced for the current best limit from SK [6, 8]. By using 3 years and 10 years of data taking,

one can observe that JUNO can significantly improve the current best limit [6,8] by a factor of five

and ten respectively. Compared to the results of JUNO (2015) in Ref. [16], the total target mass of

FV1 and FV2 is comparable to that of 17 kt, but the PSD efficiencies are improved from an energy

independent value of 50% to the energy dependent efficiencies of around 80% in this work. Other

updates include the efficiencies of muon veto and the TC cut which are both neglected in Ref. [16].

Considering all these updates, the current work with fBH = 0 has improved the exclusion limit by

70% for large average energies and by 40% for the average energy at around 12 MeV. Meanwhile, by

comparing the blue solid and dashed lines, we observe that the inclusion of the black hole forming
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SN with nonzero fBH would further improve the exclusion limit, which is even more significant for

smaller average energies of SN neutrinos.

7 Concluding remarks

Large LS detectors are one of the most powerful tools to detect the long-awaited DSNB signal. In

this work, we have made a comprehensive study on the prospects for detecting the DSNB signal

at JUNO using the IBD detection channel on free protons. We have employed the latest DSNB

signal predictions based on sophisticated SN numerical simulation, and investigated in great detail

the background evaluation and reduction techniques for the DSNB observation. We have stressed

that the atmospheric ν induced NC background is the most critical background, and demonstrated

the powerful PSD technique and excellent TC cut can effectively suppress the NC background and

achieve promising discovery potential of the DSNB signal. For the reference DSNB model, JUNO

can reach the significance of 3σ for around 3 years of data taking, and better than 5σ after 10 years.

Even for the pessimistic scenario with non-observation, JUNO would strongly improve the current

best limits and exclude a significant region of the model parameter space.

JUNO will finish the detector construction and start the journey to the DSNB detection in 2023.

Together with the existing water-Cherenkov detector SK-Gd, it stands for the pioneering efforts to

first observe the DSNB signal in the next decade [53]. In the far future, in order to achieve the

goal of doing neutrino astronomy and cosmology with the DSNB observation [54, 55], one would

rely on high-statistics observation with future large-scale detectors, such as Hyper-Kamiokande [56],

DUNE [57], LENA [58] and the water-based LS detector THEIA [59].
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