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We apply the recently proposed quantum probing protocols with an unknown system-probe coupling to probe
the convex coefficients in mixtures of commuting states. By using two reference states instead of one as originally
suggested, we are able to probe both the lower and upper bounds for the convex coefficient. We perform extensive
analysis for the roles of the parameters characterizing the double peaked Gaussian frequency spectrum in the
Markovian-to-non-Markovian transition of the polarization dynamics of a single photon. We apply the probing
of the convex coefficient to the transition-inducing frequency parameter and show that the non-Markovianity
of the polarization dynamics can be confirmed with a single snapshot measurement of the polarization qubit
performed at unknown time. Furthermore, we change the “known” measurement coupling that corresponds to our
dynamics of interest to unknown measurement coupling and show that even for unknown measurement couplings
the probing method is precise enough to confirm that using the “known coupling” would lead to non-Markovian
polarization dynamics. We also show how the protocol can identify Markovian and non-Markovian time intervals
in the dynamics. The results are validated with single-photon experiments.

DOI: 10.1103/PhysRevA.106.032603

I. INTRODUCTION

Due to its foundational role in realistic quantum systems
and the implementability of quantum technologies, the study
of open quantum systems has attracted a lot of attention
[1–3]. Whenever a quantum system interacts with some other
system, its environment, the system and environment form
together a closed system whose dynamics is unitary. Due to
this interaction, the dynamics of the reduced system state is
not necessarily unitary and it is said to be an open system.
When the open system is used to store or process information,
the open-system dynamics causes information flow from the
system to the environment and correlations between the sys-
tem and environment. This means that all of the information
initially encoded in the open system cannot be retrieved just
by measurements on the evolved open system.

Luckily, the loss of information is not always monotonic
and in some cases the information has been shown to partially
return to the open system as the interaction is prolonged.
Multiple definitions of quantum non-Markovianity based on
such revivals of information and also other dynamical prop-
erties have been proposed and there is no agreement on
a single definition [4–12]. In this paper we refer to non-
Markovianity as revivals of the trace distance of the optimal
pair of initial states, namely the Breuer, Laine, and Piilo
(BLP) non-Markovianity, which directly quantifies the in-
creases of distinguishability of the state pair during the open
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system’s dynamics [4]. Since for our specific dynamics BLP
non-Markovianity is equivalent to multiple definitions of non-
Markovianity, such as CP divisibility, our results apply also
more generally [13,14].

In addition to fundamental interest of the nature of in-
formation flow, non-Markovianity has found many uses in
making quantum protocols more efficient under noisy cir-
cumstances [15]. Non-Markovianity has been experimentally
shown to increase the success rate of the Deutsch-Josza al-
gorithm implemented in nitrogen-vacancy (NV) centers in
diamond and allow for perfect superdense coding and quan-
tum teleportation with mixed two-photon polarization states
in noisy transmission [16–19]. Non-Markovianity has been
shown to help in entanglement generation and distribution,
and it has been shown to improve the secure key rate in quan-
tum key distribution [20–22]. Multiple different measures
and indicators of non-Markovianity have been developed but
the direct experimental confirmation of non-Markovianity re-
quires comparison of the system state at two different times
such that the information measure in question is larger at the
later time.

Even though the open-system dynamics is generally harm-
ful for the information carrier, the information flow in
the combined system-environment state can be exploited in
specific types of measurements. Since the initial state of
the environment influences how the open system evolves in
time, measurements on the evolved system can be used to
deduce some unknown properties of the environment. Such
measurements are useful in situations where direct measure-
ments on the system could hinder the operation of a quantum
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device, or, in the worst case, destroy its information carriers.
In these so-called quantum probing measurements, the unitary
coupling operator describing the total system-environment dy-
namics is commonly assumed as known. This assumption is
used to form a mapping between the measured open system
acting as the probe and the unknown properties of the envi-
ronment, which is the system of interest in the measurement
[23–28]. While using such an assumption has proven success-
ful in specific cases, it has certain disadvantages: As the whole
measurement strategy is based on one fixed unitary coupling,
it has to be faithfully implemented in the experiment. If the
coupling is changed, the protocol fails as the connection be-
tween the unknown properties and the evolved probe state
changes also.

Recently, a new approach to quantum probing was intro-
duced in Ref. [29]. The approach is based on a generalized
data processing inequality of the so-called α fidelities, which
was shown useful for multiple purposes. Among its applica-
tions a quantum probing protocol with unknown system-probe
coupling was proposed. In the protocol, the generalized data
processing inequality is applied to compare two probe states
after they have interacted with the system prepared in an un-
known state and some reference state. This comparison yields
to information of the unknown state.

Later, such a protocol was experimentally implemented
in a single-photon experiment [30]. In that paper, the upper
bound for the width of a Gaussian frequency spectrum was
probed by measurements on a polarization probe qubit that
had interacted with frequency in a combination of quartz
plates rotated in randomly chosen angles, corresponding to an
unknown system-probe coupling. These works showed that it
is possible to construct and implement measurements whose
action is arbitrarily chosen and completely unknown but still
result in nontrivial and reliable information.

In this paper, we show how the aforementioned probing
protocols based on the generalized data processing inequal-
ities can be used to extract lower and upper bounds for the
convex coefficients in mixtures of commuting states by using
unknown system-probe coupling. We apply this result in de-
tecting the global feature of non-Markovianity of the dynam-
ics and identifying the Markovian and non-Markovian time in-
tervals from snapshot measurements at unknown time. We re-
strict our study of non-Markovianity to cases whose dynamics
is given by a “known” system-probe coupling, which induces
the class of our dynamics of interest. When the dynamics-
inducing environment state is fixed, its parameters can also be
probed by using an unknown measurement coupling. Thus,
the non-Markovianity of our dynamics of interest can be
verified by probing the environment’s parameters by using
a completely unknown system-probe measurement coupling.
Thus we show that the probing protocol can be used to obtain
qualitative information about the probe’s important dynamical
features in addition to the static properties of the system.

Previously, a method for determining the non-
Markovianity in terms of the minimal deviation of a snapshot
channel from the set of all dynamical semigroups and
completely positive (CP) divisible dynamical maps was
developed [31]. In contrast, our goal is to determine if the
whole dynamical map is non-Markovian and to identify
the Markovian and non-Markovian time intervals of the

dynamics in terms of information backflow as revivals of
trace distance—all from a single snapshot at unknown time
and with no assumptions on the measurement coupling. We
note here that a sequence of system state preparations can
also be used to define and study non-Markovianity in another
way by combining them with a sequence of control operations
performed during the dynamics [32].

This paper is structured as follows: First, we discuss the
necessary background of open quantum systems, quantum
probing, and generalized data processing inequalities. Then
we develop the measurement strategy for probing the convex
coefficients in mixtures of commuting states with unknown
system-probe couplings and list some of its possible applica-
tions. After that, we concentrate on a specific quantum optical
implementation, namely, probing the convex coefficient of
a mixture of two Gaussian frequency spectra. We analyze
extensively the roles of the parameters of the double-peaked
spectrum in the non-Markovianity of the polarization dynam-
ics for the class of our dynamics of interest, happening when
the frequency-polarization coupling is a combination of quartz
plates with fast axes aligned. The results of the analysis show
that, by using our probing measurements, it is possible to ver-
ify the non-Markovianity of the dynamics of our interest with
no assumptions on the measurement coupling or any of the
parameters of the dynamics-inducing frequency state. Finally,
the protocol is experimentally realized in an all-optical setup
and the results are discussed.

II. OPEN QUANTUM SYSTEMS, QUANTUM PROBING,
AND GENERALIZED DATA PROCESSING INEQUALITIES

We say that a quantum system A is open if it interacts
with some other system, the environment B. Commonly, it is
assumed that A and B are uncorrelated before the interaction
begins. The dynamics of the total closed system AB is de-
scribed by a unitary coupling U which makes A and B interact.
The state of the system A after the interaction becomes

�(ρ) = trB[U (ρ ⊗ ξ )U †], (1)

where ρ and ξ are the initial states of A and B, respectively,
and trB[X ] is the partial trace of X over the Hilbert space of the
environment B. As a concatenation of completely positive and
trace preserving (CPTP) maps, � is also CPTP, or, in other
words a channel.

The effects of CPTP maps have been widely studied and it
has been shown that, in terms of some information measures,
information can never increase in channels. One of such com-
monly used measures is the trace distance of states ρ1 and ρ2,
defined as

Dtr(ρ1, ρ2) := 1

2
tr[

√
(ρ1 − ρ2)†(ρ1 − ρ2)], (2)

where
√

X is the unique positive operator satisfying√
X

√
X = X for X � 0. Trace distance gives directly the

probability of distinguishing two equally likely states ρ1 and
ρ2 in a single realization of an optimal measurement. Trace
distance was shown to satisfy the following data processing
inequality:

Dtr(ρ1, ρ2) � Dtr(�(ρ1),�(ρ2)), (3)
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for any channel � and any pair of initial states ρ1 and ρ2,
meaning that the distinguishability of any pair of states can
never increase in CPTP maps [33]. Also, the commonly used
fidelity of quantum states, defined as

F1/2(ρ1, ρ2) := tr[
√√

ρ2 ρ1
√

ρ2], (4)

satisfies the following data processing inequality

F1/2(ρ1, ρ2) � F1/2(�(ρ1),�(ρ2)), (5)

which means that the similarity of two states in terms of
fidelity can never decrease in CPTP maps.

Even though the data processing inequalities say that infor-
mation can be only lost from the open system A, it still remains
in the state of the total closed system AB whose dynamics
is unitary. This feature has been exploited in the so-called
quantum probing protocols. In quantum probing, the system
S has some unknown parameter x and the goal is to evaluate
the value of x without making direct measurements on S. This
can be the case, for example, when S is a part of a device such
as a quantum computer and we want to monitor its behavior
while it is running, but direct measurements would disturb or
even destroy it.

In quantum probing, direct measurements are avoided by
preparing a disposable probe system P in some known state
ρ and letting it interact with S under some unitary U . Then,
measurements on P are used to extract information on x. In
the above description of an open quantum system, probe P
corresponds to the open system A, and system S is its en-
vironment B. Equation (1) shows that the channel � that is
induced on probe P depends on the initial state ξ of S. In the
usual quantum probing protocols, the unitary coupling U is
known and a mapping between the unknown parameter x in
ξ and the transformed probe state �(ρ) is used to evaluate x
from measurements on �(ρ). Such protocols depend on using
a specific coupling U , and if it is not known or cannot be
properly implemented, the unknown parameter of S cannot be
mapped to the evolved probe state �(ρ) and thus the protocol
cannot be applied.

To see how quantum probing can be performed even if U
is unknown, let us consider the two cases in Fig. 1. Once the
coupling U is fixed, the dynamics of the probe P depends on
the initial state ξ of the system S. If S is prepared in different
states ξ1 and ξ2 and it is coupled to P, this can induce two
different channels �1 and �2 on P even if U is the same for
both initial states of S.

This observation was combined with the data processing
inequality to form a mathematical tool for studying open
quantum systems. This tool utilizes the comparisons between
the initial system and probe states, and the evolved probe
states [29]. The α fidelity of states was defined for α ∈ (0, 1)
as [29]

Fα (ρ1, ρ2) := tr
[(

ρ
1−α
2α

2 ρ1 ρ
1−α
2α

2

)α]
. (6)

In the special case α = 1/2, F1/2 becomes the commonly used
fidelity of states.

Now, let us consider the α fidelities in the context of Fig. 1.
The unitary coupling U between P and S is fixed but in
Fig. 1(a) and 1(b) the initial states of P and S can be different.

FIG. 1. The unknown coupling quantum probing approach. The
system S interacts with the probe P. The unitary U is the same
in panels (a) and (b). The analytical form of ξ1 and ξ2 is known,
but some parameters in ξ1 and ξ2 are different. Thus, the induced
probe channels �1 and �2 may be different. The system-probe cou-
pling U is unknown, and consequently so are the solutions for the
channels �1 and �2. Nevertheless, comparing the measured probe
states �1(ρ1) and �2(ρ2) can be used to gain reliable and nontrivial
information on the unknown parameter.

Thus, different choices of states ξ1 and ξ2 of S induce channels
�1 and �2 to P in the interaction, respectively. In this open-
system picture, it was shown that the α fidelities satisfy the
following generalized data processing inequality [29]

Fα (ρ1, ρ2)Fα (ξ1, ξ2) � Fα (�1(ρ1),�2(ρ2)), (7)

∀ α ∈ [1/2, 1) and for all unitary couplings U and initial states
ρ1, ρ2, ξ1, and ξ2.

Equation (7) allows us to develop new kinds of prob-
ing protocols which do not require any knowledge of the
system-probe coupling. Let us assume that the analytical form
of Fα (ξ1, ξ2) is calculated and we want to get bounds for
some parameters characterizing the system state ξ1 or ξ2.
In the protocol, the experimenter lets the system, prepared
in states ξ1 and ξ2, interact with probes prepared in known
states ρ1 and ρ2, respectively, as in Fig. 1. Then, the evolved
probe states �1(ρ1) and �2(ρ2) are determined with tomo-
graphical measurements. Solving for the unknown parameter
in Eq. (7) and inserting the measured density operators in
Fα (�1(ρ1),�2(ρ2)) yields nontrivial bounds for the unknown
parameter.

By using the subadditivity with respect to tensor prod-
ucts [34], unitary invariance [33], and the data processing
inequality, trace distance can be shown to satisfy the following
generalized data processing inequality in the open quantum
system picture of Fig. 1 [35]:

Dtr(�1(ρ1),�2(ρ2)) � Dtr(ρ1, ρ2) + Dtr(ξ1, ξ2), (8)
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for all unitary couplings U and initial states ρ1, ρ2, ξ1, and
ξ2. As described above for α fidelities, the generalized data
processing inequality of trace distance can also be used to
construct quantum probing protocols with unknown system-
probe couplings.

The generalized data processing inequalities (7) and (8)
are our main mathematical tool in the probing protocols. In
the next section we use them to construct quantum probing
protocols with unknown system-probe couplings to determine
lower and upper bounds for convex coefficients in mixtures of
commuting states which we apply later in snapshot verifica-
tion of the probe’s non-Markovianity.

III. PROBING OF CONVEX COEFFICIENTS

Let us consider a state of interest given by ξ1 = pξ2 +
(1 − p)ξ3, which is a convex combination of two known com-
muting states ξ2 and ξ3 with the unknown convex coefficient
p ∈ [0, 1]. We prepare three probe systems in the states ρ1,
ρ2, ρ3 and let them interact with the system in the state ξ1 and
the two reference states ξ2 and ξ3, respectively. By measuring
the evolved probe states �1(ρ1), �2(ρ2), and �3(ρ3), we
can perform a probing measurement to obtain bounds for the
convex coefficient p.

The commuting states ξ2 and ξ3 can be written diag-
onal in the same basis {|k〉}dS

k=1 as ξ2 = ∑
k λk|k〉〈k| and

ξ3 = ∑
k νk|k〉〈k|. Thus we get

Fα (ξ1, ξ2) =
∑

k

{[pλk + (1 − p)νk]}αλ1−α
k (9)

�
∑

k

(pλk )αλ1−α
k = pα (10)

⇒ Fα (ξ1, ξ2) � pα. (11)

More specifically, if ξ2 and ξ3 are orthogonal, the α fidelity
between the state of interest ξ1 and the first reference state ξ2

becomes

Fα (ξ1, ξ2) = pα. (12)

By using Eq. (11) or (12) in Eq. (7), we get an upper bound
for the convex coefficient as

p �
(

Fα (�1(ρ1),�2(ρ2))

Fα (ρ1, ρ2)

)1/α

. (13)

Similarly, by using the α fidelity between the state of inter-
est ξ1 and the second reference state ξ3, we get

Fα (ξ1, ξ3) � (1 − p)α (14)

for commuting ξ2 and ξ3, and

Fα (ξ1, ξ3) = (1 − p)α (15)

when ξ2 and ξ3 are orthogonal. As a consequence, we get also
a lower bound for the convex coefficient p as

p � 1 −
(

Fα (�1(ρ1),�3(ρ3))

Fα (ρ1, ρ3)

)1/α

(16)

whenever ξ1 = pξ2 + (1 − p)ξ3, where ξ2 and ξ3 are orthogo-
nal or commute.

By combining Eqs. (13) and (16), we get

1 −
(

Fα3 (�1(ρ1),�3(ρ3))

Fα3 (ρ1, ρ3)

)1/α3

� p (17)

�
(

Fα2 (�1(ρ1),�2(ρ2))

Fα2 (ρ1, ρ2)

)1/α2

,

where α2 and α3 are independent parameters in the interval
[1/2, 1).

For the trace distance between the state of interest ξ1 and
the commuting reference states ξ2 and ξ3 we get

Dtr(ξ1, ξ2) = 1

2

∑
k

(1 − p)|λk − νk| (18)

� 1

2

∑
k

(1 − p)(λk + νk ) = 1 − p (19)

⇒ Dtr(ξ1, ξ2) � 1 − p, (20)

where we used the same spectral decompositions for ξ2 and ξ3

as above, and similarly

Dtr(ξ1, ξ3) � p. (21)

If ξ2 and ξ3 are orthogonal, we get

Dtr(ξ1, ξ2) = 1 − p, (22)

Dtr(ξ1, ξ3) = p. (23)

As a consequence of Eq. (8), we get another set of bounds
for p as

Dtr(�1(ρ1),�3(ρ3)) − Dtr(ρ1, ρ3) � p

� 1 − [Dtr(�1(ρ1),�2(ρ2)) − Dtr(ρ1, ρ2)], (24)

whenever ξ1 = pξ2 + (1 − p)ξ3, where ξ2 and ξ3 are orthogo-
nal or commute.

Interestingly, this result does not depend on knowing any-
thing about how the system and probe interact because it is
based on the same approach as studied in Refs. [29,30]. This
means that the protocol is not sensitive to imperfections in the
implementation of the system-probe coupling U , and the same
strategy can be used for multiple different couplings to obtain
even tighter bounds. As Eq. (17) has the freedom to choose
α2 and α3, the bounds corresponding to each measurement of
�1(ρ1), �2(ρ2), and �3(ρ3) can be optimized with respect to
the α parameters.

The bounds of the convex coefficient p can be used for
different purposes. First of all, when ξ2 ⊥ ξ3, the purity [36]
of the state ξ1 can be given as P(ξ1) := tr[ρ2] = P(ξ2)p2 +
P(ξ3)(1 − p)2, so when the orthogonal states ξ2 and ξ3 in the
convex combination are fixed, the measured bounds of p can
be used to get bounds also for the purity of ξ1.

Second, when ξ2 ⊥ ξ3, the von Neumann entropy [33,36]
of ξ1 becomes S(ξ1) = pS(ξ2) + (1 − p)S(ξ3) − [p ln(p) +
(1 − p) ln(1 − p)], so bounds of p yield bounds for von
Neumann entropy, as the states ξ2 and ξ3 are known. If ξ1

represents a two-qubit state, where ξ2 and ξ3 are two dif-
ferent Bell states, the entanglement can be quantified with
the concurrence measure [37,38] as C(ξ1) = |2p − 1|. As in
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the case of purity and von Neumann entropy, also bounds
of entanglement can be experimentally determined with our
approach.

The same strategy can be used to probe upper bounds
of the N convex coefficients pi if the state ξ1 is a mixture
ξ1 = ∑N+1

i=2 piξi where ξi commute. If the eigenbasis of ξ1 is

known, it can be written as ξ1 = ∑dS

i=1 λi|φi〉〈φi|, where |φi〉 is
the eigenstate corresponding to the eigenvalue λi. As a conse-
quence, our strategy can be used to obtain upper bounds for all
the eigenvalues by performing the probing measurement with
dS reference states where dS is the dimension of the Hilbert
space of the system.

Next, we apply our probing protocol to a quantum optical
system where the convex coefficient influences the non-
Markovianity in the probe dynamics. More specifically, we
study the non-Markovianity in our dynamics of interest where
photon polarization and frequency interact when the photon
passes through a combination of quartz plates whose fast axes
are aligned. We perform extensive analysis for the system
and determine the critical values of the convex coefficient
determining whether non-Markovianity appears in the probe
(polarization) dynamics for any combination of the other sys-
tem (frequency) parameters in our dynamics of interest.

IV. SNAPSHOT VERIFICATION OF NON-MARKOVIANITY

From now on we apply the above results in a specific op-
tical system where the convex coefficient influences whether
the dynamics of the probe is Markovian or non-Markovian.
Our system of interest is the frequency of a single photon
and our probe is the photon’s polarization. Usually in the
open-system literature, the photon’s polarization is referred to
as the system and its frequency is the environment, but since
we probe the frequency by measurements on the polarization,
we use the names probe and system.

Our goal is to determine from a snapshot measurement
whether the polarization probe’s dynamics is Markovian or
non-Markovian when the frequency has been prepared in the
state ξ1. The state corresponds to a double-peaked Gaussian
spectrum with an unknown relative peak amplitude parameter
A, central peak frequencies μ1 and μ2, and peak widths σ .
To measure the properties, we prepare the frequency of two
other photons into reference states ξ2 and ξ3, characterized by
single-peaked Gaussian spectra. The frequency states can be
written as

ξ1 = Aξ2 + (1 − A)ξ3, A ∈ [0, 1],

ξ2 =
∫

G1(ω)|ω〉〈ω|dω,

ξ3 =
∫

G2(ω)|ω〉〈ω|dω,

where Gk (ω) = 1√
2πσ 2

e− (ω−μk )2

2σ2 , k ∈ {1, 2}.

(25)

Here, σ is the standard deviation and μk is the mean frequency
of the Gaussian distribution Gk (ω), illustrated in Fig. 2.
Here, ω are the frequency values appearing with probability
Gk (ω). Since the frequency states ξ2 and ξ3 commute, we can

FIG. 2. Illustration of the frequency states ξ1, ξ2, and ξ3. The
state of interest ξ1 is a convex combination of the two reference
states ξ2 and ξ3, and its spectrum is given by G(ω) = AG1(ω) +
(1 − A)G2(ω). The amplitude parameter A, the width of the Gaus-
sians, and the distance of the central frequencies together control the
transition of polarization probe’s dynamics between Markovian and
non-Markovian.

apply the quantum probing protocol to obtain lower and upper
bounds for A by using Eqs. (17) and (24).

When the polarization and frequency interact in a birefrin-
gent medium such as a combination of quartz plates with the
fast axes aligned, the reduced dynamics of the polarization
qubit becomes

ρ(t ) = �t (ρ(0)) =
(

ρHH κ (t )ρHV

κ∗(t )ρV H ρVV

)
, (26)

where κ (t ) = ∫
f (ω)ei2πω
nt dω is the decoherence function

and f (ω) is the frequency spectrum [39]. Here 
n = nH − nV

is the birefringence of the medium, where nH and nV are the
refractive indexes in the horizontal (H) and vertical (V) direc-
tions, respectively. This polarization-frequency model which
we call our dynamics of interest has been recently popular in
the studies of quantum information in open quantum systems
[17,19,30,39–46]. If the fast axes of the quartz plates in the
combination are not aligned, the dynamics becomes signifi-
cantly more complicated.

We concentrate on the non-Markovianity of our dynamics
of interest in terms of the commonly used BLP measure of
non-Markovianity [4], which is based on the trace distance.
Trace distance quantifies the distinguishability of two states,
which can be interpreted as the amount of information en-
coded into a sequence of information carriers prepared in
the two given states. Thus, increases of trace distance mean
increases in information. If Dtr(�t (ρ1),�t (ρ2)) is a mono-
tonically decreasing function of time, the states �t (ρ1) and
�t (ρ2) become less and less distinguishable as time goes on,
and the dynamics described by �t is Markovian in terms of
the BLP measure. On the other hand, if Dtr(�t (ρ1),�t (ρ2))
increases at some times, the distinguishability increases and
thus the dynamics is non-Markovian.

Here, we note that for the pure dephasing dynamics of
the form Eq. (26) the BLP non-Markovianity is equivalent
to many other indicators of non-Markovianity, such as re-
vivals of quantum channel capacity, entanglement assisted
classical channel capacity [6], violation of CP divisibility,
Bloch volume, and l1 coherence norm [14], so our results
apply directly to them, too. For the pure dephasing dynamics,
BLP non-Markovianity is critical for tightness of the quantum
speed limit bound. Thus, our results have also implications on
the optimality of the speed of the state dynamics, while the
connection does not exist for the set of all qubit dynamical
maps [47–49].
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For dynamics of the form (26), the optimal pair of initial
states in the BLP non-Markovianity measure can be chosen
as ρ

opt
1 = |+〉〈+| and ρ

opt
2 = |−〉〈−|, where |±〉 = 1√

2
(|H〉 ±

|V 〉) [50]. The dynamics is BLP non-Markovian if and only if
d
dt |κ (t )| > 0 at some time; otherwise, it is BLP Markovian. By
analytically solving the decoherence function induced by the
frequency in state ξ1, we see that the polarization dynamics is
BLP non-Markovian if and only if

h(A) := (1 − A)A >
2π
ntσ 2

θ (
nt, σ,
μ)
, and

θ (|
n|t, σ,
μ) > 0,

(27)

for some t > 0, where we have denoted

θ (
nt, σ,
μ) :=4π
ntσ 2 − 4π
ntσ 2 cos (2π
nt
μ)

− 
μ sin (2π
nt
μ), and (28)


μ :=|μ2 − μ1|. (29)

Once the other parameters of the Gaussian distributions are
fixed, the convex coefficient A determines directly whether the
polarization dynamics is Markovian or non-Markovian in the
following way: If we first restrict to A ∈ [0, 1/2], h(A) is a
monotonically increasing function in A. This means that there
exists Acrit ∈ [0, 1/2] such that the dynamics is Markovian for
all A < Acrit and non-Markovian for all A ∈ [Acrit, 1/2]. On the
other hand, if A ∈ [1/2, 1], h(A) is a monotonically decreasing
function in A and the opposite holds. Thus, we conclude that
the dynamics is non-Markovian if A ∈ [Acrit, 1 − Acrit] and
Markovian otherwise.

Motivated by the analysis of pure dephasing channels in
Refs. [29,30], we choose the initial probe states of the polar-
ization system as ρ1 = ρ2 = ρ3 = |+〉〈+|. In Refs. [29,30],
these choices were shown optimal when the probe’s dynamics
is pure dephasing type. We point out that, for other types
of probe dynamics, these states are not necessarily optimal.
Thus, if one uses an unknown measurement coupling, the
tightest probed bounds are not necessarily achieved with these
choices and different initial probe states should be tested for
the best result. Nevertheless, the basis of the probing protocol
guarantees that the probed bounds are valid for any choice
of initial probe states, and thus if nonoptimized initial states
verify non-Markovianity, the dynamics of our interest is non-
Markovian.

After the polarization has interacted with the frequency for
an unknown time, we perform tomographic measurements on
the evolved states �1(ρ1), �2(ρ2), and �3(ρ3) and calculate
the α fidelities Fα (�1(ρ1),�2(ρ2)) and Fα (�1(ρ1),�3(ρ3)).
Given that Fα (ρ, ρ) = 1 and Dtr(ρ, ρ) = 0 for any state ρ,
Eqs. (17), and (24) with the measurement data give us sim-
plified bounds for the amplitude parameter as

1 − Fα3 (�1(ρ),�3(ρ))1/α3 � A � Fα2 (�1(ρ),�2(ρ))1/α2 ,

Dtr(�1(ρ),�3(ρ)) � A � 1 − Dtr(�1(ρ),�2(ρ)).

(30)

If any of the experimentally determined upper bounds is
below Acrit, we immediately know that the polarization dy-
namics is Markovian, and similarly if any of the lower bounds

FIG. 3. The role of the amplitude parameter A in the Markovian-
to-non-Markovian transitions of the polarization dynamics. (a) The
qubit dynamics is non-Markovian if A ∈ [Acrit, 1 − Acrit] and Marko-
vian otherwise. The value of Acrit depends on the other parameters
of the double-peaked Gaussian spectrum. (b) The boundary values
between Markovian and non-Markovian regions as a function of the
rescaled distance of the Gaussian peaks |μ2 − μ1|/σ .

is above 1 − Acrit. On the other hand, if any of the lower
bounds is larger than Acrit and any upper bound is smaller
than 1 − Acrit, the dynamical map of the polarization qubit is
non-Markovian. The Markovian and non-Markovian regions
of the A parameter are illustrated in Fig. 3(a).

In Fig. 3(b), we have numerically calculated Acrit from the
non-Markovianity condition (27) as a function of the ratio
between the other free parameters 
η := 
μ/σ . The numer-
ical analysis suggests that, whenever 
η > 0, there exists a
nonempty interval [Acrit, 1 − Acrit] such that the polarization
dynamics is non-Markovian for all A within the interval. It
seems that when 
η is large, even small values of A produce
non-Markovian dynamics. The function fit to Eq. (27) illus-
trates this well. The non-Markovian region [Acrit, 1 − Acrit] is
given by

Acrit(
η) = 0.0885553e−0.0870419
η2 + 0.411445

0.0845395
η2 + 1
.

(31)

Thus, Acrit decreases monotonically as a function of 
η and,
consequently, the larger |μ2 − μ1| (or the smaller σ ), the
larger the non-Markovian set of A values [Acrit, 1 − Acrit], and
vice versa.

Recently, a method for probing the lower bound for 
η was
experimentally implemented in the cases of unknown cou-
pling between the system (frequency) and probe (polarization)
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FIG. 4. The experimental setup. The photon source PS produces a pair of photons. The idler photon arrives at single-photon detector D and
triggers the coincidence counter CC to expect the signal photon. First, the frequency-polarization state of the signal photon is prepared in the
state preparation stage. The photon goes through a beam splitter BS1 allowing to manipulate the photon independently in two distinct spatial
paths. Interference filters IF1 and IF2 in their own branches are used to filter the frequency spectrum to narrower Gaussians G1 and G2. IF2 can
be tilted to shift the central frequency of the Gaussian spectrum in the lower branch. Polarizers P1 and P2 are used to filter the polarizations
coming to beam splitter BS2, which combines the paths resulting to a double-peaked frequency spectrum. As the recombined photon goes
through polarizer P3, the photon’s initial polarization state ρ is fixed. The relative amplitude A between the Gaussian peaks is controlled by
rotating polarizers P1 and P2. Then, the photon arrives at the measurement stage where it first goes through the quartz plate combination (QPs)
corresponding to the unitary coupling U , where the probe (polarization) and the system (frequency) interact. After the interaction, the photon
goes through a combination of a quarter-wave plate (QWP), half-wave plate (HWP), and polarizer P4 before finally arriving at a single-photon
detector D, which are used together to perform full polarization state tomography to extract �(ρ ).

[30]. For our notation, the probed bound is given by


η �
√

2 ln [Fα (�2(ρ2),�3(ρ3))/Fα (ρ2, ρ3)]

α(α − 1)
. (32)

Since Acrit decreases monotonically in 
η, probing a lower
bound for 
η and inserting it in Eq. (31) would give us a
pessimistic upper bound Ãcrit for Acrit. If our measured bounds
of A are between Ãcrit and 1 − Ãcrit, then A is guaranteed to
be between the actual values Acrit and 1 − Acrit. Thus, the
unknown coupling probing protocol can be used to extract
appropriate bounds for each parameter to confirm that the
dynamics is non-Markovian.

In the Appendix C we analyze the limitations of using
multiple quartz plates in the same orientation as system-probe
coupling to verify that the probe dynamics is Markovian at
all times t > 0, or in other words, the global Markovianity
of the probe dynamics. We conclude that such system-probe
coupling always fails in that task. Even though that coupling
cannot be used to determine the global Markovianity, we may
use the same approach of unknown couplings as in Ref. [30]
and choose the rotation angles of each plate randomly. In
Ref. [30] random rotation angles improved the precision of the
probing. In such a situation, the analysis of the measurement
data is exactly the same, as one needs to just use the measured
probe states in Eqs. (30) and (32) to extract the bounds for A
and 
η, respectively.

Contrary to the analysis of global Markovianity, the po-
larization’s global non-Markovianity and Markovian time
intervals can be conclusively determined with quartz plates
in the same orientation, as we will see in Sec. VI. Next, we
present our quantum optical experimental setup and use it to
obtain the bounds for the parameters A and 
η and eventually
determine if the polarization dynamics is non-Markovian.

V. THE EXPERIMENTAL SETUP

Our experimental setup is presented in Fig. 4. First, a pair
of photons with wide frequency spectra is produced in a pho-
ton source (PS) by spontaneous parametric down-conversion
process when a type-I beta-barium borate crystal is pumped
with a tightly focused continuous-wave laser at the wave-
length 405 nm. One of the photons, the idler, is guided directly
to a single-photon detector D which sends a trigger to the
coincidence-counting electronics to expect the signal photon
at the other detector.

The signal photon arrives at a beam splitter (BS1), which
turns the photon into a spatial superposition of branch 1 and
branch 2. In branches 1 and 2, the photon passes through
the interference filters IF1 and IF2 with full width at half
maximum (FWHM) of 3 nm, respectively. The transmission
bands of IF1 and IF2 have different central frequencies μ1

and μ2, which filters the frequency spectrum in each branch
to the Gaussian distribution G1 and G2. IF2 can be also tilted,
and thus the distance of the Gaussians 
μ can be adjusted.

In the branches, the photon goes through the polarizers
P1 and P2 placed in rotation stations. Then, the branches are
recombined with another beam splitter (BS2), after which the
photon passes through a third polarizer that prepares the initial
polarization states ρ1 = ρ2 = ρ3 = |+〉〈+|. Together with the
polarizers in branches 1 and 2, the third polarizer P3 controls
the amplitudes of the Gaussians G1 and G2 by dimming the
Gaussian from each branch. The dimming of each Gaussian,
and thus the value of the amplitude parameter A, is determined
by the relative rotation angles between the branch polarizers
P1 and P2 and the third polarizer, giving us high control of
the state of interest ξ1. Each of the branches can also be
independently blocked, resulting to the reference states ξ2

and ξ3.
After the polarizer P3, the photon goes through a combi-

nation of quartz plates (QPs). In the quartz plates, the system
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FIG. 5. The probed bounds for Acrit and the convex coefficient A. (a) λ1 = 810 nm, λ2 = 830 nm, A = 0.5122. (b) λ1 = 810 nm, λ2 = 830
nm, A = 0.6377. (c) λ1 = 810 nm, λ2 = 820 nm, A = 0.6377. The x axis is the thickness of the quartz plate combination. The blue crosses
are the lower and upper bounds obtained from the α fidelity and the red slanted crosses are the bounds obtained from the trace distance. The
blue solid and red dashed lines are the theoretical predictions for the bounds of the matching color, calculated taking into account dispersion
in quartz. The black dash-dotted lines are the values of Acrit and 1 − Acrit, limiting the non-Markovian region. The Acrit values were obtained by
probing of 
μ/σ with Eq. (32). The error bars are due to the photon-counting statistics, and they are standard deviations of the bound values
calculated by the Monte Carlo method. In the case of trace distance, the error bars are sometimes smaller than the crosses.

(frequency) and probe (polarization) are coupled by unitary
U , causing the probe to experience dephasing dynamics de-
scribed by Eq. (26). In the experiment, the interaction time is
given by the thickness of the used QP combination.

Once the interaction ends, the photon goes through a
combination of a quarter-wave plate (QWP), half-wave plate
(HWP), and polarizer P4, after which it is guided into a
single-photon detector. The wave-plate combination and the
polarizer P4 are used to perform tomography for the polariza-
tion qubit to obtain the evolved probe states �1(ρ), �2(ρ),
and �3(ρ).

VI. MEASUREMENT RESULTS

A. Global non-Markovianity

We present our experimental results in Figs. 5 and 6. In
each case, we have used different choices for the central
frequencies μk = c/λk of the Gaussians or the convex coef-
ficient A, but the standard deviation σ of the Gaussians is kept
fixed. For each choice of the parameters, we let the probe (po-
larization) interact with the system (frequency) and performed
full tomography of the evolved probes for each initial system
state. This was repeated for multiple system-probe couplings,
corresponding to different thicknesses of QP combinations, as
illustrated by the horizontal axes of the figures. We note here
that the thicknesses are shown only to compare the measure-
ment data with the theoretical predictions and they were not
used to make any conclusions about non-Markovianity.

For each coupling, the probed lower and upper bounds for
A were obtained by using the results of evolved probe-state
tomographies �1(ρ), �2(ρ), �3(ρ) in Eq. (30) corresponding
to both the trace distance (red slanted crosses) and the α

fidelity (blue crosses). For the α fidelity bounds, we used
α2 = α3 = 1/2, since numerical tests showed it to result to
tightest probed bounds for A.

In the measurements presented in Figs. 5, 6(a), and 6(c),
we used the method of Ref. [30] to extract lower bounds
for 
μ/σ , which we used to obtain upper bounds for Acrit

corresponding to Eq. (31). For each of these cases, we used
the same measurement data as when probing bounds of A, but

the α values were optimized independently for each coupling
used to obtain the tightest bound, as done in Ref. [30]. Like
in Ref. [30], the optimal α value varied and it was most
commonly near α = 1.

The panels in Fig. 5 show that our probing approach
managed to extract tight enough bounds for the unknown
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FIG. 6. The probed bounds for the convex coefficient A. (a)–
(d) λ1 = 810 nm, λ2 = 818 nm, A = 0.7. The x axis is the thickness
of the quartz plate combination. The blue crosses are the lower and
upper bounds obtained from the α fidelity and the red slanted crosses
are the bounds obtained from the trace distance. The blue solid and
red dashed lines are the theoretical predictions for the bounds of the
matching color, calculated taking into account dispersion in quartz.
The black dash-dotted lines are the values of Acrit and 1 − Acrit,
limiting the non-Markovian region. In panels (a) and (b) the fast
axes of all the quartz plates were aligned. In panels (c) and (d) the
rotation angle of each quartz plate was chosen randomly. In panels
(a) and (c) the Acrit values were obtained by probing of 
μ/σ with
Eq. (32). In panels (b) and (d) the known value of Acrit was used.
The error bars are due to the photon-counting statistics, and they
are standard deviations of the bound values calculated by the Monte
Carlo method.
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parameters A and 
μ/σ to verify the non-Markovianity of the
dynamics: in each case, at least for one system-probe coupling
the probed lower and upper bounds are between the probed
Acrit and 1 − Acrit which define the non-Markovian region.
Thus in each case we could determine that the dynamics
was non-Markovian from the outcome of a single snapshot
measurement.

On the other hand, for some couplings the result is in-
conclusive, as either Acrit or 1 − Acrit is between the probed
bounds. Thus the parameter space restricted by the probed
bounds contains both Markovian and non-Markovian dynam-
ical maps. We note that in this case the bounds obtained
using trace distance led to a lot tighter bounds than those
derived from the α fidelities. The probed upper bound of Acrit

in Fig. 6(a) was too large, leading to inconclusive result in
verifying non-Markovianity. Figure 6(b) shows that, when the
exact value of Acrit was known, the probed lower and upper
bounds of A were tight enough to verify the non-Markovianity
of the polarization dynamics.

For the measurements presented in Figs. 6(c) and 6(d), we
used a completely unknown system-probe coupling by fixing
the quartz plates in randomly chosen rotation angles, as done
earlier in Ref. [30]. As above, we used this unknown measure-
ment coupling to probe if the polarization’s dynamics would
be non-Markovian in our dynamics of interest where all the
quartz plates in the combination are aligned. For clarity, this
cannot be used to make conclusions of the non-Markovianity
of the polarization’s dynamics when the coupling is unknown,
as changing the coupling modifies the dynamics and conse-
quently, the frequency parameter subspaces corresponding to
Markovian and non-Markovian dynamics change, too.

In Fig. 6(c), we used the measurement data to extract
bounds for both A and Acrit. The data shows that as in the case
of Fig. 6(a), this measurement led to inconclusive verification
of non-Markovianity. In Fig. 6(d) the exact value of Acrit was
assumed as known and we see that this time the measure-
ment data led to conclusive verification of non-Markovianity.
This means that quantum probing measurements with un-
known system-probe interactions can be used to limit the
convex coefficient to a nontrivial interval which in turn can
be exploited to make conclusions on the characteristics of
the BLP non-Markovianity. In Fig. 6(d) the result of polar-
ization’s non-Markovianity was inconclusive for the shorter
quartz-plate combination. We note here that the initial probe
states were chosen the same as used in the case where our
measurement coupling causes our dynamics of interest. Mea-
surement with different probe states could make the probed
bounds tighter, possibly leading to conclusive verification of
non-Markovianity in this case, too.

To summarize, in each measurement we successfully ver-
ified the non-Markovianity of the polarization dynamics by
probing A at a single unknown interaction time. Additionally,
in the measurements presented in Fig. 5 we managed to ex-
ploit the same measurement data to probe small enough upper
bounds for Acrit that the non-Markovianity could be verified
without assuming any of the parameters in the frequency
states.

We emphasize that, in order to make conclusions of the
non-Markovianity, we only need to measure the probe system
evolved with the map of interest only at one unknown time

FIG. 7. Probing the Markovian and non-Markovian time inter-
vals. (a) The time and 
η dependence of the critical amplitude Acrit.
The dynamics is Markovian in the white regions for all A. The hori-
zontal line shows the 
η in panel (b) where we have fixed λ1 = 810
nm, λ2 = 818 nm, A = 0.7. In panel (b), the lower and upper bound
of A are the tightest bounds in Fig. 6(a). Since the probed lower and
upper bounds are in [Acrit, 1 − Acrit] during the time intervals marked
with red dashed lines, we verify that the dynamics at those times is
non-Markovian. During the intervals marked with green dotted lines
neither the lower nor upper bound is in [Acrit, 1 − Acrit], and we verify
that the dynamics is Markovian at these time intervals. Vertical gray
lines are guides for the eye. The x axis is the rescaled interaction time
inside the quartz-plate combination. Here, 
η is assumed as known.

and compare it to our reference maps with the same unknown
interaction time. The protocol itself does not require any infor-
mation on the actual interaction time, or more generally, any
knowledge of the system-probe coupling U as demonstrated
by the results in Fig. 6(d). Even though the general form of
the dephasing dynamics in this model is well known [40,43],
measuring the evolved polarization state at an unknown in-
teraction time cannot tell anything about the Markovianity
or non-Markovianity of the qubit dynamics, as many choices
of A can lead to the same value |κ (t )|, corresponding to the
distinguishability of the optimal pair of states, even if the other
parameters are fixed.

B. Markovian and non-Markovian time intervals

Finally, we show how our probing results can be exploited
to identify the time intervals where the dynamics is guaranteed
to be Markovian or non-Markovian. Figure 7(a) shows the
time dependence of Acrit for different values of 
η, which
was determined numerically with Eq. (27). Inside the white
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areas, the dynamics is Markovian for all A in [0,1]. We see
that, as 
η decreases, the first non-Markovian period appears
later. The plot also shows that Acrit is always smallest during
the first non-Markovian period and larger 
η leads to smaller
Acrit. These observations are in good agreement with the
non-Markovian behavior of the frequency-polarization model,
since 
μ ∝ 
η gives rise to the revivals and σ ∝ 
η−1 cor-
responds to the damping rate of the trace distance [40,43]. The
horizontal black line highlights the fixed value of 
η in Figs. 6
and 7(b).

In Fig. 7(b) we plot the time dependence of Acrit for the
value of 
η in the measurements of Fig. 6. As in Fig. 7(a),
we see time intervals where Acrit is not defined, corresponding
to times when there does not exist such A ∈ [0, 1] that would
satisfy Eq. (27). Thus we know that the dynamics on all those
intervals is Markovian, marked with green dotted x axis. The
blue and red solid curves limit the non-Markovian region
[Acrit, 1 − Acrit] and the black dash-dotted line marks the real
value of A in the experiment.

We see that for the rescaled interaction time 2πσ
nt in
[0,3] the real value of A is between Acrit and 1 − Acrit on three
time intervals, meaning that the probe dynamics is really non-
Markovian at those times. Looking at the black solid lines,
corresponding to the tightest probed lower and upper bounds
for A in Fig. 6(a), we see that for the first two non-Markovian
time intervals the lower and upper bound are on the inter-
val [Acrit, 1 − Acrit]. This means that our probed bounds of A
combined with our analysis on the model’s non-Markovianity
lets us verify that the probe dynamics was non-Markovian on
those intervals. For these confirmed non-Markovian intervals
the x axis is marked with red dashing.

For the three potentially non-Markovian intervals for
2πσ
nt ∈ [2, 5], the probed upper bound is above 1 − Acrit

while the probed lower bound is between Acrit and 1 − Acrit,
so our probing measurement leads to inconclusive result on
the non-Markovianity on those intervals, marked with black
dotted x axis. We note also the very small inconclusive inter-
vals around the two confirmed non-Markovian intervals.

Here, we probed the Markovian and non-Markovian time
intervals only for the measurement in Fig. 6. The same
analysis can be directly applied also to the rest of our mea-
surements.

VII. CONCLUSIONS AND OUTLOOK

In this paper we applied the generalized data processing
inequalities of α fidelities and trace distance to construct a
quantum measurement strategy for probing lower and upper
bounds for the convex coefficients in mixtures of commuting
states. The measurement strategy does not require any knowl-
edge of the system-probe coupling used and it can be directly
applied with no modifications if the coupling is changed. We
first discussed briefly some possible applications. Then we
explored in detail a specific task, namely, the verification of
the probe’s non-Markovianity in our dynamics of interest,
a useful property for certain quantum information protocols
[16–22], by snapshot probing measurement at an unknown
time and with a completely unknown system-probe measure-
ment coupling.

We showed that, when a single photon’s polarization in-
teracts with the photon’s double-peaked Gaussian frequency
spectrum in quartz, the non-Markovian behavior of the
polarization dynamics is fully contained in an intact and well-
defined area in the two-dimensional (A,
μ/σ ) parameter
space. Here, A is the convex coefficient in the mixture of the
Gaussian peaks, 
μ is the difference of their central frequen-
cies, and σ is their standard deviation. We applied our strategy
in probing lower and upper bounds for the convex coefficient
A and exploited the same measurement data in the recently
proposed strategy to probe a lower bound for 
μ/σ [30].
The probing strategies were implemented in an all-optical
single-photon experiment where we were able to restrict the
unknown parameters A and 
μ/σ within an area where the
non-Markovianity of the polarization dynamics is guaranteed.
By assuming 
μ/σ as known, we applied our probing re-
sults of A to identify the Markovian and non-Markovian time
intervals of the polarization dynamics. Thus, our results il-
lustrate that quantum probing measurements with unknown
system-probe couplings can be constructed and implemented
to obtain useful qualitative information on the characteristics
of the probe’s dynamical map.

Even though we concentrated here in non-Markovianity
in terms of revivals of trace distance, in our case of dephas-
ing dynamics, these results apply directly to multiple other
definitions of non-Markovianity as well, namely, violation of
CP divisibility, Bloch volume oscillations, and increases of
l1 coherence norm [14]. In the dephasing dynamics, revivals
of trace distance also imply that the quantum speed limit
bound is not reached [47–49]. Thus, our results can be directly
used to conclude that the probe dynamics is not on its fastest
trajectory when the dynamics is verified as non-Markovian.

Our verification strategy is based on quantum probing
measurements. It has been recently shown that using probes
initially entangled with an ancillary system can achieve higher
precision in quantum probing [51]. However, adding an an-
cillary system increases the total probe-ancilla Hilbert-space
dimension, which makes the required tomography more de-
manding. Recently, experimentally estimating the fidelity
between two-photon polarization states was shown to be
more efficient than full tomography [52,53]. The results
and experimental implementation can be directly generalized
to α fidelities. Future studies will show if using entan-
gled ancillary polarization system can be exploited to obtain
better sensitivity in verification of non-Markovianity with-
out the need of increasing the amount of measurements
significantly.

Our results have also potential to be applied in the quan-
tum error correction with ancilla qubits. This interesting and
extensive topic is left for future studies.
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APPENDIX A: DERIVATION OF THE FORM
OF α FIDELITIES IN EQ. (9)

The commuting states ξ2 and ξ3 can be written diag-
onal in the same basis {|k〉}dS

k=1 as ξ2 = ∑
k λk|k〉〈k| and

ξ3 = ∑
k νk|k〉〈k|. Thus we get

Fα (ξ1, ξ2) = tr
[(

ξ
1−α
2α

2 ξ1 ξ
1−α
2α

2

)α]
(A1)

= tr
[(

ξ1 ξ
1−α
α

2

)α]
(A2)

= tr
[
ξα

1 ξ 1−α
2

]
(A3)

= tr

[(∑
k

[pλk + (1 − p)νk]|k〉〈k|
)α

×
(∑

l

λl |l〉〈l|
)1−α]

(A4)

= tr

[ ∑
k,l

{[pλk + (1 − p)νk]}α

× λ1−α
l |k〉〈k|l〉〈l|

]
(A5)

=
∑

k

{[pλk + (1 − p)νk]}αλ1−α
k (A6)

�
∑

k

(pλk )αλ1−α
k = pα (A7)

⇒ Fα (ξ1, ξ2) � pα, (A8)

where we have used the commutativity of ξ2 and ξ3, the
orthonormality of the basis {|k〉}dS

k=1, and the positivity of the
eigenvalues.

APPENDIX B: DERIVATION
OF THE NON-MARKOVIANITY CONDITION IN EQ. (27)

The decoherence function of the polarization is given by
[39,40]

κk (t ) =
∫

Gk (ω)ei2πω
nt dω (B1)

=
∫

1√
2πσ 2

e− (ω−μk )2

2σ2 +i2πω
nt dω (B2)

= ei2πμk
nt− 1
2 (2πσ
nt )2

(B3)

⇒ κ (t ) = Aκ1(t ) + (1 − A)κ2(t ), (B4)

and the absolute value becomes

|κ (t )| =
√

A2e−(2πσ
nt )2 + (1 − A)2e−(2πσ
nt )2 + 2A(1 − A) cos (2π
nt
μ)e−(2πσ
nt )2
(B5)

=
√

1 − 2h(A) + 2h(A) cos (2π
nt
μ)e− 1
2 (2πσ
nt )2

, (B6)

where we have denoted h(A) := (1 − A)A and 
μ := |μ2 − μ1|. Then, the time derivative takes the form

d

dt
|κ (t )| = −2h(A)π
n
μ sin (2π
nt
μ)√

1 − 2h(A) + 2h(A) cos (2π
nt
μ)
e− 1

2 (2πσ
nt )2

−
√

1 − 2h(A) + 2h(A) cos (2π
nt
μ)(2πσ
n)2te− 1
2 (2πσ
nt )2

. (B7)

Now we see that the decoherence function increases and thus the dynamics is non-Markovian if and only if

0 < −h(A)
n
μ sin (2π
nt
μ) − [1 − 2h(A) + 2h(A) cos (2π
nt
μ)]2π
n2tσ 2 (B8)

= h(A)
nθ (
nt, σ,
μ) − 2π
n2tσ 2, (B9)

where we have denoted θ (
nt, σ,
μ) := 4π
ntσ 2 − 4π
ntσ 2 cos(2π
nt
μ) − 
μ sin(2π
nt
μ).

We conclude that the polarization dynamics is non-
Markovian if and only if

h(A)
nθ (
nt, σ,
μ) > 2π
n2tσ 2 (B10)

⇔
{

h(A) > 2π
n2tσ 2


nθ (
nt,σ,
μ) when 
nθ (
nt, σ,
μ) > 0

h(A) < 2π
n2tσ 2


nθ (
nt,σ,
μ) when 
nθ (
nt, σ,
μ) < 0.

The two conditions on the bottom row can never be satisfied
simultaneously since 2π
n2tσ 2 is never negative and thus

nθ (
nt, σ,
μ) < 0 would force h(A) < 0. We know that
h(A) > 0 when 0 < A < 1 and if A = 0 or A = 1, we have

trivially Markovian dephasing dynamics, as can be seen from
Eq. (B5).

Since θ (−
nt, σ,
μ) = −θ (
nt, σ,
μ), we see that


nθ (
nt, σ,
μ) > 0, (B11)

⇔ θ (|
n|t, σ,
μ) > 0. (B12)

Thus, we conclude that the polarization dynamics is non-
Markovian if and only if

h(A) >
2π
ntσ 2

θ (
nt, σ,
μ)
and θ (|
n|t, σ,
μ) > 0. (B13)
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FIG. 8. The tightest possible upper and lower bounds probed
with the α fidelity (blue and red dots) optimized with respect to
time, α, and A independently, Acrit and 1 − Acrit (black diamonds and
squares), and the corresponding fitted curves (cyan and pink solid
lines) as functions of |μ2 − μ1|/σ .

APPENDIX C: ANALYSIS OF PROBING
GLOBAL MARKOVIANITY

Here we discuss the limitations of our probing measure-
ments when using aligned quartz plates as the unitary coupling
in verifying Markovianity of the polarization dynamics. To
conclude whether the dynamics is Markovian, the experimen-

tally obtained upper bound for the convex coefficient must be
less than the convex coefficient’s critical value, i.e.,

Fα2 (�1(ρ),�2(ρ))1/α2 < Acrit. (C1)

Alternatively, the experimentally obtained lower bound must
satisfy

1 − Fα3 (�1(ρ),�3(ρ))1/α3 > 1 − Acrit. (C2)

Numerical analysis shows that Fα2 (�1(ρ),�2(ρ))1/α2

grows with α2 ∈ [1/2, 1) and A ∈ [0, 1]. Since smaller
Fα2 (�1(ρ),�2(ρ))1/α2 and Fα3 (�1(ρ),�3(ρ))1/α3 lead to
tighter bounds in Eq. (30), we use α2 = α3 = 1/2 in the
measurement data analysis when probing the bounds of A. To
see if Eq. (C1) is ever satisfied, we may fix α2 = 1/2, A = 0,
and only consider mint {F1/2(�1(ρ),�2(ρ))2|A=0}, where the
minimum is taken over all system-probe interaction times t .
We have plotted the values of mint {F1/2(�1(ρ),�2(ρ))2|A=0}
as a function of 
η in Fig. 8, where the values of Acrit are
shown for comparison. We notice that the values of Acrit are in
excellent agreement with mint {F1/2(�1(ρ),�2(ρ))2|A=0}/2
for all choices of 
η. Thus, we can estimate that

Fα2 (�1(ρ),�2(ρ))1/α2 � min
t

{
F1/2(�1(ρ),�2(ρ))2

∣∣
A=0

}
≈ 2Acrit > Acrit. (C3)

A similar analysis for the lower bound results in the estimation

1 − Fα3 (�1(ρ),�3(ρ))1/α3 � max
t

{
1 − F1/2(�1(ρ),�3(ρ))2

∣∣
A=1

} ≈ 1 − 2Acrit < 1 − Acrit. (C4)

Combining Eqs. (C3) and (C4), we conclude that, for any choice of parameters A, μ1, μ2, σ , α2, α3, and t , we get[
1 − Fα3 (�1(ρ),�3(ρ))1/α3 , Fα2 (�1(ρ),�2(ρ))1/α2

] ∩ [Acrit, 1 − Acrit] �= ∅, (C5)

meaning that the bounds obtained by the α fidelity cannot be used to confirm the global Markovianity of the qubit dynamics
when the quartz plates are aligned in the same orientation.

We can derive the same result for the bounds obtained by the trace distance by using the estimation
Acrit ≈ 1

2 mint {F1/2(�1(ρ),�2(ρ))2|A=0}. Below, we show that the experimentally obtained upper bound satisfies
1 − Dtr(�1(ρ),�2(ρ)) � Acrit and thus cannot confirm Markovianity. Using the shorthand notation τ = 2πσ
nt , we get[

e− 1
2 τ 2

sin2

(

ητ

2

)
− e

1
2 τ 2

]2

� 0 ∀ τ � 0 (C6)

⇔ 2 sin2

(

ητ

2

)
� eτ 2 + e−τ 2

sin4

(

ητ

2

)
∀ τ � 0 (C7)

⇔ 2 − 2 cos (
ητ ) � eτ 2 − cos (
ητ ) + 1 + 1

4
e−τ 2

[cos (
ητ ) − 1]2 ∀ τ � 0 (C8)

⇔
√

2 − 2 cos (
ητ ) � e
1
2 τ 2 − 1

2
e− 1

2 τ 2
[cos (
ητ ) − 1] ∀ τ � 0 (C9)

⇔ 1 − 1

2
e− 1

2 τ 2√
2 − 2 cos (
ητ ) � 1

2

{
1 + 1

2
e−τ 2

[cos (
ητ ) − 1]

}
∀ τ � 0 (C10)

⇒ 1 − 1 − A

2
e− 1

2 τ 2√
2 − 2 cos (
ητ ) � 1

2
min

t

{
1 + 1

2
e−τ 2

[cos (
ητ ) − 1]

}
∀ A ∈ [0, 1] (C11)

⇔ 1 − Dtr(�1(ρ),�2(ρ)) � 1

2
min

t

{
F1/2(�1(ρ),�2(ρ))2

∣∣
A=0

}
(C12)

⇔ 1 − Dtr(�1(ρ),�2(ρ)) � Acrit, (C13)

which proves the claim. A similar calculation, using Acrit ≈
1
2 min{F1/2(�1(ρ),�3(ρ))2|A=1}, holds for the lower bounds.

Thus, we conclude that combinations of quartz plates in the
same orientation cannot be used as the system-probe coupling
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to confirm the Markovianity of the probe dynamics. In this
analysis, we concentrated on the global Markovianity, mean-
ing that there are no revivals of the trace distance at any time
t ∈ [0,∞).

If instead we are more interested in local Markovian-
ity, meaning monotonicity of trace distance on some finite
interval [t1, t2], the amount of trace distance revivals de-
creases and consequently the value of Acrit increases. Thus,

by restricting our interest to shorter intervals, we can con-
firm the Markovianity of the dynamics. In this approach, the
same measurement data and Eq. (30) can be used, but only
the values of Acrit should be calculated again according to
the time interval when interpreting the results. A similar ap-
proach can be applied to cases where we are interested in the
non-Markovianity at some specific time intervals. This was
successfully implemented in Sec. VI B of the main article.
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