
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Lipschitz Functions on Submanifolds of Heisenberg Groups

© The Author(s) 2022. Published by Oxford University Press.

Published version

Julia, Antoine; Nicolussi Golo, Sebastiano; Vittone, Davide

Julia, A., Nicolussi Golo, S., & Vittone, D. (2023). Lipschitz Functions on Submanifolds of
Heisenberg Groups. International Mathematics Research Notices, 2023(9), 7399-7422.
https://doi.org/10.1093/imrn/rnac066

2023



A. Julia et al. (2022) “Lipschitz Functions on Submanifolds of Heisenberg Groups,”
International Mathematics Research Notices, Vol. 00, No. 0, pp. 1–24
https://doi.org/10.1093/imrn/rnac066

Lipschitz Functions on Submanifolds of Heisenberg Groups

Antoine Julia1, Sebastiano Nicolussi Golo1,∗ and Davide Vittone3

1Départment de Mathématiques d’Orsay, Université Paris-Saclay, 91405,
Orsay, France, 2Department of Mathematics and Statistics, University of
Jyväskylä, 40014, Finland, and 3Dipartimento di Matematica “T.
Levi-Civita”, Università di Padova, via Trieste 63, 35121 Padova, Italy

∗Correspondence to be sent to: e-mail: sebastiano.s.nicolussi-golo@jyu.fi

We study the behavior of Lipschitz functions on intrinsic C1 submanifolds of Heisenberg

groups: our main result is their almost everywhere tangential Pansu differentiability.

We also provide two applications: a Lusin-type approximation of Lipschitz functions on

H-rectifiable sets and a coarea formula on H-rectifiable sets that completes the program

started in [18].

1 Introduction

Analysis on and of rectifiable sets in Euclidean spaces is made possible by a variety

of results, among which some of the most essential are the Rademacher Theorem,

the extension theorem for Lipschitz functions and Area and Coarea formulae; see,

for example, [14]. Starting from the 90s, these topics have been studied also in non-

Euclidean spaces through the notion of rectifiability in metric spaces introduced

by Ambrosio and Kirchheim [3, 20]. There are, however, interesting spaces to which

this notion is not adapted. For instance, the first Heisenberg group H
1 is purely k-

unrectifiable for k = 2, 3, 4 [3, Theorem 7.2]; similar phenomena occur in non-Abelian

Carnot groups and more generally in sub-Riemannian manifolds. Fortunately, in the

setting of Carnot groups intrinsic notions of rectifiability are available, modeled either
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2 Julia et al.

on intrinsic C1 submanifolds or on the so-called intrinsic Lipschitz graphs [17]. The two

notions are in general different [19] but they coincide [28, Corollary 7.4] in Heisenberg

groups H
n, where intrinsic rectifiable sets are now relatively well understood and

results analogue to those mentioned above are known to hold [4, 6, 7, 10–12, 15, 18,

21–25, 28].

We stress the fact that these results depend strongly on the particular Carnot

group one studies. This is in sharp contrast with the study of rectifiability in metric

spaces, which strongly relies on the analytic properties of the Euclidean spaces on

which metric rectifiable sets are modeled, and not so much on the properties of the

space itself. There are indeed Carnot groups for which some results fail (e.g., the

extension and Rademacher theorems for intrinsic Lipschitz graphs [8, 19]) or are still

unknown.

In this paper we go one step further towards the understanding of rectifiable

sets in Heisenberg groups H
n. Our main result is a Rademacher-type Theorem for

Lipschitz functions defined on intrinsic C1 submanifolds in H
n (see Theorem A below);

analogous versions for Lipschitz functions defined on intrinsic Lipschitz graphs or on

H-rectifiable sets in H
n are provided later in Section 4; see Corollaries 4.5 and 4.6. We

will consider only submanifolds and H-rectifiable sets of low codimension m ≤ n; the

other case of low dimension (i.e., of codimension more than n) is more straightforward,

as these objects turn out to have standard Euclidean regularity in R
2n+1 [5].

Before stating Theorem A, we need to provide the notion of differentiability

along a submanifold. Heisenberg groups and C1
H

submanifolds in H
n will be introduced

in Section 2. In the following, d denotes a homogeneous distance on H
n.

Definition 1.1 (Differentiability on a submanifold). Let S ⊂ H
n be a C1

H
submanifold of

codimension m ≤ n; we say that a map u : S → R
� is tangentially Pansu differentiable

along S at p ∈ S (cfr. [2, Definition 2.89]) if there exists a group morphism L : Hn → R
�

such that

lim
q→p,
q∈S

|u(q) − u(p) − L(p−1q)|
d(p, q)

= 0. (1)

The morphism L for which (1) holds is, in general, not unique; however, it can

be proved that L is uniquely determined on the tangent space TH
p S. This uniqueness

is a consequence of statement (2) in Proposition 3.1, which is equivalent to tangential

differentiability. The restriction L|TH
p S will be called Pansu differential of u at p along S

and it will be denoted by DS
H

u(p) or DS
H

up.
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Lipschitz Functions on Submanifolds of Heisenberg Groups 3

We can now state our main result; as customary, we denote by Q = 2n + 2 the

homogeneous dimension of Hn, so that the Hausdorff dimension of a C1
H

submanifold of

codimension m ≤ n is Q − m.

Theorem A (Pansu–Rademacher). Let n, m, � be positive integers with m < n. If S is a

C1
H

submanifold of Hn of codimension m and u : S → R
� is a Lipschitz function, then u

is tangentially Pansu differentiable at S Q−m-a.e. point of S.

Theorem A is not trivial. It does not directly follow from the Pansu Theorem [26]

on the a.e. differentiability of Lipschitz functions in H
n: in fact, a Lipschitz function

u : H
n → R

� could be nowhere differentiable on S. On the contrary, Theorem A

asserts that u must be S Q−m-a.e. differentiable along the horizontal directions that are

tangent to S. In classical Euclidean geometry an analogous result can be easily obtained

from the usual Rademacher Theorem by reasoning in local charts on the submanifold.

In Heisenberg groups H
n a similar strategy seems feasible only for submanifolds

of codimension 1 with stronger C1,α
H

regularity, because these submanifolds can be

modeled on the Carnot group H
n−1 × R (see [12, Theorem 1.7]) where Pansu Theorem

holds.

Our approach is completely different: Theorem A is in fact proved via the use

of currents in the Heisenberg group (see Section 2): although these currents involve

the use of Rumin’s complex of differential forms, whose construction is highly non-

trivial, our proof does not require its most daunting aspects. Let [[S]] be the current

associated with the submanifold S and without loss of generality assume that � = 1. We

consider the blow-up of the current u[[S]] at a point p ∈ S and prove that, for S Q−m-a.e.

p ∈ S, the blow-up limit is of the form L[[TH
p S]], where TH

p S is the homogeneous tangent

subgroup to S at p and L is a homogeneous morphism L : TH
p S → R. Through some

minor technicalities (see Proposition 3.1 and Lemma 4.1), this fact implies the tangential

differentiability of u along S at p.

We must stress the fact that, in Theorem A, the assumption that the codimension

m is strictly less than n is crucial, as the following example shows.

Remark 1.2. Consider the C1
H

submanifold S := {(x, y, t) ∈ H
1 ≡ R

3 : x = 0} of

codimension 1 in H
1 and let u : S → R be the function u(0, y, t) := v(t), where v : R → R

is a 1
2-Hölder continuous function such that, for every t ∈ R,

lim inf
s→t

|v(s) − v(t)|
|s − t|1/2 > 0.
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4 Julia et al.

For the construction of such a v; see, for example, [19, ] and the references therein. The

Hölder continuity of v easily implies the Lipschitz continuity of u on S with respect to

the distance d. Now, every group morphism L : H1 → R is such that L(0, 0, t) = 0; taking

into account that S is an Abelian subgroup of H1 (as a group, it is isomorphic to R
2) we

deduce that for every fixed (0, y, t) ∈ S

lim inf
s→t

|u(0, y, s) − u(0, y, t) − L((0, y, t)−1(0, y, s))|
d((0, y, s), (0, y, t))

= c lim inf
s→t

|v(s) − v(t)|
|s − t|1/2 > 0,

where the constant c > 0 depends on the distance d. In particular, there is no

group morphism L for which (1) holds, and u is a Lipschitz function that is nowhere

tangentially Pansu differentiable along S.

We conclude this introduction by stating two consequences of Theorem A.

The first one is a Lusin-type theorem for Lipschitz functions on H-rectifiable sets:

a Lipschitz function coincide with a C1
H

function outside an arbitrarily small set.

The tangential Pansu differential along a H-rectifiable subset, DR
H

up, is introduced in

Corollary 4.6.

Theorem B (Lusin). Let n, m, � ≥ 1 with m < n. Let R be a H-rectifiable subset of

H
n with codimension m and u : R → R

� a Lipschitz function. For every ε > 0 there is

g ∈ C1
H
(Hn;R�) such that

S Q−m({p ∈ R : u(p) 	= g(p) or DR
H

up 	= DR
H

gp}) < ε.

Moreover, g can be chosen to be Lipschitz continuous on H
n with a Lipschitz constant

controlled only in terms of n and of the Lipschitz constant of u.

A second consequence of Theorem A is a fully general coarea formula on H-

rectifiable sets, Theorem C. In our previous work [18] we proved a coarea formula

under the assumption that the “slicing” function u is of class C1
H

; the use of Theorem B

allows to extend this result to the more general (and more natural) case in which u

is Lipschitz continuous. In fact, our interest in Theorem A was originally motivated

by Theorem C, which completes the program started in [18] at least in Heisenberg

groups.

Theorem C (Coarea). Let n, m, � ≥ 1 with m + � ≤ n. There is a continuous positive

function C(P, α), defined for homogeneous subgroups P of H
n of codimension m and

homogeneous group morphisms α : P → R
�, such that the following holds. If R and u
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Lipschitz Functions on Submanifolds of Heisenberg Groups 5

are as in Theorem B, then, for every Borel function h : R → [0, +∞),

∫
R

h(p)C(TH

p R, DR
H

up)dS Q−m(p) =
∫
R�

∫
u−1(s)

h(x)dS Q−m−�(x)dL �(s).

Moreover, if the distance d is rotationally invariant (see (12) for the definition of

rotationally invariant distance), then then there exists a constant c = c(n, m, �, d) > 0

such that

c

∫
R

h(p)JR
H u(p) dS Q−m(p) =

∫
R�

∫
u−1(s)

h(x)dS Q−m−�(x) dL �(s),

where

JR
H u(p) = (det(L ◦ LT))1/2 with L = DR

H
up|TH

p R.

The paper is structured as follows. Section 2 contains the preliminary material

about Heisenberg groups, C1
H

submanifolds, H-rectifiable sets and currents, while

Section 3 is concerned with some technical results about tangential Pansu differentia-

bility. Theorems A, B, and C are eventually proved in Sections 4, 5, and 6, respectively.

2 Preliminaries

For an integer n ≥ 1, the n-th Heisenberg group H
n is the nilpotent, connected and

simply connected stratified Lie group associated with the step 2 algebra V = V1 ⊕ V2

defined by

V1 = span{X1, . . . , Xn, Y1, . . . , Yn}, V2 = span{T}
and where the only non-vanishing commutation relations are given by [Xi, Yi] = T

for every i = 1, . . . , n. We will always identify H
n with its Lie algebra through the

exponential map exp : V → H
n. This induces a diffeomorphism between H

n and R
2n+1

defined by

R
n × R

n × R 
 (x, y, t) ←→ exp(x1X1 + · · · + xnXn + y1Y1 + · · · + ynYn + tT) ∈ H
n

according to which the group operation reads

(x, y, t)(x′, y′, t′) = (x + x′, y + y′, t + t′ + 1
2

∑n
j=1(xjy

′
j − x′

jyj)).

In these coordinates the generators of the algebra read as

Xi = ∂xi
− yi

2
∂t, Yi = ∂yi

+ xi

2
∂t, T = ∂t
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6 Julia et al.

for every i = 1, . . . , n. In particular, the space V1 is the kernel of the left-invariant contact

form θ := dt + 1
2

∑n
i=1(yidxi − xidyi).

Heisenberg groups are endowed with dilations, that is, with the one-parameter

group of automorphisms (δλ)λ>0 defined by δλ(x, y, t) := (λx, λy, λ2t). We endow H
n with

a left-invariant and homogeneous distance d, so that

d(p, q) = d(p′p, p′q) and d(δλp, δλq) = λd(p, q) for every p, p′, q ∈ H
n, λ > 0,

and denote by B(p, r) the open ball of center p ∈ H
n and radius r > 0. The Hausdorff

dimension of Hn is Q := 2n + 2.

We fix on V the scalar product making the basis X1, . . . , Xn, Y1, . . . , Yn, T

orthonormal; for every k ∈ {0, . . . , 2n + 1} a scalar product is canonically induced

on the exterior product ∧kV. We will denote by | · | the norm associated with such scalar

products. Also the dilations δλ can be canonically extended to ∧kV.

Given an open set U ⊂ H
n, we say that f : U → R is of class C1

H
if f is continuous

and its horizontal derivatives

∇
H

f := (X1f , . . . , Xnf , Y1f , . . . , Ynf )

are represented by continuous functions on U. In this case we write f ∈ C1
H
(U). We agree

that, for every p ∈ U, ∇
H

f (p) ∈ R
2n is identified with the horizontal vector

∇
H

f (p) := X1f (p)X1 + · · · + Ynf (p)Yn ∈ V1

We denote by C1
H
(U,Rm) the space of functions f : U → R

m whose components belong

to C1
H
(U).

Definition 2.1. Let m ∈ {1, . . . , n} be fixed. We say that S ⊂ H
n is a submanifold of

class C1
H

(or H-regular submanifold) of codimension m if, for every p ∈ S, there exist an

open neighborhood U ⊂ H
n of p and f ∈ C1

H
(U,Rm) such that

S ∩ U = {q ∈ U : f (q) = 0} and ∇
H

f (q)has rankmfor allq ∈ U.

We also define the horizontal normal nH

S (p) to S at p as the horizontal m-vector

nH

S (p) := ∇
H

f1(p) ∧ · · · ∧ ∇
H

fm(p)

|∇
H

f1(p) ∧ · · · ∧ ∇
H

fm(p)| ∈ ∧mV1
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Lipschitz Functions on Submanifolds of Heisenberg Groups 7

and the (horizontal) tangent tHS (p) := ∗nH

S (p) ∈ ∧2n+1−mV. We will consider the

boundary of S defined as ∂S := S \ S.

In the definition of the tangent multi-vector tHS the symbol ∗ denotes the Hodge

operator from multivector calculus. It is well known that the blow-up limit of a C1
H

submanifold S at p ∈ S is the homogeneous (i.e., dilation-invariant) subgroup

TH

p S := exp({X ∈ V : X ∧ tHS = 0}).

This means in particular that limλ→+∞ δ1/λ(p
−1S) = TH

p S in the sense of Kuratowski; see

Section 3. We will refer to TH
p S as the homogeneous tangent space (or simply tangent

space) to S at p.

An Implicit Function Theorem [16, Theorem 6.5] is available for C1
H

submani-

folds. If S is as in Definition 2.1 and p ∈ S is fixed, then there exist

• a horizontal complement V = V(p) to TH
p S, that is, a homogeneous subgroup

V such that V ⊂ V1, V ∩ TH
p S = {0} and H

n = (TH
p S) · V;

• an open neighborhood 	 of p;

• a relatively open set U ⊂ TH
p S;

• a continuous map φ : U → V

such that S ∩ 	 coincides with the intrinsic graph �φ of φ defined by

�φ := {wφ(w) : w ∈ U}. (2)

See, for example, [18], and the references therein. The area formula for such graphs [18,

Theorem 1.1] states that there exists a continuous function Aφ : U → (0, +∞) such that

for every Borel function h : S → [0, +∞)

∫
S∩	

hdS Q−m =
∫

U
h(wφ(w))Aφ(w)dS Q−m(w). (3)

Recall that the Hausdorff dimension of S (as well as that of TH
p S) is Q − m; moreover, the

spherical Hausdorff measure S Q−m is locally (Q − m)-Ahlfors regular on S.

Remark 2.2. We will later use the fact that, if w̄ ∈ TH
p S is the unique point such that

p = w̄φ(w̄), then Aφ(w̄) = 1. This follows from the very definition of the area factor A
for the spherical measure S Q−m, see [18, Lemma 3.2]. Indeed, the area factor is defined
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8 Julia et al.

in [18, Lemma 3.2] via the formula

S Q−m�P = A(P)�
P#(S Q−m�W),

where, in our case, we have Aφ(w̄) = Aφ(P) with P = W = TH
p S and �

P# = Id
W

.

Definition 2.3. Let m ∈ {1, . . . , n} be fixed. We say that R ⊂ H
n is countably H-

rectifiable of codimension m if there exist countably many C1
H

submanifolds Si, i ∈ N, of

codimension m such that

S Q−m
(
R \

⋃
i∈N

Si

)
= 0.

We say that R is H-rectifiable if, in addition, S Q−m(R) < +∞.

The following lemma, though very simple, is sometimes overlooked.

Lemma 2.4. Let m ≤ n be fixed. Then, a subset R ⊂ H
n is H-rectifiable of codimension

m ≤ n if and only if, for every ε > 0, there exists a C1
H

submanifold S ⊂ H
n of

codimension m such that

S Q−m(R \ S) < ε. (4)

Proof. Let ε > 0 be fixed and fix Si, i ∈ N, as in Definition 2.3. Fix also a positive

integer M such that

S Q−m
(
R \

⋃
i≤M

Si

)
<

ε

2
.

We define the C1
H

submanifold S′
0 := {p ∈ S0 : d(p, ∂S0) > r0}, where r0 is chosen so that

S Q−m(R ∩ ∂S′
0) = 0 and S Q−m((R ∩ S0) \ S′

0) <
ε

4
.

(One can find such an r0 for the following reason: for r > 0 define S′
0(r) := {p ∈ S0 :

d(p, ∂S0) > r}. First, since {R ∩ ∂S′
0(r)}r>0 is a family of uncountably many pairwise

disjoint subsets of R where S Q−m(R) < ∞, then S Q−m(R ∩ ∂S′
0(r)) = 0 for arbitrarily

small r. Second, since R∩S0 is the union of the nested sets (R∩S0)\S′
0(r), then S Q−m((R∩

S0)\S′
0(r)) → 0 as r → 0, by the continuity of measure.) Reasoning by induction, for every
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Lipschitz Functions on Submanifolds of Heisenberg Groups 9

i = 1, . . . , M one can define C1
H

submanifolds

S′
i := {p ∈ Si \ ∪j<iS

′
j : d(p, ∂(Si \ ∪j<iS

′
j)) > ri},

where we use the fact that Si \ ∪j<iS
′
j is a C1

H
submanifold and ri > 0 is chosen so that

S Q−m(R ∩ ∂S′
i) = 0 and S Q−m(R ∩ (Si \ ∪j<iS

′
j) \ S′

i) <
ε

2i+2
.

We now consider S := ∪M
i=0S′

i, which is a C1
H

submanifold because it is union of finitely

many C1
H

submanifolds at positive distance from each other. Then

S Q−m(R \ S) ≤ S Q−m(R \ ∪i≤MSi) + S Q−m(R ∩ (∪i≤MSi) \ (∪j≤MS′
j))

<
ε

2
+ S Q−m(∪i≤M((R ∩ Si) \ ∪j≤MS′

j))

≤ ε

2
+ S Q−m(∪i≤M(R ∩ (Si \ ∪j≤iS

′
j)))

= ε

2
+ S Q−m(∪i≤M(R ∩ (Si \ ∪j<iS

′
j) \ S′

i))

< ε,

where we used the fact that S Q−m(R∩∂S′
j) = 0. This proves one implication, the converse

one is trivial. �

Definition 2.5. An approximate tangent space TH
p R can be defined for a countably

H-rectifiable set R ⊂ H
n. Let Si be as in Definition 2.1; then we define

TH

p R := TH

p Si if p ∈ R ∩ Si \
⋃
j<i

Sj.

Definition 2.5 is well-posed S Q−m-a.e. on R; see for example, [18, §2.5]. It turns

out that, if R1, R2 ⊂ H
n are countably H-rectifiable, then TH

p R1 = TH
p R2 for S Q−m-a.e.

p ∈ R1 ∩ R2.

We will need a few facts from Rumin’s theory of differential forms in H
n as

well as from the theory of the associated currents. The exact complex of Heisenberg

differential forms

0 → R → 	0
H

dc→ 	1
H

dc→ · · · dc→ 	n
H

dc→ 	n+1
H

dc→ · · · dc→ 	2n+1
H

→ 0
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10 Julia et al.

was introduced by Rumin in [27]; here we will only partially introduce it and, for more

details, we refer to [28, §3] and the references therein. For k ≥ n + 1 we have

	k
H

:= {ω smooth k-form on H
n : ω ∧ θ = ω ∧ dθ = 0},

and dc : 	k
H

→ 	k+1
H

coincides with the usual exterior differential d. Notice that dθ =
−∑n

j=1 dxj ∧ dyj is the standard symplectic form in R
2n (up to a sign).

For every p ∈ H
n, λ > 0 and ω ∈ 	k

H
, k ≥ n + 1, one has

d(ω ◦ Lp,λ) = λ(dω) ◦ Lp,λ, where Lp,λ(x) = δλ(px), (5)

where, by a slight abuse of notation, we identify k-differential forms with functions

H
n → ∧kV, where V is the vector space underlying the Lie algebra of H

n. Formula (5)

can be proved on observing that, by definition of the Rumin’s spaces, one can write

ω = ωH ∧ θ for a suitable ωH ∈ C∞(Hn, ∧k−1V1) such that ωH ∧ dθ = 0; in this way

dω = d(ωH ∧ θ) = (dωH) ∧ θ = (dωH)H ∧ θ

for a suitable (dωH)H ∈ C∞(Hn, ∧kV1), and we obtain the homogeneity relations

ω ◦ Lp,λ = λ−k−1L∗
p,λω, (dω) ◦ Lp,λ = λ−k−2L∗

p,λ(dω),

where L∗
p,λ denotes pull-back by Lp,λ. Since pullback and exterior differentiation com-

mute, we eventually achieve

d(ω ◦ Lp,λ) = d(λ−k−1L∗
p,λω) = λ λ−k−2L∗

p,λ(dω) = λ(dω) ◦ Lp,λ.

Let Dk
H

⊂ 	k
H

be the space of Heisenberg k-forms with compact support; dc maps

Dk
H

to Dk+1
H

. A Heisenberg k-current is, by definition, an element of the dual space to Dk
H

.

If S ⊂ H
n is a C1

H
submanifold of codimension m ≤ n with S Q−m�S locally finite, then S

induces a Heisenberg (2n + 1 − m)-current [[S]] defined by

[[S]](ω) =
∫

S
〈tHS (p)|ω(p)〉dS Q−m(p), ω ∈ D2n+1−m

H
.
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Lipschitz Functions on Submanifolds of Heisenberg Groups 11

Observe that by definition [[S]] = tHS S Q−m�S where, given a Radon measure μ and a

μ-measurable function t : Hn → ∧kV, we denote by tμ the Heisenberg k-current

(tμ)(ω) =
∫

〈t(p)|ω(p)〉dμ(p).

The boundary of a Heisenberg k-current T is the Heisenberg (k − 1)-current ∂cT

defined by

∂cT(ω) = T(dcω), ω ∈ Dk−1
H

.

Remark 2.6. If S ⊂ H
n is a C1

H
submanifold of codimension m ≤ n, then ∂c[[S]] = 0

locally on S, that is, for every p ∈ S there exists r > 0 such that ∂c[[S]](ω) = 0 for every

ω ∈ D2n−m
H

with support in B(p, r). Indeed, S locally coincides with an entire intrinsic

Lipschitz graph on TH
p S by [28, Theorem 1.5], and the currents canonically associated

with entire intrinsic Lipschitz graphs have null boundary by [28, Proposition 7.5].

Finally, let us recall the Constancy Lemma:

Lemma 2.7 (Constancy Lemma, [28, Theorem 1.7]). Let k ∈ {1, . . . , n} be fixed and let T

be a Heisenberg (2n + 1 − k)-current supported one vertical plane W ⊂ H
n of dimension

2n + 1 − k. Assume ∂T = 0; then there exists a constant c ∈ R such that T = c[[W]].

3 Pansu Differentiability on C1
H

Submanifolds

Before stating and proving the following Proposition 3.1 we need to fix some terminol-

ogy. A sequence {Ej}j of subsets of a topological space X converges to E ⊂ X in the sense

of Kuratowski if the following two conditions are satisfied:

1. if x ∈ E, then there exist xj ∈ Ej such that xj → x;

2. if there are jk → ∞ and xk ∈ Ejk such that xk → x, then x ∈ E.

Accordingly, we say that a one-parameter family {Eλ}λ≥1 of subsets of X

converges to E in the sense of Kuratowski if, for every sequence λj → ∞, the sequence

Eλj
converges to E in the sense of Kuratowski.

In a boundedly compact metric space X, Kuratowski limits satisfy standard

properties: the limit set E is always sequentially closed; the family of compact subsets

contained in a fixed bounded set is compact and, within this family, Hausdorff
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12 Julia et al.

convergence is equivalent to Kuratowski convergence; every sequence of closed sets

admits a convergent subsequence (cfr. [9, Mrowla’s Theorem, p. 149]).

We can now state the following result.

Proposition 3.1. Let S be a C1
H

submanifold of Hn of codimension m ≤ n and let u : S →
R

� be a function. Fix p ∈ S and a homogeneous morphism L : TH
p S → R

�. The following

statements are equivalent:

(1) u is tangentially Pansu differentiable along S at p and DS
H

up = L.

(2) The sets

{(δλ(p
−1x), λ(u(x) − u(p))) : x ∈ S} ⊂ H

n × R
�

converge to

{(x, L(x)) : x ∈ TH

p S}
in the sense of Kuratowski, as λ → ∞.

(3) Let U ⊂ TH
p S be an open neighborhood of 0 and φ : U → V (where V ⊂ V1 is a

horizontal complement to TH
p S) be such that �φ = {wφ(w) : w ∈ U} ⊂ p−1S.

Let φλ(w) := δλφ(δ1/λw); in particular, �φλ
= δλ(�φ) ⊂ δλ(p

−1S) and φλ → 0

uniformly on compact sets. Then, the functions vλ : δλ(U) → R
�

vλ(w) := λ(u(pδ1/λ(wφλ(w))) − u(p))

converge uniformly on compact sets to L, as λ → ∞.

If, moreover, u is Lipschitz continuous, the previous statements are equivalent

to the following one:

(4) If ũ : H
n → R

� is a Lipschitz extension of u, then ũ|TH
p S is Pansu

differentiable (as a map between homogeneous groups) at 0 with differential

L.

Proof. Without loss of generality, we assume p = 0 and u(0) = 0. The equivalence of

(1) and (2) is an easy exercise. Next, notice that, for any neighborhood 	 ⊂ H
n × R

� of

(0, 0) and for λ large enough,

{(δλ(x), λu(x)) : x ∈ S} ∩ 	 = {(wφλ(w), vλ(w)) : w ∈ δλU} ∩ 	.

Therefore, (2) and (3) are equivalent.

Finally, we show that (3) is equivalent to (4) in case u is Lipschitz continuous.

The Pansu differentiability of ũ|TH

0 S at 0 with differential L is equivalent to the locally

uniform convergence of ũλ(x) := λũ(δ1/λx) to L(x), for every x ∈ TH

0 S, as λ → ∞. Notice
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Lipschitz Functions on Submanifolds of Heisenberg Groups 13

that, if C is a Lipschitz constant for ũ, then

|ũλ(w) − vλ(w)| = λ|ũ(δ1/λw) − u(δ1/λ(wφλ(w))|
≤ Cλd(δ1/λw, δ1/λ(wφλ(w)))

= Cd(0, φλ(w)).

Since φλ(w) → 0 locally uniformly, we conclude that ũλ → L if and only if vλ → L, as

λ → ∞. �

Before proving the next technical lemma let us fix some notation. Given q ∈ H
n ≡

V1 ⊕ V2 we denote by qH ∈ V1 the unique element such that q − qH ∈ V2. Recall that a

scalar product · has been fixed on V. It is well known that, if W ⊂ H
n is a homogeneous

subgroup of codimension m ≤ n and L : W → R is a homogeneous morphism, then there

exists a unique v ∈ W ∩ V1 such that

L(q) = v · qH for every q ∈ W.

In case W = TH
p S for some C1

H
submanifold S and L = DS

H
up is the tangential Pansu

differential along S at p ∈ S of some u : S → R, the vector v introduced before is

called horizontal gradient along S of u at p and it is denoted by ∇S
H

u(p) ∈ TH
p S. Observe

that ∇S
H

u can be interpreted as a V1-valued map defined on the set of tangential Pansu

differentiability points along S of u.

Lemma 3.2. Let S be a C1
H

submanifold of Hn of codimension m ≤ n and let u : S → R

be a Borel function. Then

(i) the set D ⊂ S of points where u is tangentially Pansu differentiable along S

is a Borel set;

(ii) the map ∇S
H

u : D → V1 is Borel.

Proof. Let Lk, k = 1, 2, . . . be a dense family of morphisms H
n → R. The set of

differentiability points D can be written as

D =
{

p ∈ S : ∃L : Hn → R s.t. ∀ε > 0 lim
r→0

sup
q∈B(p,r)∩S

|u(q) − u(p) − L(p−1q)|
d(p, q)

< ε

}

=
∞⋂

j=1

∞⋃
k=1

{
p ∈ S : lim

r→0
sup

q∈B(p,r)∩S

|u(q) − u(p) − Lk(p−1q)|
d(p, q)

<
1

j

}
.
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14 Julia et al.

Hence, D is Borel. To prove that the horizontal gradient along S is a Borel map, let A be a

closed subset of V1 and let vk, k = 1, 2, . . . be a dense countable subset of A. There holds

{p ∈ S : ∇S
H

up ∈ A} = {p ∈ S : ∇S
H

up ∈ A}

=
∞⋂

j=1

∞⋃
k=1

{
p ∈ S : lim

r→0
sup

q∈B(p,r)∩S

|u(q) − u(p) − vk · (p−1q)H |
d(p, q)

<
1

j

}
,

so that the map p �→ ∇S
H

up is Borel measurable on D ⊂ S. �

4 Proof of Theorem A

In the following lemma, as well as in the sequel, limits of currents are understood with

respect to the standard weak-* topology on the space of currents, i.e., Tj → T if and only

if Tj(ω) → T(ω) for every test Heisenberg form ω (i.e., a smooth Heisenberg differential

form with compact support). Moreover, given a C1
H

-submanifold S of codimension m ≤ n

and a function u : S → R, locally integrable with respect to S Q−m�S, we denote by u[[S]]

the (2n + 1 − m)-Heisenberg current

(u[[S]])(ω) :=
∫

S
u 〈tHS | ω〉dS Q−m, ω ∈ D2n+1−m

H
.

Lemma 4.1. Let S ⊂ H
n be a C1

H
submanifold of codimension m ≤ n and u : S → R

a Lipschitz function. Let p ∈ S be fixed and, for λ > 0, let U,V, φ, φλ and vλ be as in

Proposition 3.1 (3); define also

Sλ := δλ(p
−1S),

uλ(x) := λ(u(pδ1/λx) − u(p)),

so that vλ(w) = uλ(wφλ(w)). Assume that λj is a sequence such that λj → ∞ and vλj

converges locally uniformly on TH
p S to v : TH

p S → R; then

lim
j→∞

uλj
[[Sλj

]] = v[[TH

p S]].

Proof. We denote by Aφλ
the area factor of φλ; see (3). For every ω ∈ D2n+1−m

H
and for j

large enough we have

uλj
[[Sλj

]](ω) =
∫

Sλj

uλj
(x)〈tHSλj

(x)|ω(x)〉dS Q−m(x)

=
∫

δλj U
vλj

(w)〈tHSλj
(wφλj

(w))|ω(wφλj
(w))〉Aφλj

(w)dS Q−m(w).
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Lipschitz Functions on Submanifolds of Heisenberg Groups 15

The latter integrand, in j, gives a sequence of functions that are supported on some fixed

compact subset of TH
p S and converge uniformly to

w �→ v(w)〈tHS (p)|ω(w)〉,

where we also used Remark 2.2 together with the fact that Aφλj
(w) = Aφ(δ1/λj

w). This is

sufficient to conclude. �

In the following lemma, given a covector α ∈ ∧1V1 we consider the homogeneous

morphism

Lα : Hn → R, Lα(p) := α(p) (6)

obtained by identifying H
n with V and setting Lα|V2

:= 0. Observe that dLα = α,

where the 1-covector α is identified with a left-invariant 1-form. Moreover, given a C1
H

submanifold S of codimension m < n and a 1-form α, we denote by [[S]]�α the Heisenberg

(2n − m)-current defined by

[[S]]�α(ω) =
∫

S
〈tHS |α ∧ ω〉dS Q−m, ω ∈ D2n−m

H
.

Clearly, when α is smooth this is equivalent to [[S]]�α(ω) = [[S]](α ∧ ω); observe that if

ω ∈ D2n−m
H

, then α ∧ ω ∈ D2n+1−m
H

by definition of Heisenberg forms and because m < n.

Lemma 4.2. Let W ⊂ H
n be a homogeneous subgroup of codimension m < n. Given a

measurable u : W → R and α ∈ ∧1V1 such that ∂c(u[[W]]) = −[[W]]�α, where we identified

the covector α with a left-invariant 1-form. Then there exists c ∈ R such that u(w) =
c + Lα(w) for S Q−m-a.e. w ∈ W.

Proof. If α = 0 this is a consequence of the Constancy Lemma 2.7. If α 	= 0, we use the

fact that ∂c[[W]] = 0 (see, e.g., [28, Proposition 1.9]) to deduce that for every ω ∈ D2n−m
H

0 = [[W]](d(Lαω)) = [[W]](α ∧ ω + Lαdω) = ([[W]]�α)(ω) + (Lα[[W]])(dω),

that is, ∂c(Lα[[W]]) = −[[W]]�α. This implies that ∂c((u − Lα)[[W]]) = 0 and the statement

follows from the Constancy Lemma 2.7 again. �
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16 Julia et al.

Remark 4.3. Clearly, when u is continuous the constant c provided by Lemma 4.2 is

c = u(0).

Lemma 4.4. Let S ⊂ H
n be a C1

H
submanifold of codimension m < n and u : S → R be

a Lipschitz function. Then there exists a 1-form α ∈ L∞(S, ∧1V1) such that

∂c(u[[S]])(ω) = −[[S]]�α(ω) ∀ ω ∈ D2n−m
H

such that spt ω ⊂ H
n \ ∂S. (7)

If α1 and α2 both satisfy (7), then α1(p)|TH
p S = α2(p)|TH

p S, for S Q−m-a.e. p ∈ S.

Proof. By the McShane-Whitney extension theorem we can extend u to a Lipschitz

function H
n → R. Let (uj)j be a sequence of smooth functions (these functions can be

easily produced, e.g., by group convolution) that converge uniformly to u and such that

the Lipschitz constant of uj is bounded uniformly in j. Write d
H

uj := ∑n
i=1(Xiuj)dxi +

(Yiuj)dyi; the uniform Lipschitz continuity of uj implies that d
H

uj is uniformly bounded,

hence (up to passing to a subsequence) there exists α ∈ L∞(S; ∧1V1) such that d
H

uj

converges weakly-* to α in L∞(S; ∧1V1). Let us prove that (7) holds for such α.

Let ω ∈ D2n−m
H

be such that sptω ⊂ H
n \ ∂S; by using Remark 2.6 and a standard

partition-of-unity argument one can prove that there exists an open neighborhood 	 of

spt ω such that (∂c[[S]])�	 = 0. Noticing that duj = d
H

uj + (Tuj)θ we have

∂c(u[[S]])(ω) = (u[[S]])(dω) = lim
j→∞

(uj[[S]])(dω) = lim
j→∞

[[S]](ujdω)

= lim
j→∞

[[S]](d(ujω) − duj ∧ ω) = − lim
j→∞

[[S]](d
H

uj ∧ ω),
(8)

where we used the equalities (∂[[S]])�	 = (∂c[[S]])�	 = 0 and ω ∧ θ = 0. Therefore,

∂c(u[[S]])(ω) = − lim
j→∞

∫
S
〈tHS |(d

H
uj) ∧ ω〉dS Q−m = −

∫
S
〈tHS |α ∧ ω〉dS Q−m,

which is (7).

As for the last statement, let us introduce the following standard notation: if

t ∈ ∧kV and α ∈ ∧1V, then t�α denotes the element of ∧k−1V defined for each ω ∈ ∧k−1V

by 〈t�α|ω〉 = 〈t|α∧ω〉. It is now enough to observe that the equality tHS �(α1 −α2) = 0 holds

S Q−m-a.e. on S, and the statement follows. �

Proof of Theorem A. Passing to the components of u : S → R
� separately, we can

assume � = 1.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac066/6555722 by guest on 19 O

ctober 2022



Lipschitz Functions on Submanifolds of Heisenberg Groups 17

Let α be as in Lemma 4.4. Since S Q−m�S is locally (Q − m)-Ahlfors regular, for

S Q−m-a.e. p ∈ S we have (see, e.g., [13, p. 77])

lim
r→0+

1

rQ−m

∫
S∩B(p,r)

|α − α(p)|dS Q−m = 0. (9)

We fix such a p and prove that u is Pansu differentiable along S at p with differential

(recall (6)) DS
H

up = Lα(p)|TH
p S, which is uniquely defined by Lemma 4.4; this will be enough

to conclude.

For λ > 0, let U,V, φ, φλ and vλ be as in Proposition 3.1 (3); let also Sλ and uλ be

as in Lemma 4.1. By Proposition 3.1, we have to prove that vλ converges to Lα(p) locally

uniformly on TH
p S; to this end, we assume that λj → ∞ is a sequence such that the

functions vλj
converge locally uniformly to some map v : TH

p S → R and we prove that

v = Lα(p)|TH
p S. The existence of converging subsequences for the family (vλ)λ follows

from a standard Ascoli–Arzelà argument and the uniform continuity of the maps (φλ)λ,

see [17, Proposition 3.8]. For ω ∈ D2n−m
H

we have

(uλj
[[Sλj

]])(dω) =
∫

Sλj

λj(u(pδ1/λj
x) − u(p)) 〈tHSλj

(x)|dω(x)〉dS Q−m(x)

= λQ−m
j

∫
S
(u(y) − u(p)) 〈tHS (y)|λj(dω)(δλj

(p−1y))〉dS Q−m(y)

= λQ−m
j

∫
S
(u(y) − u(p)) 〈tHS (y)|d(ω ◦ Lp−1,λj

)(y)〉dS Q−m(y),

where we set Lp−1,λ(y) := δλ(p
−1y) and used (5). For large enough j the test form d(ω ◦

Lp−1,λj
) has support in H

n \ ∂S: this gives (∂[[S]])(ω ◦ Lp−1,λj
) = 0, thus

(uλj
[[Sλj

]])(dω) = λQ−m
j

∫
S

u(y) 〈tHS (y)|d(ω ◦ Lp−1,λj
)(y)〉dS Q−m(y)

= λQ−m
j ∂(u[[S]])(ω ◦ Lp−1,λj

).

The definition of α (Lemma 4.4) yields

(uλj
[[Sλj

]])(dω) = −λQ−m
j

∫
S
〈tHS (y)|α(y) ∧ (ω ◦ Lp−1,λj

)(y)〉dS Q−m(y)
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18 Julia et al.

and, if R > 0 is such that spt ω ⊂ B(0, R), we obtain from (9)

(uλj
[[Sλj

]])(dω) = −λQ−m
j

∫
S∩B(p,R/λj)

〈tHS (y)|α(y) ∧ ω(δλj
(p−1y))〉dS Q−m(y)

= −λQ−m
j

∫
S∩B(p,R/λj)

〈tHS (y)|α(p) ∧ ω(δλj
(p−1y))〉dS Q−m(y) + o(1).

We now use Lemma 4.1 to deduce that, for every test form ω ∈ D2n−m
H

,

∂(v[[TH

p S]])(ω) = v[[TH

p S]](dω) = lim
j→∞

uλj
[[Sλj

]](dω)

= − lim
j→∞

λQ−m
j

∫
S
〈tHS (y)|α(p) ∧ ω(δλj

(p−1y))〉dS Q−m(y)

= − lim
j→∞

∫
Sλj

〈tHSλj
(x)|α(p) ∧ ω(x)〉dS Q−m(x)

= − lim
j→∞

∫
δλj U

〈tHSλj
(wφλj

(w))|α(p) ∧ ω(wφλj
(w))〉Aφλj

(w)dS Q−m(w)

= −
∫

TH
p S

〈tHS (p)|α(p) ∧ ω〉dS Q−m,

where we used Remark 2.2 and the fact that the area factor verifies Aφλj
(w) =

Aφ(δ1/λj
w). We have therefore proved that ∂(v[[TH

p S]]) = −[[TH
p S]]�α(p); since vλ(0) = 0 for

every positive λ, we obtain v(0) = 0 and Lemma 4.2 (together with Remark 4.3) implies

that v − v(0) = Lα(p) on TH
p S, as claimed. This implies ∂(uλ[[Sλ]]) → −[[TH

p S]]�α(p), and the

proof is accomplished. �

The following result, which we state without proof, is a standard consequence

of Theorem A together with the Rademacher Theorem for intrinsic Lipschitz graphs in

Heisenberg groups [28]. We do not recall here the definition of intrinsic Lipschitz graphs

in Heisenberg groups; see, for example, [28].

Corollary 4.5. Let � ⊂ H
n be an intrinsic Lipschitz graph of codimension m < n

and let u : � → R
� be Lipschitz continuous; then, for S Q−m-a.e. p ∈ � there exists a

homogeneous morphism L = L(p) : Hn → R
� such that

lim
q→p
q∈�

|u(q) − u(p) − L(p−1q)|
d(p, q)

= 0.

Moreover, the restriction L(p)|TH
p � is uniquely defined.
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Lipschitz Functions on Submanifolds of Heisenberg Groups 19

A version of Theorem A for H-rectifiable sets reads as follows.

Corollary 4.6. Let R ⊂ H
n be countably H-rectifiable of codimension m < n and let

u : R → R
� be Lipschitz continuous; then, for S Q−m-a.e. p ∈ R there exists a unique

homogeneous morphism DR
H

up : TH
p R → R

� such that the following holds. If ũ : Hn → R
�

is a Lipschitz continuous function such that ũ|R = u, then, for S Q−m-a.e. p ∈ R,

lim
q→p

q ∈ p TH
p R

|ũ(q) − ũ(p) − DR
H

up(p−1q)|
d(p, q)

= 0. (10)

Proof. Using the notation of approximate tangent space TH
p R in Definition 2.5,

Theorem A claims that, for every i ∈ N, there is a S Q−m-null set Ni ⊂ Si so that ũ is

tangentially Pansu differentiable along Si at every p ∈ Si \ Ni. Therefore, for S Q−m-a.e.

p ∈ R, there is a C1
H

-submanifold Si such that p ∈ Si \ Ni and TH
p R = TH

p Si. Then (10)

follows from item (4) of Proposition 3.1. �

Remark 4.7. In (10), the restriction to points q in the affine tangent plane p TH
p R is

necessary: this is a phenomenon that occurs also in Euclidean geometry. Consider in

fact a sequence (Si)i∈N of segments in the plane R
2 such that

S0joins(0, 0)and(1, 0) and R :=
⋃
i∈N

Siis dense inR2.

We can also assume that H 1(R) < ∞, so that R is 1-rectifiable. Consider the Lipschitz

function u(x, y) = |y|; then, the density of R implies that for every p ∈ S0 there exists no

linear map L : R2 → R such that

lim
q→p
q ∈ R

|u(q) − u(p) − L(q − p)|
|q − p| = 0.

A way to circonvent this problem is to use the notion of approximate differentiability.

5 Proof of Theorem B

The fundamental tool we use for proving Theorem B is the Whitney Extension Theorem

[16, Theorem 6.8]. We denote by L(Hn;R�) the space of homogeneous morphisms L :

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac066/6555722 by guest on 19 O

ctober 2022



20 Julia et al.

H
n → R

� endowed with the natural topology induced (for instance) by the distance

ρ(L, L′) := sup{|L(p) − L′(p)| : p ∈ B(0, 1)} L, L′ ∈ L(Hn;R�).

Recall also that, for every L ∈ L(Hn;R�), there exists a linear map ML : R2n → R
� such

that L(p) = ML(p1, . . . , p2n) for every p = exp(p1X1 + · · · + p2nYn + p2n+1T) ∈ H
n: with

this identification, the Whitney Extension Theorem can be written as follows.

Theorem 5.1 ([16, Theorem 6.8]). Let F ⊂ H
n be a closed set and let u : F → R

� and

L : F → L(Hn;R�) be continuous; assume that for every compact set K ⊂ F

lim
r→0+ sup

{ |u(q) − u(p) − L(p)(p−1q)|
d(p, q)

: p, q ∈ K, 0 < d(p, q) < r
}

= 0.

Then, there exists ũ ∈ C1
H
(Hn;R�) such that ũ|F = u and D

H
ũ = L on F.

Remark 5.2. Although not explicitly stated in [16, Theorem 6.8], the following fact is

a consequence of the construction performed in its proof: if u is Lipschitz continuous

on F, then the C1
H

extension ũ : Hn → R
� can be chosen to be also Lipschitz continuous.

Moreover, the Lipschitz constant of ũ is controlled from above in terms of n and of the

Lipschitz constant of u only.

Proof of Theorem B. Extend u to a Lipschitz R
�-valued function defined on the whole

H
n; by Lemma 2.4 it is not restrictive to assume that R is actually a C1

H
submanifold S

of codimension m. By Theorem A and Lemma 3.2, the set D ⊂ S of points where u is

tangentially Pansu differentiable along S is a Borel set such that S Q−m(S \ D) = 0. By

the standard Lusin Theorem, there exists a closed set C ⊂ D such that S Q−m(S\C) < ε/2

and ∇S
H

u(p)|C : C → (V1)� is continuous. Using the notation qH and · introduced before

Lemma 3.2, the continuous map L : C → L(Hn;R�) defined by

L(p)(q) := qH · ∇S
H

u(p) for every p ∈ C, q ∈ H
n

has the property that, for every p ∈ C,

lim
q→p,
q∈C

|u(q) − u(p) − L(p)(p−1q)|
d(p, q)

= 0. (11)
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By the Severini–Egorov Theorem, there exists a closed set F ⊂ C such that S Q−m(S\F) <

ε and the convergence in (11) is uniform on compact subsets of F. To conclude the proof,

it suffices to apply Theorem 5.1 and recall Remark 5.2. �

6 Proof of Theorem C

We recall that a homogeneous distance d on H
n is rotationally invariant if

d(0, (x, y, t)) = d(0, (x′, y′, t)) whenever |(x, y)| = |(x′, y′)|, (12)

where | · | is the Euclidean norm in R
2n.

Proof of Theorem C. By standard arguments, we can without loss of generality

assume that R is a C1
H

submanifold S of codimension m. By Theorem B, for every positive

integer i there exists gi ∈ C1
H
(Hn;R�) such that

S Q−m(Bi) < 2−i−1, where Bi := {p ∈ S : u(p) 	= gi(p) or DS
H

u(p) 	= DS
H

gi(p)}.

Moreover, by Remark 5.2 we can assume that the Lipschitz constants of gi are uniformly

bounded. Let Ci := ∪j≥iBj ⊂ S and C∞ := ∩iCi; observe that S Q−m(Ci) < 2−i and

S Q−m(C∞) = 0. By the coarea formula in [18, Theorem 1.7] we obtain for every Borel

function h : S → [0, +∞)

∫
S
χS\Ci

(p)h(p)C(TH

p S, DS
H

gip) dS Q−m(p)

=
∫
R�

∫
S∩g−1

i (s)
χS\Ci

hdS Q−m−� dL �(s),

where χS\Ci
is the characteristic function of S \ Ci (which is a Borel subset of S) and C

denotes the (continuous) coarea factor introduced in [18, Proposition 4.5]. The previous

formula is the same as

∫
S\Ci

h(p)C(TH

p S, DS
H

up) dS Q−m(p) =
∫
R�

∫
(S\Ci)∩u−1(s)

hdS Q−m−� dL �(s).
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Recalling that S Q−m(C∞) = 0 and that S\Ci ↗ S\C∞ as i → ∞, by monotone convergence

we obtain

∫
S

h(p)C(TH

p S, DS
H

up) dS Q−m(p) =
∫

S\C∞
h(p)C(TH

p S, DS
H

up) dS Q−m(p)

=
∫
R�

∫
(S\C∞)∩u−1(s)

hdS Q−m−� dL �(s)

=
∫
R�

∫
S∩u−1(s)

hdS Q−m−� dL �(s).

In the last equality we used the fact that S Q−m−�(C∞∩u−1(s)) = 0 for L �-a.e. s ∈ R
�: this

is a consequence of the coarea inequality (see, e.g., [18, Lemma 4.3] and the references

therein), which implies that for a suitable K > 0

∫
R�

S Q−m−�(C∞ ∩ u−1(s)) dL �(s) ≤ KS Q−m(C∞) = 0.

In order to prove the last statement in Theorem C, it is enough to reason as

above and use the coarea formula proved in [18, Theorem 1.7] for rotationally invariant

distances. This concludes the proof. �
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