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ARTICLE INFO ABSTRACT

Keywords: We address challenges of unpredicted demand and propose a multiobjective optimization model to integrate
Inventory management a lot sizing problem with safety strategy placement and optimize conflicting objectives simultaneously. The
Safety stock novel model is devoted to a single-item multi-period problem in periodic review policy. As a safety strategy, we

Uncertain demand

Multiple objective optimization
Interactive method
E-NAUTILUS

use the traditional safety stock concept and a novel concept of safety order time, which uses a time period to
determine the additional stock to handle demand uncertainty. The proposed model has four objective functions:
purchasing and ordering cost, holding cost, cycle service level and inventory turnover. We bridge the gap
between theory and a real industrial problem and solve the formulated problem by using an interactive trade-
off-free multiobjective optimization method called E-NAUTILUS. It is well suited for computationally expensive
problems. We also propose a novel user interface for the method. As a proof of concept for the model and
the method, we use real data from a manufacturing company with the manager as the decision maker. We
consider two types of items and demonstrate how a decision maker can find a most preferred solution with
the best balance among the conflicting objectives and gain valuable insight.

1. Introduction

To achieve a competitive advantage, many companies strive to
reduce their inventory values. Their main goal is to store a proper
quantity of items in order to satisfy demand but concurrently avoid
shortages and excess inventory. This problem, known as a lot sizing
problem, has been considered in the literature for decades using eco-
nomic order quantity (EOQ) (Harris, 1913; Wagner & Whitin, 1958).
Recently, researchers have shown an increased interest in this area
by considering more complex situations, see e.g. Andriolo, Battini,
Grubbstrom, Persona, and Sgarbossa (2014), Bahl, Ritzman, and Gupta
(1987), Glock, Grosse, and Ries (2014).

A lot sizing problem becomes more challenging when uncertainty is
considered in the model. The uncertainty mostly comes from demand
which can be affected by many conditions, such as weather, economy
and market competition (Zipkin, 2000), as well as supplier reliability.
A safety stock (SS) has been widely used to protect against demand
uncertainty (Graves, 1988; Guide & Srivastava, 2000; New, 1975). A SS
is described as a level of item, which is usually called a stock keeping
unit (SKU), that is kept in inventory in order to manage the unpredicted
demand. A SKU is defined as an individually identifiable item stored in
inventory (Sawaya & Giauque, 1986). The problem of determining the

amount of a SS to hold is called safety stock placement. Even though
lot sizing and safety stock placement have been investigated in many
research studies, they are typically managed separately. A SS is usually
calculated by defining a desired service level and the lot sizing problem
is then solved using some optimization methods (Zipkin, 2000). The
integration of a lot sizing problem and safety stock placement was
proposed in Kumar and Aouam (2018). The authors formulated a single
objective optimization model to minimize system-wide production and
inventory costs with a service level requirement constraint, and pro-
posed an extension of an existing safety stock replacement algorithm
to solve it.

SS plays an important role in industrial management and has been
used for half a century to handle demand uncertainty (New, 1975).
However, as a static method, SS is not suitable when demand fluctuates
a lot (Acikgoz, Cagil, & Uyaroglu, 2020). Some researchers use dynamic
SS that can be dynamically changed from period to period (Inderfurth
& Vogelgesang, 2013; Rafiei, Nourelfath, Gaudreault, De Santa-Eulalia,
& Bouchard, 2015). However, when a lot sizing problem has large
sizes of decision variables and various types of practical production
constraints, it is difficult to solve the problem by using a dynamic
SS (Tavaghof-Gigloo & Minner, 2021).
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The basic problem in lot sizing is to determine an order quantity
to minimize costs but satisfy demand and prevent shortages, which
are naturally conflicting with each other. Therefore, multiobjective
optimization (Miettinen, 1999) is needed to solve this problem. Mul-
tiobjective optimization has been studied to solve different topics in
lot sizing problems (Aslam & Amos, 2010), such as supplier selec-
tion (Rezaei & Davoodi, 2011; Ustun & Demirtas, 2008), perishability
issues (Amorim, Antunes, & Almada-Lobo, 2011) and sustainability
issues (Azadnia, Saman, & Wong, 2015). Integrating a lot sizing prob-
lem with safety stock placement gives additional conflicting objectives,
because keeping a high amount of safety stock introduces a trade-
off between costs and service level (Chan & Chan, 2006). By using
multiobjective optimization, a decision maker can clearly see the trade-
offs between objectives before he/she selects the final solution that best
represents his/her preferences.

Multiobjective optimization problems usually have many solutions,
called Pareto optimal solutions, which reflect trade-offs among the
conflicting objectives. Pareto optimal solutions are incomparable from
a mathematical point of view, and the final solution is the one that best
represents a decision maker’s preferences, who is an expert in the prob-
lem domain. Interactive methods (Miettinen, Hakanen, & Podkopaev,
2016), which iteratively incorporate the decision maker’s preferences,
are viable methods to find a solution that satisfies the decision maker’s
preferences. In interactive methods, the decision maker can learn about
the trade-offs and adapt one’s preferences while learning. This increases
confidence and satisfaction with the final solution. So far, however,
there have only been few articles proposing or applying interactive
methods to solve their lot sizing problems (Agrell, 1995; Bouchery,
Ghaffari, Jemai, & Dallery, 2012; Heikkinen, Sipild, Ojalehto, & Mietti-
nen, 2021; Ustun & Demirtas, 2008), and none of them were designed
for computationally expensive problems.

This paper is an instance of data-driven decision support, where
multiobjective optimization is applied. Starting with real data, we pro-
pose a multiobjective optimization model inspired by real challenges
on a lot sizing problem in a manufacturing company. To bridge the
gap between theory and practice, we verify the model with the supply
chain manager of the said company to ensure the model is applicable.

We consider a single-item lot sizing problem in multiple time pe-
riods. By considering stochastic demands, we propose an additional
way to handle the uncertainty of demand, which is called a safety
order time (SOT), in addition to the SS. The idea of SOT is to keep
additional stock based on time. For example, by setting SOT as one
week, additional SKUs to cover one week’s worth of demand are
always kept in the storage and can be used to accommodate demand
uncertainty. The proposed SOT fills the need of having dynamic stock
to handle unpredicted demand efficiently. We combine SS and SOT
in the model in order to manage the stochasticity of demand. The
problem of determining the amount of SS and SOT is defined as a
safety strategy placement. Integrating a lot sizing problem and a safety
strategy placement to decide the optimal order quantity of SKUs for
each period, as well as the best combination of the SS and SOT, are
our aims in this research. Therefore, we propose a novel model that
integrates a lot sizing problem not only with a SS placement but also
with a SOT placement.

Compared to other relevant studies on lot sizing, contributions of
this paper are summarized in Table 1. In this table, SOP stands for op-
timization problems with a single objective function and MOP for mul-
tiobjective optimization problems. The second row is not an exhaustive
list but provides examples of studies. There are many multiobjective
lot sizing studies which do not utilize interactive methods (Aslam &
Amos, 2010). The table shows that this paper, for the first time, uses
multiobjective optimization considering an integration of a lot sizing
problem with both SS and SOT, and applies an interactive method to
solve it.

To solve the defined lot sizing problem, we propose a multiobjective
optimization model with four objective functions to characterize differ-
ent perspectives of lot sizing decision. We adapt the cost objectives from
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the dynamic EOQ model (Wagner & Whitin, 1958) as the first and the
second objectives. However, we separate the purchasing and ordering
cost in the first objective and the holding cost in the second objective,
because they show different behavior of inventory system (Rashid,
Bozorgi-Amiri, & Seyedhoseini, 2015). The holding cost has a posi-
tive gradient and the other costs have negative gradients when the
order quantity is increased. Thus, we enable studying this trade-off.
Furthermore, we consider cycle service level as the third objective to
measure the capability of the proposed safety strategy to deal with the
stochasticity of demand. And lastly, we have the inventory turnover
in the fourth objective as the primary performance measurement in
inventory management (Silver, Pyke, & Thomas, 2017) to measure the
effectiveness of this model in managing inventory. These four objectives
can maximize the effectiveness of inventory with minimal costs and
sufficient safety strategy to maximally handle demand uncertainty.

We apply the trade-off-free interactive method E-NAUTILUS (Ruiz,
Sindhya, Miettinen, Ruiz, & Luque, 2015), for the first time in this
field, to solve the proposed problem. The strength of this method is
that it starts from the worst possible objective function values and
iteratively improves all objectives, allowing the decision maker to find
his/her most preferred solution without having to trade-off among
the objectives. Sometimes, decision makers tend to anchor around the
starting point because of trading-off (Buchanan & Corner, 1997) and,
thus, fail to find preferred solutions. Thanks to the structure of the
method, this is avoided. Lot sizing problems have been identified as
computationally challenging problems in many articles (Alem, Curcio,
Amorim, & Almada-Lobo, 2018; Bitran & Yanasse, 1982), and de-
mand uncertainty increases the complexity of the problem (Efthymiou,
Mourtzis, Pagoropoulos, Papakostas, & Chryssolouris, 2016). The E-
NAUTILUS method is designed for solving computationally expensive
problems, which makes it an adequate choice to solve the lot sizing
problem defined in this research. Furthermore, we develop a novel web-
based user interface for E-NAUTILUS, which can be freely accessed and
is made available as open-source software.

As said, as a proof of concept, we consider a real case study and the
supply chain manager who acted as the decision maker found the model
and the results useful. We demonstrate that the E-NAUTILUS method
can be successfully applied to solve our integrated computationally
expensive lot sizing problem for the real case study of two SKUs. From
the managerial perspective, the parallel exploitation of SS and SOT is a
welcomed addition to traditional inventory management models. The
decision maker appreciated the benefit of SOT to manage additional
stocks dynamically in an efficient way. He was satisfied with the results
and willing to adopt the model more widely for inventory planning and
control, especially for critical SKUs.

To sum up, the main contributions of this paper can be written as
follows:

(1) Proposing a novel concept of safety order time (SOT) to handle
demand uncertainty.

(2) Introducing a multiobjective optimization model which inte-
grates a lot sizing problem and the safety strategy placement.

(3) Applying an interactive trade-off-free method E-NAUTILUS that
is appropriate for computationally expensive lot sizing problems.

(4) Developing a new web-based user interface for E-NAUTILUS (as
a free and open-source software).

(5) Solving the problem successfully and finding a final solution that
best represents the decision maker’s preferences by using the
E-NAUTILUS method.

The rest of the paper is organized as follows. Section 2 describes
the main concepts of multiobjective optimization and the E-NAUTILUS
method. Section 3 presents the assumptions, notations, objective func-
tions and constraints of the proposed multiobjective optimization
model, while details of the developed web-interface implementation
are discussed in Section 4. In Section 5, a real case study with data
from a manufacturing company is considered with results and analysis
of the decision making process using the E-NAUTILUS method. Finally,
we conclude our work and discuss future directions in the last section.
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Table 1
Comparison with other relevant studies on lot sizing.
Source SOP/MOP SS SOT Interactive
Kumar and Aouam (2018), Tavaghof-Gigloo and Minner (2021) SOP Yes No No
Rezaei and Davoodi (2011), Amorim et al. (2011), Azadnia et al. (2015), survey Aslam and Amos (2010), and more MOP No No No
Agrell (1995), Ustun and Demirtas (2008), Bouchery et al. (2012), Heikkinen et al. (2021) MOP No No Yes
This paper MOP Yes Yes Yes

2. Background in multiobjective optimization
2.1. Basic concepts

We consider multiobjective optimization problems of the following
form:

minimize  f(x) = (f;(X), fo(X), ..., £, P
subjectto x € S,
where f; : § - Rfor1 < i < kand k > 2 are the objective

functions which are to be optimized simultaneously. The vector of
decision variables x = (x,...,x,)! is bounded by the feasible region
S, which is a subset of the decision space R". The feasible region is
formed by constraints, which can be lower and upper bounds for x
and/or equality and inequality constraints. The image of the feasible
region Z = f(S) is called a feasible objective region, which is a subset
of the objective space R¥. A vector z = f(x) = (f1(X), ..., [T,
z € Z, which is called an objective vector, consists of objective values
calculated at x € S.

Objective functions are usually conflicting with each other. There-
fore, it is impossible to find one solution where each objective achieves
its individual optimum. A multiobjective optimization problem (1)
usually has several solutions which are called Pareto optimal solutions.
For two objective vectors z!,z? € Z, z! is said to dominate z? if z} < z?
foralli=1,...,k and z}. < zjz_ for at least one j = 1, ..., k. Otherwise, z!
and z? are nondominated. A decision vector x’ and its corresponding
objective vector z’ are Pareto optimal if there does not exist another
decision vector x € S such that z = f(x) dominates z’. The set of Pareto
optimal solutions in the decision space is called a Pareto optimal set,
and its image in the objective space is known as a Pareto optimal front.

The ranges of the objective function values in the Pareto optimal
front may provide useful information for the decision maker. Lower
and upper bounds of the Pareto optimal front are represented in an
ideal point z* and a nadir point z"%, respectively. They represent
the best and the worst values that can be achieved by each objective
function in the Pareto optimal front. The ideal point can be calculated
by minimizing each of the objective functions individually, while the
nadir point is more difficult to obtain because it depends on the whole
Pareto optimal front which is usually not fully known. There is no
reliable procedure for calculating the nadir point with more than two
objectives (Miettinen, 1999), but it can be approximated for example
by using a payoff table (Benayoun, de Montgolfier, Tergny, & Laritchev,
1971).

Pareto optimal solutions are incomparable mathematically, thus we
need some additional information from a decision maker to determine
the most preferred solution as the final one. A decision maker is
an expert who is responsible for making a strategic decision in the
problem domain. In lot sizing, he/she is usually a supply chain manager
in a manufacturing company. Besides the decision maker, solving a
multiobjective optimization problem involves an analyst, who supports
the decision maker in mathematical aspects. The analyst is assumed
to know multiobjective optimization methods and is responsible for
the mathematical model and making preparations before the decision
maker is involved.

Based on the role of the decision maker during the solution process,
methods to solve multiobjective optimization problems can be divided
into four classes (Miettinen, 1999). The first class is no-preference
methods. These methods do not use any preference from the decision

maker. Then, in the second class, called a priori methods, preference
information from the decision maker is first required and a Pareto
optimal solution reflecting this information is then found. In contrast,
several Pareto optimal solutions are first generated and presented to the
decision maker in the third class, which is called a posteriori methods,
and he/she then has to select the most preferred one. The last class is
interactive methods, where the decision maker is actively involved to
give his/her preferences iteratively.

Interactive methods are regarded as promising methods to get a
final solution that best satisfies the decision maker (Miettinen & Haka-
nen, 2009; Miettinen, Ruiz, & Wierzbicki, 2008). In interactive meth-
ods, the decision maker does not need any global preference structure
about the problem, but he/she is able to learn about the interrela-
tionships among the objectives during the solution process. In each
iteration, some information is presented and the decision maker is
asked to express his/her preferences by answering some relevant ques-
tions. Then, the preferences are accounted for to improve the solutions
in the following iteration. There are many ways to inquire preference
information from the decision maker (Miettinen et al., 2016).

In this paper, we use the E-NAUTILUS method developed by Ruiz
et al. (2015), where the decision maker iteratively approaches the
Pareto optimal front and can avoid trading-off by improving in all
objectives simultaneously. The reason for using this method is its ability
of handling computationally expensive problems, which is appropriate
for lot sizing problems, and the possibility to avoid anchoring and find
the most preferred solution without trading-off.

2.2. E-NAUTILUS method

The E-NAUTILUS method (Ruiz et al., 2015) is a variant of NAU-
TILUS methods (Miettinen & Ruiz, 2016). These methods are motivated
by the prospect theory (Kahneman & Tversky, 1979), saying that people
do not react similarly to gains and losses, but they fear losses more
than they desire gains. Based on this philosophy, instead of starting
with some Pareto optimal solution as most other interactive methods
do, NAUTILUS methods choose the worst objective function values as
the starting point, that is, the nadir point. Thereafter, new candidates
are generated where objective function values are improved iteratively,
and the preferred Pareto optimal solution will be the final solution. In
this way, the decision maker can have a free search without requiring
any trade-offs, and he/she always experiences an improvement in all
of the objective values at every iteration until the Pareto optimal front
is reached.

An important concept in NAUTILUS methods is reachable values of
objective functions referring to values of each objective function that
still can be reached from the current candidate without sacrifices in
other objectives. The decision maker is given information on the lower
bounds of reachable values. Upper bounds of reachable values are given
by the candidate. Naturally, the range of reachable values gets smaller
during the iterations that is, when the candidates get closer to the
Pareto optimal front. In E-NAUTILUS, several candidates are shown
to the decision maker at each iteration. Each candidate represents
different directions to move towards the Pareto optimal front. The
decision maker selects the candidate, that is, the direction, one likes
as preference information. Information of reachable values from each
candidate can help the decision maker in order to not loose sight of
the Pareto optimal front at any iteration during the solution process.
In the E-NAUTILUS method, three kinds of information are provided to
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the decision maker: several candidates, lower bounds of corresponding
reachable values, to be referred to as their best reachable values and
closeness of the candidates to the Pareto optimal front.

The E-NAUTILUS method is particularly developed to handle com-
putationally expensive problems. This method consists of three stages:
pre-processing, interactive decision making and post-processing stages.
Solving the original multiobjective optimization problem, which can be
computationally expensive, is done without involvement of the decision
maker in the pre-processing stage. In this stage, a set of Pareto optimal
solutions P is generated using any a posteriori method. Therefore,
an analyst who has knowledge on an appropriate (a posteriori type)
method is needed here to generate a sufficient number of Pareto
optimal solutions. In addition, to know the ranges of the Pareto optimal
front, the nadir point and the ideal point are estimated based on P.

The second stage is the main part of the E-NAUTILUS method. This
is the only part that needs the involvement of the decision maker. The
candidates which are presented to the decision maker in each iteration,
are calculated based on the data generated in the previous stage. The
original computationally expensive problem is not solved in this stage,
which reduces the waiting time of the decision maker in each iteration.
This interactive stage can be described in the following steps:

(1) The ranges of the objective functions are shown to the decision
maker by showing the estimated ideal point z* and nadir point
Znad .

(2) The decision maker is asked to provide the number of iterations
N; and the number of candidates N that he/she wants to see
at each iteration.

(3) Set the starting point z(0) = z"%, current iteration 2 = 1 and
current set of Pareto optimal solutions P(h) = P.

(4) Select Ng solutions that well represent solutions in P(h) by
dividing P(h) into Ng subsets and determine a representative
solution of each, denoted by z(h,i), i =1,..., Ng.

(5) Calculate Ny candidates, denoted by z(h,i), i = 1,..., Ng, which
lie on the line segment joining the previous preferred candidate
z(h—1) and each representative solution z(4, i) with the following
formula:

z(h,i) = %z(h -+ ﬁz(h, i), 2
where it(h) = N;—h+1 is the number of iterations left (including
the current iteration).

(6) Calculate the best reachable values for each candidate as by
solving the following e-constraint problem (Haimes, Lasdon, &
Wismer, 1971) for r =1, ..., k:
minimize  f,(x)
subject to  f;(x) < z;(h,i), j=1,....k,j#r 3)

x € P(h).
(7) Calculate the closeness of each candidate to the Pareto optimal
front, which is shown as a percentage, as follows:
N _ nad
dihyiy = BEAD =20 g0q i1, N o)
lz(h, i) = zned |

(8) Show the Ny candidates together with their best reachable
values and closeness information to the decision maker. Ask
him/her to select his/her most preferred solution among the
candidates as the current preferred candidate, denoted by z(h).

(9) Set h = h + 1, and update P(h) by deleting the Pareto optimal
solutions which cannot be reached without trade-offs from z(h).

(10) Repeat step 4-9 until = N; + 1.

From the interactive decision making stage, we have z(N;) as the
most preferred candidate selected by the decision maker. The Pareto
optimality of this candidate depends on the a posteriori method used
in the first stage. Some a posteriori methods, for example evolutionary
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methods, cannot theoretically prove the Pareto optimality of the solu-
tions. Thus, to ensure the Pareto optimality of the final solution z//,
the post-processing stage can be needed. In this stage, we project z(N;)
onto the Pareto optimal front by minimizing an achievement scalarizing
function (Wierzbicki, 1980) with z(N;) as a reference point. For further
details of the methods, see Ruiz et al. (2015).

3. Multiobjective optimization model

As mentioned in the introduction, we consider a lot sizing problem
with a safety strategy to handle uncertainty on demand. Traditionally,
a SS is used to reserve a certain amount of stock to prepare for
unpredicted surges of demand. By assuming a constant lead time, a
SS only depends on the standard deviation of demand and the desired
service level (Talluri, Cetin, & Gardner, 2004). For instance, high and
low demand SKUs could have the same amount of SS, if they have the
same demand deviation and service level. Therefore, in real life, supply
chain managers need to think about a certain time period that can be
covered with a SS. For example, they sometimes convert a SS into days
by dividing it with the daily demand.

In this paper, we propose a SOT as an additional safety strategy,
which keeps additional stock in the inventory based on time. When an
order is placed, instead of considering demand along lead time as a
typical way to solve a lot sizing problem, with this strategy, additional
SOT days/weeks are also considered. For example, by setting a SOT as
one week and having lead time as two weeks, demand for three weeks
is considered for each period, but an order will arrive after two weeks.
Therefore, the additional SKUs to cover demand for one following week
are always kept in the inventory and can be used to accommodate
demand uncertainty.

With SS, we keep the same amount of stock along the period
considered, while demand can fluctuate a lot. This may increase the
risk of running out of stock in case of high demand. On the other
hand, SOT keeps stock based on demand in the following period, which
can be higher for high demand and lower for low demand. Thus,
instead of a constant amount of stock, SOT adapts to the demand of
the following period and handles cases of high peak of demand better
than SS. Because SS has an advantage in handling deviation of demand,
the combination of SS and SOT increases the preparedness for demand
uncertainty. For this reason, we use both SS and SOT in our proposed
model.

SS and SOT are both usable indicators for inventory management
when managing unpredictable fluctuation in demand. SS is a static
method and, thus, reacts with a delay to changes in demand. Because
of that, if demand increases, the SS coverage in days on hand decreases.
This may result in stock out situations as the SS adequacy is less sat-
isfactory. Thus, more certainty is required and, therefore, we propose
SOT in our model. Unlike SS, SOT is more dynamic and, thus, serves
the needs of management for stock planning purposes. This becomes
clear in the context of our case study, as the decision maker states. The
novelty value of SOT is essential because, as said, SOT is a dynamic
factor and does not require as frequent updates as SS. Typically, a
manufacturing company has a considerable number of SKUs to manage,
and it is time-consuming to recalculate SKU stock control data, such as
SS, continuously. SOT does not need to be updated that often and, thus,
it supports management in an efficient way.

To solve the defined lot sizing problem, we formulate a multiobjec-
tive optimization problem with four objective functions and four con-
straints. The assumptions and notations which are used throughout the
paper are defined before the multiobjective optimization formulation is
introduced in this section.
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3.1. Assumptions

We consider a single-item multi-period lot sizing problem with
stochastic demand. We work in discrete time, so we review the lot size
over m time periods 7 = 1,...,m and the replenishment process follows
a periodic review policy. The decision maker reviews the ordered
quantity Q(¢) at the beginning of each period, and the order will arrive
after a constant lead time L.

The idea of a SOT is shown in Fig. 1. For each order, we do not
only consider the demand needed until the order arrives, but also an
additional SOT time unit is considered. Hence, the order is actually
needed after L+.SOT time units, but it comes earlier after L time units.
With this strategy, we always have excess SKUs in the amount of the
predicted demand during a SOT time unit, besides a .S.S. The excess
can be used if unpredicted demand occurs.

We make the following assumptions.

(1) All of the data is ready to use (which means checking correctness
and reliability of the data).

(2) Demand is normally distributed with a mean u and a standard
deviation o. We define D(r) as the total of predicted demand
from the beginning of period 7 until the end of this period.
Demands in different time periods are independent of each other.

(3) There is no capacity limit in ordering SKU, which means that the
cost for one order is ¢, regardless of the quantity of SKUs in the
order.

(4) There is no backorder cost.

(5) Every order can be placed with a minimum order quantity mog
and it rounds up by a rounding value r. The multiplication of r is
increased after mog. It means that the order can only be placed
by following the formula moq + ar for any integer a > 0.

3.2. Notation

The following notations are used in this paper.

Index

{tlt=1,...,m} index of time period

Data

p price to purchase one SKU

c cost to place one order

h cost to hold one SKU for one period
T length of one period

L lead time

D) predicted demand during period ¢

c standard deviation of demand for one period
u average demand

moq minimum order quantity (for lot size)
r rounding value (for lot size)
Decision variables

o) lot size at period ¢

SS safety stock

soTr safety order time

Dependent variables

Y () order indicator,

Y(@#) = 1 if the order is placed (Q(t) > 0),
otherwise Y(r) =0

I1(t) inventory position at the end of period ¢
(sum of inventory position at the end of the
previous period and incoming order at period ¢
decreased by the demand during period 1),
I=1t-1D+0¢-|L])-D®

Other Notations

L] the greatest integer less than or equal to u

[u] the least integer greater than or equal to u
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Fig. 1. Illustration of SOT in periodic review policy.

3.3. Objective functions

As mentioned, we have four objectives to consider simultaneously.
Cost functions are as the first and the second objectives. According
to the literature, in a lot-sizing problem, a purchasing manager must
consider three types of cost (Chopra & Meindl, 2016): purchasing cost,
ordering cost and holding cost. Most of the research considers total
cost as one objective function. However, in this paper, we propose to
separate it as two different cost functions. It is interesting to see holding
cost individually, because it may show different behavior from the
other costs (Rashid et al., 2015). Therefore, we minimize purchasing
and ordering cost as the first objective and minimize holding cost
as the second objective. Then, the adequacy of the safety strategy
in handling unpredicted demand is measured in the third objective
function. We maximize the cycle service level for this purpose. Lastly,
maximizing inventory turnover, which is an important measurement in
lot-sizing (Grant, Lambert, Stock, & Ellram, 2006), is considered in the
last objective.

Purchasing cost is the expense of buying SKUs from a supplier. The
price p is assumed to be fixed and no discount rate is applied. Ordering
cost is the cost of placing one order, regardless of the number of SKUs in
the order. It is fixed based on our assumption. In the first objective, we
minimize the purchasing and ordering cost (POC) that can be written
as follows:

POC = Z oM p+ Z Y(@)c. (5)
t t

A holding cost (HC) is the expense for holding SKUs, which can
be calculated using several formulas (Alfares & Ghaithan, 2019). In
this research, we calculate holding cost at one period by multiplying
quantity of SKUs at this period and the cost for holding one SKU for one
period h. For simplicity, the quantity of SKUs in one period is calculated
as the average amount of inventory in this period. The formula of HC,
which is treated as the second objective to be minimized, can be written
as follows:

It -1+ I(t)

A cycle service level (CSL) is the probability of not having a stockout
in a replenishment cycle (Chopra & Meindl, 2016). It measures how
the safety strategy deals with the unpredicted demand during one
replenishment cycle. One replenishment cycle is defined as one cycle
that needs to be covered by one order, which is one period in our
case. With the proposed safety strategy, we have a SS and demand for
SOT time units to cover unpredicted demand in one period. Thus, we
propose the CSL formula as follows to be maximized:

SS + 4 SOT
CSL = F(L> %)
(o2

where F is the standard normal distribution function.

An inventory turnover (ITO) is a measurement for inventory perfor-
mance that is quite important from a practical point of view. It means
the number of times inventory turns over annually, which indicates
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how fast a company is selling the SKU or using it in the production.
The ITO can be measured as the ratio between SKU usage and average
inventory. We do not exactly know the demand in future periods, but
we define the SKU usage as the addition of the predicted demand
and the demand deviation which represents the SKU usage from the
unpredicted demand. Hence, we propose to maximize the ITO formula
as follows:
D)+ o

o= Z Te-D+I0)/2 ®

3.4. Constraints

We propose four kinds of constraints to be considered in the multi-
objective optimization model. To guarantee the availability of SKUs to
cover the predicted demand, we set the fill rate as the first constraint.
The second constraint aims to impose the order quantity policy, while
the third constraint enforces the availability of safety inventory to cover
the unpredicted demand. Finally, in the last constraint, we set the lower
bounds of S'S and SOT.

A fill rate (FR) is the fraction of demand which is satisfied from
the inventory (Chopra & Meindl, 2016; Teunter, Syntetos, & Babai,
2017). This constraint is defined to ensure that the inventory in each
period (excluding SS) can cover the predicted demand. As previously
described, the consideration period for one order is P = L + SOT.

Hence, a FR constraint for each period ¢ = 1,...,m can be written as:
It—1)+ 2;=,_[LJ o3i)—-SS
FR(t) = >1, 9
Dp
where D is demand during P, which can be defined as:
+|P)
Dp= )\ D)+ (P~ |P)D(P). 10)
j=t

Based on the order policy, an order can be placed with a certain
minimum order quantity moq and multiplication of a rounding value r.
It is common in practice and typically based on an agreement between
a supplier and a company (Zhu, Liu, & Chen, 2015). Hence, for each
period t = 1,...,m, the following constraint must be fulfilled:

Q@) =Y (t)(mog+ar), a1

for any integer a > 0.
To ensure the availability of the safety strategy in the inventory, for
each period 7 = 1, ... ,m, the following constraint must be fulfilled:

I(t) > SS + SOT D(). 12)

Finally, to eliminate negative values, lower bounds of SS and SOT
must be defined as follows:

S§S >0and SOT > 0. 13)

In conclusion, the proposed multiobjective optimization model can
be written as:
(POC,HC,-CSL, —ITo)"
(9), (11), (12), (13)

minimize
. 14)
subject to

4. Interactive E-NAUTILUS graphical user interface

As part of this paper, we developed a web-based graphical user
interface (for short, interface) to ease the interaction between the deci-
sion maker and the interactive stage of E-NAUTILUS. The E-NAUTILUS
interface was built on top of a computational back-end implementing
the numerical steps of the interactive stage of E-NAUTILUS described
in Section 2.2. The back-end was implemented as part of the latest iter-
ation of the open-source DESDEO software framework (Ojalehto & Mi-
ettinen, 2019). Both the back-end and the interface were implemented
using Python.
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The E-NAUTILUS interface was developed for visualizing informa-
tion related to a multiobjective optimization problem to a decision
maker. We used the Dash platform (https://dash.plotly.com/) to build
the interface. The reasons to use Dash were manifold:

(1) Dash is implemented in Python, which means that utilizing
DESDEO in conjunction with Dash is seamless.

(2) Dash can be utilized with plotly, which is another Python library
for building visualizations. Usage of plotly is desirable because it
offers a wide variety of different interactive visualizations types.

(3) Applications using Dash can be used in any modern web-browser
by having the application running either locally or on a remote
web-server. This makes the application very accessible.

(4) Dash comes with an open-source variant, which allows for the
free and unconstrained distribution of applications build using
the said variant.

In the developed E-NAUTILUS interface (see Fig. 2), the deci-
sion maker is shown three distinct visualizations (Miettinen, 2014) to
present the different candidates computed by E-NAUTILUS. These are:
(i) a spider plot (Figs. 2 and 3), (ii) a value path plot (Fig. 2), and (iii)
tabulated objective values (Fig. 2). In the spider plot and the tabulated
objective values views, the candidates of each iteration are visualized
alongside the candidate best reachable values, which is named as
candidate best in the interface for simplicity. However, the value paths
plot shows only the objective values of the current candidates because
visualizing the reachable values in the value paths plot can result
in excess visual clutter. The currently selected candidate is always
highlighted in red in the value paths. Furthermore, in the spider plot,
the decision maker is also able to select which of the candidates he/she
wishes to simultaneously view. This can facilitate the comparisons of
different candidates.

Each of the three described views is also linked. This means that
by selecting one of the candidates shown in an iteration using the
radio button seen in Fig. 2, the same candidates are then highlighted
in each of the views. Having different visualizations of the same can-
didates, and linking the visualizations allows the decision maker to
easily explore the available information which can aid him/her to learn
about the problem (Roberts, 2007). Linking is evident in Fig. 2, where
the third candidate has been selected. The same candidate is then
automatically shown in the spider plot view, highlighted as a red line in
the value path view, and highlighted as the blue rows in the tabulated
values view. As the decision maker changes the currently selected
candidate, each of the views is updated accordingly in real-time.

Moreover, the candidate chosen in the previous iteration is also
shown in the spider plot view. This is not part of the original description
of E-NAUTILUS. This feature was the result of a wish presented by the
decision maker in the case study discussed in Section 5. By visualizing
the previously selected candidate, the decision maker is able to com-
pare the newly computed candidates to the previous candidate and see
how each of the objectives has improved. This may also aid the decision
maker in exploring and learning about the problem.

As described in Section 2.2, the E-NAUTILUS method also shows
closeness information of the candidates to the Pareto optimal front.
However, this option was not used in this paper. Instead, the infor-
mation about the number of iteration left is provided to the decision
maker to give an estimation about the closeness of the candidates to
the Pareto optimal front.

The source code of the web-based graphical user interface devel-
oped for E-NAUTILUS is available as open-source code on GitHub https:
//github.com/industrial-optimization-group/desdeo-dash. Furthermore,
the interface discussed in this section is also available online in https:
//desdeo.it.jyu.fi/dash.
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1,112.39 i
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Fig. 2. The main dashboard shown to the decision maker in the E-NAUTILUS interactive. (1) Number of iterations left and short instructions to guide the decision maker. (2)
Radio-buttons for selecting a candidate and the ITERATE-button to proceed to the next iteration with the selected candidate. (3) Spider plot view. See Fig. 3 for a more detailed
description. (4) Value path view of candidates. (5) Tabulated values view. Top table: the candidates’ individual objective values. Bottom table: the best reachable values from each
candidate. The highlighted rows show the candidate selected with the radio-buttons shown in (1). The arrows shown next to the objective names (POC, HC, CSL and ITO) across
the dashboard indicate whether an objective is to be minimized (down arrow) or maximized (up arrow).

HC (0)

Candidate 2 best
Candidate 2

~+- Candidate 3 best
—— Candidate 3

csL (1)l POC (1)

-+ Previous candidate

ITOE( 1)

Fig. 3. The spider plot view in the E-NAUTILUS interface. The decision maker is able
to select (by clicking on the legend on the right of the plot) one or multiple candidates
to be shown simultaneously for comparison. Candidates 2 and 3 have been selected
for comparisons in the figure. The best reachable values of each candidate (written as
candidate best) are also shown by the dashed line. Also, the candidate selected in the
previous iteration is shown (as the black dashed lines in the figure). The names of the
objective functions are shown on the outer radius of the plot, where an arrow shows if
the objective is to be either minimized (down arrow) or maximized (up arrow). Each of
the candidates and their best reachable values can be moused over, which will display
detailed numerical information.

5. Computational results

As a proof of concept, in this section, we present the results of solv-
ing the proposed model using real data from a manufacturing company.
As mentioned in the introduction, our model is particularly suited for
problems with various types of constraints and many decision variables
and, this case study demonstrates the need of having a dynamic stock to
handle demand uncertainty in a better way. After introducing the case
study, we demonstrate how a supply chain manager from the company,
acting as the decision maker, found the most preferred solution for him
using the developed E-NAUTILUS interface.

5.1. Case study

Real data of two different types of SKUs are analyzed: one with high
demand (called SKU 1) and another with low demand (called SKU 2).
The time period for inventory planning is one week, and we consider
lot sizes for 48 weeks. Therefore, the multiobjective optimization model

—SKU 1

———SKU 2
200

Demand

123456 78 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48

Week

Fig. 4. Demands for SKU 1 (top line) and SKU 2 (bottom line).

involves 50 decision variables. The data was received from the ERP
system of the company.

Based on the data, the price of SKU 1 is €134 which is almost four
times less than that of SKU 2 with a price of €483.85, but the demand is
on average more than ten times higher than SKU 2 (see Fig. 4). A high
volume order must be placed for SKU 1 with a minimum of 70 units
and rounding by 14 units for one order, while SKU 2 can be ordered
with a minimum of 3 units and the same rounding value.

The case company utilizes a pre-order method with these SKUs. A
scheduled order for the supplier is placed one year ahead for separate
weekly deliveries. The method consists of a frozen zone and a liquid
zone planning times. During the frozen zone, no changes can be done
in the pre-ordered amounts, but changes can be made during the liquid
zone. Based on this fact, we set the lead time as the frozen zone, which
is six weeks for both SKU 1 and SKU 2. The historical data shows that
during this six week period, the company has made previous orders
(420, 70, 140, 210, 140, 140) for SKU 1 and (6, 9, 9, 9, 12, 6) for
SKU 2, with the opening inventory 596 and 75 for SKU 1 and SKU 2,
respectively.

After introducing the idea to the decision maker, an additional
constraint was defined as a request from him. With this additional
constraint, the proposed multiobjective optimization model has five
constraints. In this case, the SS and the SOT as the safety strategy must
be limited. Without this limitation, the stock level can be significantly
high to make a near-perfect CSL, but it makes the holding cost sig-
nificantly high and the ITO significantly low, which is not reasonable
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for the decision maker. The decision maker is only interested in a
combination of the safety strategy under the following constraint:

SOT + RE) <MS, (15)
M

where MS is maximum number of periods that can be covered by the
safety strategy. We set M.S = 1 week for SKU 1 and M S = 1.4 weeks
for SKU 2.

5.2. Pre-processing stage

As previously described, the E-NAUTILUS method starts by gener-
ating a large number of Pareto optimal solutions using any a posteriori
method. We applied an evolutionary method called NSGA-III (Deb &
Jain, 2014) by using the pymoo framework (Blank & Deb, 2020). It has
been developed for problems with four or more objectives. We selected
an evolutionary method since they do not set requirements on the type
of functions involved and can handle integer variables. However, as
mentioned in Section 2.2, they cannot guarantee the Pareto optimality
of solutions. All we know is that the solutions are nondominated,
that is, not dominated by each other. Thus, also the third stage of
E-NAUTILUS was needed in the solution process.

Because of the computational cost, it is a challenge to generate
a large number of nondominated solutions for the defined lot sizing
problem. In addition, integer decision variables and five constraints
limit the number of nondominated solutions. Therefore, a single run
of NSGA-III could not generate enough nondominated solutions even
though the size of the initial population was increased to get more
solutions. Naturally, increasing the number of solutions increases the
computation time exponentially. To overcome this issue, we generated
the solutions iteratively using different sizes for the initial populations
and combined the generated solutions by deleting the recurring and
dominated solutions. More detailed information can be seen in B. As a
result, we obtained 651 nondominated solutions for SKU 1 and 518
nondominated solutions for SKU 2 to be used in the next stage of
E-NAUTILUS.

From these nondominated solutions, the ideal and nadir points were
calculated to approximate the ranges of the Pareto optimal front. The
best-found objective function values were set as the ideal point and the
worst values found were set as the nadir point.

5.3. Interactive decision making stage

The novel E-NAUTILUS interface was applied to support the deci-
sion maker in solving the two problems involving the two SKUs. As
discussed in Section 2.2, the decision maker was shown solution candi-
dates to compare with some additional information and was asked to
provide preference information at each iteration. The goal of this stage
is to find a nondominated solution that best represents the decision
maker’s preferences. The step-by-step decision making process for both
SKUs is described in detail below.

5.3.1. SKU 1

First of all, the estimated ideal and nadir vectors, as shown in
Table 2, were presented to the decision maker. Then, he was asked
to provide the number of iterations to be carried, and the number of
candidates to be shown in each iteration. He noticed that the Pareto
optimal front has a wide range. If he chose the number of iterations
too low, the candidates would approach too fast to the final solution
and he might lose some of the potentially interesting candidates during
the decision making process. Therefore, the decision maker ultimately
decided to select ten iterations and four candidates to consider in each
iteration.

In each iteration, the decision maker was provided with four candi-
dates and their best reachable values. Using the E-NAUTILUS interface
with three types of visualizations, the decision maker could easily
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Table 2
Ideal and nadir points of SKU 1.
POC HC CSL ITO
Ideal point 747 820 2717.24 1.0 252.96
Nadir point 1 046 028 9 133.52 0.5 13.66

compare the candidates before selecting one of the available candi-
dates. In what follows, each iteration is reported, while more detailed
information on the candidates, the corresponding reachable values, and
the selected candidate for each iteration can be seen in Table A.1 of
Appendix A.

Iteration 1. In the first four candidates shown, their reachable values
were basically still the whole Pareto optimal front and, thus, taking
a step from the estimated nadir point to any of the candidates would
not limit the objective values much. The decision maker initially paid
more attention to ITO than the other objectives. He decided to select
the candidate z(1) = z(1,1) = (1 025 459.60, 8 590.38, 0.50, 22.7) to
get the best values of ITO and had a chance to improve on the other
objectives.

Iteration 2. The second iteration showed a variation of the reachable
values, especially in POC and ITO. The decision maker chose the
candidate z(2) = z(2,2) = (1 004 891.20, 8 047.24, 0.51, 31.88). He
noticed that it had the worst CSL value, but it was pretty close with
the others and he had the best ITO with this choice.

Iteration 3. In this iteration, the decision maker was still interested
in pursuing the best ITO value, hence he chose the candidate z(3) =
z(3,3) = (987 940.30, 7 518.98, 0.51, 47.2). He realized that his choice
had the worst CSL, but in his opinion, the reachable values for this
candidate were quite good.

Iteration 4. The decision maker changed the direction to get the
better CSL value in this iteration. He decided to select the candidate
z(4) = z(4,2) = (967 533.97, 6 920.64, 0.56, 48.57) which had the best
CSL. Even though this candidate had the worst ITO, he needed to take
care of the CSL.

Iteration 5. The CSL was still the main focus of the decision maker in
this iteration. He preferred the candidate z(5) = z(5,3) = (947 127.64,
6 322.29, 0.61, 49.9) to achieve the best value in CSL. He noticed that
this candidate had the worst ITO but he was satisfied enough with the
ITO values of all candidates.

Iteration 6. In this iteration, the decision maker still paid more
attention to the CSL value, because he was satisfied with the current
ITO value. The candidate he liked most in this iteration was z(6) =
2(6,3) = (923 009.31, 5 709.51, 0.67, 50.29) which had the best CSL
value.

Iteration 7. With the same considerations as in the previous iteration,
in this iteration the decision maker’s selected candidate was z(7) =
z(7,3) = (898 890.99, 5 096.73, 0.73, 50.6) which had the best CSL
value.

Iteration 8. This iteration became more interesting to the decision
maker because the reachable values of CSL and ITO were exactly the
same for all candidates. After considering the candidates, he preferred
to select the candidate z(8) = z(8,2) = (871 379.32, 4 486.96, 0.78,
52.1) due to the best CSL and pretty good ITO values.

Iteration 9. Among the candidates shown in this iteration, the de-
cision maker liked most the candidate z(9,2) which had the best CSL
value. Then, we set z(9) = z(9,2) = (843 867.66, 3 877.18, 0.83, 53.6)
as the selected candidate of this iteration.

Iteration 10. Finally, in the last iteration, the decision maker consid-
ered both the cost values in his choice, because he was satisfied with
CSL and ITO values. He selected the candidate z(10) = z(10,4) = (810
528, 3 355.80, 0.90, 54.48) to get the best POC. The HC value was the
worst in this candidate but it was pretty close to the other candidates.
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Table 3
Ideal and nadir points of SKU 2.
POC HC CSL ITO
Ideal point 220 829.40 770.44 1.0 107.02
Nadir point 428 949.50 4 284.86 0.5 11.40
5.3.2. SKU 2

As mentioned, the interactive decision making process for SKU 2
was started by presenting the ideal and nadir vectors, shown in Table 3,
to the decision maker. He observed that the ideal and nadir points for
the SKU 2 were generally lower than for SKU 1, except for the CSL.

The decision maker made the same choice of four candidates and
ten iterations for this SKU for the same reason as for SKU 1. The details
of the decision making process are described below, and all of the
information provided to the decision maker for this SKU is presented
in Table A.2 of Appendix A.

The decision maker applied a different strategy for SKU 2. He
considered both CSL and ITO values and selected the best balance
between these values from the beginning until the third iteration. In
the first iteration, he selected z(1) = z(1,4) = (410 144.51, 3 959.10,
0.54, 14.15) which did not have the best CSL and ITO values but was
sufficiently good compared to the others. In the second iteration, out of
the four candidates, he compared z(2,2) and z(2,4) which had the best
CSL and chose z(2) = z(2,4) = (393 180.29, 3 661.26, 0.59, 15.93) to
obtain the better ITO. For the next iteration, he was interested in z(3, 1)
and z(3,4) and he preferred z(3) = z(3,4) = (374 301.64, 3 333.05,
0.63, 19.39) which had pretty good ITO and CSL values in his point of
view.

The CSL was the main consideration for the decision maker in the
fourth and fifth iteration. He liked most the candidate z(4,4) = (362
466.02, 3 065.26, 0.69, 20.15) due to the best CSL among all of the
candidates. He realized that this candidate had the worst ITO value, but
the same objective values for ITO can be reached from all candidates.
Next, the candidates z(5,2) and z(5, 4) attracted his attention due to the
best CSL values. He then decided to select z(5) = z(5,4) = (342 446.86,
2 766.30, 0.73, 22.10) to get the better ITO value.

The decision maker changed the direction by considering ITO values
in the sixth iteration. He chose the candidate z(6) = z(6,4) = (326
281.74, 2 416.54, 0.76, 27.01) in order to achieve the best ITO value.
He realized that the CSL value of this candidate was not the best, but
the difference was not significant. After this iteration, the ITO value
seemed acceptable for the decision maker in all of the candidates, and
he was more interested in directing the search towards solutions that
require the highest CSL in the next three iterations. Hence, he decided
to continue with the candidate z(7) = z(7,3) = (314 984.16, 2 117.72,
0.82, 27.79).

In the next iteration, the candidates z(8,1) and z(8,3) had the
highest CSL, therefore he selected the candidate z(8) = z(8,3) = (300
516.80, 1 826.81, 0.87, 29.53) to get a better ITO. Then, he selected
the candidate z(9) = z(9,4) = (277 440.15, 1 466.81, 0.94, 31.11) in
the ninth iteration. Besides the CSL, this candidate had a reasonable
value for holding cost and ITO for him. Finally, in the last iteration,
the decision maker was very happy for the improvement of all the
candidates. He looked at all of the solutions, which had good values,
especially in CSL and ITO. Then, he decided to select the candidate
z(10) = z(10,3) = (276 936.75, 1 074.71, 0.99, 34.33).

5.4. Post-processing stage

As described in Section 2.2, the post-processing stage is needed to
assure the Pareto optimality of the final solution if an evolutionary
algorithm is used in the first stage. In this stage, we used the pre-
ferred candidate of the interactive decision making stage z(10) as a
reference point and project it onto the Pareto optimal front to get
the final solution z;,,. The corresponding optimization problem was

Computers & Industrial Engineering 173 (2022) 108731

900

Incoming lot size
800

700 = Demand
600 Inventory level
500

Safety level

400
300
200 | Ae—
- _w_\
/AN
0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Week

Fig. 5. Result for SKU 1.

solved by using a branch and bound method (Land & Doig, 1960),
which is commonly used for solving optimization problems with integer
variables.

We had z(10) = (810 528, 3 355.80, 0.90, 54.48) as the reference
point for SKU 1, and the final solution improved to z;,, = (753 848,
2 329.41, 0.924, 89.18). The lot sizes corresponding to z,, can be
seen in Fig. 5. The other decision variables were SS = 28, SOT = 1
day. In the figure, the orange line represents incoming lot sizes for
each week, which is q(r — L) for r = 7,...,48 and the previous order
data for t+ = 1,...,6. The demand data is illustrated by the blue line
for comparison. We also provide the inventory level and the safety
level in the gray and the yellow lines, respectively, to show that the
inventory level is larger than the safety level for every week. It indicates
that, by using the final solution obtained by applying E-NAUTILUS, the
company always had SKUs to cover unpredicted demand at least the
same amount as the safety level.

Fig. 5 shows that the company could improve inventory man-
agement with the final solution obtained. Before using the proposed
optimization model, the company had excess inventory at the beginning
of the period. The inventory level could not be controlled by the model
before week seven because of the lead time. By using the final solution,
zero orders were set for the first three weeks, which can be seen in the
incoming lot sizes for weeks seven to nine in the figure. Because the
decision maker was more interested in ITO than the other objectives
for this SKU, after that period, the final solution suggested to order in
similar amounts as the demand data. With this strategy, the company
will have the possibility to balance between the inventory planning
conflicts, namely meeting the unpredicted demand and keeping the
inventory value controlled. At the end of the period, one can see
a decrease in the demand. In this situation, buying SKUs in similar
amounts as demand did not meet the minimum order quantity and
would increase the ordering cost. Therefore, in the final solution, the
company was suggested to order more SKUs in week 44 so that no order
in week 45 was needed. Then, the company should order more SKUs
in week 46 to satisfy demand until the end of the period considered.

For SKU 2, the reference point was z(10) = (276 936.75, 1 074.71,
0.99, 34.33), and the final solution improved by the projection to
Z pinar = (225 332.50, 722.98, 0.997, 54.12). The corresponding lot sizes
can be seen in Fig. 6. The other decision variables were SS= 3, SOT= 3
days. For this SKU, the decision maker was more interested in CSL than
the other objectives, which made the safety level higher and almost
similar to the inventory level and the demand. As in the case of SKU
1, the company had excess inventory at the beginning of the period
considered, and because of the lead time, the effects of the final solution
can be only seen after week eight. The decision maker was then more
interested in ITO values than both of the cost objectives. Therefore, in
the final solution, the lot sizes were in similar amounts as the demand
until week 44. At the end of the period, for the similar reason as for SKU
1, no order in weeks 45, 47 and 48 was needed because the demand
for these weeks had been satisfied by the previous order. Thanks to the
minimum order quantity.
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Fig. 6. Result for SKU 2.

The presented results showed that multiobjective optimization is a
valuable tool for solving the integrated lot sizing problem with safety
strategy placement. We managed to find a final solution for each SKU
which was confirmed to be the most preferred solution by the decision
maker. The decision maker was very happy with the interactive E-
NAUTILUS method, which helped him in making a good decision that
reflected his preferences well. He realized that an improvement can
be made in his inventory management system by implementing our
proposed multiobjective optimization model and solving it with an
appropriate method. He appreciated the fact that the method enabled
him to think of improvements in objectives rather than focusing on
trade-offs.

In particular, the decision maker highlighted the usefulness of SOT
for inventory control. SOT supports measuring the success of his day-
to-day operations because it responds faster than SS. The usefulness
of SOT is particularly pronounced in an industrial environment, where
demand fluctuates rapidly. More generally, SOT provides a quick way
to assess the relevance of inventory control and, thus, serves the needs
of the management well.

6. Conclusions

In this paper, we developed a multiobjective optimization model to
solve a single-item multi-period lot sizing problem in periodic review
policy under stochastic environment on demand. We proposed the
concept of SOT which can handle high fluctuation of demand better
than SS. The combination of SS and SOT increased the preparedness
of handling demand uncertainty. We then proposed a multiobjective
optimization model with four objectives and four constraints to solve
this problem. By using the proposed model, we determined the optimal
order quantity in each period and simultaneously decided the optimal
values of SS and SOT.

As a proof of concept, two SKUs, one with high demand and
another with low demand, were studied with real data from a man-
ufacturing company to demonstrate the performance and applicability
of the proposed model. Even though interactive methods have many
desirable properties, they have not been applied widely in lot sizing.
For the first time in this field, we used the trade-off-free interactive
E-NAUTILUS method, designed for solving computationally expensive
problems. A novel web-based graphical user interface was developed in
this research to help the decision maker in finding his most preferred
solution using the E-NAUTILUS method. By applying this method, the
decision maker could avoid thinking of sacrifices and trade-offs as most
other multiobjective optimization methods would have necessitated.
The decision maker provided different preferences for the two SKUs,
and was satisfied with both results.

The decision maker, who was a supply chain manager of the com-
pany, found the model and SOT useful in his daily operations. He
greatly appreciated SOT that efficiently handles dynamic stock to man-
age the demand stochasticity. He also appreciated the proposed model
and the interactive E-NAUTILUS method, as well as the user interface,
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that allowed him to consider POC, HC, CSL and ITO simultaneously
without having to trade-off among the objectives. He was pleased with
the objective function values and the corresponding order quantities, SS
and SOT. He found the model, the interactive solution process and the
results useful and was willing to adopt them more widely for inventory
planning and control in his company. This demonstrates the strengths
of the model and the interactive method applied.

Some assumptions have been made in this research: no capacity
limit and no backorder cost. Including them in the model is a future
research direction to extend its applicability. Moreover, the number
of SKUs to be considered in this research is limited since the decision
maker needs to repeat the interactive solution process for each SKU.
Considering many SKUs is a further possibility to extend this work. In
addition, considering additional uncertainties in the model, such as lead
time uncertainty, is another future direction. It would make the model
more realistic, but computationally more demanding.
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Appendix A. Detailed steps of interactive decision making stage

The detailed steps of the decision making process in every iteration
of SKU 1 and SKU 2 can be seen in Tables A.1 and A.2, respectively.
In each iteration (h4), four candidates were shown to the decision
maker, together with the best reachable values from each candidate.
The decision maker then selected one candidate among them, which is
shown in bold face, to proceed with in the next iteration.

Appendix B. Details of the pre-processing stage

The pre-processing stage is the most time-consuming part in apply-
ing the E-NAUTILUS method. As mentioned in Section 5.2, the NSGA-III
method was used to generate nondominated solutions in this stage.
Because of the challenge of generating a sufficient number of non-
dominated solutions, we needed to rerun the method for several times
with different sizes of the initial population. We used the structured
approach described in Das and Dennis (1998) with the number of
partitions from 1 until 20. The reason of having different sizes of initial
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Table A.1
Interactive decision making stage of SKU 1.
h Candidates Best reachable values
POC HC CSL ITO
1 z(1,1)=(1 025 459.60, 8 590.38, 0.50, 22.77) 747 820 2717.24 1.00 252.82
z(1,2)=(1 024 809.20, 8 598.50, 0.55, 16.64) 747 820 2 717.24 1.00 124.94
z(1,3)=(1 020 226.80, 8 575.23, 0.53, 18) 747 820 2 717.24 1.00 148.42
z(1,4)=(1 018,290.80, 8,754.71, 0.55, 14.86) 749 296 2 717.24 1.00 124.94
2 z(2,1)=(997 781.87, 8 157.48, 0.55, 23.95) 749 296 2 717.24 1.00 124.94
z(2,2)=(1 004 891.20, 8 047.24, 0.51, 31.88) 748 420 2717.24 1.00 252.82
z(2,3)=(1 007 384.09, 8 046.84, 0.55, 25.47) 749 296 2 717.24 1.00 124.94
2(2,4)=(999 560.53, 8 014.37, 0.53, 26.89) 747 820 2 717.24 1.00 148.42
3 z(3,1)=(981 768.30, 7 503.88, 0.56, 33.05) 749 496 2 820.06 1.00 113.45
z(3,2)=(979 238.80, 7 470.28, 0.54, 34.83) 748 420 2 717.24 1.00 124.94
z(3,3)=(987 940.30, 7 518.98, 0.51, 47.24) 748 420 2717.24 0.96 252.82
2(3,4)=(980 461.30, 7 418.42, 0.51, 36.92) 748 420 2 717.24 1.00 148.42
4 z(4,1)=(962 441.97, 6 875.80, 0.52, 50.80) 748 420 2 717.24 0.93 148.42
z(4,2)=(967 533.97, 6 920.64, 0.56, 48.57) 754 724 2717.24 0.93 124.94
z(4,3)=(961 580.83, 6 907.24, 0.54, 49.28) 748 420 2 717.24 0.93 148.42
z(4,4)=(969 563.69, 7 069.32, 0.51, 63.39) 766 380 2 717.24 0.82 252.82
5 z(5,1)=(938 339.64, 6 334.91, 0.59, 50.45) 754 724 2 820.06 0.93 110.70
z(5,2)=(942 058.31, 6 237.21, 0.57, 54.54) 763 228 2 820.06 0.90 113.45
2(5,3)=(947 127.64, 6 322.29, 0.61, 49.90) 754 724 2 820.06 0.93 97.01
z(5,4)=(951 258.98, 6 287.11, 0.57, 55.56) 763 228 2 820.06 0.90 113.45
6 z(6,1)=(913 349.31, 5 744.86, 0.64, 51.17) 754 724 2 890.41 0.90 83.81
2(6,2)=(918 386.91, 5 727.19, 0.62, 53.02) 754 724 2 820.06 0.90 90.54
2(6,3)=(923 009.31, 5 709.51, 0.67, 50.29) 754 724 2 890.41 0.93 77.96
2(6,4)=(926 266.11, 5 728.63, 0.65, 52.51) 754 724 2 890.41 0.90 77.96
7 z(7,1)=(902 961.99, 5 120.63, 0.70, 53.46) 754 724 2 944.52 0.90 77.96
2(7,2)=(886 815.99, 5 140.92, 0.69, 51.78) 754 724 2 944.52 0.90 77.96
z(7,3)=(898 890.99, 5 096.73, 0.73, 50.69) 754 724 2 991.42 0.91 68.68
z(7,4)=(893 481.99, 5 082.30, 0.68, 52.89) 754 724 2 890.41 0.90 77.96
8 z(8,1)=(850 835.32, 4 596.99, 0.73, 51.93) 754 724 3 088.83 0.90 67.98
z(8,2)=(871 379.32, 4 486.96, 0.78, 52.16) 778 636 3 101.46 0.90 67.98
z(8,3)=(880 200.66, 4 515.82, 0.76, 54.78) 788 016 3 088.83 0.90 67.98
z(8,4)=(867 760.66, 4 532.05, 0.74, 53.29) 754 724 3 088.83 0.90 67.98
9 z(9,1)=(857 937.66, 3 801.42, 0.80, 60.07) 842 820 3115.89 0.82 67.98
2(9,2)=(843 867.66, 3 877.18, 0.83, 53.62) 810 528 3 119.49 0.90 59.87
2(9,3)=(832 411.66, 3 995.33, 0.78, 52.17) 793 444 3 130.32 0.90 59.87
2(9,4)=(850 533.66, 4 047.65, 0.81, 56.01) 818 232 3 115.89 0.87 67.98
10 z(10, 1)=(833 440, 3 119.49, 0.90, 55.85)
2(10,2)=(818 232, 3 310.70, 0.84, 57.79)
z(10,3)=(816 356, 3 267.41, 0.88, 55.08)
z(10,4)=(810 528, 3 355.80, 0.90, 54.48)
Table A.2
Interactive decision making stage of SKU 2.
h Candidates Best reachable values
POC HC CSL ITO
1 z(1,1)=(409 483.89, 3 968.73, 0.51, 15.60) 220 829.40 770.44 1.00 91.65
z(1,2)=(410 619.97, 4 022.61, 0.55, 12.53) 220 829.40 770.44 1.00 91.65
z(1,3)=(414 679.15, 3 972.64, 0.50, 18.23) 220 829.40 770.44 1.00 107.02
z(1,4)=(410 144.51, 3 959.10, 0.54, 14.15) 220 829.40 770.44 1.00 91.65
2 z(2,1)=(393 319.35, 3 658.46, 0.55, 19.08) 220 829.40 770.44 1.00 91.65
z(2,2)=(389 615.57, 3 752.13, 0.59, 14.92) 220 829.40 770.44 1.00 91.65
z(2,3)=(391 339.51, 3 638.77, 0.58, 17.20) 220 829.40 770.44 1.00 91.65
z(2,4)=(393 180.29, 3 661.26, 0.59, 15.93) 220 829.40 770.44 1.00 91.65
3 z(3,1)=(375 340.31, 3 388.36, 0.64, 17.08) 221 680.95 866.74 1.00 60.95
z(3,2)=(376 916.86, 3 355.38, 0.59, 22.04) 220 829.40 770.44 1.00 91.65
z(3,3)=(372 305.76, 3 391.15, 0.59, 19.53) 220 829.40 770.44 1.00 91.65
z(3,4)=(374 301.64, 3 333.05, 0.63, 19.39) 221 680.95 866.74 1.00 60.95
4 z(4,1)=(355 244.20, 3 010.63, 0.66, 22.56) 221 680.95 866.74 1.00 60.95
z(4,2)=(354 829.47, 3 045.72, 0.68, 20.71) 221 680.95 866.74 1.00 60.95
z(4,3)=(357 053.34, 2 994.08, 0.64, 23.94) 221 680.95 866.74 1.00 60.95
z(4,4)=(362 466.02, 3 065.26, 0.69, 20.15) 221 680.95 866.74 1.00 60.95
5 z(5,1)=(342 204.94, 2 733.74, 0.71, 23.72) 221 680.95 866.74 1.00 54.55
z(5,2)=(349 562.69, 2 781.89, 0.73, 21.20) 221 680.95 866.74 1.00 54.55
z(5,3)=(344 315.60, 2 714.43, 0.69, 25.34) 221 680.95 866.74 1.00 60.95
z(5,4)=(342 446.86, 2 766.30, 0.73, 22.10) 221 680.95 866.74 1.00 54.55
6 z(6,1)=(330 966.70, 2 486.05, 0.78, 22.98) 221 680.95 866.74 1.00 54.55
z(6,2)=(318 783.99, 2 453.66, 0.76, 24.09) 221 680.95 866.74 1.00 54.55
2(6,3)=(322 427.71, 2 467.34, 0.78, 24.06) 221 680.95 866.74 1.00 54.55
z(6,4)=(326 281.74, 2 416.54, 0.76, 27.01) 221 680.95 866.74 1.00 54.55
7 z(7,1)=(304 210.42, 2 107.25, 0.81, 28.16) 223 732.50 866.74 1.00 50.42
z(7,2)=(304 936.19, 2 081.43, 0.78, 30.66) 223 932.50 866.74 1.00 54.55
z(7,3)=(314 984.16, 2 117.72, 0.82, 27.79) 223 732.50 866.74 1.00 50.42
z(7,4)=(312 243.94, 2 068.87, 0.77, 32.60) 223 932.50 866.74 1.00 54.55
8 z(8,1)=(289 121.59, 1 805.41, 0.87, 28.94) 223 732.50 971.42 1.00 42.53
z(8,2)=(290 706.47, 1 757.02, 0.83, 33.06) 223 932.50 866.74 0.99 50.42
z(8,3)=(300 516.80, 1 826.81, 0.87, 29.53) 223 732.50 971.42 1.00 42.53
z(8,4)=(286 502.34, 1 812.85, 0.85, 30.21) 223 932.50 866.74 1.00 50.42
9 z(9,1)=(277 440.15, 1 427.73, 0.92, 34.48) 230 738.70 996.54 0.98 42.53
2(9,2)=(265 027.75, 1 514.96, 0.89, 32.29) 223 932.50 971.42 1.00 42.53
2(9,3)=(269 256.63, 1 503.10, 0.92, 30.57) 228 687.15 996.54 1.00 42.53
z(9,4)=(277 440.15, 1 466.81, 0.94, 31.11) 230 138.70 1 007.71 1.00 39.44
10 z(10,1)=(238 196.45, 1 099.83, 0.97, 35.27)

z(10,2)=(254 363.50, 1 028.65, 0.97, 39.44)
z(10,3)=(276 936.75, 1 074.71, 0.99, 34.33)
z(10,4)=(252 911.95, 1 211.49, 0.99, 30.24)
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populations is to get more different solutions (Deb & Jain, 2014). We
then combined all of the generated solutions and deleted the dominated
ones.

In NSGA-III, we used simulated binary crossover for integer vari-
ables with crossover probability 0.9 and polynomial mutation for inte-
ger variables with mutation probabilities 0.9. We found that these pa-
rameters are good enough for our needs after several experiments. More
detailed information related to these operators can be seen in Deb,
Sindhya, and Okabe (2007). For other parameters, we used the default
values in pymoo (Blank & Deb, 2020).
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