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Abstract

We prove a self-improvement property of a capacity density condition for a nonlocal
Hajtasz gradient in complete geodesic spaces with a doubling measure. The proof
relates the capacity density condition with boundary Poincaré inequalities, adapts
Keith—Zhong techniques for establishing local Hardy inequalities and applies Koskela—
Zhong arguments for proving self-improvement properties of local Hardy inequalities.
This leads to a characterization of the Hajtasz capacity density condition in terms of
a strict upper bound on the upper Assouad codimension of the underlying set, which
shows the self-improvement property of the Hajtasz capacity density condition.

Keywords Analysis on metric spaces - Capacity density condition - Hajtasz gradient
Mathematics Subject Classification 35A23 - 31E05 - 3099 - 42B25 - 46E35
1 Introduction

We introduce a Hajtasz (8, p)-capacity density condition in terms of Hajlasz gradients
of order 0 < B < 1, see Sects. 3 and 4. Our main result, Theorem 9.6, states that this
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condition is doubly open-ended, that is, a Hajtasz (8, p)-capacity density condition is
self-improving both in p and in g if X is a complete geodesic space endowed with a
doubling measure. The study of such conditions can be traced back to the seminal work
by Lewis [24], who established self-improvement of Riesz (8, p)-capacity density
conditions in R”. His result has been followed by other works incorporating different
techniques often in metric spaces, like nonlinear potential theory [2, 28], and local
Hardy inequalities [23].

A distinctive feature of our paper is that we prove the self-improvement of a capacity
density condition for anonlocal gradient for the first time in metric spaces. We make use
of a recent advance [19] in Poincaré inequalities, whose self-improvement properties
were originally shown by Keith—Zhong in their celebrated work [16]. In this respect, we
join the line of research initiated in [20], and continued in [5, 6], for bringing together
the seemingly distinct self-improvement properties of capacity density conditions and
Poincaré inequalities.

We use various techniques and concepts in the proof of Theorem 9.6. The fundamen-
tal idea is to use a geometric concept, more precisely the upper Assouad codimension,
and characterize the capacity density with a strict upper bound on this codimension.
Here we are motivated by the recent approach from [4], where the Assouad codimen-
sion bound is used to give necessary and sufficient conditions for certain fractional
Hardy inequalities; we also refer to [22]. The principal difficulty is to prove a strict
bound on the codimension. To this end we relate the capacity density condition to
boundary Poincaré inequalities, and we show their self-improvement roughly speaking
in two steps: (1) Keith—Zhong estimates on maximal functions and (2) Koskela—Zhong
estimates on Hardy inequalities. For these purposes, respectively, we adapt the maxi-
mal function methods from [19] and the local Hardy arguments from [23].

There is a clear advantage to working with Hajtasz gradients: Poincaré inequalities
hold for all measures, see Sect. 3. Other types of gradients, such as p-weak upper gra-
dients [1], do not have this property and therefore corresponding Poincaré inequalities
need to be assumed a priori, as was the case in previous works such as [2, 5, 6, 23,
28]. We remark that this requirement already excludes many doubling measures in R
equipped with Euclidean distance [3].

Our method is to able to overcome the challenges posed by the nonlocal nature
of Hajtasz gradients [8]. For example, if a function u is constant in a set A C X
and g is a Hajtasz gradient of u, then glx\ 4 is not necessarily a Hajtasz gradient of
u. This fact makes it impossible to directly use the standard localization techniques
for p-weak upper gradients. More specifically, there is no access to neither pointwise
glueing lemma nor pointwise Leibniz rule. The Hajtasz gradients do satisfy nonlocal
versions of the glueing lemma and the Leibniz rule, both of which we employ in our
method.

Standard localization techniques are used in the literature for proving self-
improvement properties of capacity density conditions involving p-weak upper
gradients. More specifically, the approaches in [2, 28] are based on Wolff poten-
tials, and oscillation estimates for p-harmonic functions and p-energy minimizers
near a boundary point. The two papers [5, 6] rely on maximal function techniques and
characterizations of pointwise p-Hardy inequalities by curves. The above approaches
can not be directly adapted to our setting with Hajtasz gradients of order 0 < 8 < 1.
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The Wannebo approach [31]—that was used as a first half of the argument in [23] to
show local p-Hardy inequalities—can not be adapted to our setting either, due to the
non-locality. We show that the Wannebo approach can be replaced by Keith—Zhong
estimates on maximal functions, and this work constitutes main part of the present
paper. We also adapt the second half of [23] for our purposes, namely, the Koskela—
Zhong estimates for improving local Hardy inequalities. This last part is translated to
the non-local case in a more straightforward way.

Our method also has a disadvantage. We need to assume that X is a complete
geodesic space. These assumptions provide us Lemma 5.3, Theorem 3.8, Lemmas 2.6,
2.5, and few other useful properties. We do not know how far these two conditions could
be relaxed. In particular, it would be interesting to know if our main result, Theorem
9.6, could be extended to the more general setting of complete and connected metric
spaces.

The outline of this paper is as follows. After a brief discussion on notation and
preliminary concepts in Sect. 2, Hajtasz gradients are introduced in Sect. 3 along
with their calculus and various Poincaré inequalities. Capacity density condition is
discussed in Sect. 4, and some preliminary sufficient and necessary bounds on the
Assouad codimension are given in Sect. 5. The most technical part of the work is
contained in Sects. 6, 7 and 8, in which the analytic framework of the self-improvement
is gradually developed. Finally, the main resultis givenin Sect. 9, in which we show that
various geometrical and analytical conditions are equivalent to the capacity density
condition. The geometrical conditions are open-ended by definition, and hence all
analytical conditions are seen to be self-improving or doubly open-ended.

2 Preliminaries

In this section, we recall the setting from [19]. Our results are based on quantitative
estimates and absorption arguments, where it is often crucial to track the dependencies
of constants quantitatively. For this purpose, we will use the following notational
convention: C(x, ..., *) denotes a positive constant which quantitatively depends
on the quantities indicated by the *’s but whose actual value can change from one
occurrence to another, even within a single line.

2.1 Metric Spaces
Unless otherwise specified, we assume that X = (X, d, n) is a metric measure space

equipped with a metric d and a positive complete Borel measure p such that 0 <
w(B) < oo for all balls B C X, each of which is always an open set of the form

B=Bx,r)={yeX :d(y,x) <r}

with x € X and r > 0. As in [, p. 2], we extend u as a Borel regular (outer)
measure on X. We remark that the space X is separable under these assumptions, see
[1, Proposition 1.6]. We also assume that #X > 2 and that the measure u is doubling,
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that is, there is a constant ¢, > 1, called the doubling constant of 1, such that

w(@2B) < cu n(B) 2.1

forallballs B = B(x,r)in X.Hereweusefor0 < ¢t < oothenotationtB = B(x, tr).
In particular, for all balls B = B(x, r) that are centered at x € A C X with radius
r < diam(A), we have that

wu(B) Zz_s( : r > ’ (2.2)
H(A) diam(A)

where s = log, ¢;, > 0. We refer to [12, p. 31]. If X is connected, then the doubling
measure u is also reverse doubling in the sense that there is a constant 0 < cg =
C(cyu) < 1 such that

w(B(x,r/2)) < cg u(B(x,r)) 2.3)

forevery x € X and 0 < r < diam(X)/2. See for instance [1, Lemma 3.7].

2.2 Geodesic Spaces

Let X be a metric space satisfying the conditions stated in Sect. 2.1. By a curve we
mean a nonconstant, rectifiable, continuous mapping from a compact interval of R to
X; we tacitly assume that all curves are parametrized by their arc-length. We say that
X is a geodesic space, if every pair of points in X can be joined by a curve whose
length is equal to the distance between the two points. In particular, it easily follows
that

0 < diam(2B) < 4diam(B) 2.4

for all balls B = B(x, r) in a geodesic space X. Since geodesic spaces are connected,
the measure p is reverse doubling in a geodesic space X in the sense that inequality
(2.3) holds.

The following lemma is [14, Lemma 12.1.2].

Lemma 2.5 Suppose that X is a geodesic space and A C X is a measurable set. Then
the function

Bx,r)NA
HBENNA 6 o) LR
u(B(x,r1))
is continuous whenever x € X.
The second lemma, in turn, is [19, Lemma 2.5].

Lemma 2.6 Suppose that B = B(x,r) and B' = B(x', r’) are two balls in a geodesic
space X such that x' € B and 0 < r’ < diam(B). Then u(B’) < cz,u(B’ N B).
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2.3 Holder and Lipschitz Functions

Let A C X. We say that u: A — R is a B-Holder function, with an exponent
0 < pB <landaconstant 0 < x < o0, if

lu(x) —u(y)| <xd(x, y)ﬁ forallx,y € A.

Ifu: A — Ris a B-Holder function, with a constant «, then the classical McShane
extension

v(x) = inf{u(y) +kd(x,y)’ : ye A}, xeX, 2.7

defines a S-Holder function v: X — R, with the constant «, which satisfies v|4 = u;
we refer to [12, pp. 43—44] and [27]. The set of all S-Holder functions u: A — R is
denoted by Lipg(A). The 1-Holder functions are also called Lipschitz functions.

2.4 Additional Notation

Wewrite N = {1, 2,3, ...} and Ng = NU{0}. We use the following familiar notation:
1
ug =1 u(y)du(y) = ——= [ u(y)du(y)
A w(A) Ja

is the integral average of u € L'(A) over a measurable set A C X with 0 < w(A) <
0o. The characteristic function of set A C X is denoted by 14; that is, 14(x) = 1
if x € Aand 14(x) = 0if x € X \ A. The distance between a point x € X and a
set A C X is denoted by d(x, A). The closure of a set A C X is denoted by A. In
particular, if B C X is a ball, then the notation B refers to the closure of the ball B.

3 Hajtasz Gradients

We work with Hajtasz B-gradients of order 0 < 8 < 1 in a metric space X.

Definition 3.1 For each function u: X — R, we let Dgl () be the (possibly empty)
family of all measurable functions g: X — [0, oo] such that

lu(x) — u(y)| < d(x, )P (g(x) + () (3.2)

almost everywhere, i.e., there exists an exceptional set N = N(g) C X for which

W(N) = 0 and inequality (3.2) holds for every x, y € X \ N. A function g € Dg (u)
is called a Hajtasz B-gradient of the function u.

The Hajtasz 1-gradients in metric spaces are introduced in [9]. More details on these
gradients and their applications can be found, for instance, from [8, 10, 29, 30, 32]. The
following basic properties are easy to verify for all S-Holder functions u, v: X — R
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(D1) |alg € DY (au) ifa € Rand g € D, (u);

(D2) gy + g € Db (u+v)if g, € DF (u) and g, € D (v);

(D3) If f: R — Ris a Lipschitz function with constant «, then kg € Dg (f ou)if
geDhw).

There are both disadvantages and advantages to working with Hajtasz gradients. A
technical disadvantage is their nonlocality [8]. For instance, if u is constant on some

set A C Xandg € D'I’; (u), then g1x\ 4 need not belong to D,ﬁ; (u). By the so-called
glueing lemma, see for instance [1, Lemma 2.19], the corresponding localization
property holds for so-called p-weak upper gradients, which makes their application
more flexible. However, the following nonlocal glueing lemma from [19, Lemma 6.6]
holds in the setting of Hajtasz gradients.

We recall the proof for convenience.

Lemma3.3 Let 0 < B < l and let A C X be a Borel set. Let u: X — R be a
B-Holder function and suppose that v: X — R is such that v|x\a = u|x\a and there
exists a constant k > 0 such that |v(x) —v(y)| <k d(x, y)ﬂ forallx,y € X. Then

gv=k1a+gdx\a € D’f,(v)

whenever g, € DZ (u).
Proof Fix a function g, € DZ (u) and let N C X be the exceptional set such that

Ww(N) = 0 and inequality (3.2) holds for every x, y € X \ N and with g = g,,.
Fixx,ye X\ N.Ifx,y € X\ A, then

() — v = lux) — u()] < dx, )P (gu(x) + gu () = d(x, )P (gu(x) + g0(»)) -
Ifx e Aory € A, then
[v(x) — v < kdx, )P < dx, )P (g0(x) + gu(»)) -

By combining the estimates above, we find that
@) — o) < d@. )P (gu(x) + gu(»))

whenever x, y € X \ N. The desired conclusion g, € Dg(v) follows. O

The following nonlocal generalization of the Leibniz rule is from [10]. The proof
is recalled for the convenience of the reader. The nonlocality is reflected by the
appearence of the two global terms || || and « in the statement below.

Lemma3.4 Let0 < B < 1, letu: X — R be a bounded B-Hélder function, and let
Y X — Rbeabounded B-Hdlder function witha constantk > 0. Thenuyr: X — R
is a B-Holder function and

(QullV oot ) Ly 20 € DY (uihr)
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forall g, € DZ(M). Here {fy 0} ={y e X : ¥ (y) # 0}
Proof Fix x,y € X. Then

()Y () —u(NY | = [u@) &) —u) &) +u)PE) —u@)y ()l
= [WOlulx) —uW+ luWY ) =¥l (3.5

Since u# and i are both bounded S-Holder functions in X, it follows that uyr is 8-
Holder in X.

Fix a function g, € DZ (u) and let N C X be the exceptional set such that
W(N) = 0 and inequality (3.2) holds for every x, y € X \ N and with g = g,.. Denote
h = (ullV llootxlu) 1y 0y Let x, y € X \ N. It suffices to show that

()Y (x) — uNP | < d(x, )P (h(x) +h(y)) .

By (3.5), we get

()Y () —uMP M < W Idx, )P (8 () + 8 () + lu()lkd (x, y)P
=d(x, )’ (Y ) (gu®) + gu() +xlu) . (3.6)

Next we do a case study. If x, y € {¢ # 0}, then by (3.6) we have

()Y () —uMY O] < dx, )P (g0 Y lloo Ly 0y (X) + (€ DY lloo
+iclu () DLy 20y ()
<d, )P (h(x) +h()).

Ifx e X\ {¥ #0}and y € { # 0}, then

()W (x) — u(MY )| < dx, )P (klu@) 1y 20,()
=d(x, )Ph(y) <dx, y)P(h(x) +h(y)).

The case x € {y #0}and y € X \ {y # 0} is symmetric and the last case is trivial.
O

A significant advantage of working with Hajtasz gradients is that Poincaré inequali-
ties are always valid [30, 32]. The same is not true for the usual p-weak upper gradients,
in which case a Poincaré inequality often has to be assumed.

The following theorem gives a (8, p, p)-Poincaré inequality for any 1 < p < oo.
This inequality relates the Hajtasz gradient to the given measure.

Theorem 3.7 Suppose that X is a metric space. Fix exponents 1 < p < 0o and
0 < B < 1. Suppose that u € Lipg(X) and that g € DZ(H). Then

1/p 1/p
(f lu(x) —ugp|? du(x)> =< 2diam(B)’3<][ g(x)? du@c))
B B
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holds whenever B C X is a ball.

Proof We follow the proof of [12, Theorem 5.15]. Let N = N(g) C X be the excep-
tional set such that w(N) = 0 and (3.2) holds for every x, y € X \ N. By Holder’s
inequality

][ lu(x) —upl? du(x) < ][ ][ lu(y) —u(x)|? du(y) du(x).
B B\N J B\N

Applying (3.2), we obtain

][ ][ lu(y) —u(x)|? du(y) du(x)
B\N J B\N

< ]f ]f A, )PP (g + () du(y) du(x)
B\N J B\N

< 27! diam(B)F” ][ (8P +g(»P) du(y) dpu(x)
B\N J B\N

< 27 diam(B)PP ]f g(X)P du(x).
B

The claimed inequality follows by combining the above estimates. O

In a geodesic space, even a stronger (8, p, g)-Poincaré inequality holds for some
q < p. In the context of p-weak upper gradients, this result corresponds to the deep
theorem of Keith and Zhong [16]. In our context the proof is simpler, since we have
(B, q, q)-Poincaré inequalities for all exponents 1 < g < p by Theorem 3.7. It
remains to argue that one of these inequalities self-improves to a (8, p, ¢)-Poincaré
inequality when g < p is sufficiently close to p.

Theorem 3.8 Suppose that X is a geodesic space. Fix exponents 1 < p < oo and
0 < B =< L Suppose that u € Lipg(X) and that g € Df, (u). Then there exists an
exponent 1 < q < p and a constant C, both depending on c,, p and B, such that

1/p 1/q
(f lu(x) —up|? du(x)) < C diam(B)” <][ g(x)? du(X))
B B

holds whenever B C X is a ball.

Proof We will apply [19, Theorem 3.6] and for this purpose we need some prepara-
tions. Fix Q = Q(B, p, ¢,) such that Q > max{log, c,, Bp}. Since

qli_g; 0q/(Q - Bq) = Qp/(Q = Bp) > p.,

there exists 1 < g = g(B, p,cy) < psuchthat p < Qg/(Q — Bq) and Bg < Q.
Theorem 3.7 and Holder’s inequality implies that
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1/q
][Blu(x) —upldu(x) < (]fglu(x) —upl? du(x))

1/q
< 2diam(B)? ( ]/ g(x)1 du(x))
B

whenever B C X is a ball. Now the claim follows from [19, Theorem 3.6], which is
based on the covering argument from [11]. We also refer to [7, Lemma 2.2]. O

4 Capacity Density Condition

In this section, we define the capacity density condition. This condition is based on the
following notion of variational capacity, and it is weaker than the well known measure
density condition. We also prove boundary Poincaré inequalities for sets satisfying a
capacity density condition. This is done with the aid of so-called Mazya’s inequality,
which provides an important link between Poincaré inequalities and capacities.

Definition4.1 Let 1 < p < 00,0 < B < 1, and let 2 C X be an open set. The
variational (B, p)-capacity of a closed subset F' C Q2 with dist(F, X \ ) > 0O is

capy, (F. ) = infinf | g()P du(o).
, nfinf |
where the infimums are taken over all S-Holder functions u in X, withu > 1in F
and u = 0 in X \ ©, and over all g € D (u).

Remark 4.2 We may take the infimum in Definition 4.1 among all u satisfying addi-
tionally 0 < u < 1. This follows by considering the p-Hélder function function
v = max{0, min{u, 1}} since g € DZ(U) by Property (D3).

Definition 4.3 A closed set E C X satisfies a (8, p)-capacity density condition, for
1 <p<ooand0 < B < 1, if there exists a constant ¢y > 0 such that

capg ,(E N B(x.r), B(x,2r)) = cor PP p(B(x,r)) (4.4)

forallx € Eand all 0 < r < (1/8) diam(E).

Example 4.5 We say that a closed set E C X satisfies a measure density condition, if
there exists a constant ¢ such that

n(E N B(x,r)) = ciju(B(x, 1)) (4.6)

forall x € E and all 0 < r < (1/8)diam(E). Assume that the metric space X is
connected, | < p <oocand 0 < B < 1, and that a set E C X satisfies a measure
density condition. Then it is easy to show that E satisfies a (8, p)-capacity density
condition, see below. We remark that the measure density condition has been applied
in [17] to study Hajtasz Sobolev spaces with zero boundary values on E.
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Fixx € Eand 0 < r < (1/8) diam(E). We aim to show that (4.4) holds. For this
purpose, we write F = E N B(x,r) and B = B(x,r).Letu € Lipﬁ(X) be such that
O<u<l,u=1linFandu =0in X \ 2B. Letalso g € Dg(u). Recall that X is
connected. Hence, by the properties of u# and the reverse doubling inequality (2.3), we
obtain

2B
0 < u4p =][ u(y)du(y) < 2B
4B I

If y € F, we have u(y) = 1 and therefore
lu(y) —uspl =21 —ugp > 1 —cg = C(cy) > 0.

Applying the measure density condition (4.6) and the (8, p, p)-Poincaré inequality,
see Theorem 3.7, we obtain

ciu(B) < u(F) < Cley, p)fFIu(y) —ugpl? du(y)
< C(cu, p)/ lu(y) — uap|” dp(y)
4B

< Clen, pyrP? A 60" du(y) = Cla i fX ¢ du(y).

By taking infimum over functions u and g as above, we see that
capg ,(E N'B(x.r),2B) = capy ,(F.2B) = C(c1. cp. p)r PP (B).

This shows that E satisfies a (8, p)-capacity density condition (4.4).

The following Mazya’s inequality provides a link between capacities and Poincaré
inequalities. We refer to [25, Chapter 10] and [26, Chapter 14] for further details on
such inequalities.

Theorem 4.7 Let1 < p < 00,0 < B8 < 1,andlet B(z,r) C X be a ball. Assume that

u is a B-Holder function in X and g € Dg (u). Then there exists a constant C = C(p)
such that

c
= / g(x)P dpu(x).
capg ,({u =0} N B(z. 5). B(z.1)) /BG.r)

f ()P dux) <
B(z,r)

Here {u =0} ={y e X :u(y) =0}

Proof We adapt the proof of [ 18, Theorem 5.47], which in turn is based on [ 1, Theorem
5.53]. Let M = sup{|u(x)| : x € B(z,r)} < oo. By considering min{M, |u|} instead
of u and using (D3), we may assume that u is a bounded B-Holder function in X and
that u > 0in B(z, r). Write B = B(z, r) and
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» 1
upp = (][ u(x)? dM(X)> =wu(B) 7lullrrpy < oo.
B
If up, , = 0 the claim is true, and thus we may assume that ug , > 0. Let
¥ () = max{0, 1 = @r~d(x, Bz 5)’ |

foreveryx € X. Then0 < ¢ <1,¥ =0in X \ B(z,r), ¥ = lin B(z, %), and v is
a B-Holder function in X with a constant Q2r~—hH8. Let

v(x) = w(x)(1 ~ Z(x)>, xeX.

B.p

Thenv = 1in {u = 0} N B(z,5) and v = 0 in X \ B(z,r). By Lemma 3.4, and
properties (D1) and (D2), the function v is S-Holder in X and

g = (—nl/fnoo + <2r—1)ﬂ'1 -—
u up

B,p P

) 1y 20y € Dfy(v).

Here we used the fact that g € D’Z (1) by assumptions. Now, the pair v and g, is
admissible for testing the capacity. Thus, we obtain

capﬁyp({u =0}NB(z, %), B(z.r) < / 2o (0)P dp(x)

C(p) (p)
- (1"1_"3‘,;7)[7 p)p

(4.8)

/ g(x)”? dp(x) + /IM(X) —uppl’ du(x).

We use Minkowski’s inequality and the (8, p, p)-Poincaré inequality in Theorem 3.7
to estimate the second term on the right-hand side of (4.8), and obtain

1
(wa(x)—uB,,,V’du(x)) (f Iu(x)—usl”du(x)) +lug.p — upl

1 4.9)
» _1
<crf (fB g(x)f dM(X)> + w(B)" 7 |llullrgy — lupllLrs)|.

By the triangle inequality and the above Poincaré inequality, we have

_1
lullLry — Nuglles| < u(B) 7llu—uglirs)

W(B)r

1

= <][ lu(x) —upl? du«(x))P
B

1
<crf (fB g(x)? dM(X)) ’
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Together with (4.9) this gives

1 1
(me(x) - uB,,,|Pdu<x>> " <ot (fB g(X)”dM(X))I ,

and thus
/ u(x) — up,pl” du(x) < C(p)rP? / g(0)P du(x).
B B
Substituting this to (4.8) and recalling that B = B(z, r), we arrive at

S C(p)
capﬂ’p({u =0} N B(z, 5), B(z, r)) =< . )? o

g()P dp(x).

The claim follows by reorganizing the terms. O

The following theorem establishes certain boundary Poincaré inequalities for a set
E satisfying a capacity density condition. Mazya’s inequality in Theorem 4.7 is a key
tool in the proof.

Theorem4.10 Let 1 < p < oo and 0 < B < 1. Assume that E C X satisfies a
(B, p)-capacity density condition with a constant cy. Then there is a constant C =
C(p, co, cy) such that

f Iu(x)l”du(x)SCRﬂp][ g0 du(x) @.11)
B(x,R) B(x,R)

whenever u: X — R is a B-Holder function in X suchthatu =0in E, g € DZ (),
and B(x, R) is a ball with x € E and 0 < R < diam(E) /4.

Proof Let x € E and 0 < R < diam(E)/4. We denote r = R/2 < diam(E)/8.
Applying the capacity density condition in the ball B = B(x, r) gives

capg ,(EN B,2B) > cor PP u(B).

Write {u =0} = {y € X : u(y) = 0} D E. By the monotonicity of capacity and the
doubling condition we have

1 - 1 - C(co)rPr - C(co, ¢, )RPP
capg ,({u =0} N B,2B) ~ capg ,(ENB,2B) ~— wu(B) —  pn(2B)

The desired inequality, for the ball B(x, R) = B(x, 2r) = 2B, follows from Theo-
rem 4.7. m|
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5 Necessary and Sufficient Geometrical Conditions

In this section we adapt the approach in [4] by giving necessary and sufficient geomet-
rical conditions for the (8, p)-capacity density condition. These are given in terms of
the following upper Assouad codimension [15].

Definition 5.1 When E C X and r > 0, the open r-neighbourhood of E is the set
E={xeX:dx,E)<r}.

The upper Assouad codimension of E C X, denoted by codima (E), is the infimum
of all Q > 0 for which there is ¢ > 0 such that

w(E, N B(x, R)) (r)Q

R ——— 2 cl —
n(B(x, R)) R

forevery x € E andall0 < r < R < diam(E). If diam(E) = 0, then the restriction

R < diam(F) is removed.

Observe that a larger set has a smaller Assouad codimension. We need suitable
versions of Hausdorff contents from [22].

Definition 5.2 The (p-restricted) Hausdorff content of codimension ¢ > 0 of a set
F C X is defined by

'Hg’q(F) = inf{Z/L(B(xk, ) rk_q F C UB(xk, rg)and 0 < ry < ,o}.
k k

The following lemma is [22, Lemma 5.1]. It provides a lower bound for the Haus-
dorff content of a set truncated in a fixed ball in terms of the measure and radius of the
truncating ball. The proof uses completeness via construction of a compact Cantor-
type setinside E, whose mass is uniformly distributed by a Carathéodory construction.

Lemma 5.3 Assume that X is a complete metric space. Let E C X be a closed set,
and assume that codimp (E) < q. Then there exists a constant C > 0 such that

HEYENB(x,r) > Cr9u(B(x, r)) (5.4)

foreveryx € E and all 0 < r < diam(E).

On the other hand, Hausdorff content gives a lower bound for capacity by following
lemma. The proof is based on a covering argument, where the covering balls are chosen
by chaining. The proofis amore sophisticated variant of the argument given in Example
4.5. Similar covering arguments via chaining have been widely used; see for instance
[13].
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Lemma 5.5 Assume that X is a connected metric space. Let0 < 8 < 1,1 < p < oo,
and 0 < n < p. Assume that B = B(xo,r) C X is a ball with r < diam(X)/8, and
assume that F C B is a closed set. Then there is a constant C = CB,p,n,cy) >0
such that

PP~ cap, (F,2B) > CHAL(F).

Proof We adapt the proof of [4, Lemma 4.6] for our purposes. Let u € Lipg(X) be

suchthat0 <u <linX,u=1in Fandu =0in X \ 2B. Letalso g € Df,(u).We
aim to cover the set F' by balls that are chosen by chaining. In order to do so, we fix
x € F and write By = 4B = B(x,4r), ro = 4r,r; = 27/Tlr and B; = B(x, r}),
j=1,2,...Observe that Bj | C Bj and u(Bj) < ¢ u(Bj1)if j =0,1,2,....
By the above properties of u and the reverse doubling inequality (2.3), we obtain

n2B) <cg <l
H@B)

0 < g, = ]/B u(y) du(y) <
0

Since x € F, we find that u(x) = 1 and therefore
lu(x) —upyl >1—ug, >1—cg=C(cy) > 0.

We write § = B(p — n)/p > 0. Using the Poincaré inequality in Theorem 3.7 and
abbreviating C = C(8, p, n, c,), we obtain

Zz 1 =C(1 —cp) = Clu(x) — up,|
<c§j|u3.l ug;| < CZ n(5)) |u(y>—u3 | dp(y)
B —0 o N M(BjJr )
00 1

=C Z <][B lu(y) —ug;|” du(y)> Z (][ g(y)? du(y))
j=0 \" %

By comparing the series in the left- and right-hand side of these inequalities, we see
that there exists j € {0, 1, 2, ...} depending on x such that

2—j5p < C(ﬂ, ., Cﬂ)rfp fB> g(y)p d/,L(y) (56)

Write ry = r;j and By = B;. Then x € B, and straightforward estimates based on
(5.6) give

w(B)re P < C(B, p,n, c)rPPm /B gMPdu(y).
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By the 5r-covering lemma [1, Lemma 1.7], we obtain points x;, € F,k=1,2,...,
such that the balls B, C By = 4B with radii r,, < 4r are pairwise disjoint and
F C U2 5By, Hence,

00 o0
H;ZLOEH(F) = ZM(SBxk)(erk)_ﬁn = Czrﬂ(p_n)/ g)P du(x)
k=1 k=1

By,

< crfe-m f g)P du(x) < crfr=m f g(0)P du(x),
4B X

where C = C(B, p, n, ¢,). We remark that the scale 20r of the Hausdorff content in
the left-hand side comes from the fact that radii of the covering balls 5By, for F' are
bounded by 20r. The desired inequality follows by taking infimum over all functions

g€ D/ﬁ, (1) and then over all functions u as above. O

The following theorem gives an upper bound for the upper Assouad codimension
for sets satisfying a capacity density condition. We emphasize the strict inequality
codimp (E) < Bp, completeness and connectedness in the assumptions below.

Theorem 5.7 Assume that X is a complete and connected metric space. Let 1 < p <
oo and 0 < B < 1. Let E be a closed set with codima (E) < Bp. Then E satisfies a
(B, p)-capacity density condition.

Proof Fix 0 < n < p such that codima(E) < Bn. Letx € Eand 0 < r <
diam(E)/8, and write B = B(x, r). By a simple covering argument using the dou-
bling condition, it follows that H%f ENB) > CH! P "(E N B) with a constant C
independent of B. Applying also Lemma 5.5 and then Lemma 5.3 gives

PP~ cap, (ENB,2B) = CHY "(E N B) = CHMPI(E N B) = r P u(B).
After simplification, we obtain
capg ,(EN B,2B) > Cr PP u(B),

and the claim follows. O

Conversely, by using boundary Poincaré inequalities, it is easy to show that a
capacity density condition implies an upper bound for the upper Assouad codimension.

Theorem5.8 Let 1 < p < oo and 0 < B < 1. Assume that E C X satisfies a
(B, p)-capacity density condition. Then codimpa (E) < Bp.

Proof We adapt the proof of [4, Theorem 5.3] to our setting. By using the doubling
condition, it suffices to show that

n(E, N B(w, R)) - (r ).317’

— 5.9
uw(Bw.R) 69

R
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forallw € E and 0 < r < R < diam(E)/4, where the constant c is independent of
w, r and R.

If w(E, N B(w, R)) > Su(B(w, R)), the claim is clear since (%)ﬂp < 1. Thus we
may assume in the sequel that u(E, N B(w, R)) < %M(B(w, R)), whence

u(B(w, R)\ E;) = 3u(B(w, R)) > 0. (5.10)
We define a g-Holder function u: X — R by
u(x) = min{l, r Pd(x, E)#}, xeX.
Thenu =0in E,u = 1in X \ E,, and
lu@x) —u(y)| <r Pd(x,y)? forallx,ye X.

We obtain

R‘ﬂ”/ ()P dp(x) > R"S"/ ()| P dja(x)
B(w,R) B(w,R)\E, (5.11)

=R PPu(B(w, R)\ E;) = $R™ PP u(B(w, R)),

where the last step follows from (5.10).

Since u = 11in X \ E, and u is a B-Holder function with a constant »—#, Lemma
3.3 implies that g = r’ﬁIE, € Dg (u). We observe from (5.11) and Theorem 4.10
that

Cr=PPu(E, N B(w, R)) = C/ gx)?P du(x)
Bw.B) (5.12)

> 2R / )P du) = RPPu(Bw, R)).
B(w.R)

where the constant C is independent of w, r and R. The claim (5.9) follows from
(5.12). O

Observe that the upper bound codima (E) < Bp appears in the conclusion of
Theorem 5.8. The rest of the paper is devoted to showing the strict inequality
codima(E) < Bp for 1 < p < oo, which leads to a characterization of the (8, p)-
capacity density condition in terms of this strict dimensional inequality.

Our strategy is to combine the methods in [19, 23] to prove a significantly stronger
variant of the boundary Poincaré inequality, which involves maximal operators, see
Theorem 7.4. We use this maximal inequality to prove a Hardy inequality, Theorem 8.4.
This variant leads to the characterization in Theorem 9.5 of the (B8, p)-capacity density
condition in terms of the strict inequality codima (E) < B p, among other geometric
and analytic conditions. Certain additional geometric assumptions are needed for the
proof of Theorem 9.5, namely geodesic property of X. We are not aware, to which
extent this geometric assumption can be relaxed.
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6 Local Boundary Poincaré Inequality

Our next aim is to show Theorem 7.4, which concerns inequalities localized to a fixed
ball By centered at E. The proof of this theorem requires that we first truncate the
closed set E to a smaller set E¢ contained in a Whitney-type ball Q C By such that
a local variant of the boundary Poincaré inequality remains valid. The choice of the
Whitney-type ball Q and the construction of the set E ¢ are given in this section.

This truncation construction, that we borrow from [23], is done in such a way thata
local Poincaré inequality holds, see Lemma 6.6. This inequality is local in two senses:
on one hand, the inequality holds only for balls B C 4Q; on the other hand, it holds for
functions vanishing on the truncated set E . Due to the subtlety of its consequences,
the truncation in this section may seem arbitrary, but it is actually needed for our
purposes.

Assume that E is a closed set in a geodesic space X. Fixaball By = B(w, R) C X
with w € E and R < diam(E). Define a family of balls

Bo={B C X : Bisaball suchthat B C By}. 6.1)

We also need a single Whitney-type ball Q = B(w, rg) C By, where

ro= -~ - (62)

The 4-dilation of the Whitney-type ball is denoted by Q* = 40 = B(w, 4rg). Now
it holds that Q* C X, since otherwise

diam(X) = diam(Q™*) < R/16 < diam(E) < diam(X).

The following properties (W 1)—(W4) are straightforward to verify. For instance, prop-
erty (W1) follows from inequality (2.4); we omit the simple proofs.

(W1) If BC Xisaballsuchthat BN Q # ¥ # 2B N (X \ Q%), then diam(B) >
3FQ/4;

(W2) If B C Q*isaball, then B € By;

(W3) If BC Q*isaball,x € Band 0 < r < diam(B), then B(x, 5r) € By;

(W4) If x € Q* and 0 < r < 2diam(Q¥), then B(x, r) € By.

Observe that there is some overlap between the properties (W2)—(W4). The slightly
different formulations will conveniently guide the reader in the sequel.

The following Lemma 6.3 gives us the truncated set Eg C Q that contains big
pieces of the original set E at small scales. This big pieces property is not always
satisfied by E N Q, so it cannot be used instead.

Lemma 6.3 Assume that E C X is a closed set in a geodesic space X and that

Q = B(w,rg) forw € Eandrg > 0. Let EQ =EnN %Q, define inductively, for
every j € N, that
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E]Q = U ENB(x,27/7rg), andset Eg = U EJQ
xEE'Z_)_I Jj€No

Then the following statements hold:

(a) we Eg,
(b) Eg C E;
(c) Eg C Qs

(d) Eé_l C E]Q C Eg forevery j € N.

The next lemma shows that the truncated set £ in Lemma 6.3 really contains big
pieces of the original set E at all small scales. Using these balls we later employ the
capacity density condition of E, see the proof of Lemma 6.6 for details.

Lemma 6.4 Let E, Q, and Eg be as in Lemma 6.3. Suppose that m € No and x € X
is such that d(x, Eg) < 2_m+1rQ. Then there exists a ball B = B(yy m, 2_m_1rQ)
such that yx m € E,

EN2-'B=EoN2-'B, (6.5)

and B C B(x, 2_m+2rQ).

We refer to [23] for the proofs of Lemmas 6.3 and 6.4. A similar truncation proce-
dure is a standard technique when proving the self-improvement of different capacity
density conditions. It originally appears in [24, p. 180] for Riesz capacities in R”, and
later also in [28] for R” and in [2] for general metric spaces.

With the aid of big pieces inside the truncated set £, we can show that a localized
variant of the boundary Poincaré inequality in Theorem 4.10 holds for the truncated set
E o, if E satisfies a capacity density condition. Observe that the function # in Lemma
6.6 is assumed to vanish only in the truncated set E g, which is a subset of E. This
is the key difference when compared to the boundary Poincaré inequality in Theorem
4.10.

Lemma 6.6 Let X be a geodesic space. Assume that 1 < p < ocoand(0 < f < 1.
Suppose that a closed set E C X satisfies the (B, p)-capacity density condition with a
constant co. Let Bo = B(w, R) C X be a ball withw € E and R < diam(FE), and let
Q = B(w, rg) C By be the corresponding Whitney-type ball. Assume that B C Q*
is a ball with a center xg € Eg. Then there is a constant K = K(p, ¢, co) such that

f w(0)|? du(x) < K diam(B)PP f (o) dp(x) ©6.7)
B B

for all B-Holder functions u in X withu = 0 in Eg, and for all g € Dg (u).

Proof Fix aball B = B(xp,rp) C Q* with xp € Eg. Recall that rp = R/128 as in
(6.2). Since B ¢ Q* C X, we have

0 < rg < diam(B) < diam(Q*) < 8rp.
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Hence, we can choose m € Ny such that 2””+2rQ <rp < 2”"+3rQ. Then
d(xp, Eg) =0 <27 lrg.

By Lemma 6.4 with x = xp there exists a ball B= B(y, 2_m_1rQ) suchthaty € E,

EN2-1B=EoN2-'B 6.8)

and B C B(xp, 2_’"+2rQ) C B(xp,rp) = B. Observe also that B C 32B.
Fix a B-Holder function u in X withu = 0in Ep, andlet g € Df] (u). We estimate

]/Blu(x)l”du(X) <C(p) ]/Blu(x) —uglPdpu(x)+ C(p)lup —ugl” + C(p)lugl? .

By the (8, p, p)-Poincaré inequality in Theorem 3.7, we obtain

f u(x) — upl? du(x) < C(p) diam(B)F? ]f g dp(x).
B B
Using also Holder’s inequality and the doubling condition, we get

lup —ugl? < ][AIM(X) —up|”du(x)
B

= Clew) ][BIM(X) — up|” du(x) < C(p, ¢,) diam(B)P? ][B )P du(x).

In order to estimate the remaining term |uz|”, we write {u = 0} = {y € X 1 u(y) =
0} D Eg. Using the monotonicity of capacity, identity (6.8), the assumed capacity
density condition, and the doubling condition, we obtain

— =

capg ,(fu =0yN2-1B, B) > capg ,(Eg N 2-1B,B) = capg ,(E N 2-1B, B)
> 02" ?rg) PP @' B) = Clew. coyry”’ u(B).

By Theorem 4.7, we obtain

—= ~\ I
ugl < ][EIM(X)I”dM(x) = C(p) (capy , (1w =0} 2B, B)) fgg(x)f’du(x)

ﬁp
< C(p, cu, c0)——= (B) g(x)"’ du(x) < C(p, ey, co) dlam(B)ﬁp][ g)P du(x).
B
The proof is completed by combining the above estimates for the three terms. O
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7 Maximal Boundary Poincaré Inequalities

We formulate and prove our key results, Theorems 7.4 and 7.6. These theorems give
improved variants of the local boundary Poincaré inequality (6.7). The improved vari-
ants are norm inequalities for a combination of two maximal functions. Hence, we can
view Theorems 7.4 and 7.6 as maximal boundary Poincaré inequalities. Our treatment
adapts [19] to the setting of boundary Poincaré inequalities.

Definition 7.1 Let X be a geodesic space, | < p <ocoand0 < B <1.If B#f@isa
given family of balls in X, then we define a fractional sharp maximal function

1 1/p
2.p
M7 pu(x) = su (.—][Iu(y)—uBl”du(y)> , xeX, (12)
B.B xeBEB diam(B)#P [

whenever u: X — R is a B-Holder function. We also define the maximal function
adapted to a given set Eg C X by

< IEQ (XB)

MEQ’p i
diam(B)#P

u(x) = sup
4B xeBeB

1/p
][Blu(y)lpdu(y)> ., xeX, (13)

whenever #: X — R is a f-Holder function such that u = 0 in Ep. Here xp is the
center of the ball B € B. The suprema in (7.2) and (7.3) are defined to be zero, if there
is no ball B in B that contains the point x.

We are mostly interested in maximal functions for the ball family (6.1). The fol-
lowing is the main result in this section.

Theorem 7.4 Let X be a geodesic space. Let 1 < p <ocoand0 < f <1.Let E C X
be a closed set which satisfies the (B, p)-capacity density condition with a constant
co. Let By = B(w, R) be a ball with w € E and R < diam(E). Let Eg be the
truncation of E to the Whitney-type ball Q as in Sect. 6. Then there exists a constant
C = C(B, p, ¢y, co) > 0 such that inequality

£.p Eg.p \P »
/;30 (M5 + My%u)" du < ch g”du (7.5)

0

holds whenever u € Lipﬁ (X) is such thatu =0in Eg and g € Dg (u).

Proof We use the following Theorem 7.6 with ¢ = 0. Observe that the first term on
the right-hand side of (7.7) is finite, since u is a S-Holder function in X such that
u = 01in Eg. Inequality (7.5) is obtained when this term is absorbed to the left-hand
side after choosing the number k large enough, depending only on 8, p, ¢, and co. O

Theorem 7.6 Let X be a geodesic space. Let 1 < g < p < ooand0 < <1
be such that the (B, p, q)-Poincaré inequality in Theorem 3.8 holds. Let E C X be
a closed set satisfying the (B, p)-capacity density condition with a constant cy. Let
By = B(w, R) beaballwithw € E and R < diam(E). Let E be the truncation of E
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to the Whitney-type ball Q = B(w, rg) C BoasinSect. 6. Let K = K(p, ¢y, co) > 0
be the constant for the local boundary Poincaré inequality in Lemma 6.6. Assume that
keNO0<e< (p—q)/2 anda = Bp*/Q2(s + Bp)) > O with s = log, ¢y Then,
inequality

ke
t.p Eg.p \P~¢ ke—a) , K4
/Bo (M/S’B()Lt+Mﬂ’B0 u) du < Cy (2 e—a +k —
E

M52 u+ ME2PN T du Ck,&)K
B\ PBo p.Bo R 7.7
0

P (MEP, u+ MEL ) du+ p=tq
8 ﬁB ﬁ,Bou 12 3 8 12

/BO\{M’“” ut M2 =0y Bo

B.Bg B.Bg
holds for each u € Lipg(X) withu = 0 in Eg and every g € Db 1 (u). Here Cy =
Cl (ﬁv ps C[,L)y Cl Cl(ﬁv ps C[,L)y C3 C(ﬁ’ p7 c/,L)! C(k’ 8) (4k8 1)/8 U‘vE > O
and C(k,0) = k.

Remark 7.8 Observe that Theorem 7.6 implies a variant of Theorem 7.4 when we
choose ¢ > 0 to be sufficiently small. We omit the formulation of this variant, since
we do not use it. This is because of the following defect: one of the terms is the integral

E —c . - .

of g? (M/;I % u+M 5, QBp ) ® instead of g”¢. Because of its independent interest, we
have however chosen to formulate Theorem 7.6 such that it incorporates the parameter
€.

The proof of Theorem 7.6 is completed in Sect. 7.4. For the proof, we need prepa-
rations that are treated in Sects. 7.1-7.3. At this stage, we already fix X, E, By, O,
Eo, K, Bo, p, B, q, &, k and u as in the statement of Theorem 7.6. Notice, however,

that the B-Hajtasz gradient g of u is not yet fixed. We abbreviate Mfu = M Lp B u and

B,
MEoy = Mﬁ%pu and denote

b= lxe Bo : MPu(x) + MECu(x) >A} , A>0.

The sets U* areopenin X.If F C X isaBorel setand A > 0, we write U,%- =U*NF.
We refer to these objects throughout Sect. 7 without further notice.

7.1 Localization to Whitney-Type Ball

We need a smaller maximal function that is localized to the Whitney-type ball Q.
Consider the ball family

Bo ={B C X : Bisaball such that B C Q*}
and define

Eo
MQ M_IQ*M/‘}B (79)
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If L > 0, we write
QA=[er M, uu)>x} (7.10)

We estimate the left-hand side of (7.7) in terms of (7.9) with the aid of the following
norm estimate. We will later be able to estimate the smaller maximal function (7.9).

Lemma7.11 There are constants Cy = C(p, c,,) and C, = C(B, p, c,) such that

/ (Mju(x) + MEQu(x))p7€ du(x)
By

o [ (MEuw) T dne+ G [ e ant)
0

By
forall g € D’Z (u).
Proof Fix g € Dg(u). We have
/ (Mﬁu(x) + MEQu(x))p% du(x)
Bo e (7.12)
<Cp) | (MPu(0)"" duto) +C(p) / (MEeu))” " duc).
By By

Let x € By and let B € By be such that x € B. By (6.1) and the (8, p, ¢)-Poincaré
inequality, see Theorem 3.8, we obtain

1/p
][ lu(y) —upl? du(y)>

1/q
< C(cu P, ﬂ)(fB g du(y)> < Clcu, p, ﬁ)(M(gqlBo)(x))% .

(dlam(B)ﬂf’

Here M is the non-centered Hardy—Littlewood maximal function operator. By taking
supremum over balls B as above, we obtain

MPu(x) = M52 u(x) < C(B. p. c,) (M(g915,)(x)7 .

Since p — ¢ > ¢, the Hardy-Littlewood maximal function theorem [1, Theorem 3.13]
implies that
- =3
/ (Mju(x))p “dp(x) < C(B, p, cu)/ (M(g71py)(x)) ¢ du(x)
By By

_CB.pcw

= )P du(x).
p—q—¢ Jg
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Since ¢ < (p — q)/2, this provides an estimate for the first term in the right-hand side
of (7.12).

In order to estimate the second term in the right-hand side of (7.12), we let x €
By \ Q* and let B € By be such that x € B. We will estimate the term

IEQ(XB) 1/p
e AT

where x g is the center of B. Clearly we may assume thatxp € Eg C Q. By condition

(W1), we see that diam(B) > C diam(Byp) and u(B) > C(c,)(Bop). Since B € By,
we have B C By. Thus,

M]ﬁ P aem) = e ;f 1P dp(y)
dam(Bypr |, D) )= C i\ Gy [, 1O

By taking supremum over balls B as above, we obtain

1/p

1/p
MEou(x) = EQ ‘"u(X) < C(p, cu)< ][ Iu(y)lpdu(y)>

dlam(Bo)ﬂI’

for all x € Bg \ Q*. By integrating, we obtain

/BO\Q* (MEQ“(x))p_g dp ()

= C(p, CM)M(BO)<

p—e
P

Iu(y)l” du(y)> (7.13)

m(Bo)Pr

P—E

C(p. cu)n(Bo) -
= Jiam(Bo)P 7o) [(][Bom(y) —ug+|” dM(y)>

+ |MQ* |p 8:| .
By the (B, p, g)-Poincaré inequality and Holder’s inequality with ¢ < p — ¢, we
obtain

p—¢

C(p, cp)i(Bo) -
diam(B)#(P—2) (][Bom(y) —ug:|” du(y))

—&

C(p, cu)1(Bo) —
= diam(Bo)Pr—2) [(][BOW(Y) — ugyl” du(y)> + lup, — ug+|” }

p—¢€

C(p, ci)in(Bo) 7
= diam(Bo)P 7o) (][BOW(Y) —up,|P du(y)>

< C(ﬂ,p,cu)u(Bo)< ]/ g(x)? dM(X)> !

By

=C(B.p, CM)/B g)P T du(x).
0
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On the other hand, since Q* = B(w, 4rg) withw € Eg and rg = R/128, we have

C(p, cp)n(Bo)
diam(Bg)#P—¢)

w(Q")
diam(Q*)B(p—2)

1z, (w) 5
= C(p.c) / ( dlarﬁfg"j)ﬂp ][Q*Iu(y)l”du(y)> du(x)

lug<I"~* < C(p,cp) lug+|P7°

< C(P,Cu)/ IQ*(X)Mﬂ,B’ u(x))p_s du(x)

—C(P,CM)/ u(x) - du(x).

This concludes the estimate for the integral in (7.13) over By \ Q*.
To estimate the integral over the set Q*, we fix x € Q*. Let B € By be such that
x € B.If B C Q%, then

< 1g,(xp)

1/p
dam(B)P7 fB|H(Y)|de(Y)> <1g:(x)My 3 Lo pu(x) = MSQM(X)-

Next we consider the case B ¢ Q*, and again we need to estimate the quantity

1g,(xB) /p
(W ][B|M(y)|pdﬂ(y)) .

We may assume that xp € Eg C Q. By condition (W1), we obtain diam(B) >
C diam(By) and w(B) > C(c,) i (Bop). Hence,

1 1/p
(M ][Blu(y)l”du(y)> <Cp, c,»(

1/p
diam(B)#» ]f lu(y)I” du(y)) .

dlam(Bo)ﬁP

By taking supremum over balls B as above, we obtain

1/p
MEQu(x) < MECu(x) + C(p, M)( f Iu(y)l”du(y)>

diam(By)AP

for all x € Q*. It follows that

/* (MEQu(x))p_E du(x)

< C(p,cu)/B (Mg2u())"™* du(x)
0

R p
+C(p,cu)M(Bo)< (Bo)ﬁ/’][ lu(y)l du(y)>
We can now estimate as above, and complete the proof. O
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The following lemma is variant of [19, Lemma 4.12]. We also refer to [10, Lemma
3.6].

Lemma7.14 Fixx,y € Q*. Then

lu(x) — u()| < C(B. cp) d(x, )P (MPu(x) + MPu(y)) (7.15)
and

lu(x)| < C(B, cy) d(x, Eg)P (Mtu(x) + MEQu(x)) ) (7.16)
Furthermore, assuming that % > 0, then the restriction u|g,,g=\y+ is a B-Holder

Sfunction in the set Eg U (Q* \ U*) with constant k = C (B, Cp)h

Proof The property (W4) is used below several times without further notice. Let z €
Q* and 0 < r < 2diam(Q*). Write B; = B(z,27'r) € By foreachi € {0, 1,...}.
Then, with the standard ‘telescoping’ argument, see for instance the proof of [10,
Lemma 3.6], we obtain

o0
u(z) = upen| < cp ZfB lu—up,|du
i=0 i

o 1 1/p
- HBU—i) B —]f Cunl?d
_cuig "\ GamiBpr 1, 1 e

o
< cuMPuz) Y 2P0 < (B, ) P MPu(z) .
i=0

Fix x,y € Q*. Since 0 < d = d(x, y) < diam(Q™), we obtain

[u(y) — upx.a)l

< |u(y) —upy2d)| + uBy,24) — UBx.d)l
w(B(y,2d))
w(B(x,d)) J B2

1 1/p
<C(@B,c )dﬂ[MﬁM(y) +( - ][ lu — upy2a)|? dM) }
" diam(B(y, 2d))7 [ p(y.2) (20

< C(B, cp) dP MPu(y).

< C(B,cy) dP MPu(y) + lu — up(y2a) du

It follows that

[u(x) —u(y)| < lu(x) —upu.a)l + lupe,a) — uy)l
< C(B.cp)d(x, )P (MPu(x) + M*u(y)),

which is the desired inequality (7.15).
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To prove inequality (7.16), we let x € Q*. If d(x, Eg) = 0, then x € E¢ and we
are done since # = 0 in E . Therefore we may assume thatd(x, Eg) > 0. Then there
exists y € Eg C Q C Q* such that d = d(x, y) < min{2d(x, Egp),diam(Q*)} and
we have

lu(x)| < |u(x) —up(y,a)l + UBy,a)l

< C(B, cp)d? MPu(x) + cﬂ]f |u| dp
B(y,2d)

1, () ‘ g
Byt B 4 p
= CP @M+ eud (diam(B(y,zd»ﬂﬂ soa )

< C(B. cp)d” (Mﬁu(x) n MEQu(x)>

< C(B.cp)d(x, Eg)P (Mﬁu(x) + MEQu(x)) .

Inequality (7.16) follows.

Fix A > 0. Next, we show that u|(Eg U (Q* \ U?)) is B-Holder with constant
k =C(B,c A Letx,y € Eg U (Q*\ U?). There are four cases to be considered.
First, if x, y € Eg, then

u(x) —u(y)l =0 < kd(x, »’,
sinceu =0in Eg.Ifx,y € O™\ U*, then we apply (7.15) and obtain
lu(x) —u(y)| < C(B, c,)d(x, y)ﬁ(Mtu(x) + Mtu(y)) < C(B, cp)rd(x, y)ﬂ .

Here we also used the fact that 0* C By. If x € Eg and y € Q* \ U*, we apply
(7.16) and get

() = u()| = )| = CB. )d(y, Eg) (MAu(y) + MEeu(y))
< C(B.erd(x.y).

The lastcase x € Q* \ U* and y € E o is treated in similar way. O

7.2 Stopping Construction

We continue as in [19] and construct a stopping family S (Q) of pairwise disjoint balls
whose 5-dilations cover the set 0* ¢ Q* = B(w, 4rg); recall (7.10). Let B € Bg
be a ball centered at xp € Eg C Q The parent ball of B is then defined to be
m(B) =2Bit2B C Q" and n(B) = Q™ otherwise. Observe that B C w(B) € Bg
and the center of 7 (B) satisfies x(p) € {xp, w} C Eg. It follows that all the balls
B C n(B) C m(n(B)) C --- are well-defined, belong to B and are centered at E .
By inequalities (2.1) and (2.4), and property (W1) if needed, we have u(w(B)) <
¢, u(B) and diam(x (B)) < 16 diam(B).
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Then, we come to the stopping time argument. We will use as a threshold value the
number

A = 1 I l/P_ IEQ(LU) Py 1/p
0= <W ][Q*Iu(y)l u(y)> = <W fQ*|u(y)| M(y)) ,

Fix alevel A > Ao /2. Fix apointx € Q* C Q*.If Lg/2 < A < Ag, then we choose
By = Q* € Bg.If A > Ao, then by using the condition x € Q" we first choose a
starting ball B, withx € B € By, such that

1£,(xB) » tp
< (g { oo aun )

Observe that xg € Eg C Q. We continue by looking at the balls B C 7(B) C
m(w(B)) C --- and we stop at the first among them, denoted by B, € By, that
satisfies the following two stopping conditions:

1g,(xp,) tp
< (W ][BX|H(}’)|pdlL(y)> s

1gy (Xn(By)) ) 1/p
(Gamcn 5 ., 01 009) =3

The inequality A > X in combination with the fact that Q* C X ensures the existence
of such a stopping ball.

In any case, the chosen ball B, € B contains the point x, is centered at xp, € Eg,
and satisfies inequalities

1£,(xB,) 1/p
e S Pq <160/P). 7.17
(diam(Bx)ﬁl’ me(y)' u(y)) = l6cy (7.17)

By the 5r-covering lemma [1, Lemma 1.7], we obtain a countable disjoint family
Si(Q) C{By 1 x € QM. A>1g/2,

of stopping balls such that 0* c BeS, (o) )B- Let us remark that, by the condition
(W2) and stopping inequality (7.17), we have B C U* if B € S3(Q) and A > A (/2.

7.3 Level Set Estimates

Next, we prove two technical results: Lemmas 7.18 and 7.28. We follow the approach
in [19] quite closely, but we give details since technical modifications are required. A
counterpart of the following lemma can be found also in [16, Lemma 3.1.2]. Recall
that k € N is a fixed number and « = Bp%/(2(s + Bp)) > 0 withs = log, ¢, > 0.
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Lemma 7.18 Suppose that . > Lo/2 and let B € S,(Q) be such that pL(Ulz;k)‘) <
w(B)/2. Then

T o 4O )
< Clp w2 @0 Wi (7.19)

C(p, Cu)

P ) Pd .
diam(B)P7 gy o ()P dp(x)

Proof Fix x € Ulzgk)‘ C B and consider the function /: (0, co) — R,

s oy < PUBS N BG ) pUR 0BG ) (M(B N B, r)))—l |

w(BNB(x,r)  w(B(x,r) w(B(x,r))

By Lemma 2.5 and the fact that B is open, we find that /: (0, oo) — R is continuous.
Observe that Uékx =U 2nB is also open. Since i (r) = 1 for small values of r > 0
and h(r) < 1/2 forr > diam(B), we have h(r,) = 1/2 for some 0 < r, < diam(B).
Write B, = B(x, ry). Then

wUZ*NBY) 1
and
22 / 2%~ B
pB\UPHNBY | pURIOBY
(BN B.) (BN B.) 2

The Sr-covering lemma [1, Lemma 1.7] gives us a countable disjoint family G, C
(B, : x € U3*) such that U3* C Jpeg, SB'. Then (7.20) and (7.21) hold for
every ball B’ € Gy ; namely, by denoting B = Ul%k)‘ NB'and B, = (B\ UM B,
we have the following comparison identities:

w(BNB')

HB)) = == = u(Bp). (7.22)

where all the measures are strictly positive. These identities are important and they
are used several times throughout the remainder of this proof.
We multiply the left-hand side of (7.19) by diam(B)#? and then estimate as follows:

p p p—1 / P p—1
/Um'“' du < Z /53/m3|u| du <2 Z w(5B mB)|uBO| +2
B

B'eG; B'eG,,

x Z/ lu—ug |Pdu. (7.23)
g, ) SBNB 0
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By (2.1) and Lemma 2.6, we find that
n(SB'NB) < u(8B") < ¢;u(B) < cuu(BN B (7.24)

for all B’ € G;.. Hence, by the comparison identities (7.22),

2771 Y7 wSB O B)ug,|” < C(pocu) Y u(B;»fB, Jul? dp
o

B'eG, B'eG (7.25)

— C(pr ) /Iul”dMSC(p,C)f ul? du.
g Z A NS

B’eG;,

This concludes our analysis of the ‘easy term’ in (7.23). To treat the remaining term
therein, we do need some preparations.
Let us fix a ball B’ € G, that satisfies fSB’mB lu — upy, |” du # 0. We claim that

][ lu—ug |Pdp < C(p, c,)27*2*1)P diam(B)PP . (7.26)
5B'NB 0
In order to prove this inequality, we fix a number m € R such that

(2" 0P diam(5B)PP = ]/

lu —ug |Pdu. (7.27)
SB'NB 0

Let us first consider the case m < k/2. Then m — k < —k/2, and since always
a < p/2, the desired inequality (7.26) is obtained case as follows:

]f lu—up 1P du = 2m=RP (2% 3P diam (5 B")PP
5B'NB

107 27522 (2% 1)P diam(B)PP
C(p)2~ %2k 1)P diam(B)*P? .

IA

IA

Next, we consider the case k/2 < m. Observe from (7.24) and the comparison
identities (7.22) that

-1 -1
]f Ju — g | dp < 27 f e — uspl” dpe + 20 usp — upy |7
5B'NB 5B'NB

<20 f sl du
5B’
< 27%1¢8 2 )P diam(5B)PP
where the last step follows from condition (W3) and the fact that 5B" > By, # (. By

taking also (7.27) into account, we see that 2P < 2P+l 622’”’ . On the other hand, we
have
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(2" 1)P diam(5B")?Pu(B' N B) < /

ju—ug, | dp
5B'NB

<20 [l a2 B 0 B
5B’'NB

<27%1ch / lul” dp < 2 327¢;' AP diam(B)PP u(B)
B

where the last step follows from the fact that B € S (Q) in combination with inequality
(7.17). In particular, if s = log, c,, then by inequality (2.2) and Lemma 2.6, we obtain
that

5 diam(5B")#? (B’ N B)
diam(B)Pu(B) ~ ® o diam(B)PPu(B)
<2:.20°-327 ¢t 27 <2.20° 320 )t 27RP2

. NN\ S+Bp : "NBp ’
(d(l;lm(?ﬁ))) ~ 5 MGBYP (B
lam

This, in turn, implies that

(diam(SB’)

ﬂp<2 205327 - (M 2 th C(p,cp)2r
. . . . stBp) — .
diam(B) ) = “u s cu

Combining the above estimates, we see that
]f u—up 1P dp = @2"0)7 diam(5B")PP < C(p, c,)27%(2%))? diam(B)P? .
5B'NB

That is, inequality (7.26) holds also in the present case k/2 < m. This concludes the
proof of inequality (7.26).

Using (7.24) and (7.22) and inequality (7.26), we estimate the second term in (7.23)
as follows:

Pl Z /5

AR TEE 2 SNLAL MNP
B/EgA 5B'NB

B’eGy
< C(p, )27 X @) diam(B)P? )" u(B))
B’eq;,
< C(p. )27 (2K 2)P diam(B)PP (U™ .

B'NB

Inequality (7.19) follows by collecting the above estimates. O

The following lemma is essential for the proof of Theorem 7.6, and it is the
only place in the proof where the capacity density condition is needed. Recall from
Lemma 6.6 that this condition implies a local boundary Poincaré inequality, which is
used here one single time.
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Lemma7.28 Letd > Ag/2 and g € DZ(M). Then

ok 2k—1 i
(M < C(B, p,cm[(zka) W) + K Z(xznmwz N+K /

g’ du] .
)k\U4kk

(7.29)

Proof By the covering property 0* C | J BeS, (@) OB and doubling condition (2.1),

MW@ =aP Yy uGB) <, Y AMuB).
BeSL(Q) BeS1(0)

Recall also that B C U* if B € S; (Q). Therefore, and using the fact that S; (Q) is a
disjoint family, it suffices to prove that inequality

2") 2k—1

1 u(B) < C(B, p,cw[ kzka nUEH + 5 Z(AZUPM(UZ’*HK / g’ du]
; B

\UAkk

(7.30)

holds for every B € S, (Q). To this end, let us fix a ball B € S, (Q).
If w(U™) = 11(B)/2, then

22Ky M
(ka) M(U % < ( )

AP u(B) < 22Pu(UE™) =2 (U™,
which suffices for the required local estimate (7.30). Let us then consider the more
difficult case /L(U%k)‘) < u(B)/2. In this case, by the stopping inequality (7.17),

» 1£,(xB)
A (B )_—d m(B)P?

1g,(xp)
- dlanf(—B)ﬂP X(IB\Uzkl(x) + lUlzgkA (X))|M(X)|p du(x).

/ | (x)|P dp(x)
B

By Lemma 7.18 it suffices to estimate the integral over the set B \ U ¥ =B \Ug 262,
observe that the measure of this set is strictly positive. We remark that the local
boundary Poincaré inequality in Lemma 6.6 will be used to estimate this integral.
Fix anumberi € N. Since B C Q%, it follows from Lemma 7.14 that the restriction
M|EQU(B\U21')L) is a B-Holder function with a constant x; = C(j3, c/L)2i)\. We can now

use the McShane extension (2.7) and extend u| toafunctionuyi; : X — R

EQU(B\U?' )
that is B-Holder with the constant «; and satisfies the restriction identity

Uiy (x) = u(x)
forall x € Eg U (B \ U?*). Observe that u, = 01in E, since u = 0in Ey.
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The crucial idea that was originally used by Keith—Zhong in [16] is to consider the
function

12k7]
ho = D up (), xeX.

i=k

We want to apply Lemma 3.3. In order to do so, observe that u,i; | x\a = u|x\a, where
A=X\(B\U*") =X\ (B\U:") =(X\B)UUZ".

Therefore, by Lemma 3.3 and properties (D1)—(D2), we obtain that

2k—1
1

_ . , . B
8h = E Z (Kll(X\B)UUIZ;’}” + ng\Uzl)‘) S DH(h) .
i =k

i=

2 (k+1) 5 2(2k—=1)

k . . . ..
Observe that Ug 260 5 Ug D---DUsp D Ué *. Using these inclusions it is
stralghtforward to show that the followmg pointwise estimates are valid in X,

| 2] P
lBg}[: S (z Z (Ki lUéiA +ng\U2[k)>
i=k
2k—1

p
52”( ZK, U“) +2pgplB\U4kk

CB, prey) = [
< SR Z <Zzz ) i 278
=k
2k—1
C(B,p,cu)
= k—M Z()\Z])Pl 2]A +2 8 13\u4kk .
j=k

Observe that h € Lipﬁ(X) is zero in E¢g and h coincides with u on B \ Uzk)‘, and

recall that g;, € Dg (h). Notice also that B C Q* and xp € Eg. The local boundary
Poincaré inequality in Lemma 6.6 implies that

Lo (xp) 1g,(xp)
s Pdux) = —22B) g
diam(BYP? [ ot D) = e By fB' (O iy
= Kf gn(x)? dp(x)
B
C(,B p,cu)K 2k2:1(A2J)P (UZ’A)_I_ZPK (x)? dp(x)
kP — mUp \Umg n(x).

The desired local inequality (7.30) follows by combining the estimates above. O
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7.4 Completing Proof of Theorem 7.6

We complete the proof as in [19]. Recall that u: X — R is a f-Holder function with
u = 01in E¢ and that

i Eg g.p QP
M u+ M ”_MﬂBo +M

Let us fix a function g € 2l 77 (u). Observe that the left-hand side of inequality (7.7) is

finite. Without loss of generahty, we may further assume that it is nonzero. By Lemma
7.11,

/B (MFu(x) + MECu(x))" ™" du(x)
)
< C(p,cp) /B 0 (Mp%u))"* dpux) + C(B. p. e BT At
We have
/B 0 (Mp2u() ™ du(x) = /Q (M%u(@)"™" dn) = (p— o) /0 Tt uoh) d%

Since Q* = Q* = Q% for every A € (0, 1o/2), we find that

kQ/2 dx _ ro/2 di
o [ aruen S =222 [ e tue §
0 0
(p—e) e oy 4O
= o= u(Q%) p
1

20—¢

= / (MgQu(x))p_E du(x).
Q*
On the other hand, by Lemma 7.28, for each A > Ao /2,

—¢ X —¢ ()‘Zk) 2k 2k 1 2/
WPTE(QY) < C(B. p.cp)n [W nU*h + Z(le)” w**

+K . g”du«]-
U)L\Uzt A

Since p — & > 1, it follows that

o . da
/ (MgQu(x))l’ dp(x) 52(17—5)/ AP eM(QA)7
* e
< C(B, p, c)11(Q) + (0) + 13(Q)),
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where

ke dk
0Q) = / (a2hP=E (U2

2k—1

h) =2 Z e f e uw? <

1(0) = / Lo LB w2

We estimate these three terms separately. First,

2k(£—ot)

L(Q) =

/ (Mtu(x) + MEQu(x))p_g du(x)
By

< 2k(57a)/ (Mtiu(x) 4 1MEQM()C))P*‘8 dM(x) .
Bo

Second,
2k 1 dx
B(O) < 3 22”/ eIt S
< L(f 2f€>f (MPu(x) + MEu(x))" " du
T kr(p -\ By
K4k

kp—1

/ (Mtu(x)—i-MEQu(x))IF d
By

Third, by Fubini’s theorem,

o dx
I <K A7 x)— Jg(x)P du(x
(0) = fB o ( /O s 0 )g( P du(x)

< C(k,&)K ()P (MPu(x) + MECu(x)* du(x).
Bo\{M*u+M"Qu=0}

Combining the estimates above, we arrive at the desired conclusion. O

8 Local Hardy Inequalities

We apply Theorem 7.4 to obtain a local Hardy inequality, see (8.2) in Theorem 8.1.
This inequality is then shown to be self-improving, see Theorem 8.4, and in this respect
we follow the strategy in [23]. However, we remark that the easier Wannebo approach
[31] for establishing local Hardy inequalities as in [23] is not available to us, due to
absence of pointwise Leibniz and chain rules in the setting of Hajtasz gradients.
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Theorem 8.1 Let X be a geodesic space. Let 1 < p <ocoand0 < <1.Let E C X
be a closed set which satisfies the (8, p)-capacity density condition with a constant
co. Let By = B(w, R) be a ball with w € E and R < diam(E). Let Eg be the
truncation of E to the Whitney-type ball Q as in Sect. 6. Then, there exists a constant
C = C(B, p, ¢y, co) such that

f @ < / g0 du(x) (82)
Bw.R\Eg d(x, EQ)PP B(w,R)

holds whenever u € Lipﬂ (X) is such thatu = 0in Eg and g € Dfl (u).

Proof Letu € Lipg(X) be such thatu = 0in E¢ and let g € DZ(M). Lemma 7.14
implies that

Eg,
()] = CBed(x, E) (M5 uto) + MyG u))
for all x € Q*. Therefore

|u(x)|? tp Egp.p P
—————dux) < C(B, p,cy) Mg u(x)+ Mgz u(x)) du(x).
,/.Q*\EQ d(x, Eg)Pr " B r) ( B.Bo B-Bo )

By Theorem 7.4, we obtain

/ LI < C(ﬁ’p,cwco)/ g)” dp(x).  (83)
0\Eg d(x. Eg)Pr B(w,R)

It remains to bound the integral over B(w, R) \ Q*. Since Eg C Q and Q* = 40,
we have d(x, Eg) > 3rg > R/64 forall x € B(w, R) \ Q*. Thus, we obtain

/ u(x)|? L)
Bw.R)\0* d(x, EQ)PP

64ﬁpf »
< [ ()P dp(x)
REP Jp(w R)
376467 (/
< lu(x) — upqw,ryl” dpu(x)
REP B(w,R) (R

+(Bw, R)|ugq,ry —ug|” + p(Bw, R)|ug+|").

By the (8, p, p)-Poincaré inequality in Lemma 3.7,

f lu(x) — up@,pyl? du(x) < 27 diam(B(w, R))ﬁp/ g(x)Pdu(x)
B(w,R) B(w,R)
< C(p)Rﬂf’/ g(x)P du(x).
B(w,R)
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For the second term, we have

w(Bw, R)|upw,r) — ug+l”

= n(B(w, R)) /Q*IM(X) — Up(w,R)” du(x)

< Cl(cp) lu(x) — upw,ryl? dp(x)
B(w,R)
< C(p,cy)RPP / g()P du(x).
B(w,R)

For the third term, we have d(x, Eg) < d(x, w) < 4rg < R forevery x € Q*. Thus

w(B(w, R)ug-? < cw/Q I A = Rﬂpf O 4.
\Eg

0"\Ep d(x, Eg)PP

Applying inequality (8.3), we get

(B(w, R)|ugr” < C(B, p. cu, co)RFP _/B( R)g(X)p dp(x) .

The desired inequality follows by combining the estimates above. O

Next, we improve the local Hardy inequality in Theorem 8.1. This is done by
adapting the Koskela—Zhong truncation argument from [21] to the setting of Hajtasz
gradients; see also [23] and [18, Theorem 7.32] whose proof we modify to our pur-
poses.

Theorem 8.4 Let X be a geodesic space. Let 1 < p <ocoand0 < f < 1. Let E C X
be a closed set which satisfies the (8, p)-capacity density condition with a constant c.
Let By = B(w, R) be a ball withw € E and R < diam(E). Let E g be the truncation
of E to the Whitney-type ball Q as in Sect. 6, and let C1 = C1(B, p, cu, co) be the
constant in (8.2), see Theorem 8.1. Then there exist 0 < ¢ = e(p,C1) < p — 1 and
C = C(p, Cy) such that inequality

/ I < c / g dux)  (8.5)
Bw.R\Eg d(x, EQ)P(P=) ~ JBw,R) '

holds whenever u € Lipg(X) is such thatu = 0 in Eg and g € D’;; (u).

Proof Without loss of generality, we may assume that C; > 1in(8.2).Letu € Lipg(X)

be suchthatu = 0in Eg andlet g € DZ(M). Let ¥ > 0 be the B-Holder constant of u
in X. By redefining g = « in the exceptional set N = N (g) of measure zero, we may
assume that (3.2) holds for all x, y € X. Let A > 0 and define F, = G, N H,, where

Gy ={xeBw,R) :gx) < i}
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and
H; = {x € B(w, R) : [u(x)| < Ad(x, Eg)*}.

We show that the restriction of u to F) U E¢ is a f-Holder function with a constant
2). Assume that x, y € Fj. Then (3.2) implies

u(x) — u(y)| < d(x, y)f (g(x) + g(y) < 2rd(x, y)F .
On the other hand, if x € Fj and y € Eg, then

u(x) — u(y)| = |u(x)| < rd(x, Eg)P <2d(x,y)?.
The case x € Eg and y € Fj is treated in the same way. If x,y € Ep, then
[u(x) — u(y)| = 0. All in all, we see that u is a B-Holder function in F; U Eg
with a constant 2.

We apply the McShane extension 2.7 and extend the restriction u/|, Eptoa B-

Hélder function function v in X with constant 2A. Thenv =u =0in Eg and v = u
in F,, thus

gy = glF)L + 2)&1)(\[41 S DZ(U)

by Lemma 3.3.
By applying Theorem 8.1 to the function v and its Hajtasz B-gradient g,, we obtain

[u(x)|? [v(x)|?
/ L aue < / IO g
(Bw.R\Eg)nF, d(x, EQ)PP B(w.R\Ey d(x, EQ)FP

<o f ¢ ()7 dpu(x) + C1273P (B (w, R)\ F3)
Fy

Since H) = F) U (H) \ G;) and C; > 1, it follows that

u(x)|P
I EVPP p(x)
(Bw,R\Eg)nH, d(x, EQ)

< Cl/ g(x)P du(x) + C12°2P w(B(w, R) \ F)
Fy

+f el dpe(x) (8.6)
(H\EQ\G;, d(x, EQ)PP

<C / g(x)P du(x) + C12P AP (w(B(w, R) \ Fy) + n(Hy \ G1))
Gy
<01 [ 6007 a0 + 2P (u(B . B\ Hi) + (B B\ G).
Gy
Here, & > 0 was arbitrary, and thus we conclude that (8.6) holds for every A > 0.
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Next, we multiply (8.6) by A~!7¢, where 0 < ¢ < p — 1, and integrate with respect
to A over the set (0, co). With a change of the order of integration on the left-hand
side, this gives

1/ < |u ()] )"_gd )
- T E— X
& JBw.R\Ep \d(x, EQ)P a

<o [ [ g ducas
0 Gy
+ €2 [T (B, R\ Hy) + (B0 R\ G) .
0

By the definition of G, we find that the first term on the right-hand side is dominated
by

Cy

& JBw,R)

g)P~ du(x).

Using the definitions of Hj and G, the second term on the right-hand side can be
estimated from above by

Ci2r ! lu()l \'™* _
/ (—ﬂ du(x) + / g)P~ du(x) |.
P —¢ \Jw.r\Ey \d(x, EQ) B(w,R)
By combining the estimates above, we obtain
lu)| \'*
o ot o
Bw.R\Eg \d(x, EQ)

<C 1 ()] p_sd p—e
=02 d—Eﬁ n(x) + C3 g(x) du(x),
B(w.R\Eg \d(x, EQ) B(w,R)

where C, = C12P+1ﬁ and C3 = Ci(1 + 21"“%). We choose 0 < ¢ =
e(C1, p) < p — 1 so small that

8.7)

<

1
Cy = C2P ! —.
p—¢ 2

This allows us to absorb the first term in the right-hand side of (8.7) to the left-hand
side. Observe that this term is finite, since u is f-Holderin X andu =0in Egp. 0O

9 Self-improvement of the Capacity Density Condition
As an application of Theorem 8.4, we strengthen Theorem 5.8 in complete geodesic

spaces. This leads to the conclusion that the Hajtasz capacity density condition is self-
improving or doubly open-ended in such spaces. In fact, we characterize the Hajtasz
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capacity density condition in various geometrical and analytical quantities, the latter
of which are all shown to be doubly open-ended.

Theorem 9.1 Let X be a geodesic space. Let 1 < p < ocoand 0 < < 1. Let
E C X be a closed set which satisfies the (B, p)-capacity density condition with
a constant co. Then there exists ¢ > 0, depending on B, p, ¢, and co, such that
codima(E) < B(p — ¢).

Proof Letw € E and 0 < r < R < diam(E). Let E¢ be the truncation of E to the
ball Q C By = B(w, R) as in Section 6. Let ¢ > 0 be as in Theorem 8.4. Observe
that

Eor={xeX :dx,Eg)<r}C{xeX :dx,E)<r}=E,.

Hence, it suffices to show that

u(Eg,r N B(w, R)) - (L)ﬂ(p—S)

uw(Bw.R) ~\R ’ ©2)

where the constant ¢ is independent of w, » and R.

If » > R/4, then the claim is clear since (%)ﬂ(p_s) <1and
u(Eg, N B(w, R)) > n(B(w, R/4)) > C(n)u(B(w, R)) .

The claim is clear also if w(Eg , N B(w, R)) > %M(B(w, R)). Thus we may assume
that r < R/4 and that u(Eg , N B(w, R)) < %,u(B(w, R)), whence

u(B(w, R)\ Eg,) = 3u(B(w, R)) > 0. 9.3)
Let us now consider the 8-Holder function u: X — R,
u(x) = min{l,r Pd(x, Eg)’}, xeX.
Thenu =0in Eg,u =1in X \ Eg ,, and
@) —u(y)| <rPdx,y)? forallx,yeX.

We aim to apply Theorem 8.4. Recall also that w € E . Thus we obtain

|u(x)|P~¢ e _
————du(x) > R ”/ lu ()P~ dp(x)
./BO\EQ d(x, Eg)pr—e) Bo\Eg

I / u@IPF dp@) 9.4y
Bo\Eg,r

> R PP=9 1 (B(w, R)\ Eg,,)
> 27'RTPP=9) (B(w, R)),
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where the last step follows from (9.3).
Sinceu = 1in X \ E¢ , and u is a S-Holder function with a constant r~P, Lemma

3.3 implies that g = r=F 1g,, € Df,(u). Observe that
/ g’ dpu <r PP O u(Eg, N By) = r PP u(Eg, N B(w, R)).
Bo

Hence, the claim (9.2) follows from (9.4) and Theorem 8.4. O

The following theorem is a compilation of the results in this paper. It states the
equivalence of some geometrical conditions (1)—(2) and analytical conditions (3)—(6),
one of which is the capacity density condition. We emphasize that the capacity density
condition (3) is characterized in terms of the upper Assouad codimension (1); in fact,
this characterization follows immediately from Theorem 5.7 and Theorem 9.1.

Theorem 9.5 Let X be a complete geodesic space. Let 1 < p < ocoand(0 < B < 1.
Let E C X be a closed set. Then the following conditions are equivalent:

(1) codima(E) < Bp.

(2) E satisfies the Hausdorff content density condition (5.4) for some 0 < g < Bp.
(3) E satisfies the (B, p)-capacity density condition.

(4) E satisfies the local (B, p, p)-boundary Poincaré inequality (6.7).

(5) E satisfies the maximal (B, p, p)-boundary Poincaré inequality (7.5).

(6) E satisfies the local (B, p, p)-Hardy inequality (8.2).

Proof The implication from (1) to (2) is a consequence of Lemma 5.3 with
codimpa(E) < g < Bp. The implication from (2) to (3) follows by adapting the
proof of Theorem 5.7 with n = ¢/B. The implication from (3) to (4) follows from
Theorem 6.6. The implication from (4) to (5) follows from the proof of Theorem 7.4,
which remains valid if we assume (4) instead of the (8, p)-capacity density condition.
The implication from (5) to (6) follows from the proof of Theorem 8.1. Finally, con-
dition (6) implies the improved local Hardy inequality (8.5) and the proof of Theorem
9.1 then shows the remaining implication from (6) to (1). O

Finally, we state the main result of this paper, Theorem 9.6. It is the self-
improvement or double open-endedness property of the (B, p)-capacity density
condition. Namely, in addition to integrability exponent p, also the order 8 of frac-
tional differentiability can be lowered. A similar phenomenon is observed in [24] for
Riesz capacities in R”".

Theorem 9.6 Let X be a complete geodesic space, andlet1 < p < ocoand0 < B < 1.
Assume that a closed set E C X satisfies the (8, p)-capacity density condition. Then
there exists 0 < 6 < min{B, p — 1} such that E satisfies the (y, q)-capacity density
conditionforall  — 6 <y <land p—§ < q < 0.

Proof Wehave codimp (E) < Bp by Theorem9.5. Since lims_,o(8—38)(p—3) = Bp,
there exists 0 < § < min{B, p — 1} such that codima (E) < (8 — §)(p — §). Now if
B—8<y<landp—34 < gq < oo, then
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codimp(E) < (B—8)(p—9) <yq.
The claim follows from Theorem 9.5. 0

A similar argument shows that the analytical conditions (4)—(6) in Theorem 9.5
are also doubly open ended. The geometrical conditions (1)—(2) are open-ended by
definition.
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