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Grand theories or design guidelines? Perspectives on the role of

theory in computing education research

MATTI TEDRE, University of Eastern Finland, School of Computing

JOHN PAJUNEN, University of Jyväskylä, Department of Philosophy

A rich body of empirically grounded results and a solid theory base have often been viewed as signs of a mature discipline.

Many disciplines have frequently debated what they should accept as legitimate kinds of theories, the proper roles of theory,

and appropriate reference disciplines. Computing education research (CER) in particular has seen a growing number of calls

for the development of domain-speciic theories for CER, adaptation of theories from other ields, and engagement with

theory-based experimental and predictive research in CER. Many of those calls share the same concerns and aims, yet they

use very diferent vocabulary and lack a consensus over an essential concept: theory.

This article presents sticking points and trouble spots in CER’s theory debates and presents a number of suggestions and

ways forward. Firstly, by slightly shifting towards a model-based view of science, CER can avoid centuries of conceptual

baggage related to the concept of theory. Secondly, insofar as ields like design, engineering, and social science are considered

to be legitimate parts of CER, the role of theory in many CER studies needs to be judged by the criteria of the philosophy of

engineering, technology, and social science, not the philosophy of (natural) science. Thirdly, instead of force-itting elements

of ill-suited research paradigms from other disciplines, the philosophy of CER should focus on building a consensus on CER’s

own paradigm and describing the ield’s relationship with theory in CER’s own terms.

CCS Concepts: · Social and professional topics→ Computing education.

Additional Key Words and Phrases: philosophy of computing education research, philosophy of CER, models, theory, design,

philosophy of science

1 INTRODUCTION

Over the course of its maturation as a research discipline, the ield of computing education research (CER) has
seen a signiicant change in the ield’s publication proile. From its early beginnings in the 1960s until the late
1990s, the CER literature base saw more than its fair share of anecdotal experience reports, course overviews,
teaching tool descriptions, proofs of concept, essays, program surveys, nifty assignment expositions, and other
similar non-empirical outputs [23, 75, 83, 93]. One of the more common types was the infamous łMarco Polož-type
article: łI went there and I saw thisž [93].
But at the turn of the millennium, a sea change began, as an increasing number of conferences and journals

started to require researchers to present empirical evidence for their claims. Many early calls for increasing
the rigor of computing education research focused on the ield’s research methods [75, 93]. The computing
education symposia, which used to be łswap meetsž for sharing one’s pedagogical techniques, useful assignments,
or lecture props [31], started to request the authors base their statements on empirical evidence. At the same
timeÐand not completely unrelatedÐa number of nascent CER research groups and capacity-building initiatives
had focused on training bona ide computing education researchers, who were able to deliver just what the
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symposia wanted [23, 33]. As new methodological standards for research were increasingly adopted, the ield
saw a gradual transformation in the 2000s [47, 75, 83].
The movement to build CER on a solid foundation primarily focused on methodological standards, but there

was an important parallel in many articles: many authors identiied a need to critically evaluate the ield’s theory
baseÐor lack thereof. For example, Holmboe et al. [37] lamented the ield’s lack of reference to pedagogical
theory. Goldweber et al. [31] proposed that CER needed to establish relationships between observations and
theories. Report after report surveys of CER showed a weak theoretical base in the ield [83], and two pioneers of
the ield declared in 2006 that there is no Kuhnian-type research paradigm in CER [23].

Research studies have shown that CER publishing venues difer greatly in their approaches to the role of theory.
Joy et al. [39] showed that CER conferences, with their strict page limits, tend to ignore educational theory more
than journals do. Clancy et al. [9] argued that CER papers in education research conferences are better positioned
to involve educational theory in the context of CER.
In the 2010s, a steady stream of essays and analyses kept alive discussions about the roles and relevance

of theory in CER. Nelson and Ko [63] wrote that in a design-based ield, a demand for theory can detract the
researcher from the main aims of the ield, inhibit the search for CER-speciic theory, and create a publication
bias that beneits neither theory testing nor the development of better designs for learning. Szabo et al. [89]
reviewed the CER body of literature for theory-related research, identiied popular theories used in the ield,
and proposed a template for visualizing various dimensions of theory. Papamitsiou et al. [67] found that despite
the marked increase in theoretically driven research in CER, theory choice was rarely featured in the author
keywords of published articles.
łTheory,ž however, is not a well circumscribed concept, and compared to ields like mathematics education

research, which has seen the rise and fall of many theoretical ł-ismsž and lived through eras like New Math and
the science wars [85], CER has a more limited history of theory debates in the ield. Like many others, Malmi et al.
[51] noted that theory discussions in CER have been complicated by many diferent meanings of the word łtheory.ž
The variety of theories is broad: for examples of theoretically sound research, one group of conference panelists
listed action research, phenomenography, socio-cultural perspectives, and cognitive theories [4]. Isomöttönen [38]
theorized phenomena in computing using grounded theory. Pears et al. [70] distinguished between disciplinary,
methodological, analytical, and interpretive uses of theory. On occasion, the theory discussants have felt a need
to explicitly state whether they are for or against theory in CER [89, p.90]. An important aspect concerning
multiple functions of theory complicates the matter: in addition to the many traditional functions of theory,
theories also inform scientists about what questions are relevant and how to tackle them, and they serve as lenses
for observation, or, as the philosophers of science put it: observations are theory-laden [43].
The discussions about the role of theory in CER feature a wide variety of descriptions of CER as a ield

[9, 23, 31]. Nelson and Ko [63] characterized CER as fundamentally a design ield whose goal is to łdiscover
designs that produce better learning of computing,ž and literature reviews are in consensus that designing and
implementing tools speciically for computing education is a major part of the ield [39, 93]. At the same time,
many discussants have emphasized the ield’s nature as a research discipline that seeks deep, fundamental
understanding of phenomena related to computing education [50, 83]. Some of them have emphasized the ield’s
search for (possibly conditionally) generalizable theories that allow prediction [4, 22, 91]. And many combine the
views, arguing that a solid foundation on theories about learning improve learning designs in computing.

The concerted push by the ield’s opinion leaders and gatekeepers towards a stronger theoretical basis for
CER has impressed a new dimension of quality-consciousness on many CER researchers. The aims of that push
are laudable, such as moving away from practice papers to contributions of theoretical relevance and empirical
grounding [50], optimizing the ield’s search for better learning designs [63], enabling derivation of pedagogically
useful insights from theory [4], and bringing CER closer to its sister ields in other disciplines, such as mathematics
education research [50], physics education research [52], and other similar łtrading partnersž [23].
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The above views on the role of theory in CER, many of which were advanced by the ield’s pioneers, have
relied on a range of philosophical positions and theories of scientiic research. As such, those views exhibit
remarkable depth of disciplinary understanding, and all are well justiied from their perspectives. The ield has a
wealth of philosophically rich contributions. For example, Isomöttönen [38] ofered a discussion on theory in
the context of grounded theory. Thota et al. defended paradigm pluralism [92]. In their pioneering textbook on
CER, Fincher and Petre [22] presented a 76-page deep analysis of the nature and potential of theory in CER;
theirs is a must-read starting point for any discussion on the use of theory in the ield. Another fruitful analysis
of roles of theory can be found in Pears et al. [70, e.g., Fig.1]. But similar to Almstrum et al. [2] who were,
justiiably, of the opinion that łtoo much of the research in computing education ignores the hundreds of years
of education, cognitive science, and learning sciences research that have gone before us,ž this article proposes
that some theory discussions in computing education research ignore the latest 40 years of research on the
philosophy of science, sociology of science, and science and technology studies (STS). This article is aimed at
contributing some alternative perspectives to CER’s theory discussions by using results and experiences from
ields that have recently contributed to those debates, most of all the philosophy and sociology of science. The
article assumes some familiarity with basic vocabulary in the philosophy of science but attempts to avoid jargon
and technicalities.
Firstly, the article presents that the historical baggage that comes with the myriad uses of the term łtheoryž

complicates discussions about the role of theory in CER. The article proposes for CER a modern, model-based
view of scientiic research. Secondly, the article discusses some challenges with borrowing theory from other
ields to be used in CER, as well as some open questions about the nature of theories in general. Thirdly, the article
suggests that at the heart of theory debates in CER are disagreements that are strikingly similar to the 1980s
disagreements about computing’s disciplinary nature and about the role of design in the discipline. The article
notes that the conlicts regarding computing’s disciplinary identity dissolved as a consensus was established
over computing’s tripartite nature and that the three branches of computing (theory, science, engineering) are
irrevocably intertwined. Perhaps that is where the philosophy of CER is ultimately heading, too.

The article presents the above three topics in the context of the philosophy of science, a ield with a long history
in debates like CER’s theory debates. In that context, the article reminds the reader that many models of scientiic
explanation quoted in CER’s theory discussions were explicitly about natural sciences and never meant as a
model of social sciences, education research, or psychology. Many philosophers of social science have nowadays
largely abandoned the quest to claim the mantle of hard science for social science, and sought to understand the
ield in its own right and its own terms [17, pp.1ś8]. Models of natural sciences are neither applicable to nor
desirable for many sectors of social sciences; the concerns of the ields are fundamentally diferent [17]. The
article also describes a rift between the early 1900s’ łreceived viewž of science that prescribed a priori rules for
how successful scientists should work (see [34]), and the late 1900s łnaturalistic viewž of science that relies on
empirical (e.g., sociological, historical, and psychological) research on how successful scientists actually do work.
The article advances the view that instead of appropriating any a priori paradigm from other disciplines, and
instead of relying on examples of theory use from ields like physics and medicine, CER can gradually build
an understanding of its own paradigm (a disciplinary matrix of exemplars and other elements of research) by
investigating how progress in CER has been made in its inluential and most successful studies.

2 FROM GRAND THEORIES TO MODEL-BASED REPRESENTATIONS

Some aspects of CER’s theory debates resemble mid-20th century discussions in the ield of sociology, when
the ield was seeking a disciplinary identity and a new direction. Some sociologists yearned for a general, all-
encompassing theory of sociology, while some other sociologists wished to follow the natural sciences. Both views,
however, led to troubleÐthe former due to its overly broad scope and lack of straightforward applicability, and
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the latter much due to misconceptions about the natural sciences those sociologists wished to imitate, including
overplaying the role of inductivist reasoning (from a lot of data to theory), ignoring the maturity phase of a
discipline (thinking that sociology, a new ield then, would function the same as more established ields of inquiry
like physics), and speaking as if natural sciences had an all-encompassing łgrand uniied theory.ž It seemed that
grand theories invariably faced the dilemma of being either trivial or wrong [60, p.70]. In this context of the ield’s
methodological debates, the sociologist Robert K. Merton [55] presented the concept of middle-range theories.

Not unlike many CER discussions of today, Merton [55] described a scientiic theory to be a set of propositions
that serve as grounds for deriving łempirical uniformities.ž But there is much more to the picture. A theory alone
is never a suicient basis to carry out such derivations: auxiliary propositions, assumptions, and hypotheses are
necessary to carry out the intended cognitive processes (e.g., [73]). Methodologically speaking, experiments never
reveal anything about a single theory, but about the whole experimental setup, including also the instruments
involved; one’s theory about how the instruments work; a whole universe of auxiliary assumptions, hypotheses,
and theories; and epistemological and ontological standpoints (e.g., [71]). Merton noted a large gap between
a very general, high-level łgrandž theory and what Merton called evolving working hypotheses that are used
in daily research, close to data. He argued that to maintain a relatively uninterrupted chain between data and
general theory, middle-range theories are needed.

Middle-range theories are separate from sweeping general theories, such as variants of constructivism in CER,
as they are not logically derived from themÐbut they are also separate from data in the sense that they are
not simple generalizations therefrom (such as statistics of eye-tracking data or keystroke patterns in CER). So,
methodologically speaking, a middle-range theory is an entity that lies between theory and empirical observation
(or data). It is logically (inferentially) independent from both the most abstract level of general theories as well
as from data at the observation level. Middle-range theories stand in between abstract theories and empirical
data also substancewise, adding domain-speciic information to the picture and having, unlike general theories,
a closer link to empirical observation. Diferent from the views of science of the early 1900s, such as logical
empiricism or naïve inductivism, the image of science sketched by Merton was not purely inductive (theories are
generalizations of observations) or purely deductive (observation sentences are derived logically from theory).
In CER, general theories are loose-knit, diverse, and overlapping (e.g., [55]). Take some of the many theories

used in CER, for example: zone of proximal development, mental models, and Maslow’s hierarchy of needs [89].
Not all the theories used in CER are straightforwardly operationalizable for the characteristic uses of theory
typically mentioned in CER literature (such as prediction or interpretation of indings. For the aims of theory in
CER see, e.g., [52, 63, 89]). Not all the theories used in CER ofer readily applicable prescriptions for generating
new learning designs, either. The concept of middle-range theories was intended to bring about a focus on distinct
problems, allow for new hypotheses, direct attention in novel ways, and thereby furnish empirical work [55, 57].
The descriptions of the theoretical underpinnings of CER by Malmi et al. [52] and Szabo et al. [89] reveal

challenges similar to those that vexed Merton and his successors. The desire to come up with broader and more
predictive theories in sociology was aimed at extending the reach and utility of the discipline [55], the mastery
of society, predictive power, control, and łhuman engineeringž [57]. But emulating a misconceived picture of
natural sciences turned out to be counterproductive, both towards those aims and towards the other aims of
the discipline as well [57]. Similarly, CER debates need not be structured around simplistic, idealistic views of
scientiic investigation or explanation. For instance, Popper’s falsiicationism, the deductive-nomological model,
and inductivist views of scienceÐall referenced in CER’s theory debatesÐadvance narrow views of the roles of
theory, experiment, and data [36, 71, 94].

It has been pointed out that it will be important for the nascent philosophy of computing education research
to analyze what kinds of meta-theory, or łtheory of theory,ž the various arguments for the role of theory in CER
adopt (Malmi et al. [51] refer to this as the ontological nature of theory). The philosophy of science has seen
upheavals since the 1980s, but those changes are not strongly visible in CER’s theory discussions. There is room
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for richer discussion on whether the theory of theory adopted in CER theory discussions is closer to Hacking’s
[36] or Pickering’s [71] view of theories as interventional elements that integrate and are integral for technology
development, or whether CER’s theory of theory is closer to the syntactic view of the 1920s and 1930s Vienna
Circle (see, e.g., [7]). (For reference, instead of the classic 800-page tome on the topic by Suppe [87], Winther [96]
ofers a more accessible and more up-to-date overview of the structure of scientiic theories).
From a modern perspective, Merton’s view of science is, like its predecessors, relatively simplistic and more

concerned with ideals of the time than what really happens in successful science projects (e.g., [36, 44, 71]). His
idea is narrowly deined as sets of propositions, but he does broaden the view in the end to include łgeneral
orientations toward data, suggesting types of variables which theories must somehow take into account, rather
than clearly formulated, veriiable statements of relationships between speciied variablesž [55, p.52 in original;
p.458 in reprint], so Merton clearly acknowledges a variety of cognitive aspects of scientiic work. Yet, the search
for middle-range theories describes the task for a computing education researcher, like the task for a sociologist,
according to Merton, but with a proviso that an eye for general concepts and propositions is kept.
Middle-range theories may be what many CER theory discussions seem to primarily mean by łtheory.ž

Isomöttönen [38] is explicit about that, but the view is implicit all around. A good example is Robins et al. [78,
p.262], who present a hierarchy for describing CER, where theories at the functional level connect to a higher
level of more abstract pedagogical concerns as well as to a lower level of cognition and behavior of individuals.
Their view highlights an important point about focusing on the level that matters, even when higher and lower
levels of abstraction set some necessary conditions and boundaries. How Merton saw the state of sociological
research resembles in many ways how many people see CER today. Merton’s proposal was to introduce an
element that can bridge the most abstract level of theory and close-to-observation level of data. The following
sections present diferent approaches to that.

2.1 Three Views of Theories

Simple models of science (think of logical positivism, naïve inductivism, falsiicationism) can provide fruitful entry
points for discussing with students some fundamental diferences between historical schools of thought in the
philosophy of science. The models fare less well in discussions about a ield’s disciplinary identity, methodology,
epistemology, or theoretical content. An authentic description of how scientiic discovery and explanation (among
other things) work in a speciic discipline needs to distinguish and analyze a large number of processes and
concepts. Simplicity was a problem with many early models of science, with their building blocks limited to a
small number of concepts like theory, data, hypothesis, and observationÐwhich have all later turned out to be
complex, multifaceted concepts. Models of science have become ever more complex towards the 2000s, and the
1980s especially saw many black boxes of scientiic explanation opened. Even such basic concepts as experiments
were largely taken for granted before the 1980s, after which analyses by sociologists and philosophers of science
showed that experiments are a multidimensional and complex concept, understood in numerous diferent ways
[35, 74, 90].
Decades of research have deepened the understanding of the roles and functions of theory in the scientiic

enterprise, and numerous competing and complementing views can be found today [30, 36, 71]. Some views
are broad, others narrow, and many of them can be found in CER analyses of theory. A broad understanding is
adopted by, for instance, Malmi et al. [52, p.29]:

łWe deine łtheoryž to mean a broad class of concepts that aim to provide a structure for conceptual
explanations or established practice, and use such terms as łtheories,ž łmodels,ž and łframeworksž to
describe particular manifestations of the general concept of theory.ž

Similarly, for the purpose of their review of the use of theory in CER, Szabo et al. [89] provided a working
deinition of theory, in an inclusive form, leaving a more precise deinition for future work. Szabo et al. [89] cited
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the deinition of Malmi et al. [52], and their view is inclusive in the sense that it takes theory to also include
models and frameworks, and its relationships between theory, model, and data are rather unspeciied, aside
from their direction of it. Szabo et al.’s [89] view is that educational theory abstracts, explains, describes, or
predicts learning, and theory is also related to (validates, feeds into/is derived from) models, which are further
related to the phenomenon of learning via data. A number of descriptions of theory in CER (e.g., [52, 63, 89])
provide excellent entry points for further analysis of the nature of theory and theoretical explanation [63]. The
same inclusivity applies to other keywords used in CER’s theory discussions, such as explanation, description,
abstraction, and experimentÐbut research in the philosophy of science has shown that neither the concepts nor
their relationships are simple and straightforward (e.g., [74]).
The positions of philosophers of science over nearly a century of debates about the nature and structure of

scientiic theories can be summarized in three broad categories: the syntactic, semantic, and pragmatic views of
theory [96]. The syntactic view of theory, advocated by logical empiricists, sees theories as sentences consisting
of logical terms and domain-speciic termsÐideally couched in axiomatic form. Its theory structure includes
theoretical sentences, observational sentences, and sentences to link these together [96]. Although intuitively
alluring, the syntactic view had lost its currency by the 1950s with the demise of logical positivism, as the task of
linking the observational terms to theoretical terms proved to be problematic (for classic exposition, see [87]).
An alternative to the syntactic view of theory, the semantic view, emphasizes that the structure of a theory

consists of mathematical, set-theoretical, or model-theoretical models. The model theoretical approach looks into
the set of models that make a theory true, that is, what interpretations a theory has. The models of a theory are
varied, including abstract axioms that depict the most general structure of the theory, models that represent the
theory at a more substantial level, and models of experiment and data [96]. Models in the semantic view include
the informational or knowledge side of understanding that account on all abstraction levels for phenomena and
specify the kinds of relations between data, experiment, and theory. The relations may be hierarchical, similarity,
or some other kind [96].
The most modern view of theory, the pragmatic view, allows the most leeway with using the term łtheory,ž

and like the above descriptions of theory in CER, it allows theory and model to include łmathematical concepts,
metaphors, analogies, ontological assumptions, values, natural kinds and classiications, distinctions, and policy
viewsž [96]. Furthermore, it allows varied types of theories and models, such as łmechanistic, historical, and
mathematical models.ž The pragmatic view also allows theories to include non-formal aspects or make use of
analogies, metaphors, and other tools not immediately available in the logical or mathematical theory orientations.

In CER, the variation of theories in terms of their types and constituents is rich and not restricted to universal
law-like sentences. Theories invoke values, perceptions, practical skills and a range of concepts that are hard to
formalize, let alone axiomatize: think of identity, mastery, and discovery, for example [89]. Also ontologically,
the most recent wave of theory of theoryÐthe pragmatic view of theoryÐis the most compatible with CER, as
CER includes a range of ontologically distinct entity-types, such as learner, artifact, and mindset [89]. Diferent
theories or models of CER would ascribe to them diferent attributes (e.g., emotive or cognitive characteristics,
in the case of the learner) and diferent relations (instructor as the source of information vs. the learner as the
creator of knowledge).

2.2 Some Functions of Models and Data

Malmi et al. [52, see quote above] suggest that theories, models, and frameworks play roughly similar roles in
CER literature, but Malmi et al. leave the relationships of those elements unclear. Many other ields share the
same concern with terminological ambiguity. To clear up some of that ambiguity, for some decades, philosophers
of science have increasingly emphasized the concept of model and analyzed the nature of theory and the nature of
models separately from each other, which allows for a more ine-grained analysis of science [28]. Most importantly,
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that separation allows one to move away from the massive historical and conceptual baggage that comes from
grand theories and from debates between syntactic, semantic, or pragmatic views of theory [see 96]. Separating
out the concept of model allows one to focus on representation and on the important roles that models play in
scientiic ediice, either as complements of theories or, if theories are viewed more like Kuhnian paradigms, as
parts of theory constructions. The past decades have seen extensive discussions about what models are and how
they relate to data and theory, along with some other fundamental questions (for a representative bibliography,
see [26]).
Models come in many shapes and forms (e.g., [19]). Some are physical (scale models), some formal or mathe-

matical, and some linguistic or graphical, just to mention a few. Some are human-constructed, some computer-
generated. Some are related to human action, like didactic models, models of decision making, or models of
care of addiction [26]. Like theories, models are intended to serve a range of functions, relecting the diferent
functions of scientiic knowledge: to describe and explain the world or to predict and understand phenomena, for
instance. But due to the long history of theory debates in sciences, conceptual baggage burdens theories more
than modelsÐtake expectations like testability, falsiiability, explanatory power, and verisimilitude, for instance
(although not all theories of theory require all of those). Models are allowed more lexibility, less rigor, and more
pragmatic functions (even when one could grant theories the same role).
A model-oriented view of science enables one to focus on how researchers use models at diferent levels to

represent aspects of the world for speciic purposes [29]. Depending on their function, some models are abstract
and cursory, while others are explicit and detailed; some focus more on processes, others more on objects. Giere
[30] provides several example igures of hierarchically related models that range from abstract, principled models
to models of data. Figure 1 shows an example of how diferent kinds of models slice the world. At the top of
Fig. 1, principled models are highly abstract theories that characterize a broad perspective on a phenomenon
[30]. At the bottom, a dotted line separates ontologically diferent spheres governed by diferent mechanisms.
Below the line are physical and social worlds, each with their own constructive mechanisms [81]. Above the line
are abstractions, representations, and information about the world. It is crucial to note that in Fig. 1, models at
diferent levels are not in a pure inferential relation to each other: hierarchically lower-level models cannot be
deduced from higher-level ones, and higher-level ones cannot be inductively generalized from lower-level ones
[30]. Statements on the level below do not follow from principled models; the models at diferent levels are of
logically diferent types. Instead of establishing a deductive or inductive relation, a researcher uses higher-level
models to guide the formal structure of lower lever models, with an intention to ind a good it between possibly
diferent types of models at diferent levels of abstraction [28].

To give an example of Figure 1, take Papert’s constructionism [68]. Constructionism, as described inMindstorms,
can be interpreted as a principled model, which characterizes learning as construction of knowledge using
manipulatable materials, but which alone is not well suited for making empirical claims, and not straightforwardly
testable [69]. By specifying a range of conditions, speciications, actors, and constraints, it is possible to generate a
broad range of representational models of real phenomena about learning. One example representational model for
Fig. 1 is to represent learning activity in terms of speciic activities of solving authentic problems in information-
rich environments, where learners need to construct solutions on their own. Speciic hypotheses in Fig. 1 can be,
for instance, those tested in Kirschner et al.’s [41] oft-cited critique of unguided learning: łthe hypothesis [is]
that people learn best in an unguided or minimally guided environment where they are primarily asked to mimic
the problem-solving activities of experts and/or learn and discover collaboratively with others.ž For models of
experiments and data, take, for example, studies on the use of Logo in the classroom, which commonly employ,
for instance, simple posttest-only design with non-equivalent control groups [76], with interventions such as an
hour of Logo programming each week.

The shift to a model-based view of science has resulted in a sizable body of literature on the functions and types
of models. That literature recognizes, for instance, computational models, phenomenological models, formal
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Principled models / Theories

Representational models

Specific hypotheses and generalizations

Models of experiments and data

The world, experiments, and phenomena

Fig. 1. One example of hierarchical relationships between models and the world (adapted from one of the several variations

and examples in Giere [30])

models, and heuristic modelsÐamong dozens of others [26]. The model-based view has also breathed new life
into analysis of the cognitive functions that models carry [26]. For instance, much of the time, researchers tinker
with models of various kinds and not directly with reality, and, by doing that, engage in model-based reasoning
[48]. Models can be used to explain even when they are not łtruež [8] (as Box [5, p.424] quipped, all models are
wrong, but some are useful). In Figure 1, loose representational models can play the explanatory role, and it
generalizations into a high-level theory (cf. [8]).

In CER a shift towards a model-based view of science would not be aimed at rendering the concept of theory
obsolete. The shift would be aimed at broadening the idea of what kinds of entities researchers really work
with [26]. Models are aimed not just at prediction, description, and explanation, but they can also help to
understand phenomena, visualize, interpret, mediate, and probe. They are tools for concept formation, heuristics,
and pedagogy. They can be minimal or rich, instrumental or idealized, mathematical or schematic. Models can be
very useful even when they are much less developed as theories, and being much more lexible, they can relieve
the CER discussions of the undue historical and conceptual baggage of theories. A focus on models encourages
itting together things on diferent levels of abstractionÐitting together aims, values, facts, practical actions, data
collection, and theoretical entities. Grand theories always remain, for a good reason, but a shift toward models
may bring into focus the kinds of entities researchers work on most of the time.

3 APPLYING EXTERNAL THEORY TO CER

In the absence of a ield’s homegrown theory, it is wise to investigate what others have done in similar situations
[62]. For instance, mathematics education research has extensively discussed the roles of theory in the ield [86],
including theories łborrowedž from other ields, adapted, or developed into new łhome-grownž theories particular
to the discipline [85]. But in discipline-based education research (DBER) ields, the roles of learning theories and
principles vary widely by ield, and all DBER ields are tightly connected with their parent disciplines, complicating
direct borrowing of theories and results [62, pp.52ś53,188]. Still, where CER lacks theory, a neighboring ield or a
related ield is a natural place to look for. The analogies needed to do that may be very near or far, they may prove
to be useful and efective, or they may be ill-itting and fail. For example, theories from cognitive psychology
can help designers think about how to direct learners’ attention to critical components of the learning material
[88]. Theories about developmental stages can help understand what reasoning skills can be expected at diferent
grades in school [88]. But the adoption or adaptation of theories from other ields requires understanding of
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context: the challenges of learning difer between learning multiplication tables, methods of proof, chemical
reactions, playing the piano, musical composition, languages, or programming [62]. This section presents a
number of concepts for analysis of analogies, theory borrowing, and strength of theory.

3.1 Straightforward Applicability of Theories Big and Small

Many theories used in CER are sweeping, high-level grand theories. Szabo et al.’s [89, pp.95ś96] table of the most
popular theories in CER contains, for instance, the zone of proximal development, Maslow’s hierarchy of needs,
and Papert’s constructionism. Malmi et al.’s [52] review of 308 articles in CER from 2005 to 2011 found that the
most common theory, model, or framework in their sample was constructivism or some of its variants (such as
constructionism), followed by curricular frameworks, the pair programming model, and Bloom’s taxonomy as
the fourth. The situation is similar to broader discipline-based education research, where constructivism and
sociocultural learning perspectives are common [62].

Oft-cited famousworks like Papert’s constructionism are good tools for thinking about how to organize learning,
but at the same time they sufer from the typical problems associated with grand theories [55, 57]. As high-level
umbrella theories, they are separate from the speciic, typical empirical concerns of education researchers and
developers (cf. [57, pp.25ś49]). They have overly broad scope and lack straightforward applicability (cf. [55]). For
development of learning tools, they have only a limited ability to solve speciic design problems or help with
interaction design.

Szabo et al. [89] found Papert’s constructionism cited in 350 CER studies. Constructionism emphasizes learners’
engagement with artifacts, messing about with science, and metacognitive development, and Papert [68] presented
it in a tour de force that touched on countless more speciic theories. The theory’s grand theory nature was
made clear by Papert himself: Papert held that trying to experimentally control for the łLogo variablež is fruitless
[69, 77]. From the start, constructionism was the theory of choice for freewheeling builders of artifacts: łThey just
gave Logo to a bunch of kids, and after a while they asked them how they liked it. ‘Gee, it’s terriic!ž’ (cited in [3]).
Yet, the claims about constructionism’s positive efects on learning relied on mostly anecdotal evidence [3], and
even the gradually accumulating evidence to the contrary [66] did not initially slow down the movement (e.g.,
[69]). Later empirical research has criticized some cornerstones of constructionismÐsuch as minimally guided
instruction and discovery learning [41]Ðbut constructionism continues to be popular in CER, yet it perhaps
is used more as a high-level design philosophy or principled model than a speciic operationalizable theory or
representational model.
For another example, take Bloom’s taxonomy, another very common framework in CER [52]. The most

widespread visualization of Bloom’s taxonomy is the famous pyramid with lower-level educational objectives
(e.g., remembering, understanding) at the bottom and higher-level ones (e.g., evaluating, creating) at the top.
While that taxonomy can be useful for thinking about learning objectives, it does not serve the role(s) many
advocates of a stronger theory base for CER prefer: it was never aimed at explaining or predicting phenomena,
and its layered form suggests a hierarchy that has no basis in cognitive psychology [14, pp.28ś32]. But while
the pyramid version of Bloom’s model is not useful for classifying reality, it serves well its original purposeÐto
provide a classiication for representing educational objectives for the purposes of communicating learning goals
and discussing curriculum design.
In addition to grand theoriesÐwhich can be very useful for inspiration and high-level design of learning

interventionsÐCER uses many theories from ields such as psychology, cognitive science, and learning sciences
[89]. But the popularity of a theory does not mean it can be unproblematically applied to CER. Take, for instance,
three theories popularly used in CER: the learning styles theory (1390 CER articles), grit theory (54 articles), and
the mindset theory (633 articles). Each of them has its proponents, and some have solid evidence behind them,
but each has also been criticized by meta-analyses: learning styles, since four decades ago (e.g., [10]); grit, after it
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became famous (e.g., [12]); and mindset, once government institutions started to notice it (e.g., [84]). Due to how
they have been used and misused, and not necessarily the theories themselves, each of the theories has been
listed in De Bruyckere, Kirschner, and Hulshof’s two-volume popular science collection of urban myths about
learning [13, 14].
The problem with applicability of theories from outside the ield is known in all applied ields. A theory that

was developed in ield S to representW for the purposes P may do well in its original context [see 29], but
changing any of the S ,W , or P may partly or completely change the construct’s epistemological, ontological,
technical, sociocultural, and all other frames of reference. Phenomena, processes, and interactions that were
missing in the original setting may completely change the outcomes in the new setting. For example, a higher-
order composite concept that works for the purpose of predicting success in completing military training may
not be straightforwardly applied to predicting course marks in a programming course (as shown by [82]). But in
addition to the practical problem of applicability, the philosophy of science has pointed out a more fundamental
problem with theory: underdetermination of theory by data, discussed next.

3.2 Underdetermination and the Atribution Problem

Learning is at once one of the most ordinary things, one which everyone has personally experienced, and one of
the most complex phenomena to study. One can study learning processes at any number of levels of abstraction,
from synapses and neurotransmitters to the sociocultural practices of communities, and often those levels overlap
[78]. One can study how learning shapes one’s brain, how people grow as professionals, or how afective support
inluences learning (cf. [1]). Theories and methods applicable to each level are fundamentally diferent from each
other. What is more, many learning-related processes are emergent: processes at one level are not reducible to, or
deducible from, processes on the levels below: Most famously, consciousness is typically considered to be an
emergent property of the brain, not an attribute of neurons [80]. Learning is not a single process, but a complex of
complicated processes from biological to sociocultural, not explainable by theories at a single level of abstraction.

In the mid-1900s the logicianW.v.O. Quine [73] articulated a major weakness in the contemporaneous dominant
accounts of natural scienceÐa weakness that has turned out to be especially pronounced in research on learning.
This weakness is identiied by the Duhem-Quine thesis, which states that even with simple phenomena in natural
sciencesÐnot to mention complex processes like learningÐan experiment can never conclusively reject a theory,
because it is always possible that some other part of the complex test situation than the theory is responsible for
the unexpected results. The underdetermination problem is not just speculation; underdetermination of theory
by data is a common problem in scientiic practice [94]. In a ield that studies learning, such as CER, multiple
levels of analysis, confounding variables, materiality, and a thicket of sociocultural, cognitive, and pedagogical
inluences make it often impossible to judge which combination of theories would properly explain the results.1

In CER, variants of the Duhem-Quine thesis manifest as attribution problems, such as: To what extent can
observed changes in learning be attributed to theory-derived elements of a learning intervention or to the theory
itself? How reliably can observed changes in learning be attributed to one particular theory and not another, or
to the myriad other possible factors at play? How feasible is it to link interface elements, learning environment
designs, or other design choices with high- or low-level theories of learning? How reliably can one establish a
causal link between two sets of observations at diferent levels? The more abstraction levels there are between
two building blocks of a studyÐtake eye movement data and examination scores, for exampleÐthe more acute the
attribution problem grows. In CER, the sheer number of biological, psychological, social, and cultural processes
at play in any learning situation greatly limits the predictive and descriptive power of isolated theories, making it

1In the philosophy of education research, it has been suggested that underdetermination is not well suited to education research because the

ield is fundamentally diferent from natural science: łWhat currently [in 1991] pass as theories in the human sciences are actually ideological

frameworksž [56], and ideological frameworks are not even the kind of a thing that can be underdetermined by evidence. (But that citation is

more related to grand theories than speciic theories of learning.)

ACM Trans. Comput. Educ.



Grand theories or design guidelines? • 1:11

diicult to attribute efects downstream to changes upstream. That is not to say that learning-related phenomena
in CER would use a diferent cognitive architecture, or otherwise be unreachable by learning-related theory from
other ields. There are many examples of the beneits of theory on learning designs in computing. The attribution
problems just emphasize that experiments on new designs for learning can never be isolated to just one theory;
any change in a learning situation afects the complex of processes.
In the philosophy of science, the issue of underdetermination has been extensively discussed over the past

century, and standpoints vary as to how strong a position one should hold. Underdetermination, the Duhem-Quine
thesis, and the attribution problems do not necessarily state that if there is no way to conclusively tell if theory
was right or wrong, then theories are useless, or that borrowing theory from other ields is hopeless. They do
not need to lead to strong relativism (i.e., under some circumstances, all theories are as good as all others) or
epistemological anarchism (łanything goesž [21]).
A cautious position towards underdetermination that relies on Quine [73] does not reject the importance of

theory and experiment, but it does undermine the idea of łcrucial experimentsž that can conirm or condemn
a theory in one fell swoop. Experiments do not test a single hypothesis but a whole system of theories and
hypotheses and the worldÐand that has very real implications. For example, when the results of a study in
programming education contradict the results predicted by a theory of learning, much more than a hypothesis,
theory, and observations is at play. Something did not work out as planned: the world resisted [71]. It is the
researcher’s job to ind a working it among theories, instruments, learning situations, material and content, and
all other pieces of the puzzle [71]. Similarly, a research study in CS1 that fails to ind an efect expected by ield
F ’s theory T does not invalidate T . By the Duhem-Quine thesis, one cannot tell which element(s) of the whole
test situation caused the unexpected results.

CER researchers and learning designers need not give up in the face of the daunting complexity of phenomena
that accompany every learning situation. Instead, rather than relying on an oversimpliied idea of the theoryś
observation relation, superluousness of variables, or foundational epistemology, a researcher can embrace a less
stringent idea of how science proceeds. Proofs in the logical sense are not the right building block for empirical
sciences, and ampliative reasoning does not commit one to irrationalism or universal relativism. Observational
sentences are not deductive consequences of the sentences of abstract theories (or the other way around), yet
aiming to it theories with observations is still important, as long as one keeps in mind that the itting depends on
multiple levels of complex processes. Most importantly, demands for strengthening the theoretical foundations of
CER should account for the epistemological challenges posed by underdetermination, the Duhem-Quine thesis,
and attribution problem(s).

4 CER AS A DESIGN FIELD

Many disagreements over the role of theory in CER seem to stem from lack of consensus over the nature of the ield.
Those who have characterized CER as an experiment-based empirical science have evoked concepts, nomenclature,
and relationships between concepts from the standard literature in the philosophy of (natural) science. Studies
on the topic cite Popper’s falsiicationism [22, 63], Kuhn’s paradigm theory [22, 23], Feyerabend’s anarchistic
theory of science [37], positivism [92], or Hempel’s deductive-nomological model [22]. Those accounts of science
involve four classical aims of science: to explore (develop an initial understanding of an uncharted phenomenon),
to describe (systematically record and model a phenomenon and its relationships to other phenomena), to predict
(use existing knowledge to predict phenomena that have not yet come to pass), and to explain (clarify the causes,
relationships, and consequences of a phenomenon).

But there are also those who see the ield as primarily a design and engineering ield. Many hold that the aim
of CER is not primarily that of building descriptive or predictive theories but something elseÐsuch as improved
designs for learning [63], innovation [54], or development of tools for learning [49]. Of Fincher and Petre’s [22]
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ten areas that motivate research in CER, many are about developing and evaluating educational interventions
for computing education, be they technical or pedagogical. A survey of ACM SIGCSE papers between 1983 and
2003 found that 22% of papers presented tools for learning, and the sample identiied more łtoolsž papers than
any other type in 1994ś2003 [93]. A series of studies by Simon (reported in [83]) found similar results in various
other CER publishing venues.

There are crucial paradigmatic diferences between those two diferent views of the nature of CER. The status of
theory difers between sciences, design/engineering ields, social sciences, and humanities. Research papers that
focus on development of artifactsÐsoftware, hardware, or learning environments, for instanceÐare not expected
to conform to ideals of theory-driven research presented by philosophers of (natural) science mentioned above.
The most suitable reference for design and engineering in CER is not the philosophy of science but the philosophy
of engineering and the philosophy of technology. Philosophers of engineering and technology have shown that
the essence of design and engineering lies in their aims: to develop tools or artifacts that accomplish classes of
tasks more eiciently (e.g., [25, 58, 95]). Carl Mitcham, a prominent philosopher of technology wrote that while
engineers do apply theories from other ields, łartifact design is what constitutes the essence of engineering,
because it is design that establishes and orders the unique engineering framework that integrates other elementsž
[58, pp.146ś147]. In engineering, theory is not the goal; theory is subservient to the engineering aims.

Instead of theories, much of engineers’ knowledge is expressed as technical maxims, state-of-the-art solutions,
and guiding principlesÐand similar to how Tenenberg and McCartney [91] characterized CER, that knowledge
is tentative, conditional, and contextual [58, 95]. Designers and engineers achieve their aims by following
constructive and descriptive methods that aim at achieving change in the afairs of the world [42]Ðsuch as
developing and testing explainable AI, new ways to facilitate lifelong learning in computing, tools that enable
teacher trainees to understand machine learning concepts, or tools that substantively change how collaborative
learning happens in programming. As contrasted with natural sciences, the engineering method is described as
łthe use of heuristics to cause the best change in a poorly understood situation within the available resourcesž
[42]. Engineers and designers often have to get things done relying on information that scientists would consider
inadequate for research purposes (cf. [95]).
Yet tinkering, toying, or just building things is neither engineering nor design. The engineering-speciic

knowledge base that technology and engineering researchers apply in their work comprises state-of-the-art
concepts, heuristic prescriptions, best practices, and procedural knowledge of what works, embodied in 1)
procedural knowledge (łknow-howž), 2) technical maxims, rules of thumb, heuristic strategies, or łrecipes,ž 3)
descriptive experience-based łIf A then Bž-type laws, and 4) technological theories on how to apply scientiic
theory to practice [58].
The ield of computing has a wealth of examples on how to communicate design knowledgeÐtake human-

computer interaction or software engineering, for example. Design patterns in software engineering [27] are a
way to communicate heuristic strategies to work out common situations object-oriented programmers encounter.
Design hints in operating systems [46] are a way to communicate procedural knowledge and technical maxims
at the level of complete systems. And design principles in information protection [79] are a way to communicate
rules of thumb about how to reduce the risk of compromising sensitive information. It has been suggested that
in design, theories best inform design as counterfactuals, through thought experiments of the kind łIf design
was <like this>, then interaction would be <like that>ž [65]. In those counterfactuals, theories can direct design
choices, help designers choose between design choices, and expose new design spaces [65].

One central reason for the separation of the philosophy of engineering, technology, and social sciences from the
philosophy of (natural) science has to do with the diferent ontological views of the ields they study. The subjects
of physical sciencesÐsuch as properties of particles in ields of forceÐare mind-independent [81]. The subjects of
social sciencesÐsuch as preferences, behaviors, and mental statesÐare mind-dependent but are separate from the
researcher [81]. The subjects of engineering are human-made artifacts, which have to cater to the laws of nature,
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to value and worth in the human experience [11], and to a range of values from budgets and schedules to fashion
statements. Insofar as one of the most common aims of CER is to develop artifacts to help the learning process in
computing [49], those studies need to be judged in the framework of philosophy of engineering and technology
and not by the standards developed in the philosophy of (natural) science. And insofar as CER is concerned with
socially constructed phenomenaÐtake collaborative learning, sociocultural practices of learners, or inequality,
for exampleÐthen the philosophy of social sciences [16, 17, 61] ofers other fruitful starting points for analyzing
the role of theory in CER.

4.1 Experiences from Computing as a Discipline

The CER discussions related to the role of design and engineering in the ield closely resemble computing’s
disciplinary debates when the ield was a nascent, still-emerging discipline [90]. In the 1970s, software engineers
were seen as builders of tools, relying on a weak scientiic base. In the 1980s łexperimental computer sciencež
debates [18], a number of prominent people in the ield wanted to see computing develop much more in an
łexperimentalž direction, yet łexperimentalž meant diferent things to the discussants [90]. Some discussants
were quick to point out that Turing AwardsÐthe ield’s highest distinctionÐare frequently given to technology
pioneers for their contributions to technology. Technology matters. The schism between software engineering,
theoretical computer science, and experimental computer science characterized the ield’s soul-seeking eforts
for decades, until a more sober view, presented in the famous report Computing as a Discipline [15], won public
opinion. It described the ield as an alliance between the ield’s theoretical, engineering, and scientiic aspects,
irrevocably intertwined. Over decades of disagreement, there grew a consensus that it would not do justice to the
ield to ignore the engineering branch that is intellectually challenging, societally important, and central to the
ield’s most important achievements [90].
It has been argued that some CER arenas have started to systematically dismiss pure technological and

engineering contributions in favor of studies that are hypothesis-driven or theory-driven ([83, p.17], [24]). Simon
[83] showed that the reception of engineering contributions difers by the CER forum and gatekeeperÐfor instance,
he pointed out that soon after its rebranding from JERIC to TOCE, ACM’s prime journal on computing education
research announced a clear shift away from engineering/technology articles [83, pp.64,80]. Some pioneers of
CER have called for a clear demarcation of CER proper, in order to exclude topics such as the development
of pedagogical environments, descriptive classroom studies, and building of learning tools devoid of a theory
element [31, p.229]. This is a common development, familiar from other ields, too: as ields grow and mature,
specializations develop within them. Similar patterns can be seen in many ields of computing, too, with some
publishing venues focusing on theoretical contributions and others on technological ones [90].
In the CER theory debates, technological and engineering papers play a similar role to that which systems,

software engineering, and some algorithmic innovation papers played in computing’s disciplinary debates. Just
as Fredrick P. Brooks Jr. stated in his ACM Allen Newell Award talk that the computer scientist is a toolsmith
who studies in order to build [6], so did Nelson and Ko [63] write that computing education researchers draw
upon theoretical work to develop designs to improve learning. In their 1975 Turing Award speech, Allen Newell
and Herbert A. Simon went much further than the CER debates ever went when they wrote, łEach new machine
that is built is an experiment. . . . Each new program that is built is an experiment. It poses a question to naturež
[64]. For Newell and Simon, building computers and programs were ways to discover new phenomena, and their
gains sometimes paid of in the permanent acquisition of new technology. Perhaps the same can be said about
artifact development in CER.
Improving the quality of empirical and theory-driven research in CER does not need to come at the cost of

diminishing CER’s other important traditions: CER can be seen as an empirical, experiment-based science, as an
engineering and design ield, as a social science, and as a branch of educational research, among other views. It is
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not unreasonable to expect that the development of learning tools beneits from a solid theoretical understanding
of learning. But to ignore the pure technological and engineering side of CER would sever the ield from its
engineering tradition, it would separate the CER ield from an important driver of its results, and it would not do
justice to the technologically rich history of the CER ield (for that history, see [33, 53]).

5 DISCUSSION

This essay has proposed that many equivocations that bedevil discussions on the role of theories in CER arise
largely from the adoption of a łreceived viewž of what theory is [34] and from a simpliied view of theory’s role
in scientiic explanation. łThe models are broken, the models are broken!ž would Allen Newell exclaim.

The łclassicalž models of scientiic explanationÐsuch as Popper’s [72], Kuhn’s [43], or Lakatos’s [45] accounts
of scienceÐwere designed with natural sciences, not arts, humanities, social sciences, or education research, in
mind. Even if a procedure for conducting science works in natural sciences, it does not follow that it works in
CER, a ield fundamentally diferent in kind. (It does not follow that it would not work, either.) What is more, each
model has been later shown to be inadequate even in natural sciences (e.g., [20]). Disciplinary discussions that
cite the classical models of science should also take into account their shortcomings, their original context, and
changes in scientiic practice in the past 60ś100 years. Logical positivism reigned a hundred years ago, Popper
presented his inluential view in the 1930s, and Kuhn’s game-changing book was published in the 1960s.

Many models of scientiic research mentioned in CER’s theory discussions are a priori models, formulated in
speciic intellectual and historical contexts as ideals of how natural science should ideally be done. Many of those
models were developed without getting much involved in the messiness of the real world when formulating
methodological prescriptions for scienceÐtake Popper’s, Hempel’s, and Carnap’s accounts of science, for instance.
Their views, pioneering as they were, have been shown to be based on preconceived, idealistic ideas of science
that insuiciently capture how (especially 2020s) science really works in practice [36, 43, 71] or how it should
work [21].

As opposed to the earlier a priori models, towards the end of the 1900s, the naturalistic turn of the philosophy
of science started to shift the ield from the shibboleths of analytically oriented philosophers towards an image of
science deeply rooted in the reality of scientiic practice. Historians of science looked deeper into the archives
and found controversy, obstinacy, and irrationalism [21, 43]. Psychologically oriented studies found ways in
which many seasoned scientists neither adhere to the idealized norms and ethos of science nor believe in them (cf.
[59]). Sociologically oriented philosophers opened the lab door and painted fresh, new images of how successful
scientists actually work [36, 71, 94]. Naturalistic epistemology is an extension of sociology and psychology, and
it treats construction of scientiic knowledge as an empirical matter instead of a normative and a priori matter.
Like other ields of research [20, 21, 59], CER may not be immune to many problems a priori models ignore.
Discredited theories may go on for decades [32, pp.46ś50], intuitively appealing folk theories may prevail despite
any amount of evidence to the contrary [3], and organized dogmatism, bias, and self-interest may sometimes
surface [3]. This essay suggests that it would be fruitful for the philosophy of computing education research to
anchor the image of CER to naturalistic epistemology and to the naturalistic turn of the philosophy of science.

This essay presents that by shifting more towards a model-based view of science, CER can avoid some problems
that arise from centuries of conceptual baggage related to the concept of theory. Compared to theory, model is a
much broader and more accommodating concept, and it does not give rise to as many expectations and demands
as theory does (even if those arise from misunderstanding the role of theory). For example, no one expects a
didactic model be veriied or proven correct [sic]. No one thinks it has to be universally true. No one expects it to
be tested across all types of learning situations and circumstances [40]. Models, by virtue of their very nature, are
not assumed to be łtrue.ž The demand to anchor indings in a theoretical framework somehow sounds much
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more intimidating than the demand to relate the indings to models related to learningÐyet the actual objects
can be the same.

This essay also suggests that a diferent perspective on the role of theory is necessary for those parts of CER
that are oriented towards improved or new (artifact) designs for learning. Compared to the philosophy of science,
the philosophy of engineering and the philosophy of technology provide better-suited analyses of the role of
theory in the development of software or hardware artifacts. Artifact design has a rich and important history
in CER, and it should be judged in terms of its own intellectual tradition instead of that of hypothesis-driven
science. And compared to the philosophy of science, the philosophy of social science frames theories in ways
more amenable for the logic of certain types of research on the behavior of individuals in various communities.
This essay is aimed at providing alternative perspectives to theory discussions in CER, and as such, it is

limited in several important ways. It speciies only a very limited number of models, objects of interest, and their
relationships. It covers only a few select perspectives of models from the many viewpoints that the philosophers
of science have presented. It uses many fewer examples from CER than one would hope: the authors work in
narrow sectors of education. In its advocacy of a model-based view of science, it gives much less attention than
it could to the enormous body of research on the structure of scientiic theories. It does not discuss the nature
of products of researchÐand whether they are of logical type, descriptive statements, recommendations, or
something else. It does not use results from the philosophy of computing education research or from the broader
philosophy of computer science education. And because the strengths of theory-driven computing education
research and technology development are already well covered by numerous other authors in CER and broader
discipline-based education research, the essay probably fails to give enough credit to the fact that theory (of some
kind) is often at the heart of excellence in research.

Despite its many shortcomings, we hope the essay gives rise to discussions about whether even a moderately
naturalistic, model-based approach to the łtheory of theoryž would pay of in terms of better it between CER
theory discussions and how practicing researchers in CER see their own work. The essay suggests, not in a
Quinean strand of naturalism, but perhaps in a Kuhnian strand of naturalism, that we take seriously what happens
in CER in action, even when researchers do not adhere to a physics textbook depiction of theory it in research.
Just as Kuhn’s major contribution was to reveal the importance of social structure of science communities,

scientists, and their relative agreement, it would be an important contribution to CER to study the generally
accepted landmark studies of the CER ield and analyze how those studies actually use theory and models (instead
of how philosophers of natural science prescribe they should be used). For instance, one can study the ield’s
most cited articles, or the most impactul ones, or perhaps the winners of best paper awards in the ield’s major
conferences. That would help build a consensus of CER’s paradigm and describe the ield’s take on theory in
CER’s own terms. One aspect to keep in mind in that undertaking is not to let an unwarranted preconception of
science be the criterion of good research.
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