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ABSTRACT: A new series of spirooxindoles based on ethylene derivatives having furan aryl moiety are reported. The new hybrids
were achieved via [3 + 2] cycloaddition reaction as an economic one-step efficient approach. The final constructed spirooxindoles
have four contiguous asymmetric carbon centers. The structure of 3a is exclusively confirmed using X-ray single crystal diffraction.
The supramolecular structure of 3a is controlled by O···H, H···H, and C···C intermolecular contacts. It includes layered molecules
interconnected weak C−H···O (2.675 Å), H···H (2.269 Å), and relatively short Cl···Br interhalogen interactions [3.4500(11)Å].
Using Hirshfeld analysis, the percentages of these intermolecular contacts are 10.6, 25.7, 6.4, and 6.2%, respectively. The
spirooxindoles along with ethylene derivatives having furan aryl moiety were assessed against breast (MCF7) and liver (HepG2)
cancer cell lines. The results indicated that the new chalcone 3b showed excellent activity in both cell lines (MCF7 and HepG2)
with IC50 = 4.1 ± 0.10 μM/mL (MCF7) and 3.5 ± 0.07 μM/mL (HepG2) compared to staurosporine with 4.3 and 2.92 folds.
Spirooxindoles 6d (IC50 = 4.3 ± 0.18 μM/mL), 6f (IC50 = 10.3 ± 0.40 μM/mL), 6i (IC50 = 10.7 ± 0.38 μM/mL), and 6j (IC50 =
4.7 ± 0.18 μM/mL) exhibited potential activity against breast adenocarcinoma, while compounds 6d (IC50 = 6.9 ± 0.23 μM/mL)
and 6f (IC50 = 3.5 ± 0.11 μM/mL) were the most active hybrids against human liver cancer cell line (HepG2) compared to
staurosporine [IC50 = 17.8 ± 0.50 μM/mL (MCF7) and 10.3 ± 0.23 μM/mL (HepG2)]. Molecular docking study exhibited the
virtual mechanism of binding of compound 3b as a dual inhibitor of EGFR/CDK-2 proteins, and this may highlight the molecular
targets for its cytotoxic activity.

1. INTRODUCTION
In the last decade, spirooxindole scaffold has been recognized
as a potential pharmacophore in drug discovery, particularly for
cancer research development.1−3 Spirooxindole has a unique
rigid structural architecture with the diversity of pharmaceut-
ical activities which made this nucleus a privileged structure in
the new drug discovery. The exploration and discovery of
novel drugs for anticancer therapy with lower toxicity and high
selectivity is always an area of intensive research. Many
examples having spirooxindoles have been reported so far for
cancer therapy research and exhibited durable regression for
cancer treatment with oral administration in the preclinical
advanced stages; as an example MI-888 is a lead compound
having spiro-pyrrolidinyl oxindole for p53-MDM2 protein−
protein interaction inhibitors.4 MI-773 and MI-219 are other
two representative examples having spirooxindole-pyrrolidine

derivatives which exhibited cytotoxicity and interfered with the
proteasomal degradation of p53.5,6

Several structural pharmacophores have been coadminis-
trated with the spirooxindole privileged structures inspired by
research for structural complexities with their diverse
bioactivities.7,8 Due to the urgent need to discover a new
cancer agent with more targeting to cancer cells and less
harmful for the normal tissue, chemists have synthesized many
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Figure 1. Some biologically active spirooxindole-based pharmacophores.

Scheme 1. Synthetic Route for the Ethylene Derivatives 3a−c Engrafted Aryl-Furan Ring

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03790
ACS Omega XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acsomega.2c03790?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03790?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03790?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03790?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03790?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03790?fig=sch1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03790?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


spirooxindoles for this purpose. In particular, spirooxindoles
containing furan scaffold, which are called oxa-spirooxindoles,
widely exist in many natural and biologically active
molecules.8−15 The designed, synthesized, and reported
spirooxindoles show anticancer activity and can serve as an
anti-tumor agent, CB2 receptor agonist, antagonists of
progesterone receptors, antagonists of progesterone receptors,
Nav1.7 blocker (XEN907), and selective cyclooxygenase
COX-1 with TNF-α and IL-6 Inhibitors.16−19
Spirooxindole core has been continuously attracting the

attention of researchers and has become a dynamic area of
research due to its outstanding pharmacological properties.

Barakat et al. extensively studied this spirooxindole scaffold
recently and have reported so many examples so far focusing
on the drug discovery research.20−28 In this library, Barakat has
reported the synthesis of a new class of new spiro-heterocycles
coadministrated with different pharmacophores such thiochro-
mene, benzofuran, benzothiophene, cyclohexanone, pyrrole,
and rhodanine scaffolds by the three-component [3 + 2]
cycloaddition reaction in a regio- and stereo-selective fashion.
All synthesized compounds were subjected to anticancer
activity against a variety of cancer cell lines such as PC3,
HeLa, MCF-7, MDA-MB231, and so forth, and many of them
showed high efficacy against the tested cell lines.

Scheme 2. A Plausible Mechanism for the 32CA Reaction of Azomethine Ylide to Ethylene Derivative 3a−c to Afford the
Spirooxindole Analogues 6a−j
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Based on these findings and in continuation of our research
program toward the synthesis of multifunctionalized spiroox-
indole drug skeleton for drug research development, we report
here the new spirooxindole system appending the furan
structural pharmacophore. The molecular features of the new
spirooxindole derivative compound were elucidated based on
X-ray diffraction of a single crystal, Hirshfeld analysis, and
atoms-in-molecules calculations. Also, the spirooxindoles along
with ethylene derivatives having the aryl-furan moiety were
assessed against two cancer cell lines including breast
adenocarcinoma (MCF7) and liver cancer cell line (HepG2)
(Figure 1).

2. RESULTS AND DISCUSSION
2.1. Chemistry. New spirooxindoles having aryl-furan

motif were designed and synthesized according to Scheme 1.
The ethylene derivatives 3a−c having the aryl-furan scaffold
was mandatory as a dipolarphile for the [3 + 2] cycloaddition
reaction approach and were prepared from the acetophenones
with the aryl-furan carbaldehydes in basic condition to afford
the corresponding chalcones in precipitated form in a high
chemical yield. The ethylene derivative 3a was successfully
obtained in a single crystalline form by slow diffusion/
evaporation in DCM/EtOH, and the crystal was suitable for X-
ray diffraction analysis. The required materials for the [3 + 2]
cycloaddition reaction were ethylene derivative having aryl-
furan motif 3a−c, four amino acids 5a−d, and two substituted
isatins 4a,b, which achieved the desired spirooxindoles 6a−j.
Ten examples were successfully synthesized in stereoselective
and high chemical yield up to 94%. A set of trials were carried
out to get any of those final compounds in a crystalline form
and only one compound (6b) was provided as crystal; it was
not good enough to provide the optimum X-ray data for
publication quality but at least gave us the main skeleton of the
final compound. Other spectrophotometric tools were
employed to prove the chemical structure. The plausible
mechanism is depicted in Scheme 2 based on the previous
reported literature.29−33

2.2. Crystal Structure Description of 3a. The X-ray
structure of 3a is shown in Figure 2 which is found in good
agreement with its spectral characterizations. Compound 3a
crystallized in the monoclinic crystal system and the P21/c
space group with z = 4 and one molecular unit as asymmetric
formula (Table 1). The unit cell parameters are a =
19.4870(9) Å, b = 13.8512(6) Å, c = 5.8412(3) Å, β =
92.720(6)°, and V = 1574.87(13) Å3. The list of bond
distances and angles is given in Table 2. The structure
comprised three aromatic planar ring systems. These rings are
abbreviated A, B, and C for simplicity (Figure 2). It is worth to
note that the three rings are twisted with one another to
different extents. The mean plane of ring A is found twisted

with respect to ring B by 12.95°. The corresponding values for
ring C is 8.8° with respect to the mean plane of ring B.
The supramolecular structure of 3a is controlled by different

types of intermolecular contacts (Figure 3). The most
important contacts are emphasized by different colors in the
packing scheme shown in Figure 4. H···O (magenta), H···H
(purple), C···C (orange), and Br···Cl (turquoise) are the main
contacts in this crystal structure. The presence of short Br···Cl
(3.450 Å) and C···C (C8vC15; 3.323 Å and C9···C13; 3.399
Å) contacts revealed the presence of significant interhalogen
and π−π stacking interactions, respectively. The rest of the
interactions are O···H and H···H and are depicted in Table 3.
2.3. Hirshfeld Surface Analysis. Crystal structure stability

is governed by intermolecular interactions among different

Figure 2. Thermal ellipsoids at 30% probability level showing atom numbering of 3a.

Table 1. Crystal Data

3a

CCDC 2165902
empirical formula C19H12BrClO2
fw 387.65
temp (K) 120(2)
λ (Å) 0.71073
cryst syst. monoclinic
space group P21/c
a (Å) 19.4870(9)
b (Å) 13.8512(6)
c (Å) 5.8412(3)
β (deg) 92.720(6)
V (Å3) 1574.87(13)
Z 4
ρcalc (Mg/m3) 1.635
μ (Mo Kα) (mm−1) 2.786
no. reflns. 14253
unique reflns. 3887
completeness to θ = 25.242° 99.8%
GOOF (F2) 1.065
Rint 0.0558
R1

a (I ≥ 2σ) 0.0547
wR2

b (I ≥ 2σ) 0.1134
aR1 = Σ||Fo| − |Fc||/Σ|Fo|. bwR2 = {Σ[w(Fo2 − Fc2)2]/Σ[w(Fo2)2]}1/2.

Table 2. Selected Bond Lengths [Å] and Angles [deg] for 3a

atoms distance atoms distance

Br(1)−C(1) 1.889(4) O(2)−C(13) 1.368(4)
Cl(2)−C(17) 1.732(4) O(2)−C(10) 1.380(4)
O(1)−C(7) 1.234(4)

atoms angle atoms angle

C(13)−O(2)−C(10) 107.3(3) C(2)−C(1)−Br(1) 120.2(3)
C(6)−C(1)−C(2) 121.0(4) C(3)−C(2)−C(1) 118.3(4)
C(6)−C(1)−Br(1) 118.8(3)
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fragments in the crystal. Hirshfeld analysis is a simple tool for
decomposition of different intermolecular contacts in the
crystal. Different Hirshfeld surfaces including dnorm, shape
index, and curvedness maps are shown in Figure 5. The dnorm

map contains a number of red spots which represent the
regions at which the important and short distance contacts
occurred. Summary of all contacts and their percentages based
on Hirshfeld calculations is presented in Figure 6.
Analysis of these interactions using fingerprint plot and dnorm

maps is given in Figure 7. The major contacts are H···H, H···C,
and O···H interactions, and their percentages are 25.7, 27.6,
and 10.6%, respectively. It is worth noting that the red spots
shown in the dnorm map are related to the Br···Cl (6.2%), C···C
(6.4%), and H···H contacts. Hence, the hydrogen−hydrogen
interactions are not only the most common but also
considered strong. The H3···H16 contact (2.06 Å) is the
shortest of these interactions. Also, the presence of short Br1···
Cl2 (3.45 Å) revealed the presence of interhalogen

interactions, whereas the short C13···C9 (3.399 Å) and
C16···C9 (3.323 Å) contacts revealed the importance of the
π−π stacking interactions. The latter is further confirmed by
the presence of red/blue triangles in the shape index map
(Figure 5). The O1···H16 contact appeared as a blue region in
the dnorm map. The corresponding interaction distance is found
to be 2.674 Å based on Hirshfeld analysis. This value is slightly
greater than the vdWs radii sum (2.61 Å) of the O and H
atoms. Other contacts shown in this figure are considered weak
interactions and have less contribution in the molecular
packing of 3a.
2.4. Biological Activity of the Synthesized Com-

pounds. The ethylene derivatives having the aryl-furan
moiety and the spirooxindoles were assessed against two
cancer cell lines including breast and liver carcinoma by the
MTT assay. Interestingly, the new chalcone 3b discovered is
the most active member between the synthesized compounds
against both cell lines, with IC50 = 4.1 ± 0.10 and 3.5 ± 0.07
μM/mL for MCF7 and HepG2, respectively, and more potent
than the standard drug used as staurosporine [IC50 = 17.8 ±
0.50 μM/mL (MCF7) and 10.3 ± 0.23 μM/mL (HepG2)].
The other two chalcones 3a and 3c show moderate activity
(Table 4).
Although compounds 3a and 3b are two isomers with

different positions for chlorine substitutions (o/p-substitu-
tion), they exhibited different cytotoxicity against the two
tested cell lines. This may be due to the relevance of chlorine
substitution to interact with the corresponding amino acids in
the effective target binding site, which will affect the stability of

Figure 3. Most important intermolecular contacts in the crystal structure of 3a.

Figure 4. Packing of the molecular units via H···O (magenta), H···H (purple), C···C (orange), and Br···Cl (turquoise) in 3a.

Table 3. Different Contacts and Their Distances (Å)

contact distance symm. code

Br1···Cl2 3.4500(11) −1 + x, y, −1 + z
C8···C15 3.323(4) 1 − x, 1 − y, 1 − z
C9···C13 3.399(4) 1 − x, 1 − y, 1 − z
O1···H16 2.675 1 − x, 1 − y, 2 − z
H3···H16 2.269 1 − x, 1 − y, 2 − z

Figure 5. Hirshfeld surfaces of 3a.

Figure 6. Intermolecular contacts and their percentages in 3a.
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drug−target complexes and the ability of the complex to have a
biological response.
For the synthesized spirooxindoles, for the breast cancer cell

line (MCF7), spirooxindole having the bulky fused with the

pyrrolidine ring 6d exhibited the most active hybrid between
these series with IC50 = 4.3 ± 0.18 μM/mL more potent with 4
folds and the standard staurosporine (IC50 = 17.8 ± 0.50 μM/
mL). Next in the reactivity towards cytotoxicity was compound

Figure 7. Decomposed dnorm maps (A) and fingerprint plots (B) of short contacts in 3a.
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spirooxindole 6j which instead of the Br-atom on the benzoyl
ring in compound 6d replaced by more electron withdrawing
group, the reactivity slightly decreased which the IC50 equal to
4.7 ± 0.18 μM/mL. Compounds 6f (IC50 = 10.3 ± 0.40 μM/
mL) and 6i (IC50 = 10.7 ± 0.38 μM/mL) still provided better
cytotoxicity compared to staurosporine. The remaining
spirooxindoles provided moderate toxicity against breast
adenocarcinoma. Spirooxindoles 6f (IC50 = 3.5 ± 0.11 μM/
mL) and 6d (IC50 = 6.9 ± 0.23 μM/mL) were the most active
hybrids against human liver cancer cell line (HepG2)

compared to staurosporine [IC50 = 10.3 ± 0.23 μM/mL
(HepG2)]. The remaining spirooxindoles provided moderate
toxicity, and the IC50 ranged from 11.8 ± 0.37 to 91.4 ± 2.86
μM/mL.
2.5. Molecular Docking Study. As cyclic-dependent

kinase (CDK-2) and epidermal growth factor receptor
(EGFR) are key proteins that mediate and trigger the
proliferation of cancer cells, their inhibition is an interesting
target for apoptosis induction upon treatment of a chemo-
therapeutic drug.34−36 A molecular docking study was

Table 4. Cytotoxicity Results of the Ethylene Derivatives Having the Aryl-Furan Moiety and the Spirooxindoles against Breast
and Liver Carcinoma

aIC50 values are expressed as mean ± SD of three independent trials.
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performed to highlight the virtual mechanism of binding
toward EGFR and CDK-2 proteins. As seen in Figure 8,

compound 3b was docked inside the EGFR binding site with
the binding energy of −19.63 kcal/mol, and it formed one H-
bind interaction with Met 769 as the H-bond acceptor.
Additionally, compound 3b was docked inside the CDK-2
active site with the binding energy of −18.6 Kcal/mol, and it
formed one H-bond with Lys 89. Hence, compound 3b had a
good binding affinity toward EGFR and CDK-2 proteins, and
these targets may be the effective target for its cytotoxic
activity.

3. CONCLUSIONS
We concluded that a set of spirooxindoles having aryl-furan
moiety have been successfully synthesized and assessed against
two cancer cell lines. The results provided promising data for
breast adenocarcinoma and could be utilized as a lead
compound for further development. Structural analysis of the
newly synthesized compound was performed with the aid of X-
ray single crystal structure and Hirshfeld calculations. The
reported X-ray structure of 3a agreed very well with its spectral
characterizations. Its supramolecular structure is controlled by
many intermolecular contacts such as O···H, H···H, and C···C
intermolecular contacts as well as the Br···Cl interhalogen
interactions. All intermolecular contacts occurring in the
crystal are quantitatively analyzed based on Hirshfeld
calculations. The percentages of these contacts are 10.6,
25.7, 6.4, and 6.2%. The biological activity concluded that the
new chalcone 3b showed excellent activity in both MCF7 and
HepG2 with IC50 = 4.1 ± 0.1 μM/mL (MCF7) and 3.5 ± 0.07
μM/mL (HepG2) compared to staurosporine with 4.3 and
2.92 folds. The synthesized spirooxindole compounds 6d (IC50
= 4.3 ± 0.18 μM/mL), 6f (IC50 = 10.3 ± 0.40 μM/mL), 6i
(IC50 = 10.7 ± 0.38 μM/mL), and 6j (IC50 = 4.7 ± 0.18 μM/
mL) show high antiproliferative activity in vitro against breast
adenocarcinoma. On the other hand, compounds 6d (IC50 =
6.9 ± 0.23 μM/mL) and 6f (IC50 = 3.5 ± 0.11 μM/mL) were
the most active hybrids against human liver cancer cell line

(HepG2) compared to staurosporine [IC50 = 17.8 ± 0.50 μM/
mL (MCF7) and 10.3 ± 0.23 μM/mL (HepG2)]. These
compounds could be useful for further cancer research
development.

4. MATERIALS AND METHODS
All technical instruments and chemicals used in this study are
provided in the Supporting Information.
4.1. General Procedure for the Synthesis of the

Chalcones (Ethylene Derivatives 3a−c). The synthesis of
ethylene derivatives 3a−c was performed according to the
reported procedure by mixing equimolar of the acetophenone
derivatives 1a,b [1-(4-bromophenyl)ethan-1-one 1a; 1-(4-
nitrophenyl)ethan-1-one 1b] with the corresponding alde-
hydes 2a,b [5-(4-chlorophenyl)furan-2-carbaldehyde 2a; 5-(2-
chlorophenyl)furan-2-carbaldehyde 2b] in the presence of
basic condition (NaOH, 2 equiv) in ethanolic solution to give
the corresponding ethylene derivatives in a precipitated form
which were used for the next step without any further
purification.
4.1.1. (E)-1-(4-Bromophenyl)-3-(5-(4-chlorophenyl)furan-

2-yl)prop-2-en-1-one 3a. 1H NMR (400 MHz, CDCl3): δ
7.89 (d, J = 8.5 Hz, 2H), 7.71−7.53 (m, 5H), 7.42−7.35 (m,
3H), 6.83−6.72 (m, 2H); 13C NMR (101 MHz, CDCl3): δ
188.59, 155.58, 155.54, 151.39, 151.35, 151.29, 137.04, 134.59,
133.25, 132.10, 132.05, 131.60, 130.89, 130.76, 130.61, 130.56,
129.50, 128.80, 128.33, 128.28, 128.23, 128.04, 127.96, 127.88,
127.04, 125.99, 125.95, 125.64, 124.57, 120.73, 119.83, 118.91,
117.95, 117.04, 110.08, 109.20; chemical formula:
C19H12BrClO2; elemental analysis: C, 58.87; H, 3.12; Found:
C, 58.89; H, 3.14.
4.1.2. (E)-1-(4-Bromophenyl)-3-(5-(2-chlorophenyl)furan-

2-yl)prop-2-en-1-one 3b. 1H NMR (400 MHz, CDCl3): δ
7.96 (t, J = 7.6 Hz, 1H), 7.91 (t, J = 7.8 Hz, 2H), 7.69−7.56
(m, 3H), 7.52−7.40 (m, 2H), 7.37 (t, J = 7.6 Hz, 1H), 7.33−
7.22 (m, 2H), 6.86 (dd, J = 7.3, 3.8 Hz, 1H); 13C NMR (101
MHz, CDCl3): δ 188.68, 152.83, 150.89, 137.03, 132.11,
132.06, 131.95, 131.07, 131.01, 130.87, 130.57, 129.58, 129.03,
128.85, 128.36, 127.97, 127.91, 127.56, 126.76, 119.43, 118.62,
114.57, 113.49; chemical formula: C19H12BrClO2; elemental
analysis: C, 58.87; H, 3.12; Found: C, 58.90; H, 3.15.
4.1.3. (E)-3-(5-(4-Chlorophenyl)furan-2-yl)-1-(4-

nitrophenyl)prop-2-en-1-one 3c. 1H NMR (400 MHz,
chloroform-D): δ 8.34 (d, J = 8.4 Hz, 2H), 8.16 (d, J = 8.3
Hz, 2H), 7.70 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 15.0 Hz, 1H),
7.42 (t, J = 10.2 Hz, 3H), 6.88 (s, 1H), 6.80 (s, 1H). 13C NMR
(101 MHz, chloroform-D): δ 188.18, 156.13, 151.06, 150.14,
143.22, 134.90, 131.88, 129.41, 129.33, 128.12, 125.93, 123.96,
109.03; chemical formula: C19H12ClNO4; elemental analysis:
C, 64.51; H, 3.42; N, 3.96; Found: C, 64.50; H, 3.41; N, 4.00.
4.2. General Method for the Synthesis of the

Spirooxindoles Scaffold 6a−j. An equimolar (0.5 mmol)
of the ethylene derivatives 3a−c with isatin derivatives 4a,b
and amino acids 5a−d in methanol was heated under reflux for
5 h to provide the final products 6a−j as solid materials in
almost quantitative yield upon slow evaporation overnight. In
the case of compound 6b, the crystal quality was not good
enough to solve the X-ray structure in a suitable form enough
for publication quality but at least provided a reasonable
structure for the spiro-compound.
4.2.1. (3R,6′S,7′S)-6′-(4-Bromobenzoyl)-6-chloro-7′-(5-(4-

chlorophenyl)furan-2-yl)-1′,6′,7′,7a′-tetrahydro-3′H-spiro-
[indoline-3,5′-pyrrolo[1,2-c]thiazol]-2-one 6a. 1H NMR

Figure 8. Binding disposition and ligand−receptor interactions of
compound 3b inside the EGFR (A) and CDK-2 (B) proteins. Three-
dimensional images were generated by Chimera-UCSF. Cocrystallized
ligand (yellow-colored) and docked compound (cyan-colored).
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(400 MHz, CDCl3): δ 8.43 (s, 1H), 7.51 (t, J = 9.1 Hz, 3H),
7.45−7.22 (m, 7H), 7.02 (d, J = 8.1 Hz, 1H), 6.67 (s, 1H),
6.52 (d, J = 3.5 Hz, 1H), 6.32 (d, J = 3.5 Hz, 1H), 4.81 (d, J =
11.7 Hz, 1H), 4.52 (dt, J = 8.9, 4.1 Hz, 1H), 4.15−4.03 (m,
1H), 3.88 (d, J = 11.0 Hz, 1H), 3.46 (d, J = 11.0 Hz, 1H), 3.20
(d, J = 3.9 Hz, 2H). 13C NMR (101 MHz, CDCl3): δ 194.82,
179.72, 152.73, 151.47, 141.76, 136.28, 135.26, 133.13, 132.03,
131.90, 131.75, 130.15, 129.89, 129.71, 129.57, 129.45, 129.09,
129.01, 128.89, 125.07, 124.84, 122.89, 122.65, 120.91, 111.06,
110.78, 106.60, 106.26, 74.31, 72.00, 58.69, 56.40, 45.33,
37.09; IR (KBr, cm−1): 3425, 3310, 2935, 2840, 1720, 1610,
1500; chemical formula: C30H21BrCl2N2O3S; elemental
analysis: C, 56.27; H, 3.31; N, 4.37; S, 5.01; Found: C,
56.17; H, 3.35; N, 4.45; S, 5.09.
4.2.2. (1′S,2′S,3R)-2′-(4-Bromobenzoyl)-6-chloro-1′-(5-(4-

chlorophenyl)furan-2-yl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro-
[indoline-3,3′-pyrrolizin]-2-one 6b. 1H NMR (400 MHz,
CDCl3): δ 8.58 (s, 1H), 7.47 (d, J = 8.6 Hz, 2H), 7.41 (s, 4H),
7.32−7.23 (m, 2H), 7.12 (d, J = 8.1 Hz, 1H), 6.99 (dd, J = 8.0,
2.1 Hz, 1H), 6.77−6.72 (m, 1H), 6.51 (d, J = 3.5 Hz, 1H),
6.26 (d, J = 3.2 Hz, 1H), 4.95 (d, J = 11.6 Hz, 1H), 4.46 (s,
1H), 4.08 (t, J = 10.6 Hz, 1H), 2.73 (d, J = 12.4 Hz, 2H), 2.23
(dt, J = 13.1, 6.7 Hz, 1H), 1.98 (h, J = 6.6, 6.0 Hz, 2H), 1.90
(dd, J = 12.9, 6.6 Hz, 1H); 13C NMR (101 MHz, CDCl3): δ
195.27, 170.74, 152.47, 142.24, 136.10, 135.26, 132.95, 131.67,
129.34, 129.19, 129.09, 128.48, 128.07, 124.63, 123.36, 122.02,
121.86, 114.28, 109.15, 108.99, 108.06, 106.10, 73.42, 67.22,
46.85, 19.53; IR (KBr, cm−1): 3422, 3318, 2930, 2850, 1725,
1610, 1500; chemical formula: C31H23BrCl2N2O3; elemental
analysis: C, 59.83; H, 3.73; N, 4.50; Found: C, 59.79; H, 3.75;
N, 4.61.
4.2.3. (1′S,2′S,3R)-2′-(4-Bromobenzoyl)-1′-(5-(4-

chlorophenyl)furan-2-yl)-5-nitro-1′ ,2′ ,5′ ,6′ ,7′ ,7a′-
hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one 6c. 1H NMR
(400 MHz, CDCl3): δ 8.96 (s, 1H), 8.23−8.05 (m, 2H), 7.57−
7.34 (m, 7H), 7.27 (d, J = 8.1 Hz, 3H), 6.83 (d, J = 8.7 Hz,
1H), 6.51 (d, J = 3.5 Hz, 1H), 6.27 (d, J = 3.5 Hz, 1H), 5.01
(d, J = 11.6 Hz, 1H), 4.39 (dt, J = 12.2, 6.4 Hz, 1H), 4.12 (dd,
J = 14.2, 8.3 Hz, 2H), 2.66 (p, J = 6.9, 5.9 Hz, 2H), 2.21 (dt, J
= 12.4, 6.5 Hz, 1H), 2.08−1.81 (m, 5H), 1.24 (t, J = 7.0 Hz,
1H); 13C NMR (101 MHz, CDCl3): δ 194.94, 180.62, 171.49,
152.46, 151.98, 146.37, 143.36, 135.20, 132.99, 132.07, 129.61,
129.24, 129.16, 128.94, 126.83, 125.77, 124.85, 123.40, 110.44,
109.24, 106.40, 73.16, 69.08, 61.38, 60.60, 48.25, 46.67, 30.82,
27.62, 14.28.; IR (KBr, cm−1): 3434, 3325, 2922, 2850, 1715,
1608, 1512; chemical formula: C31H23BrClN3O5; elemental
analysis: C, 58.83; H, 3.66; N, 6.64; Found: C, 58.85; H, 3.69;
N, 6.71.
4.2.4. (1′S,2′S,3R)-2′-(4-Bromobenzoyl)-6-chloro-1′-(5-(4-

chlorophenyl)furan-2-yl)-1′,2′,4a′,5′,6′,7′,8′,8a′,9′,9a′-
decahydrospiro[indoline-3,3′-pyrrolo[1,2-a]indol]-2-one 6d.
1H NMR (400 MHz, CDCl3): δ 8.09 (s, 1H), 7.51−7.35 (m,
6H), 7.31−7.23 (m, 2H), 7.14 (d, J = 8.0 Hz, 1H), 7.01 (dd, J
= 8.0, 1.7 Hz, 1H), 6.63 (s, 1H), 6.49 (d, J = 3.6 Hz, 1H), 6.20
(d, J = 3.6 Hz, 1H), 5.01 (d, J = 11.8 Hz, 1H), 4.48 (d, J = 8.6
Hz, 1H), 4.00 (t, J = 11.0 Hz, 1H), 3.10 (d, J = 4.3 Hz, 1H),
2.23−2.09 (m, 1H), 2.16 (s, 1H), 1.94 (dd, J = 12.4, 6.4 Hz,
1H), 1.81 (ddd, J = 11.9, 8.5, 6.1 Hz, 1H), 1.60−1.43 (m, 3H),
1.38 (t, J = 12.5 Hz, 1H), 1.17−0.82 (m, 5H); 13C NMR (101
MHz, CDCl3): δ 195.28, 179.74, 178.80, 171.53, 152.56,
152.16, 141.51, 135.49, 132.80, 132.14, 131.58, 129.35, 129.30,
129.26, 128.82, 128.44, 124.62, 122.78, 121.78, 110.95, 108.21,
106.11, 106.07, 71.84, 47.83, 40.45, 34.69, 29.40, 28.77; IR

(KBr, cm−1): 3420, 3317, 2919, 2823, 1715, 1600, 1515;
chemical formula: C35H29BrCl2N2O3; elemental analysis: C,
62.15; H, 4.32; N, 4.14; Found: C, 62.19; H, 4.27; N, 4.06.
4.2.5. (3R,3′S,4′S)-3′-(4-Bromobenzoyl)-6-chloro-4′-(5-(4-

chlorophenyl)furan-2-yl)-1′-methylspiro[indoline-3,2′-pyrro-
lidin]-2-one 6e. 1H NMR (400 MHz, CDCl3): δ 8.42 (s, 1H),
7.46 (d, J = 8.4 Hz, 2H), 7.36 (s, 4H), 7.34 (d, J = 5.4 Hz,
1H), 7.26 (d, J = 7.6 Hz, 3H), 7.04 (d, J = 8.0 Hz, 1H), 6.92
(dd, J = 8.1, 2.1 Hz, 1H), 6.58 (d, J = 2.0 Hz, 1H), 6.51 (d, J =
3.4 Hz, 1H), 6.25 (d, J = 3.4 Hz, 1H), 4.59 (d, J = 6.4 Hz, 2H),
3.74−3.64 (m, 1H), 3.51−3.43 (m, 1H); 13C NMR (101
MHz, CDCl3): δ 195.96, 178.40, 170.35, 152.11, 141.68,
135.67, 135.31, 132.79, 131.83, 131.40, 129.30, 128.91, 128.62,
124.81, 110.18, 106.10, 72.91, 59.96, 57.51, 43.06; IR (KBr,
cm−1): 3434, 3320, 2930, 2834, 1725, 1620, 1520; chemical
formula: C29H21BrCl2N2O3; elemental analysis: C, 58.41; H,
3.55; N, 4.70; Found: C, 58.47; H, 3.61; N, 4.79.
4.2.6. (3R,6′S,7′S)-6′-(4-Bromobenzoyl)-6-chloro-7′-(5-(2-

chlorophenyl)furan-2-yl)-1′,6′,7′,7a′-tetrahydro-3′H-spiro-
[indoline-3,5′-pyrrolo[1,2-c]thiazol]-2-one 6f. 1H NMR (400
MHz, CDCl3): δ 8.17 (s, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.54
(d, J = 8.1 Hz, 1H), 7.42−7.23 (m, 7H), 7.17 (d, J = 7.5 Hz,
1H), 7.06−6.97 (m, 2H), 6.65 (s, 1H), 6.37 (d, J = 3.2 Hz,
1H), 4.84 (d, J = 11.7 Hz, 1H), 4.51 (td, J = 6.8, 5.4, 3.5 Hz,
1H), 4.14−4.04 (m, 1H), 3.88 (d, J = 10.9 Hz, 1H), 3.50−3.41
(m, 1H), 3.21 (d, J = 5.4 Hz, 2H); 13C NMR (101 MHz,
CDCl3): δ 194.84, 179.81, 151.35, 150.04, 141.60, 136.19,
135.31, 131.87, 130.85, 130.09, 129.60, 128.96, 128.20, 127.84,
126.97, 122.77, 121.06, 111.86, 110.78, 109.73, 74.28, 71.82,
59.16, 55.27, 45.29, 37.19, 31.69, 22.75, 14.24; IR (KBr,
cm−1): 3428, 3318, 2925, 2840, 1722, 1618, 1508; chemical
formula: C30H21BrCl2N2O3S; elemental analysis: C, 56.27; H,
3.31; N, 4.37; S, 5.01; Found: C, 56.35; H, 3.29; N, 4.41; S,
5.00.
4.2.7. (1′S,2′S,3R)-2′-(4-Bromobenzoyl)-6-chloro-1′-(5-(2-

chlorophenyl)furan-2-yl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro-
[indoline-3,3′-pyrrolizin]-2-one 6g. 1H NMR (400 MHz,
CDCl3): δ 8.69 (s, 1H), 7.70 (d, J = 7.4 Hz, 1H), 7.37 (d, J =
7.7 Hz, 2H), 7.28−7.19 (m, 1H), 7.13 (dd, J = 8.0, 5.2 Hz,
2H), 7.03−6.97 (m, 3H), 6.72 (s, 1H), 6.30 (d, J = 3.1 Hz,
1H), 4.97 (d, J = 11.2 Hz, 1H), 4.36 (dt, J = 9.8, 6.0 Hz, 1H),
4.06 (t, J = 10.6 Hz, 1H), 2.63 (t, J = 6.4 Hz, 2H), 2.18 (dd, J =
12.1, 6.2 Hz, 1H), 1.99−1.80 (m, 4H).; 13C NMR (101 MHz,
CDCl3): δ 195.50, 180.56, 152.39, 149.62, 141.93, 135.69,
135.40, 131.88, 130.77, 129.89, 129.66, 129.07, 128.89, 128.59,
127.94, 127.71, 126.92, 123.05, 122.59, 111.87, 111.24, 108.86,
73.20, 68.98, 61.33, 48.25, 46.51, 31.68, 30.94, 27.37, 22.75,
14.23; IR (KBr, cm−1): 3430, 3309, 2918, 2827, 1716, 1608,
1508; chemical formula: C31H23BrCl2N2O3; elemental analysis:
C, 59.83; H, 3.73; N, 4.50; Found: C, 59.80; H, 3.75; N, 4.55.
4.2.8. (3R,6′S,7′S)-6-Chloro-7′-(5-(4-chlorophenyl)furan-

2-yl)-6′-(4-nitrobenzoyl)-1′,6′,7′,7a′-tetrahydro-3′H-spiro-
[indoline-3,5′-pyrrolo[1,2-c]thiazol]-2-one 6h. 1H NMR
(400 MHz, CDCl3): δ 8.38 (s, 1H), 8.08 (d, J = 8.6 Hz,
2H), 7.54 (dd, J = 17.7, 8.6 Hz, 5H), 7.30 (d, J = 8.2 Hz, 2H),
7.04 (dd, J = 8.1, 2.1 Hz, 1H), 6.65 (d, J = 1.8 Hz, 1H), 6.54
(d, J = 3.1 Hz, 1H), 6.38 (d, J = 3.6 Hz, 1H), 4.85 (d, J = 11.7
Hz, 1H), 4.53 (dt, J = 9.7, 3.9 Hz, 1H), 4.15−4.00 (m, 1H),
3.88 (d, J = 11.1 Hz, 1H), 3.46 (d, J = 11.1 Hz, 1H), 3.20 (d, J
= 3.9 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 194.92,
179.53, 152.88, 151.11, 150.38, 141.79, 141.08, 136.60, 133.25,
131.08, 129.93, 129.18, 129.07, 129.04, 129.01, 128.94, 124.96,
123.69, 123.57, 122.96, 120.70, 110.18, 106.47, 74.11, 71.71,
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60.61, 59.94, 55.31, 45.22, 37.09, 14.28; IR (KBr, cm−1): 3422,
3320, 2920, 2850, 1730, 1620, 1511; chemical formula:
C30H21Cl2N3O5S; elemental analysis: C, 59.41; H, 3.49; N,
6.93; S, 5.29; Found: C, 59.44; H, 3.51; N, 7.02; S, 5.36.
4.2.9. (1′S,2′S,3R)-6-Chloro-1′-(5-(4-chlorophenyl)furan-

2-yl)-2′-(4-nitrobenzoyl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro-
[indoline-3,3′-pyrrolizin]-2-one 6i. 1H NMR (400 MHz,
CDCl3): δ 8.92 (s, 1H), 8.36 (d, J = 8.3 Hz, 1H), 8.23 (d, J
= 8.7 Hz, 1H), 8.05 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 8.2 Hz,
2H), 7.46 (d, J = 8.6 Hz, 2H), 7.46 (s, 0H), 7.26 (d, J = 8.2
Hz, 2H), 7.12 (d, J = 11.9 Hz, 1H), 7.02 (d, J = 8.2 Hz, 1H),
6.68 (s, 1H), 6.51 (d, J = 3.0 Hz, 1H), 6.28 (d, J = 3.5 Hz,
1H), 4.98 (d, J = 11.6 Hz, 1H), 4.32 (dt, J = 9.9, 6.3 Hz, 1H),
4.15−3.96 (m, 1H), 2.57 (dt, J = 6.6, 4.2 Hz, 2H), 2.15 (dt, J =
12.8, 6.3 Hz, 1H), 1.90 (p, J = 6.4 Hz, 2H), 1.82 (dt, J = 13.5,
6.3 Hz, 1H); 13C NMR (101 MHz, CDCl3): δ 195.56, 180.70,
171.46, 152.40, 150.76, 150.34, 142.00, 141.20, 140.87, 135.93,
132.95, 129.73, 129.18, 129.08, 129.02, 128.95, 128.89, 128.85,
128.41, 127.43, 124.83, 124.61, 124.34, 124.05, 123.69, 123.34,
122.96, 122.76, 111.36, 109.52, 109.12, 108.76, 106.40, 106.17,
73.18, 69.02, 64.69, 62.38, 60.58, 48.14, 46.41, 31.02, 27.42,
14.27; IR (KBr, cm−1): 3423, 3317, 2935, 2845, 1723, 1606,
1516; chemical formula: C31H23Cl2N3O5; elemental analysis:
C, 63.28; H, 3.94; N, 7.14; Found: C, 63.34; H, 3.99; N, 7.24.
4.2.10. (1′S,2′S,3R)-6-chloro-1′-(5-(4-chlorophenyl)furan-

2-yl)-2′-(4-nitrobenzoyl)-1′,2′,4a′,5′,6′,7′,8′,8a′,9′,9a′-
decahydrospiro[indoline-3,3′-pyrrolo[1,2-a]indol]-2-one 6j.
1H NMR (400 MHz, CDCl3): δ 8.12 (d, J = 8.7 Hz, 3H),
7.59 (d, J = 8.7 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.28 (d, J =
8.1 Hz, 2H), 7.13 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H),
6.61 (s, 1H), 6.51 (d, J = 3.6 Hz, 1H), 6.26 (d, J = 3.6 Hz,
1H), 5.05 (d, J = 11.7 Hz, 1H), 4.48 (q, J = 8.3, 7.5 Hz, 1H),
3.98 (t, J = 10.9 Hz, 1H), 3.12−3.05 (m, 1H), 2.17 (dq, J =
9.9, 4.8 Hz, 1H), 1.97−1.89 (m, 1H), 1.81 (dt, J = 13.7, 6.3
Hz, 1H), 1.52 (q, J = 14.4 Hz, 3H), 1.36 (q, J = 12.6 Hz, 1H),
1.02 (dddd, J = 48.7, 25.8, 9.8, 3.6 Hz, 3H), 0.84 (d, J = 14.7
Hz, 1H); 13C NMR (101 MHz, CDCl3): δ 195.39, 181.09,
174.14, 152.31, 152.24, 150.37, 141.50, 141.35, 135.69, 132.93,
129.21, 129.15, 128.93, 128.85, 124.86, 123.68, 122.49, 122.16,
111.04, 109.01, 106.38, 71.61, 68.01, 63.26, 60.57, 57.93,
53.55, 47.20, 41.75, 37.62, 28.32, 27.59, 24.52, 19.92, 14.27; IR
(KBr, cm−1): 3429, 3314, 2927, 2837, 1720, 1610, 1505;
chemical formula: C35H29Cl2N3O5; elemental analysis: C,
65.43; H, 4.55; N, 6.54; Found: C, 65.45; H, 4.54; N, 6.64.
4.3. X-ray Structure Determinations. The crystal of 3a

was immersed in cryo-oil, mounted in a loop, and measured at
a temperature of 120 K. The X-ray diffraction data were
collected on a Rigaku Oxford Diffraction Supernova
diffractometer using Mo Kα radiation. The CrysAlisPro37

software package was used for cell refinement and data
reduction. An analytical absorption correction (CrysAlisPro37)
was applied to the intensities before structure solution. The
structure was solved by intrinsic phasing (SHELXT38)
method. Structural refinement was carried out using
SHELXL39 software with the SHELXLE40 graphical user
interface. Hydrogen atoms were positioned geometrically and
constrained to ride on their parent atoms, with C−H = 0.95 Å
and Uiso = 1.2Ueq (parent atom).
4.4. Hirshfeld Surface Analysis. Crystal Explorer 17.5

program41 was used to perform the Hirshfeld topology
analysis.
4.5. Molecular Docking Study. The investigated

compounds were docked against the protein structures of

EGFR (PDB = 1M17) and CDK-2 (PDB = 2A4L) using
AutoDock Vina software following routine work.42−45 Vina
was used to improve protein and ligand structures and favor
them energetically. Proteins and compound structures were
prepared and optimized using Maestro. Then, the binding sites
inside proteins were determined using grid-box dimensions
around the cocrystallized ligands. Binding activities interpreted
molecular docking results in terms of binding energy and
ligand−receptor interactions. The visualization was then done
with Chimera.
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