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ABSTRACT
People change their preferences when exposed to others’ opinions. We examine the neural basis of 
how peer feedback influences an individual’s recommendation behavior. In addition, we investi
gate if the personality trait of ‘agreeableness’ modulates behavioral change and neural responses. 
In our experiment, participants with low and high agreeableness indicated their degree of 
recommendation of commercial brands, while subjected to peer group feedback. The associated 
neural responses were recorded with concurrent magnetoencephalography. After a delay, the 
participants were asked to reevaluate the brands. Recommendations changed consistently with 
conflicting feedback only when peer recommendation was lower than the initial recommendation. 
On the neural level, feedback evoked neural responses in the medial frontal and lateral parietal 
cortices, which were stronger for conflicting peer opinions. Conflict also increased neural oscilla
tions in 4–10 Hz and decreased oscillations in 13–30 Hz in medial frontal and parietal cortices§. The 
change in recommendation behavior was not different between the low and high agreeableness 
groups. However, the groups differed in neural oscillations in the alpha and beta bands, when 
recommendation matched with feedback. In addition to corroborating earlier findings on the role 
of conflict monitoring in feedback processing, our results suggest that agreeableness modulates 
neural processing of peer feedback.

ARTICLE HISTORY 
Received 7 December 2021  
Revised 15 August 2022  
Published online 25 
September 2022 

KEYWORDS 
Social influence; 
magnetoencephalography; 
recommendation; 
agreeableness; neuronal 
oscillation

Introduction

The question of whether others influence our behavior 
has been approached from a social psychological per
spective broadly indicating that people’s opinions are 
not guided only by their subjective values and personal 
experiences but greatly affected by other people 
(Cialdini & Goldstein, 2004). Two main motivations, seek
ing social approval and validating the correctness of 
opinion, underlie this influence. Correspondingly, it can 
lead to compliance, where people go along with the 
majority publicly while their internal opinions stay intact, 
or conformity, where the influence of others produces 
genuine attitude change (Cialdini et al., 1999). Positive 
and negative aspects of social influence have been stu
died in numerous domains. In fact, providing people 
with information about what others do in order to mod
ify their behaviors often works better than increasing 
their factual knowledge about the matter (Miller & 
Prentice, 2016). Several studies have investigated this 
by using norms to increase pro-environmental behavior 
(Gugenishvili et al., 2021), health-related behavior 
(Templeton et al., 2016), and, related to the current 

study, consumer behavior, where product ratings and 
reviews from others are shown to significantly affect 
preferences and behavior (Muchnik et al., 2013).

Neuroimaging studies have sought to provide 
insights into social influence by uncovering neural 
mechanisms that underlie changing one’s behavior in 
line with other people’s behavior or opinions in various 
forms of social influence. Exposure to the opinions of 
others has been shown to alter preferences for facial 
attractiveness (Klucharev et al., 2009; Zaki et al., 2011; 
Shestakova et al., 2013), trustworthiness (Zubarev et al., 
2017), music (Berns et al., 2010; Campbell-Meiklejohn 
et al., 2010), and food choices (Nook & Zaki, 2015). 
Cascio et al. (2015) investigated the effect of social influ
ence on an individual’s preference change, where pre
ference was assessed by making a recommendation to 
a peer. In this study, participants rated mobile game 
applications on a five-point scale in terms of their ten
dency to recommend them to a friend. Later, in 
a functional magnetic resonance imaging (fMRI) session, 
they were reminded about their initial rating followed by 
ratings of their peers, which could be higher, lower or 
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the same as the participant’s rating, with the opportu
nity to update their initial rating. Results were similar to 
the effect of social influence on personal preference 
change: subjects tended to change their initial recom
mendation ratings in accordance with the group rating. 
Recently, Baek et al. (2021) used a similar paradigm, but 
instead of showing lower or higher group ratings, they 
provided a short recommendation text feedback from 
a peer, ranging in valence from negative to positive, 
similar to real-life online recommendations. Results 
showed that both positive and negative peer recom
mendations significantly affected participants’ final rat
ings. In comparison to positive feedback, negatively 
framed peer recommendations had a larger effect on 
rating change, indicating that negativity may propagate 
more strongly in contexts related to consumer behavior 
and purchase decision.

A number of studies on neural mechanisms of social 
influence using fMRI have revealed that being exposed 
to a group opinion engages brain regions including 
medial frontal cortex (MFC), ventral striatum (VS), and 
anterior insula (AI). Activation in MFC and AI is positively 
correlated with social conflict and activation in VS is 
negatively correlated with social conflict (Campbell- 
Meiklejohn et al., 2010; Klucharev et al., 2009). These 
brain regions overlap with the network involved in rein
forcement learning (RL), where involvement of VS, dorsal 
MFC, and AI reflect the differences between expecta
tions and outcomes, that is, the general prediction 
error signals the need for behavioral adjustment 
(Zhang et al., 2020). Accordingly, Klucharev and collea
gues suggested that personal opinion is adjusted by RL 
mechanisms toward social norms. In this account, the 
discrepancy between individual and group opinion is 
experienced as an error and requires correction of the 
deviance aligning one’s opinion with normative opi
nions. In contrast, an agreement with group norms is 
experienced as a rewarding outcome, and no conformal 
adjustments follow.

Berns et al. (2010), in an fMRI study of the effect of 
group norm on adolescent’s evaluations of music popu
larity, showed a positive correlation of AI and dorsal MFC 
activation, with one’s tendency to change his/her eva
luation: the higher the activation in these areas, the 
more likely the participant would change their rating 
toward a group norm. Because AI and dMFC activation 
is associated with aversive states and physiological arou
sal, researchers interpreted that conformity behavior in 
popularity ratings in adolescents works through the 
generated anxiety by the conflict between one’s own 
preferences and those of the peer group. Supporting 
this idea, experiencing social exclusion showed neural 
activity in AI and dorsal anterior cingulate cortex (dACC) 

as was observed in conflict with the group, indicating 
that activation in this area might reflect the threat of 
social rejection and call for behavior modification to 
keep individuals in harmony with the group norm 
(Wasylyshyn et al., 2018). Cascio et al. (2015) and Baek 
et al. (2021) suggested two major systems to be involved 
in the change of opinion based on group recommenda
tion: First, the mentalizing system including medial pre
frontal cortex (mPFC), temporoparietal junction (TPJ), 
and precuneus activates after observing conflict with 
group opinion. Second, the valuation system, which 
includes striatum and orbitofrontal cortex (OFC), acti
vates when subjects change their opinion to match 
group recommendation.

Electroencephalographic (EEG) studies of social influ
ence demonstrated that a mismatch between an indivi
dual and group opinion elicits a fronto-central voltage 
deviation in the event-related potential (ERP) compo
nent known as feedback-related negativity (FRN). FRN 
occurs between 200 and 400 ms post-onset of conflict
ing group feedback and localizes to MFC. The FRN has 
been suggested to reflect the neural response similar to 
punishment (negative) prediction errors (Chen et al., 
2012; Kim et al., 2012; Shestakova et al., 2013; Yu & 
Sun, 2013). A mismatch between individual and group 
opinions also evoked a stronger N400 like component 
instead of FRN, which is predominantly involved in con
ceptual processing and violation of semantic expecta
tions in language studies (Huang et al., 2014; Schnuerch 
et al., 2016). FRN is suggested to reflect reward predic
tion errors when an anticipated reward is omitted 
regardless of whether the violated expectancy is nega
tive or positive (Chen et al., 2012). Most of the studies 
show stronger FRN for negative than positive reward 
prediction error (Sambrook & Goslin, 2015). However, 
in some studies, FRN amplitude is greater following 
neutral feedback than negative feedback (Walsh & 
Anderson, 2012). An MEG study of social conformity 
(Zubarev et al., 2017) indicated that electromagnetic 
brain responses to the disagreement between an indivi
dual and group opinion were similar to FRN component 
with larger negative deflection for conflict trials and 
originated in anterior and posterior cingulate cortex 
(PCC). This FRN response is accompanied by activity in 
TPJ and ventromedial prefrontal cortex (vmPFC). 
Together, these neural responses tracked the perceived 
discrepancy between an individual and group opinion.

Besides evoked responses, a number of electrophy
siological studies have revealed an increase of oscillatory 
activity at 200–500 ms, specifically at beta band (13–30  
Hz), after unexpected positive reward in gambling, as 
well as in probabilistic learning context when the out
come is better than expected (Hosseini & Holroyd, 2015; 
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Marco-Pallares et al., 2008, 2015). Also, in a social con
text, agreement with the group opinion was followed by 
an increase in the power of beta-band oscillations in 
vmPFC and ACC (Zubarev et al., 2017). On the other 
hand, mid-frontal theta-band activity was modulated 
by violation of expectations in a reinforcement learning 
task (Cavanagh et al., 2010; Cohen et al., 2007; van de 
Vijver et al., 2011) after errors in conflict tasks (Cavanagh 
et al., 2012), and after losses in gambling tasks (Marco- 
Pallares et al., 2008). Increases in theta-band oscillations 
after an incorrect response are suggested as 
a fundamental process associated with, or even under
lying, the error-related negativity and FRN over MFC (van 
de Vijver et al., 2011). In the social context, conflict with 
group opinion was followed by an increase in theta 
power over the anterior and posterior medial cortices 
(Zubarev et al., 2017). Taken together, a brain network 
involving PFC, ACC, and TPJ regions manifested beta and 
theta-band oscillatory activity, as well as FRN-type of 
evoked activity, are thus likely to underlie the processing 
of socially meaningful peer feedback and its influence on 
one’s behavior.

The way we interact with each other is highly indivi
dual. These individual differences in social interactions 
reflect behavioral tendencies, which likely build on neu
rodevelopmental characteristics. Out of temperamental 
and personality characteristics, agreeableness is most 
clearly linked with social influence and, together with 
conscientiousness, associated with social-emotional sta
bility. Agreeableness also positively correlates with 
social conformity (DeYoung et al., 2002; Kosloff et al., 
2017). High agreeableness is positively associated with 
helpfulness, friendliness, and compliance with the needs 
of others (DeYoung, 2010) and is negatively associated 
with aggression and interpersonal disputes (Jensen- 
Campbell & Graziano, 2001). It is also suggested that 
agreeableness can predict motivation for maintaining 
positive relationships, tendency to cooperate, and keep
ing social harmony in social relations (DeYoung, 2010). In 
addition to the possible link of agreeableness to confor
mity behavior, agreeableness is also involved in informa
tion sharing behavior. In fact, since people high in 
agreeableness are often helpful and cooperative with 
others, they could most probably participate in informa
tion sharing behavior in the form of collaboration and 
getting along with others within interpersonal relation
ships as employees and students (Matzler et al., 2008) 
and in the form of sharing ideas regarding products and 
services in communication among consumers. This 
knowledge-sharing propensity drives recommendation 
behavior and has a substantial impact on behavior in 
consumer context (Ali et al., 2022; Cascio et al., 2015). 
Contrary to the behavioral effect of agreeableness in 

numerous domains, the possible neural correlates of 
agreeableness have not been addressed systematically. 
A recent study by Zhang et al. (2020) hypothesized that 
FRN signals can reflect individual differences in social 
feedback evaluation so that, e.g., agreeableness would 
influence an individual’s brain response in social influ
ence tasks. However, they did not find evidence to sup
port their hypotheses.

In this study, we explore behavioral effects and the 
brain basis of opinion discrepancy between the indivi
dual and the peer group during a recommendation- 
based social influence experiment. Previous studies 
have been mostly limited to the use of hemodynamic- 
based measures of fMRI, that do not provide direct 
access to the time-varying neural information proces
sing. So, we measure the immediate neural markers of 
conflict between individual opinion and group recom
mendation by using magnetoencephalography. In addi
tion to the event-related field (ERF), which reflects only 
the signal that is phase-locked to the stimulus and omits 
the majority of neural oscillatory activities, we addressed 
spectral differentiation of social conflict with time- 
frequency analysis. Oscillatory neural activity is consid
ered essential in forming long-range functional net
works, which might be crucial for conflict processing in 
social influence studies.

It has been more than a decade since researchers 
started moving their focus from merely identifying per
sonality dimensions to the cognitive and neural under
pinnings of personality traits. Here, we investigate the 
behavioral and neural association of agreeableness with 
social influence. We use a paradigm in which partici
pants are subjected to peer group recommendation 
after their own initial recommendations of commercial 
brands. Unlike earlier studies, we tested conformity in 
the framework of recommendation behavior, because 
previous research on social influence has mainly exam
ined how others’ opinions influence personal opinions 
or evaluative judgments, that is, “people’s attitudes or 
the overall degree to which they like or dislike any given 
object or concept” (Briñol et al., 2017). In general, eva
luative judgments are not broadly subject to others’ 
assessment, unless it is publicly declared. Instead, when 
people make recommendation decisions, they also eval
uate how they are perceived by others (Barasch, 2020), 
making the task inherently social. Interestingly, the 
abundance of interaction in the new media environ
ment, involving also various products and services, may 
have led to an increased need to be perceived positively. 
Indeed, there is a consensus that the tendency to self- 
enhance is a fundamental human motivation (Fiske, 
2018), and sharing information with a wide range of 
real and imagined others through recommendation 
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can help to maintain reputation and bolster self-concept 
(Eisingerich et al., 2015).

Social influence has been a focus of extensive psy
chological research, and social psychology has predomi
nantly studied the behavioral effects of this 
phenomenon. Hence, in line with former evidence, 
where aggregated group opinion was shown to influ
ence an individual’s decision and behavior, we hypothe
sized that recommendations from a peer group would 
change the value that individuals place on their recom
mendation intentions. This means that perceived posi
tive and negative discrepancies with group 
recommendation will cause an individual’s recommen
dation intention to change in a more positive or nega
tive direction, respectively, thereby increasing the 
probability of future behavior change or so-called con
formity toward peer group recommendation. Moreover, 
when there is no difference between the group and 
individual, the opinion will remain unchanged. 
Furthermore, based on the aforementioned grounds 
that the personality dimension of agreeableness may 
be associated with inter-individual differences in social 
influence and information sharing behavior, we 
expected agreeableness to modulate this behavioral 
adjustment as well as its neural correlates. More specifi
cally, we expected high agreeable individuals to show 
stronger neural effects to conflicting opinions with the 
group and, subsequently, higher behavioral conformity 
compared to low agreeable ones. To test these hypoth
eses, we selected our subjects based on the agreeable
ness subscale of the five-factor model (FFM; Konstabel 
et al., 2012) to test whether high agreeable (HA) and low 
agreeable (LA) participants will conform to peer opinion 
in different ways and have distinct neural responses to 
peer feedback. Moreover, to detect neural processes 
predicting these behavioral effects and based on earlier 
neuroimaging findings, we further hypothesized that 
a discrepancy between an individual’s preference and 
peer group opinions evokes responses similar to the FRN 
and an increase in the power of theta oscillations. 
Agreement with peer opinion was expected to induce 
an increase in beta-band oscillations.

Materials and methods

Participants

One hundred and eighty-two individuals (141 females, 
age range 15–40 years old) filled the Short Five (S5) test, 
a short version of the five-factor model (FFM) personality 
inventory (Konstabel et al., 2012). We used the agree
ableness subscale of S5 to select the participants for our 
MEG experiment. We recruited 15 participants with low 

agreeableness (9 females, 6 males, mean age 24.80 years, 
SD = 3.629, 14 right-handed) and 15 with high agree
ableness (11 females, 4 males, mean age 25.20 years, 
SD = 3.098, 14 right-handed). The low agreeableness 
group (LA) covers the S5 points ranging from −10 to 
10, and the high agreeableness group (HA) from 24 to 32 
(Figure 1). None of the participants reported a history of 
psychiatric or neurological illness, head trauma, or drug 
abuse. Twenty-five of the subjects were students and 
five employees. Subjects received a 20 euro grocery gift 
card as compensation for participation in the experi
ment. The ethical committee of the University of 
Jyväskylä approved the study, and all participants signed 
the informed consent form.

Stimuli and task

The stimuli were national and global brands known to 
the Finnish population. These brands were categorized 
into five categories (food, clothing, home, technology, 
and personal care). A separate group of 20 individuals 
was recruited, to evaluate the familiarity of the commer
cial brands on a 5-point scale (1 = very unfamiliar; 5 =  
very familiar). This session was conducted in order to 
control the effect of brand familiarity on social influence 
and recommending behavior, and 210 brands in two 
categories of familiar and unfamiliar were used in our 
MEG experiment. The subjects in the MEG experiment 
evaluated the familiarity of the selected brands one day 
before the experiment to confirm that their evaluation 

Figure 1. Distribution of the S5 trait “Agreeableness” from our 
online survey (n = 182). Red rectangles refer to participants 
selected for the MEG study. The low agreeableness group (LA, 
n = 15) had agreeableness values from −10 to 10 and the high 
agreeableness group (HA, n = 15) from 24 to 32.
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aligned with the familiarity evaluation of the indepen
dent test group.

Before the start of the experiment, subjects were 
explained that they are participating in an experiment 
about how people make decisions between different 
brands and how personality affects these decisions and 
that they are informed about the average rating of 300 
students from Jyväskylä university. Therefore, they were 
unaware of the real aim of the experiment. During the 
MEG measurement, subjects were first presented with the 
210 brands (first rating session, session duration 45 min). 
Subjects were instructed to rate each brand on an 8-point 
scale, based on the claim ‘I would recommend this brand’ 
(1 = totally disagree; 8 = totally agree). A nonmagnetic, 
four-button device (Cambridge Research Systems, Ltd., 
UK) was used for selecting the rating by stepwise increas
ing or decreasing the value. At the beginning of the 
experiment, subjects rated eight practice trials with unre
lated stimuli to get familiar with the use of the response 
buttons and the task. The structure and timing of the trials 
are illustrated in Figure 2. In each experimental trial, 
a brand was presented on the screen, together with 
a scale of 1 to 8. After 2 s, subjects were given 4.5 s to 
respond. In case the participant did not press a button 
within 4.5 s after the brand presentation, the trial ended, 
and the text “Too late” appeared on the screen. The 
subject’s rating was highlighted on the screen with 
a blue rectangular frame immediately after pressing the 
button. After a random 0.5–2 s delay, the participant was 
informed of the average recommendation of 300 stu
dents as peer group feedback. This was shown with 
a green rectangle for 2 s, together with a cue denoting 
the peer group (photograph of peers, Figure 2). The 
difference between the responses of the subject and the 
feedback group was shown above the green rectangle (0, 
±2, or ± 3 points). In reality, the average feedback group 

rating was randomized to either be the same (no-conflict 
condition) or 2–3 points below or above the subject’s 
rating (negative or positive conflict condition). This was 
done to manipulate the experience of social conflict 
between the subject and the peer group. The conditions 
were balanced individually among the 210 trials (1/3 
conflict, 1/3 positive conflict, and 1/3 negative conflict), 
but this balance could have changed slightly depending 
on the subject’s initial ratings, although the subjects were 
instructed to use the whole scale (1 to 8). Stimulus pre
sentation was controlled with the Presentation software 
(Neurobehavioral Systems, Inc., Albany, CA, USA).

Thirty minutes after the MEG measurement, the sub
jects were asked to rate the same items again, but with
out group feedback and in a new randomized order 
(second rating session, session duration 30 min). 
The second session was used to test whether subjects 
changed their initial recommendations after facing dif
fering peer opinions, as predicted by social influence 
theory. Importantly, the subjects were not informed 
about this second session beforehand. At the end of 
the experiment, the subjects were interviewed and 
debriefed about the experiment, and the true nature of 
the experiment was revealed. Importantly, none of them 
reported guessing that the aim of the study was about 
social influence or conformity.

MEG and MRI data acquisition

MEG data were collected with a whole-head 306- 
channel (102 magnetometer channels and 204 planar 
gradiometer channels) Elekta TRIUX MEG device 
(MEGIN Oy, Helsinki, Finland) located in a magnetically 
shielded room at the Center for Interdisciplinary Brain 
Research, Dept. Psychology, University of Jyväskylä, 
Finland, with a 1000 Hz sampling rate and 0.1–330 Hz 

Figure 2. Schematic representation of one experimental trial of the first rating session in MEG, where subjects evaluated brands in 
terms of their intention to recommend them. The subjects were first presented with a brand logo (actual brands were presented 
instead of the word “brand”). After two seconds of initial display, they had 4.5 seconds to give their recommendation using response 
keys. Then, the peer evaluation, together with a cue image representing the peer group, was shown. The evaluation could be the same 
(no-conflict condition) or above or below the peer rating (conflict condition). Thirty minutes after the MEG session, subjects evaluated 
the same set of brands again in a behavioral session, where the trials were similar but without the group feedback phase.
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band-pass acquisition filter. Prior to data acquisition, 
participants were checked for magnetic interference 
and instructed to keep their heads still as much as 
possible. Visual stimuli with the size of 19 cm × 25 cm 
were presented with a DLP projector on the center of the 
screen situated in front of the subject with a distance of 
100 cm. Concurrently, an electrooculogram (EOG) was 
recorded using electrodes above the right and below 
the left eye for blink and saccade artifacts and electro
cardiogram (ECG) with electrodes on the left and right 
clavicle to help detect cardiac artifacts. One ground 
electrode was attached to the right zygomatic bone. 
The head position was recorded with five head- 
position indicator (HPI) coils, three at the forehead and 
one behind each ear. HPI coil positions were determined 
with reference to three anatomical landmarks: nasion 
and left and right preauricular points, which define the 
head coordinate system. Additional scalp points were 
digitized for better co-registration of MEG with an indi
vidual’s structural magnetic resonance images (MRI). All 
locations were digitized using a Polhemus Isotrak 3D 
tracker system (Polhemus, Colchester, VT, United 
States). The MR images were acquired from a private 
company (Synlab Oy, Jyväskylä). Two sets, a 3D SE T1 
weighted and an FSE T2 weighted, were collected on 
a GE 1.5 T Signa HDxt MRI scanner using a standard head 
coil.

Data analysis

Behavioral data

To find out whether there is a change in participants’ 
opinions after being exposed to the peer group feed
back, we categorized behavioral responses based on the 
direction of the group’s opinion compared to the sub
ject’s opinion in negative, positive, and no-conflict for 
each brand (Figure 3). We assessed the opinion change 
using linear two-level modeling with random slopes. The 
model’s parameters were estimated with Bayesian esti
mation, as implemented in Mplus v8.2 (Muthén & 
Muthén, 2017). At the within-subject level, we assessed 
whether an individual’s opinion was changed to the 
direction of the peer feedback between the first and 
the second rating (Figure 4(a)). Behavioral categories 
were transformed into dummy variables, which were 
used to estimate random slopes in the two-level model 
(Figure 4(b)). We contrasted positive conflict and nega
tive conflict with the no-conflict condition (random 
slopes S1 and S2, respectively). The initial rating was 
added as a covariate (S3) to control for the effect of 
regression to mean (RTM) due to repeated measure
ments (Yu & Chen, 2014). At the between-subject level, 

we inspected the effect of agreeableness on opinion 
change and the interaction between agreeableness 
and opinion change (Figure 4(b)). This analysis was car
ried out by adding agreeableness as a between-subjects 
level predictor in the two-level model.

Processing of MRI data

To localize source-level activity in the individual anatomy, 
we co-registered the anatomical MRIs with the MEG data. 
This was achieved by identifying in the MRI the anatomical 
landmarks that were used to determine the head coordi
nate frame during the MEG preparation (left/right preauri
cular point and nasion). Co-registration was confirmed 
and fine-tuned using points digitized on the scalp. The 
segmented MR images were used to reconstruct the cor
tical surface, skull, and skin (Dale et al., 1999). A 3-layer 
(inner skull, outer skull, and outer skin) boundary element 
model (BEM) was used in forward modeling, together with 
5120 source dipoles distributed over the cortical surface.

The MR images were also used to find spherical morph
ing from individual anatomies to a single target anatomy, 
the “fsaverage” subject, using FreeSurfer (Fischl et al., 
1999). This way we could compare the neural responses 
between subjects with high anatomical relevance.

MEG data processing

First, a temporally extended signal space separation 
method (tSSS) from Maxfilter software (MEGIN, Helsinki, 
Finland) was used to remove external magnetic inter
ference from MEG data and to correct for head move
ments, recorded with continuous HPI (Taulu & Hari, 
2009). Head position was estimated in 200 ms time 

Figure 3. Mean behavioral change of the brand recommenda
tion between the first and second session. Blue color shows 
mean change using all trials across all 30 subjects (total number 
of trials: 6278) and red color shows mean change when the 
effect of the regression to mean (RtM) is removed by using only 
initial ratings 4 and 5 (2300 trials). Bars indicate the standard 
error of the mean across subjects.

6 F. IRANI ET AL.



windows with 10 ms step for movement compensation 
and transformed to the mean head position across the 
MEG session. Independent component analysis (Fast ICA; 
Hyvärinen & Oja, 2000) was applied to raw MEG data 
(low-pass filtered at 40 Hz and high pass filtered at 0.5  
Hz) to manually identify and remove signal artifacts 
corresponding to horizontal saccades, blinks, and car
diac activity. In this analysis, the subsequent MEG data 
processing steps and forward modeling were performed 
in MNE-Python, v0.19 (Gramfort et al., 2013) using cus
tom scripts. After ICA, the signals were downsampled by 
3 (to 333.33 Hz) to reduce data size for further analysis. 
Since the experimental conditions defined by peer rat
ings were the main variable in our experiment, we seg
mented the continuous data to epochs time-locked to 
the presentation of the peer group feedback (Figure 2) 
to investigate event-related neural responses. We 
grouped the epochs into positive conflict, negative con
flict, and no-conflict trials, depending on whether the 
group’s ratings were higher, lower, or equal to the parti
cipant’s rating, respectively. An epoch was rejected if any 

magnetometer channel exceeded 4e-12 T or any gradi
ometer channel 400e-12 T/m. The trigger-to-stimulus 
delay, measured using a photosensitive resistor, was 
subtracted from each epoch.

Sensor space event-related field (ERF) analysis

For the ERF analysis, the continuous MEG data was low- 
pass filtered at 40 Hz and high-pass filtered at 0.5 Hz 
using a zero-phase FIR filter. Epochs were selected 
from 200 ms before to 1000 ms after the onset of peer 
feedback presentation. Offsets were removed for each 
trial by subtracting the mean of the pre-stimulus interval 
from −200 to 0 ms. Evoked fields were estimated by 
averaging across epochs within the conflict condition 
(negative and positive conflicts) and the no-conflict 
condition.

Sensor-Space time-frequency response (TFR) 
analysis

For the frequency domain analysis, epochs from 1000 ms 
pre-stimulus to 2000 ms post-stimulus were first 
extracted from unfiltered raw data. Offsets were 
removed from each epoch by aligning the time series 
to the average of a 1000 ms pre-stimulus interval. The 
average evoked response was subtracted from each 
epoch to remove phase-locked activity. For time- 
frequency decomposition, we used Morlet wavelets, 
where the number of cycles was set to half of the center 
frequency. The frequency band of interest ranged from 
4 Hz up to 60 Hz, with wavelet center frequencies in 
steps of 2 Hz. Each epoch was convoluted with the com
plex wavelet and then the absolute value was averaged 
across the epochs to obtain the amplitude. Then, the 
epochs were downsampled by 2 and trimmed by 500 ms 
at each end to avoid edge effects. Finally, the amplitude 
responses were converted to z-scores by subtracting the 
mean and dividing by the standard deviation, in order to 
reduce the impact of between-subjects variability in 
neural oscillation amplitudes.

Statistical analysis

To determine whether there is a difference in neural 
responses between the conflict and no-conflict condi
tions and to identify the relevant time windows, we 
performed a non-parametric permutation test with 
a clustering method to correct for multiple comparisons 
(Maris & Oostenveld, 2007). This was done for the time 
window between 0 to 1000 ms for the ERF analysis and 
between 0 and 1500 ms for the TFR analysis. For each 
sample (time point for ERF or time-frequency point for 

Figure 4. Diagrams for behavioral analysis at within-subject level 
(A) and between-subject level (B). (A) d1 and d2 are dummy 
variables for the contrast between positive and negative conflict 
with the no-conflict condition, respectively. S1 and S2 indicate 
associated random slopes in the two-level model, and S3 is the 
random slope for modeling the effect of the initial rating. The 
values show mean differences in within-subject diagram for S1 
and S2 and mean changes for S3. The asterisk indicates signifi
cant effects at 95% confidence level. (B) the between-subjects 
effect of agreeableness on rating change (second session rating 
minus first session rating), and the interaction between agree
ableness and slopes S1-S3. The values on left show the regres
sion coefficient of agreeableness on rating change and the 
interaction between agreeableness and slopes S1-S3. The values 
on the right indicate residual variances of change and slopes 
(horizontal arrows), and residual covariances between slopes 
and change.
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TFR), the difference between conflict and no-conflict was 
expressed as a dependent sample’s t-statistic. Samples 
for which these t-statistics exceeded an uncorrected 
threshold of α = 0.05 were clustered based on spatial, 
temporal, and spectral adjacency. Cluster-level test sta
tistics were calculated by summing the t-statistics of the 
samples belonging to the same cluster. The largest clus
ter-level t-statistic was used as a test statistic as sug
gested by (among others) Maris and Oostenveld (2007). 
Next, a permutation distribution of cluster-level statistics 
was calculated by randomly exchanging condition labels 
between epochs and calculating positive and negative 
cluster-level statistics for every permutation, for a total of 
5000 permutations. The observed cluster-level statistic 
was tested against the surrogate distribution to find the 
permutation-based p-value.

Source reconstruction

Source reconstruction was carried out to identify the 
brain areas underpinning the experimental effects 
detected at the sensor level, both for the event-related 
fields and the time-frequency data. Different source 
reconstruction approaches were implemented for each 
kind of data: linearly constrained minimum variance 
beamformer (LCMV) (Van Veen et al., 1997) for the 
ERFs, and a frequency-domain beamformer (DICS) 
(Gross et al., 2001) for the TFR data. For LCMV, we 
estimated the noise covariance matrix from a 500 ms 
pre-stimulus window using cross-validated Ledoit-Wolf 
estimator (Ledoit & Wolf, 2004) (as implemented with 
the “shrunk” method in MNE-Python). The data covar
iance was calculated across a time window of 100 ms to 
600 ms relative to group feedback onset across both 
(conflict and no-conflict) conditions using the same 
method. We used a regularization parameter of 0.05 
and depth weighting of 0.8. The rank of data was defined 
based on the degrees of freedom in the SSS transforma
tion, subtracted from the number of removed ICA com
ponents. We computed the neural activity index (NAI; 
Hymers et al., 2010) using source orientation based on 
maximum power. Spatial filters were calculated using all 
epochs. Next, for each condition separately, the spatial 
filters were used to estimate source activity correspond
ing to the ERF, and the mean baseline activity was 
subtracted.

For the analysis of sources of the induced responses 
with DICS, the evoked response was first removed from 
each epoch and baseline correction was done based on 
a 1000 ms pre-stimulus window. The cross-spectral den
sity (CSD) across epochs and between all pairs of MEG 
gradiometers was estimated using Morlet wavelets, like 

for TFR, for computing the DICS filter weights. The active 
window was from 200 ms to 1200 ms, and the baseline 
window was −500 ms to 0 ms. The CSDs for each wavelet 
center frequency were averaged within the frequency 
band of interest. The resulting CSDs were combined with 
the forward solution to calculate frequency-band speci
fic spatial filters for each source location. For each epoch, 
the resulting DICS estimates were Hilbert transformed 
and the absolute values were averaged across epochs to 
provide condition-specific source-level oscillation ampli
tude responses.

Results

Behavioral results

After categorizing trials based on the direction of the 
group’s opinion (negative, positive, and no-conflict; see 
Figure 3 for behavioral effect), we tested whether parti
cipants’ opinions changed toward the group opinion by 
comparing the 1st and 2nd ratings. In our multilevel 
model, the difference between negative and no- 
conflict feedback (the second random slope, S2; 
Figure 4(a)) was significant (mean difference = −0.127, 
confidence interval CI = [−0.204, −0.052], observed post- 
hoc power for mean = 0.962), but no significant differ
ence between positive and no-conflict feedback (ran
dom slope S1) was observed (mean difference = 0.035, 
CI = [−0.064, 0.134], observed post-hoc power for mean  
= 0.136). To determine if not observing a significant 
effect for random slope S1 was due to insufficient 
power of our study, we performed sensitivity analysis, 
in addition to post-hoc power, to compute the required 
mean difference between positive and no-conflict feed
back using Monte Carlo simulation. We found out that 
a mean difference of 0.13 would be required to get 
power of 0.8. The influence of the initial rating (first 
session) on subsequent rating change due to RtM was 
used as a covariate (S3). The initial rating was found to 
have an effect on rating change (mean = −0.218, CI =  
[−0.344, −0.093], observed power for mean = 0.947), in 
line with previous similar studies (Levorsen et al., 2020; 
Nook & Zaki, 2015).

At the between-subject level (Figure 4(b)), agreeable
ness did not affect rating change (regression coefficient 
β = 0.724, CI = [−0.654, 2.108]). The interaction between 
agreeableness and S1, S2, and S3 on rating change was 
not significant. Residual variances from the agreeable
ness main effect and interaction effects between agree
ableness and slopes on opinion change and residual 
covariances between slopes and rating change are 
shown in Figure 4(b).
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Evoked responses

The butterfly plots of the evoked response, time-locked to 
the presentation of group ratings, in all magnetometer 
sensors are shown in Figure 5(a) for grand average (nega
tive conflict plus positive conflict plus no-conflict; left panel) 
and condition contrast (conflict minus no-conflict; right 
panel). The spatial topography of the magnetic fields is 
given for the local maxima along the time course. A clear 
response peaking at 75 and 130 ms is visible, with the main 
contribution from the occipital areas, and later maxima can 
be seen in the frontal areas around 200 to 300 ms after 

observing conflict and no-conflict feedback from the group. 
Statistical analysis of magnetometer data identified two 
spatiotemporal clusters, where the evoked activity in con
flict trials differed from the activity in no-conflict trials 
(Figure 5(b)). A positive cluster in most of the left hemi
sphere sensors and a negative cluster broadly in the right 
hemisphere sensors appeared starting at 320 ms after the 
peer group rating onset, indicating a greater amplitude for 
conflict trials compared to no-conflict trials (p < 0.001). 
Another cluster was found at 68–245 ms, indicating 
a greater amplitude during conflict trials compared to no- 

Figure 5. Evoked response analysis. (A) Butterfly plots of magnetometer channels for evoked responses time-locked to the 
presentation of group feedback for grand average (left panel) and condition contrast (conflict minus no-conflict; right panel). 
Colored heads in the top-left corner show the individual waveforms’ position in the sensor array and color scales in top-right indicate 
magnetic field strength. The time points for topographies are selected based on the peak activations (B) Cluster-based permutation 
test results. Time courses were obtained by averaging over magnetometers comprising of the two clusters identified by the 
permutation test. Orange boxes indicate the time windows in which statistically significant differences were observed. (C) Source 
reconstructions of the condition contrast (conflict minus no-conflict) in the time windows (68–245, 320–998 ms) suggested by sensor 
space cluster-based permutation test.
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conflict trials (p < 0.029; Figure 5(b)). Analysis of the gradi
ometer channels identified two spatiotemporal clusters in 
similar time windows to the clusters as in magnetometer 
analysis with greater amplitude for conflict trials.

Source reconstruction with LCMV beamforming was 
used to identify the brain regions underlying the effects 
identified in sensor data in the two time windows, (68–245  
ms and 320–998 ms; Figure 5(c)). Source analysis of condi
tion contrast showed differing activation between conflict 
and no-conflict trials mainly in medial and lateral frontal 
areas, including lateral prefrontal cortex (lPFC), mPFC, ACC, 
and cuneus in the early time window and in precentral, 
postcentral, and supramarginal cortices in the later time 
window.

Cluster-based permutation tests on ERFs between the 
LA and HA groups did not reveal any significant group 
differences in sensor or source space, neither in the 
contrast condition (conflict vs. no-conflict) nor in any 
individual condition.

Time-frequency analysis

In the TFR analysis, the focus was on induced oscillatory 
activity in the 306 channels (Figure 6(a)), with a time 
window −500 ms to 1500 ms and a frequency range 

from 4 Hz to 60 Hz. Cluster-based permutation test for 
condition contrast (conflict minus no-conflict) revealed 
two significant clusters. The first cluster appeared 
between 10 and 590 ms time interval at 4 to 10 Hz 
frequency band, with a larger increase in induced ampli
tude for the conflict condition compared to the no- 
conflict condition (positive t-values, p < 0.001). 
The second cluster appeared between 250 and 1200  
ms time interval in 13–30 Hz frequency band, with 
a stronger decrease in induced amplitude for the conflict 
condition, compared to the no-conflict condition (nega
tive t-values, p < 0.001). Again, we constrained our 
source localization to the two time-frequency windows; 
10–590 ms at 4 to 10 Hz (Figure 6(b)) and 250–1200 ms 
at 13–30 Hz We employed DICS beamforming to esti
mate the sources of the rhythmic activities (Figure 6(c)). 
Sources of condition contrast (conflict minus no-conflict) 
in the theta frequency range mainly spread over the left 
and right medial surfaces, including parts of cuneus, 
precuneus, lingual and cingulate gyri. In the beta fre
quency range, sources were identified in the lateral occi
pital and parts of superior temporal and the lingual 
gyrus and cuneus.

The between-group differences (LA vs. HA) in induced 
oscillations analyzed for both conflict and no-conflict 
conditions (Figure 7(a)) revealed a significant difference 

Figure 6. Analysis of induced oscillatory activity. (A) TFR maps for the frequency range 4–60 Hz and the time interval −500–1500 ms 
for conflict, no-conflict and the condition contrast, and the significant clusters resulting from the cluster-based permutation test. (B) 
Source reconstruction of the TFR effect (conflict minus no-conflict) in the significant time-frequency window of 10–590 ms at 4–10 Hz. 
(C) Source reconstruction of the TFR effect (conflict minus no-conflict) in the significant time-frequency window of 250–1200 ms at 
13–30 Hz.
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at sensor level in a late time window from 800 to 1500  
ms in the beta frequency range (10–28 Hz) (positive 
t-value, p < 0.04). To localize the cortical contributors of 
this difference, source reconstruction using DICS beam
forming was applied in the time-frequency window lim
ited to 800–1500 ms and 10–28 Hz (Figure 7(b)). Source 
plots of group contrast in the no-conflict condition in the 
beta range showed a difference in parts of lateral super
ior and inferior parietal and occipital cortices, along with 
precuneus and cuneus in medial cortices.

Discussion

The objective of the present study was to examine the 
behavioral manifestation and the underlying neural 
dynamics involved in processing conflict between 
recommendation intentions of individuals and their 
peer group. Earlier studies on social influence have 
either focused on evaluative judgments (hence, not on 
recommendation) or used imaging modalities that do 

not offer high enough temporal resolution to follow the 
fast neural dynamics of conflict processing. Here, we 
extended the field by using a temporally accurate ima
ging method to explore the immediate neural markers, 
that is, evoked and induced MEG responses, associated 
specifically with the recommendation-based task. 
Moreover, we also elucidated the behavioral and neural 
effects of individual differences in peer conflict proces
sing by selecting our subjects based on agreeableness, 
as it is considered to be tightly linked with social influ
ence and information sharing behavior.

Behavioral conformity to group opinion

After correcting for the effect of regression to mean due 
to the initial rating on opinion change, the behavioral 
analysis revealed that only the conflict to the negative 
direction significantly modulated an individual’s opi
nion. In other words, individuals decreased their prefer
ence after being exposed to lower ratings by the peer 

Figure 7. Group-wise analysis of induced oscillatory activity (A) TFR maps for the low and high agreeable groups in the no-conflict 
condition; from top to bottom: high agreeable, low agreeable, high minus low and result from cluster-based permutation test. 
Frequency range was 4–60 Hz and the time interval was −500–1500 ms. (B) Source reconstructions of groups effect (high minus low) 
from significant time-frequency windows in 10–28 Hz at 800–1500 ms.
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group, but they did not robustly increase their prefer
ence after being exposed to higher ratings. This result is 
in line with previous findings, where conflict in the 
negative direction had a stronger effect than that in 
the positive (Klucharev et al., 2009; Shestakova et al., 
2013; Templeton et al., 2016; Zaki et al., 2011; Zubarev 
et al., 2017). Moreover, in previous recommendation- 
based studies of social influence (Baek et al., 2021; 
Cascio et al., 2015), behavioral evidence also showed 
that negative peer recommendations lead to greater 
conformity than positive recommendations. The specific 
conformity effect of our experimental paradigm, and 
using recommendation task instead of evaluative judg
ments, might highlight that especially from the perspec
tive of recommending a brand, negatively framed peer 
opinion may be considered more informative or diag
nostic than positively framed peer opinion. In other 
words, negativity may propagate more strongly in con
texts related to consumer behavior when the financial 
outcome is more salient than, for example, rating facial 
attractiveness. Considering knowledge-sharing beha
vior, people share information in the desire to maintain 
a positive self-concept, and carefully selected recom
mendations can make them appear knowledgeable 
and trustworthy (Packard & Wooten, 2013). Finally, peo
ple tend to share positive product experiences of their 
own but negative product experiences of other people 
(Packard & Berger, 2017).

Brain evoked responses to conflicting group opinion

At the brain level, perceived conflict with the group 
increased the evoked activation in early (68–245 ms) 
and late (320–998 ms) time windows. The medial sur
faces including ACC, mPFC, cuneus, and precuneus as 
well as dorsolateral prefrontal cortex (dlPFC) were 
involved in processing the social feedback. Our results 
only partly complied with earlier M/EEG studies of social 
influence, where reinforcement learning was suggested 
as a mechanism of group feedback processing and sub
sequent behavior adjustment, evoking FRN component 
as characteristic of reinforcement learning in M/EEG stu
dies (Chen et al., 2012; Kim et al., 2012; Shestakova et al., 
2013; Zubarev et al., 2017). In our study, the first effect in 
the evoked response was somewhat earlier than what 
has been found in former studies. However, in line with 
the reported localization of the electromagnetic sources 
underlying FRN (Zubarev et al., 2017), our source analysis 
showed more activity in ACC (among other regions) in 
conflict trials compared to no-conflict trials.

In many social conformity studies, activity in ACC has 
been considered to reflect action monitoring and rein
forcement learning (RL), but it is only one account for 

conformity. In fact, the engagement of ACC alongside AI 
is aligned with earlier findings on social exclusion and 
rejection referred to as ‘social pain’. Some researchers 
have suggested that conformity to group opinions could 
be the product of negative affective states of social 
rejection threat, reflected in ACC and AI activity after 
a disagreement with the group (Berns et al., 2010; 
Wasylyshyn et al., 2018). Furthermore, the activity of 
ACC accompanied by dlPFC might also indicate negative 
emotion of pressure to change the initial preference in 
the face of new information, known as ‘cognitive disso
nance’ (Izuma et al., 2010; Van Veen et al., 2009). 
Although in the context of social influence, others’ opi
nions provide useful information, there is a cost that an 
individual pays for altering their beliefs to gain social 
approval. This cost manifests itself in the form of psy
chological discomfort, specifically cognitive dissonance. 
In other words, inconsistencies in one’s knowledge or 
opinion about herself and her environment can create 
uncomfortable feelings as experienced during cognitive 
dissonance and thus strong motivation to retrieve an 
acceptable state (Festinger, 1957). Mainly, opinion 
updating is a tradeoff between conformity and cognitive 
dissonance. In other words, one must conform to the 
group to get an advantage, while keeping cognitive 
dissonance to a minimum by not distorting their 
expressed opinion too far from their real opinion 
(Seeme et al., 2019). Therefore, the activity of dACC 
and dlPFC in social conformity tasks may well reflect 
this negative emotion or psychological discomfort of 
two contrary beliefs when experiencing conflict with 
the group (Levorsen et al., 2020). The early time window 
of the effects observed in our study seems to be compa
tible with this interpretation, as cognitive dissonance 
due to difficult choices evoked a strong negative fronto
central response that peaked at 60 ms in a free-choice 
task (Colosio et al., 2017).

Social pain and cognitive dissonance in relation to social 
influence are particularly important in light of a recent 
study by Levorsen et al. (2020), who directly compared 
neural responses using fMRI between social conformity 
and reinforcement learning and did not find clear evidence 
for a common neural mechanism between these two pro
cesses. This finding undermines the reinforcement learning 
hypothesis of social conformity put forth by Klucharev et al. 
(2009), which suggests that conflict with social norms trig
gers a prediction error similar to the reinforcement learning 
signal, calling for adjustment of behavior. Levorsen and 
colleagues, however, argued that although normative con
formity with subjective rating of stimuli does not show 
common neural resources with RL, informational confor
mity, where social conflict can serve as a teaching signal, 
might share neural mechanisms with RL.
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According to Huang et al. (2014), N400-like modula
tions of neural activity in their study reflect a true conflict 
between an individual and group rather than reward 
prediction error as in FRN around 200 ms. Moreover, 
N400 encodes bi-directional conflict meaning that 
N400 is more negative for group’s positive feedback 
than negative feedback but individual differences in 
conformity behavior were not associated with these 
differences in N400 response.

Previous findings (Baek et al., 2021; Cascio et al., 2015) 
in the recommendation-based conformity task showed 
involvement of valuation and mentalizing systems in 
processing conflicting messages from peers and subse
quent opinion change. Moreover, Baek et al. (2021) 
found a marginally significant interaction between the 
sentiment of the recommendation and activity in the 
brain’s mentalizing system to predict recommendation 
change. These findings suggest that the brain’s menta
lizing system may be recruited more strongly 
in situations where social consequences are the most 
salient, such as those that may signal negative out
comes. In fact, value-related brain signals seemed to 
track the value of the peer recommendation regardless 
of valence, while the activation in the mentalizing sys
tem was more responsive under some conditions than 
others, and negative reviews were shown to be more 
salient in this regard (Baek et al., 2021).

Neural oscillatory dynamics after conflict with the 
group

Our analysis of induced oscillatory activity provided evi
dence toward the neural basis of social influence, in line 
with similar earlier EEG and MEG studies (Cavanagh et al., 
2010; Cohen et al., 2007; Kim et al., 2012; Zubarev et al., 
2017). The results from former studies imply that 
increases in theta oscillations over medial frontal cor
tices in processing negative feedback or unfavorable 
outcome in feedback-based response learning (van de 
Vijver et al., 2011). The increased theta in conflict trials 
compared to no-conflict trials in our study localized 
mainly in the medial surfaces, consistent with Zubarev 
et al. (2017) findings, where the difference between 
individual opinion and group’s opinion in the judgment 
of trustworthiness evoked an increase in theta band 
oscillations in medial frontal regions. Theta-band oscilla
tory perturbation occurs with a similar topography and 
time range as the FRN response to punishment or nega
tive feedback. In other words, time-frequency decompo
sition of the FRN reveals theta (4–7 Hz) activity in medial 
frontal electrodes and is thought to originate from the 
anterior cingulate cortex (ACC). So, theta-band oscilla
tions have been suggested to underlie FRN (Cavanagh 

et al., 2010). In our study, modulation of theta oscillation 
occurred in time windows as early as our evoked 
response with overlapping sources. However, it should 
be mentioned that precise determination of temporal, 
spatial, and frequency domain limits is not supported by 
the cluster-based permutation test (Sassenhagen & 
Draschkow, 2019) applied in the present study.

Following the increase in the low-frequency band, we 
observed a decrease in the induced amplitude of beta- 
band (13–30 Hz) oscillations as response to the conflict 
with the group preference, compared to an agreement 
with the group. This effect took place in a time window 
of 250–1200 ms and was localized widely to the medial 
and lateral surfaces. In previous studies, an increase of 
oscillatory activity in beta-band (12–30 Hz) was observed 
after the delivery of rewards in gambling and learning 
tasks (Marco-Pallarés et al., 2015; van de Vijver et al., 
2011). Furthermore, in (Zubarev et al., 2017) study, 
when an individual’s opinion was the same as the 
group opinion, an increase in oscillatory activity in the 
beta band, localized in the VMPFC, was interpreted to 
reflect reward processing related to subjective pleasure 
of being similar to the group. Engel and Fries (2010) 
related an increase in beta-band oscillations to mainte
nance of the current sensorimotor or cognitive state, 
consistent with reward signaling. In our study, the beta- 
band suppression in conflict trials can be interpreted as 
a call for a status change alongside theta increase, sig
nifying error detection or displeasure.

The effect of agreeableness on processing group 
feedback

In contrast to our hypotheses, agreeableness did not 
mediate behavior adjustment and social conformity in 
our study. Moreover, it did not influence conflict proces
sing neither in evoked nor in induced brain responses. 
However, a difference between the low and high agree
able groups was observed in the time-frequency domain 
(800–1500 ms, 10–28 Hz) in the no-conflict condition, 
showing higher induced amplitude for the high agree
able group. The effect was observed mainly in lateral and 
medial occipital cortices. As mentioned earlier, an 
increase in beta-band oscillations has been associated 
with the agreement with group opinion in social con
formity tasks (Zubarev et al., 2017), reward delivery, and 
winning in gambling tasks (Marco-Pallares et al., 2008; 
Marco-Pallarés et al., 2015). Interpreted in the context of 
present results, the match between an individual’s and 
group’s opinion (i.e. no-conflict trials) serves as a reward, 
which is reflected as a stronger increase in beta oscilla
tions in individuals with higher agreeableness tendency. 
Matching this interpretation, Wang et al. (2019) 
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interestingly showed that highly agreeable participants 
were less affected by the negative feedback from their 
peers, can better tolerate someone opposing them, and 
can regulate their behavior in a more socially acceptable 
manner. Consequently, agreeable individuals seem likely 
to focus less on conflict-related signals or interpersonal 
disputes and more on cooperation and positive aspects 
(DeYoung, 2010). The lack of interaction between agree
ableness and feedback processing in our evoked 
response data is also in line with earlier studies. In 
a recent study by Zhang et al. (2020), no significant effect 
of agreeableness was found on FRN or P300 response. 
Indeed, in line with our current results, the influence of 
the majority’s opinion on individuals was not moderated 
by agreeableness, and individuals with higher agree
ableness did not show greater FRN nor smaller P300 
when their behaviors were inconsistent with the major
ity group.

Former psychological studies on agreeableness 
showed that agreeable individuals have social desirabil
ity to be in agreement with others, but this desire is not 
equal to being easily influenced by others (Jensen- 
Campbell et al., 2010). Moreover, Jensen-Campbell and 
Graziano (2001) showed that agreeable individuals are 
less likely to concentrate on conflicts and negative 
aspects and more likely to use conflict resolution 
approaches to replace struggles and challenges and 
negotiate outcomes that benefit a whole group. This 
might be because agreeable individuals have been 
found to automatically engage neural mechanisms asso
ciated with the self-control of emotions (i.e., right lPFC) 
to regulate negative affects associated with conflict- 
related signals (Haas et al., 2007).

It is important to mention that agreeableness is 
divided into two correlated subdimensions: Compassion 
— tendencies toward empathy, sympathy, and concern 
for others and Politeness — motivation to conform to 
social norms and avoid aggression and exploitation (Hou 
et al., 2017). These two subdimensions might be differ
entially related to aspects of social information proces
sing and social conformity. Previous studies have shown 
that agreeableness and conscientiousness together can 
associate with susceptibility to social pressure, whereas 
extraversion and openness are negatively correlated with 
social conformity (DeYoung et al., 2002; Kosloff et al., 
2017). Therefore, the use of only agreeableness in select
ing our participants may have influenced our results. 
Besides, the distribution of agreeableness scores in our 
subjects was shifted, varying between −10 and 32 (on 
a −40 to 40 scale), and the subjects thus did not represent 
far extremes of the agreeableness trait, Naturally, 

correlation measures would be more optimal to reveal 
the association between conformity behavior and agree
ableness, but this is not feasible with the current sample 
sizes. Our findings, however, provide a valuable basis for 
building hypotheses for larger-scale correlative studies, 
emphasizing the importance of carefully controlling all 
the factors influencing the measures of conformity 
behavior.

In this study, although we observed negative confor
mity to group opinion (subjects changed their ratings 
toward lower group recommendation), we could not 
examine the neural predictors of behavioral conformity 
(social conflict followed by opinion change versus con
flict not followed by change) due to the small number of 
trials after controlling for confounding factors. In other 
words, after selecting trials with intermediate initial rat
ings (4 and 5) to eliminate the regression-to-mean effect, 
we subsequently narrowed trials to ones with negative 
group feedback with a change to negative direction and 
trials with negative group feedback with no rating 
change or change to the positive direction used as con
trol trials. After these steps, we were left with too little 
data to compare conformity trials versus trials without 
opinion change.

Taken together, our imaging results suggest that 
cooperation of the brain mentalizing and conflict mon
itoring networks might support processing of perceived 
discrepancy with peer group recommendation. In this 
view, the conflict monitoring network would follow the 
discrepancy by creating aversive feelings and the need 
for opinion change, while the role of the mentalizing 
network would be to evaluate the consequences of the 
social conflict. Based on our behavioral findings, the 
mentalizing system would more effectively resolve situa
tions where social consequences are the most salient, 
that is, upon negative conflict. Furthermore, in this 
study, agreeableness was not found to mediate confor
mity behavior. However, a difference between high and 
low agreeable individuals was observed in beta-band 
oscillations when an individual’s and group’s recom
mendations matched, consistent with social reward.
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