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Edge states of two-dimensional topological insulators are helical and single-particle backscattering is prohib-
ited by time-reversal symmetry. In this paper, we show that an isotropic exchange coupling of helical edge states
(HES) to a spin 1/2 impurity subjected to a magnetic field results in characteristic backscattering current noise
(BCN) as a function of bias voltage and tilt angle between the direction of the magnetic field and the quantization
axis of the HES. In particular, we find transitions from sub-Poissonian (antibunching) to super-Poissonian
(bunching) behavior as a direct consequence of the helicity of the edge state electrons. We use the method of
full counting statistics within a master equation approach treating the exchange coupling between the spin-1/2
impurity and the HES perturbatively. We express the BCN via coincidence correlation functions of scattering
processes between the HES, which gives a precise interpretation of the Fano factor in terms of bunching and
antibunching behavior of electron jump events. We also investigate the effect of electron-electron interactions in
the HES in terms of the Tomonaga-Luttinger liquid theory.

DOI: 10.1103/PhysRevB.106.085406

I. INTRODUCTION

Helical edge states (HES) are one of the hallmarks of
the quantum spin Hall insulator (QSHI) realized in two-
dimensional topological insulators (TIs) [1-3]. The motion
of charge and spin is locked and time-reversal symmetry
(TRS) protects the electron flow from backscattering. Trans-
port along the helical edge is therefore ballistic leading to
a conductance of e?/h per edge in a two-terminal experi-
ment [4-6]. Unlike in the quantum Hall effect where different
transport directions are spatially separated by the insulating
bulk, in the QSHI left and right movers exist on the same edge.
Breaking TRS [7-9] or allowing for electron-electron inter-
actions [8,10-13], electron-phonon interactions [14,15], or
interactions with nuclei [16,17], as well as with nearby charge
puddles [18-20] induces backscattering corrections to the
ballistic conductance value. Understanding such mechanism
can explain some experimental deviations from the ballistic
value but can also give insight to the nature of the helical
edges states. Another prominent example involving conduc-
tance corrections to the ballistic value is the Kondo effect of
a spin-1/2 impurity exchanged coupled to the HES [21-24].
We have previously analyzed the backscattering conductance
from a spin-1/2 impurity subject to a magnetic field and
weakly coupled to HES as a function of bias voltage and
tilt angle 67 of the magnetic field with respect to the HES’
spin quantization axis (see Fig. 1) [25]. We found some
characteristic resonance behavior in the conductance as a
function of bias voltage V when eV becomes comparable to
the Zeeman field. The conductance is strongly asymmetric
under reversal of the bias voltage, the degree depending on
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the tilt angle. This is a strong sign of the helicity of the edge
states.

The dynamics of transport processes can be better un-
derstood by looking at the current noise, which is sensitive
to correlations between backscattering events [26]. Bunching
effects due to correlations between cotunneling processes are
well studied in quantum dots and molecular magnets [27,28].
Noise from backscattering events off a spin impurity in helical
liquids has been considered so far in the absence of magnetic
fields, where the Fano factor is always larger than one, point-
ing at bunching behavior [20,29-31]. Here, we show that in
the presence of a Zeeman field Az on the quantum dot, the
bunching behavior becomes supplemented by an antibunching
behavior for small tilt angles of the magnetic field for bias
voltages that satisfy kg7 < Az < eV (for only one polarity
of the bias voltage) where T is the temperature. At larger
voltages |eV| > Az, we find super-Poissonian behavior for
all tilt angles.

The main results and its relation to the helical nature of
the edge states can be understood as follows. Consider a gen-
eral tilt angle 0 < 6, < 7 /2. At bias voltages |eV| < Az, the
spin impurity will stay in the ground state | |) and backscat-
tering events, which transfer electrons between right- and
left-moving channels are elastic and therefore uncorrelated,
which leads to Poissonian noise (Fano factor F = 1). More
interesting is the case |eV| 2 Az, where the impurity spin
can get excited by backscattering events. Due to the helical
nature of the edge states, the rate to flip the QD spin with
the associated change of the spin in the helical leads also
crucially depends on the spin bias in the helical lead that is a
topological feature of the bulk of the TI. As a consequence,

©2022 American Physical Society
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for one polarity of the bias voltage, the rate for relaxation
of the QD spin is always larger than the rate for excitation.
On the contrary, for the other polarity, there is a bias voltage
where the rate for excitation starts to dominate the rate for
relaxations. As a result, for large absolute values of the bias
voltage, a slow spin flip process is followed by a fast spin
flip process, which leads to super-Poissonian noise and a Fano
factor F > 1. For eV 2 Az, the rate for excitations out of the
spin ground state | | ) becomes finite and starts to polarize the
QD spin in the excited state. We show by detailed investiga-
tions of conditioned scattering events that there is a region of
bias voltages where the dominant scattering event is a fast ex-
citation process followed by a slow relaxation process leading
to sub-Poissonian noise with ' < 1. However, with increasing
bias voltage the spin becomes polarized on average predom-
inantly in the excited state |1) blocking the fast excitation
rate and the dominant scattering process becomes the slower
relaxation followed by an excitation with faster rate signaling
the crossover to the super-Poissonian noise regime (F > 1) at
larger bias. This crossover noise behavior is most pronounced
for small tilt angles 6, and disappears for 6; = 7 /2 where the
noise becomes symmetric as a function of bias voltage.

The rest of the article is structured as follows: In Sec. II, we
introduce a general scheme based on full counting statistics
and master equations to formulate the average current and
noise at zero frequency of electrons in a reservoir (bath) cou-
pled to a system with a few degrees of freedom. We show
in particular how the noise can be formulated in terms of
coincidence functions (equal-time Glauber coherence func-
tions) for general scattering events transporting any integer
n of electron charges at general bias voltage configurations
thereby generalizing earlier results. In Sec. III, we consider
the explicit example of the spin-1/2 impurity (system) sub-
jected to a Zeeman field in a general direction with respect to
the spin quantization axis of the helical edge states (the bath).
We derive expressions for current and noise in terms of steady-
state quantum statistical averages of jump operators, discuss
in detail the backscattering rates and explain the characteristic
bunching and antibunching behavior in terms of coincidence
functions and with the density matrix conditioned on certain
scattering events. We also comment on the effect of Luttinger
liquid correlations in interacting helical liquids.

II. TRANSPORT AND STATISTICS
A. Master equation approach to full counting statistics

The correlations of scattering processes of electrons be-
tween the helical edge states in the proposed setup can be
suitably described by Glauber correlation functions known
from quantum optics [32,33], which in the electronic con-
text have been previously used, e.g., in discussions of
single-electron sources [34,35] and can be employed to
characterize the frequency-dependent noise and bunching in
transport [26,36,37].

In this section, we apply the method of electron full count-
ing statistics (FCS) [38] to derive precise formulas for the
current noise in terms of delayed coincidence correlation
functions (equal-time Glauber functions). For completeness
and to introduce notation, we recall how to introduce a
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FIG. 1. Sketch of the setup: An HLL is coupled to a QD con-
taining a spin-1/2. The coupling between the HLL and the QD is
governed by an isotropic Kondo Hamiltonian Hy. The QD is subject
to a magnetic field B, leading to a Zeeman splitting Az = gup|B|
for the spin states. The direction of B is tilted with respect to the
quantization axis Z of the helical edge state by an angle 6;.

cumulant generating function (CGF) and derive it from a mas-
ter equation containing the counting field considering a quite
general system comprised of particle reservoirs (the bath), a
system and a coupling between the system and the reservoirs
(see Fig. 2). From the long time behavior of the reduced den-
sity matrix for the system, we will then calculate the average
current and the zero-frequency current noise in one of the
reservoirs (the drain) perturbatively in the counting field. In
general this formalism can be extended to cover multiterminal
setups [39].
The CGF [38] S(x, t) is defined via a counting field x

¢S =% P(n, e, M
n

where P(n,t) is the probability that n particles have been
added to the drain during a time interval 7. Quantum mechan-

FIG. 2. Sketch of the counting setup where leads (bath B with
Hamiltonian Hp) is coupled to a system (S with Hamiltonian Hy)
by a coupling Hamiltonian H;(x ) that depends on the counting field
x that is the conjugate variable to the particle number N of the drain
(D). The dashed lines denote possible additional leads and couplings.
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ically, the CGF can also be written as a trace [40]

eSO = Tr(pwi(X51)), 2)

where the dynamics of the density matrix of the total
system is

Pot(x31) =U(x /258, 0)pror,olhd (—x /2;0, 1), 3

with py 0 being the initial density matrix and the propagator
is defined by

Ut 1) = U, e N, (4)

where N is the number operator for the electrons in the drain
and U(¢, t') is the time propagator. Using the representation of
U(z,t') by a time ordered exponential we find

U(X;t,t')=fexp(—%/ H(X)df>, &)

where T is the time ordering operator and we used that the
counting field does not depend on time such that the counting
field dependence can be included in the Hamiltonian

H(x) = ™ el ©6)

where H is the Hamiltonian of the total system. Note
that according to Eq. (2), we only need the reduced den-
sity matrix p(x;?) of the system defined by tracing over
the bath p(x;t) = Tre(ow(x;1)), so that exp (=S(x,1)) =
Tr(p(x;t)), where the trace now is only taken in the sys-
tem subspace. Using the Fourier transformation p(x;t) =
>, p(n,t)exp(iny) together with Eqs. (1) and (2) we can
identify p(n,t) as the density matrix for the system where
n particles have been added to the drain during time ¢
[i.e., Tr(p(n,t)) = P(n,t)] [37,41-44]. It also holds that
>, p(n,t) = p(t) where p(t) = p(x = 0;¢) is the usual sys-
tem density matrix.

To find p(x;t), we use a master equation approach to deal
with relaxation and dissipation, treating the coupling between
the system and bath as a perturbation. Equation (3) yields the
von Neumann equation including the counting field

Pot(X31) = —iLa(X)pwi(X51), (7a)
1
Ly(x)X = E(H(X/Z)X — XH(—x/2)). (7b)

The von Neumann equation (7a) can be used to derive the
master equation. The Hamiltonian is split into a piece acting
on the system part of the Hilbert space Hs, a part acting
on the bath part of the Hilbert space Hp and an interaction
Hamiltonian H; coupling those two parts. As neither Hg nor
Hpg change the number of electrons in the bath we find that

H(x) = Hs + Hp + H;(x). ®)

The coupling thus is the only piece obtaining a counting field
dependence. Keeping track of this counting field dependence
one can derive a time local master equation by using the
Markov and the secular approximation [45,46]. This time
local equation can then be written as

p(xst) = —=LOp(x;1), )

where L(x) is a Liouvillian describing the dynamics of
p(x;1). The system density matrix p(¢) is obtained via £(0)

and therefore Eq. (9) does not preserve the trace of p(x ;) for
x #0.

Usually one is interested in the properties of the CGF for
long measurement times. This long time limit can be obtained
from the spectral properties of L£(x) [39]. The formal so-
Iution to the master equation can be expressed by a matrix
exponential

p(x;t) = e “X p(x;0). (10)

In this form, the solution is a sum of exponentially decaying
terms, where the timescale of the decay is given by the real
parts of the eigenvalues of L(x). The long time behavior of
the CGF is determined by the eigenvalue with the smallest real
part as this eigenvalue will dominate the long time behavior.
For x = 0, we know that L£(x ) reproduces the standard master
equation and thus that one eigenvalue is zero leading to the
steady state whereas the other eigenvalues have a positive real
part corresponding to dephasing or relaxation. As the eigen-
values behave smoothly when varying x we know that the
eigenvalue Ag( ), defined as the eigenvalue that is smoothly
connected to the eigenvalue O for y = 0, has the smallest real
part. After a sufficient long time the behavior of the CGF will
thus be dominated by Ay(x ) such that [39]

S(x:1) = —=In(Tr(p(x:1))) = Ao an

To determine the cumulants the eigenvalue Ag(x) can be
expanded in x and the expansion coefficients can be deter-
mined using Rayleigh-Schrodinger perturbation theory [42].
As L(x) is non-Hermitian we have to distinguish between left
and right eigenvectors. Because £(0) determines the master
equation the left and the right eigenvector for the eigenvalue
0 can be obtained from physical arguments; The right eigen-
vector is the steady state as it has no dynamics and the left
eigenvector is the linear form defined by the trace as the trace
of the density matrix is conserved in a master equation [46].
These left and right eigenvectors are denoted by (¢o] and | o),
where the tilde indicates the left eigenvector. It is convenient
to define ((e)) = (| ® |¢o) = Tr(ep), where p is the steady
state. Using this notation and by expanding £(x ) and A as

2
L(x) = LO)+ L(0)x + E”(O)X? +0G7%), (122

2
4 " X

Ao(x) = Ao(0) + Ap(0)x + AO(O)? +0(x%), (12b)

the perturbative expansion is given by [42]

AH(0) = (L), (13a)

" " / 2 /
Ag(0) = ({L7)) <<£ QL‘,(O) QL >> (13b)
where P = |¢o) (¢| and Q = 1 — P are the projectors onto
the eigenspace of Ap(0) and its complement and the prime
denotes the derivative with respect to the counting field at x =
0. Using these expansion coefficients the mean current and the
current noise are given by

- .e 0 .,

I = l;ﬁs(X, Tlx=0 = ieAy(0), (14a)
2 a2 .

S = 7_‘8_)(2S(X’ Tly=0 = e"Ay(0), (14b)

085406-3



PROBST, VIRTANEN, AND RECHER

PHYSICAL REVIEW B 106, 085406 (2022)

where 7 is a large measurement time during which the elec-
trons are counted. Thus, using the spectral properties of L(x)
we were able to calculate the transport properties.

B. Jump operators and coincidence correlation functions

The counting statistics approach can be extended to de-
scribe also the joint probability of the outcome of multiple
measurements [41]. This enables discussion of bunching and
antibunching of electron transfer events within the same for-
malism [37].

Let us define the generating function for the joint probabil-
ity of observing n; particles having been transmitted during

time intervals [¢;,t;_1] for j =1,..., M,
- = . M
e S0 = Z X P(y, tyrs . 1), (15)
np,..., ny

where ¥ = (X1, ..., xu), £ = (t1, ..., ty) and t, = 0. Under
the Markovianity assumptions, the outcome n; depends on the
earlier outcomes n;, i < j, only via the state of the system.
Hence, the generating function in Eq. (15) can be evaluated in
the same way as done for a single measurement in the previous
subsection, but taking the initial state for the time evolution (9)
on each interval to be the appropriate conditional density
matrix, conditioned on the previous measurement outcomes.
Then, as discussed in Ref. [41], Eq. (10) generalizes to

p0 » (16)

and exp (— S(¥,7)) = Tr[p(}%,©)]. That is, p(¥%,f) follows
the same master equation (9) as for the single-measurement
case, but with x replaced by x; fort; >t > t;_;.

The delayed coincidence (“Glauber”) correlation functions
can be determined in the above approach from the electron
counting coincidence rates [37]. Consider the joint probability
G, of observing “clicks,” i.e., electron transfers w, v (which
can be any integers) during both time intervals [t + §, 7] and
[8, 0] for T > §, and similarly the probability G, of observing
the events separately, when the system is initially in the steady
state, i.e., pop = p. They can be expressed as

- ZP(M, T+ 8, 70 6) (17)
:/ Xm dx e~ IN =V Ty 8L00)
o Qa2

e~ (T=DLWO) ;=3L(x2)

L)t —tu-1) , . | e—ﬁ()(l)(tl—o)

p(X.[)=e

Ga, v

pl, (18)

27
d .
Gy = P(u.8) = / K T DR, (19)
0 T

where we sum over n as we ignore the number of electrons
(clicks) during [, é]. For § — 0, it then follows that

Ga oy = 82 (T FOT)), (20)
G~ —8(T.)), 1)

where u, v # 0, and

2 dX iny
T —/0 P L(x) (22)

are the jump superoperators. Indeed, the master equation (9)
can be written in terms of the number-resolved density matri-
ces as

pn.ty= > Tupn—v,1), (23)

V=—00

where each 7, describes processes transferring v electrons.

The delayed coincidence correlation functions can now be
defined as the ratio of the actual joint probability to that of
uncorrelated events,

G (T TFO Ty
@ _ v ®
g GGy (TN

for § — 0. Note that here we allow for events of different
types (i, v) to occur.

The behavior of this function for t — 0 can be used
to characterize the bunching behavior of the events. For
g%}(O) > 1 the two events tend to follow each other more
likely than they would if they were independent and thus
bunch. For g7)(0) < 1 the events repel each other and thus
are antlbunched

To connect the noise to the generalized g function we
define the reduced propagator R(t) = Qexp(— L(0)7)Q,
which allows us to write the g'7) function as

(TuR(OI))
(TN AT

where we used that PQ = QP = 0. By integrating the re-
duced propagator we obtain the pseudoinverse

(24)

gh() = (25)

050 [ mewur. 26)
needed in the perturbative expansion.

Using the inverse Fourier transform of Eq. (22), we ob-
tain £'(0) = Y, ivJ, and £L"(0) = — Y_ v>J, where v runs
over all integers. This together with the representation of the
pseudoinverse we insert into the perturbative expansion of
the average backscattering current and the current noise and

obtain
=1, 27
and

S:eZvIU+2ZIMI\,/ dt@h(m)—1),  (28)
v L,V

where we have defined I, = —ev{((7,)).

The first term in Eq. (28) directly corresponds to noise
due to independent scattering events. If transport is dominated
by a single process (i.e., only one v contributes), this term
describes Poissonian noise since the Fano factor F = S/e|[|
becomes in this case F = |v|, which is directly proportional
to the fundamental charge transported in an event (e.g., |[v| =
1 for a single electron process or |v| =2 for simultaneous
transport of two electrons like for Cooper pairs). The sec-
ond term in Eq. (28) shows the genuine correlations between
subsequent scattering events via the integrated coincidence
functions g(z)(l') If coincidences are absent g(z)(r) =1, and
the second term vanishes. However, in many problems (see
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the one we analyze in the next section) more than one process
contributes. Equation (28) then shows that a simple connec-
tion of noise or Fano factor to the bunching or anti-bunching
behavior of subsequent scattering processes is not possible
due to the summations over u, v. This is in contrast to the
analysis in Ref. [37], where only one kind of an event was
possible.

Equations (27) and (28) are the main results of this section.
They present the average backscattering current and current
noise in terms of jump superoperators, evaluated in the steady
state, that describe the evolution of the reduced density matrix
due to charge transfer events (‘“jumps”) between the reservoir
and the system. The current noise equation (28) is directly
related to the coincidence functions taking into account all
possible kinds of charge transfers. The only assumptions
used in the derivation is a Lindblad form of the master
equation [Eq. (9)] and a CGF that can be expanded in the
counting field. Under these premises, the results are general
and valid for all temperatures and bias voltages applied to the
reservoir(s).

III. SPIN-1/2 IMPURITY IN A MAGNETIC FIELD
COUPLED TO A HELICAL EDGE

Transport in helical Luttinger liquids is sensitive to the
coupling to magnetic impurities [20-24,30,31], and in partic-
ular, certain details of the dynamics of the impurities become
visible in the transport current through the edge. To study
this, we apply the formalism derived in the last section to a
Zeeman split single level quantum dot (QD) in the cotunneling
regime tunnel coupled to a helical Luttinger liquid (HLL), as
illustrated in Fig. 1.

A. The model

In the cotunneling regime, the coupling to the edge state
can be described by the Kondo Hamiltonian [47]. The Hamil-
tonian of the total system is given by

H = HyiL + Hz + Hg, (29)

where Hyyp describes the edge state electrons, H; the effect
of the magnetic field on the QD, and Hyk the coupling of the
QD to the edge states.

The electrons in the helical edge are forming a helical
Luttinger liquid (HLL) described by

Hyp = fivp / dg 1y WH(E)(—inde) W, (E) :

n==+

2
A
+5/ds:<2;[w;<s>%<s>> L G0
r]:

where vy is the Fermi velocity, W " (£) is the electron field op-
erator on the branch n = =, A is the strength of the Coulomb
repulsion and : e : denotes normal ordering. By applying a
bias voltage V to the edge states (see Fig. 1), right (4)
and left (—) movers acquire different chemical potentials
Uy = xeV/2 (electron charge is —e = —|e|). The chemi-
cal potential can be gauged into the field operators W, >
exp(—iu+t/h)Wy where t denotes time [48].

In the cotunneling regime the coupling of the quantum dot
spin to the edge states can be described by an isotropic Kondo
Hamiltonian [47], which can be written as

Hyg = 2JS. - Sqp, (31)

where 2J > 0 is the Kondo coupling strength. The spin oper-
ators are defined by Sf = 43" Wi(0)6}, W, (0) and S§, =
z >0 di6F,dy, where 6%, k = x, y, z, are the Pauli matrices
and d(" are the operators for electrons with spin v on the
QD. The ladder operators are defined as S; = S & iS} and
SgD = Shp T iSp,. Here we used the spin quantization axis
of the electrons in the edge states such that the spin of the
electrons created by d' is defined with respect to this axis.

The magnetic field on the QD shall point in an arbitrary
direction /2 = (sin 8 cos ¢, sin 6 sin ¢, cos 67)" such that the
Zeeman effect is described by

Hz = gupB - Sop/h, (32)

where g is the g factor, up is the Bohr magneton, and Ay =
ginp|B| is the resulting Zeeman splitting [49]. We note that
we envision the situation where a Zeeman field is (effectively)
present only in the QD, whereas the spin quantization axis in
the helical edge state leads is unaffected by the Zeeman field.
This situation is either realized by restricting the magnetic
field to the QD, or by having a global magnetic field but
a large Fermi energy (compared Ay) in the leads [25], see
also Sec. IIT F. The coupling to the edge state might lead to
an induced magnetic field, which would add another term to
Hy [25]. Here, we restrict ourselves to a parameter regime
hJeV/(4mvp) < Az in which this term can be neglected [25].
To diagonalize Hz, we choose a new spin quantization axis
along the magnetic field, and denote spin operators in this
basis as S’QD. This is effectively a rotation of the spin quanti-
zation axis Z where 0y is the angle of the tilt of the z axis and ¢
determines the direction of this tilt. Including the final rotation
along the resulting z axis by y the spin operators S iQD can be
expressed by spin operators defined with respect to the tilted
spin quantization axis Spy, using Spp = >° ;. . Z(U)iiS s
where, written in the basis (S?, §*, S7),

. A
cos 6z —% sinfy —Fsinfy
— ' 0 ey
PU) = | zpsinb;  zpzyco8” % —Zhzpsin® % |,
~ "y D
Zpsind;  —zzpsin® % Ziz)cos’ %

(33)
with z; = ¢ and z, = €. The coefficients of this transfor-
mation are defined as ¢y = (Z(U))y;-

B. Master equation

We now derive the master equation using the formalism
from Sec. I. The number of left-movers N_ is considered
the particle number to be counted, and associated with the
counting field yx. Since the coupling Hx conserves the total
particle number, the change in N_ corresponds directly to the
backscattering current.

We first calculate H;(x) = exp(ixIV_)HK exp(—ixN_).
For convenience, we define new operators [S0] AL = JS] and
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A, = 2J§; such that

Hi(x)= Y ™ ASE,. (34)
k=%,z

where 0, = —o_ = 1 and o, = 0. With this and Eq. (7a) we
follow the derivation of the master equation using standard
steps [25,46]. According to Eq. (8), we identify the bath
Hamiltonian Hp with Hy;p and the system Hamiltonian Hy
with H; and obtain

t
Pl =~ / dtTeg (L0 DLH (X TP (X3 7). (35)
fo

Here, the superscript index I denotes the interaction picture
with respect to Hy = Hyr L + Hz and L;( x;t) is the Liou-
villian with respect to H/(x ). The result can be transformed
back to the Schrodinger picture by adding a commutator with
the system Hamiltonian. By associating the phase factors in
Eq. (34) with the SéD operators the counting field phase fac-
tors can easily be added to the master equation, where the
sign in the exponent depends on whether the operator is put
to the left or to the the right of the reduced density matrix
ol (x;1). By performing the Markov- and secular approxima-
tion [25,46] and by including the phase factors in the bath
correlation functions and employing the eigenbasis of Hs we
find for the master equation

i 1
0(x;t) = ——[Hz, p(x;t —
pOGH = =7 Hz, pOGO1+ kgz

X (J:IZk(X; —AZ‘jk)SgD'O(X;t)(SgD)T

1
3 F0: = B0 () Sl p(x;f)}), 36)

where Fip(x;o) =2, _. . e*i“nxc,,kcﬁ,;Fm—?(a)) is given by
the Fourier transform of the lead correlation functions
Fp(w) = ffooo dt ¢ (A, (7)A;(0)), k = —k for k = + and
Z = z, and correspondingly for n, . Above, we omitted the
small Lamb shift term, which renormalizes H;.

The lead correlation functions can be calculated using a
standard bosonization approach [25,51]

1 (RI\? wp efor?
Fe(w) = ﬁ(?) 27K sinh(wB/2)’ (372)
A
Fp(w) = ﬁ<7) (2ay* 2
T

“TEK)T( - K + i(w — 0yeV)B/270) 2
e(wfaneV)/S/Z

" cosh((@ — oyeV)B) — cos(2nK)’

]7 =
(37b)

where a = wo /hBv, a is the short distance cutoff, 8 = 1/kgT
and K = 1/4/1 + A/mhvp is the interaction parameter. We
also defined the velocity of charge excitations v = v /K. In
secular approximation diagonal and off-diagonal entries de-
couple and can be treated separately. The off-diagonal entries
of the density matrix decay due to dephasing such that it is

sufficient to discuss the dynamics of the diagonal elements.
For long times ¢, the reduced density matrix can then be
represented by a vector p(x;t) = (o4 (x:31) ,oi(x;t))T. In this
representation, the master equation (9) can be represented by
a Liouvillian £(x) = Lo + X J, 4+ e~ X J_ with

-T —Fﬁ
Js = ( ! ) (382)
-T T
Ty + g -
Lo= ( e " ) (38b)
T4 Iy + oo
where the rates are given by
1
[ = 7 8in* 0 (Fy—(0) + F-.(0)), (39)

1
Ty = —sin®6 F_.(0),

1
1 Ty = 2 sin 0 F,_(0), (39b)

rY —lsinZQF(—A) rY —lsinzeF(A)
N T4 2z zZ) =y 2z\Rz),

(39¢)

0
't =sin* = F_,(Ay),

rf —cos4€F (—Ay)
N o Tt Z) " 2

(39d)

.40 _ 0
f=sin' 2 F(=Az), Tj=cos' 2 F (A7),

(39%)
(39f)

The superscript denotes whether the rate corresponds to a
process that changed the number of left movers whereas the
subscript denotes the process associated with the QD. A zero
indicates that the process does not change the state. A super-
script O thus corresponds to processes on the QD without a
change in the edge channel whereas a 00 subscript indicates
that a cotunneling process without a change of the QD state
has occurred. All rates with a nonzero subscript are thus
inelastic cotunneling rates (Az > 0), all other processes cor-
respond to elastic cotunneling rates. Note that the dependence
on I'jy, n = 0, +, — disappears in L(x) in the case x = 0.
This is easily understood by recalling that the case x =0
describes the master equation for the system density matrix
p(t), which only contains rates that change the state of the
system (i.e., the QD). The total rate for a specific change of
the state of the QD is denoted by I',5. The steady state p of
the QD satisfies £(0)p = 0, which leads to

5= L(Tn

)
where I' = T'y | + ' y. The detailed behavior of the different
rates is discussed in Sec. III C. In the above model, the matri-
ces Jx have identical diagonals, i.e., the elastic cotunneling
rates do not depend on the internal state of the QD. If this was
not the case and the elastic rates differed by §I"gg, slow switch-
ing of the QD state could generate telegraphic noise in the
current [27,44], increasing the Fano factor by §F ~ 8o/ if
the inelastic rates are small compared to elastic rates. This
mechanism is here generally absent due to the structure of
the Kondo model master equation, as the two elastic transport

Ios = 1"25 + F;_& + Fa_c‘; .
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FIG. 3. Schematic of the inelastic processes that contribute to
the backscattering current. The processes move electrons either from
right movers to left movers (+) or vice versa (—), while simul-
taneously flipping the dot state. At 6; = 0, the “spin-conserving”
rates F% and FIT (a) and (b) are nonzero, whereas the “nonspin-
conserving” rates l"a and Fﬁ (c) and (d) vanish. The 1 rates excite
the dot whereas | 1 relax it.

processes are equal as both are mediated only by S’QZD. As in
our case the elastic rates are not significantly larger than the
inelastic ones, the effect of including small corrections in the
model would likely be negligible.

C. Behavior of the tunneling rates

The behavior of the transition rates plays an important role
in determining the QD state, and the transport properties of
the system, so we now discuss it first. In the representation
of the rates Eq. (39), we can associate each rate to a change of
number of left movers in the leads (4, 0) and a process on the
QD (elastic 00, relaxation | 1, excitation 1). Due to the tilt of
the spin quantization axis, electrons with a specific spin on the
QD have a finite overlap with both spin directions in the leads.
If the spin quantization axes of the helical edge states and
the QD are not oriented perpendicular to each other, one spin
direction has a larger overlap than the other. For brevity, we
call processes that couple the spin directions with the larger
overlap “spin conserving” and the other processes “spin con-
servation violating”. The rate of spin conservation violating
processes decreases to zero as the orientation approaches the
parallel orientation (6; — 0). For perpendicular orientations
both types of processes are equally strong.

Because the QD energy level is Zeeman split, spin flip
processes on the QD correspond to relaxation or excitation
processes. To relax (excite) the QD, energy needs to be de-
posited in (or absorbed from) the leads. When flipping the

spin of a single electron in the edge state by reverting its prop-
agation direction, its energy thus also needs to be changed.
Because the bias voltage applied to the edge state induces a
spin bias, it can selectively suppress certain processes. The
processes corresponding to the rates that change the number
of left- and right movers in the leads are depicted in Fig. 3
(for the inelastic processes). Their rates as a function of the
bias voltage are shown in Fig. 4 for 6; = 7 /3.

The spin conserving rates (I’?¢ and I‘%) increase and de-
crease the fastest as a function of the bias voltage. The spin
conservation violating rates (I‘T’L and FjT) have shallower
slopes due to the smaller spin overlap. As the elastic rates
Fgf) do not change the state of the QD, no energy exchange
with the leads is needed, and the onset of these backscattering
processes is always at eV = 0. For the other rates, the onset is
ateV =~ +Ayz. Asillustrated in Fig. 3, for eV > Az on the one
hand it is energetically possible to absorb Az from the leads
by scattering a right mover to a left mover and thereby exciting
the QD spin (with rate Fﬁ). For eV < Ay, on the other hand,
an energy Az can be given to the leads by scattering a left
mover to a right mover and thereby relaxing the QD spin
(with rate I' ;). Both of these processes are spin conserving.
A similar argument shows that the spin conservation violating
processes have their onset at eV &~ —Az. One consequence of
the above is that exciting the QD is suppressed for [eV | < Ay
but relaxation is possible for all bias voltages. Moreover,

10.0 *(a) 7l
[ + I" B
S I FN £
Ry K
) ’
= L i
2 5.0[
< |
E‘E
i +
=
s Il
0.0 L IR RS, Sl -
-30 =20 -10 0 10 20 30
GV/kBT
7\ rrr«rrrrrryprrrryprrrr |1 rr 1t 11T T 1] \7
20.0 j(b) AN B
~E 150 :
o : I 1
2 100] .
~ | AN ]
1<) | -~ N
Le .. i
e 5.0 ‘\‘ B
N . .
0.07‘. """ o s
-30 —-20 -—10 0 10 20 30
6V/kBT
FIG. 4. Rates I'j, (black, solid), I, (blue, dash-dotted) and I'7,
(red, dashed) for 0 = + (a) and ¢ = — (b) with parameters as in
Fig. 7.
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FIG. 5. Polarization of the impurity spin in the steady state
(black, solid) and polarization after a scattering event increasing the
number of left movers (blue, dash-dotted) or decreasing the num-
ber of left movers (red, dashed), for /iJ /vy = 0.1, a/Blivy = 1073,
K = 1, AZ = ISkBT, and 92 = 7T/3

importantly, for I'_; we find that relaxation is always the dom-
inant process whereas for ' the dominant process changes
as a function of the bias voltage.

These properties of the rates are also reflected in the steady-
state polarization ((S.))/h of the QD, which is displayed in
Fig. 5 (black line). We find that the QD spin relaxes into its
ground state for |eV | < Az because excitation processes are
suppressed. For |eV | > Az, excitation processes are allowed
such that the QD spin becomes excited. As foreV < —Ay, the
excitation processes are spin conservation violating, whereas
they are spin conserving for eV > Az. Hence, the spin po-
larization is only slightly increased for eV < —Aj; but even
changes sign for eV > Ay.

We can also consider the state of the QD immediately after
a scattering event. As discussed in Sec. II, the electron num-
ber increase (decrease) is associated with the 7, (J_) jump
operators. They also give the post-measurement conditional
density matrices [46], p%, via

[_)C’i _ ji/_)
(Tx))’

where it is assumed that the system was in the steady state
initially. The polarization after a flip event in the edge channel
is then obtained by evaluating the expectation value with these
density matrices.

The resulting polarization after a scattering event is shown
in Fig. 5. We see that reducing (J_, red dashed) the number of
left movers always increases the polarization of the impurity
on average for eV < 0. This process (FT_i) is spin conserva-
tion violating, and is suppressed by the spin overlap factor.
The stronger spin conserving process (I'} ) is blocked in this
case, because the QD is almost fully in the down state before
the event. For increasing the number of left movers (7 ), the
picture is different. For eV & Az, the spin conserving process
(F;rl) increases the spin polarization of the QD. At large
enough bias, the spin polarization of the steady state before
the event however becomes positive, which starts blocking
this process. For high bias voltages, the spin conservation

(41)

T T |

Q
i lq ©
06 O 0 —
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FIG. 6. Fano factor for /iJ/vp = 0.1, a/Bhivy = 1073, K =1,
Ay = 15kpT, 6; = /2 (blue, dash-dotted), 6, = 7 /3 (red, dashed),
and 67 = /4 (black, solid). The inset shows the corresponding
backscattering conductance.

violating process (Ffﬁ) thus dominates again the dynamics
such that a scattering event reduces the polarization of the QD
on average, compared to the initial steady state.

D. Fano factor and coincidence functions

Let us now consider the backscattering current and its
noise. Using Eq. (38a) to evaluate Eq. (13a) we are able to
calculate the backscattering current and the current noise.

In Fig. 6 the backscattering conductance and the Fano
factor are shown for several angles 6. The behavior of the
conductance was described in Ref. [25], and shows an asym-
metric onset of transport for |eV |~ Az depending on the
relative orientation of the magnetic field and the spin quantiza-
tion axis of the electrons in the helical edge state. For the Fano
factor, we find a thermal noise divergence for eV | < kgT, and
F =~ 1for kgT < |eV| < Az. In the latter bias voltage range,
elastic cotunneling processes dominate, because excitation
processes are suppressed energetically and the QD is locked
into its ground state (| )). In this case the dominant processes
are Poissonian elastic scattering events. In the third regime
leV] > Az, we find a symmetric onset of super-Poissonian
noise for 6; = /2. This symmetry reflects the fact that no
spin quantization axis is preferred. At 0 < 6; < /2, how-
ever, the behavior is different depending on the sign of the
bias voltage (c.f. e.g., 67 = 7 /3).

Before considering this behavior in more detail, we can
first have a closer look at the different terms in Eq. (28),
which, here limited to v = %1, gives the Fano factor as

I, —1 21 [
F=——+— dt
e Jo

T+ 1|
Vo e’
. <—I_;(g<fi<r)— D+ 6@ -1
N
L (D) + 82 (0) - 2)>, (42)

where we used that / = e(/; + I_) is the average backscatter-
ing current [cf. Eq. (27)]. In Fig. 7, we show the Fano factor as
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FIG. 7. Full Fano factor (black, solid), the first term (blue, dash-
dotted), and the second term from Eq. (42) (red, dashed) for /iJ /vp =
0.1, K =1,a/Bhvr = 1073, Ay = 15kzT, and 6, = m /3. The inset
shows the weight factors |I,./I| (red, dashed), |I_/I| (blue, dash-
dotted), and +/|I.1_/I| (black, solid).

well as the first term and the second term in Eq. (42). We can
see that the first term, which can be attributed to independent
events, describes the thermal noise around eV = 0 as well as
the F = 1 Poissonian noise component. The remaining terms,
which correspond to correlated events, are mainly responsi-
ble for the super- as well as the sub-Poissonian noise. The
integrand of the second term consists of three parts, each
consisting of a weight factor that determines the contribution
to the current, and a correlation factor. The weight factors are
shown in the inset of Fig. 7. We find that except for eV = 0,
they are dominated by two successive scattering events of the
same type (—— for V < 0 and ++ for V > 0). Only around
eV = 0 where electrons can scatter to either direction (4+—
or —+), the details are more complicated. To understand the
physics of the non-Poissonian contribution from the correlated
events, it is then sufficient to understand the —— and ++
sequences of processes.

We can first consider the region eV < —Ay, where the
noise becomes always super-Poissonian. In general, for eV <
A7z the rates of relaxation processes are larger than those of
excitation processes, so that the QD is mostly in the spin down
ground state, cf. Fig. 5. For eV < —AZ, a (spin conservation
violating) excitation process (I';’,) becomes possible, with a
rate small compared to the relaxation processes (in particular
L cf. Fig. 4), average polarization remaining close to the
spin-down state (cf. Fig. 5). Starting from the more probable
spin-down ground state, the correlated sequence of —— pro-
cesses (i.e., both decreasing the number of left-movers in the
leads) that dominates the Fano factor then consists of the slow
excitation process, quickly followed by the fast relaxation
process. The differing speeds of the processes now causes
bunching of the two events, and results in the super-Poissonian
noise.

The situation for eV > Az, where also a sub-Poissonian
region appears, is more elaborate. For eV & Az, the spin
polarization begins to increase as the excitation (with rate
Fﬁ) becomes faster as compared to the relaxation. This ex-
citation process is spin conserving, and eventually makes the

polarization after a scattering event positive (dash-dotted line
in Fig. 5). In this situation, a scattering event on average sup-
presses subsequent excitation processes. On the other hand,
the relaxation (with rate FIFT) is spin conservation violating
and thus has a smaller rate. In the ++ process, a fast excitation
is then preferably followed by a slow relaxation process, and
we find antibunching and hence sub-Poissonian noise. How-
ever, at yet larger voltages eV > Ay the polarization of the
steady state becomes positive, which starts to suppress the ex-
citation process. The first scattering process out of the steady
state will then be preferably a spin conservation violating
(i.e., lower rate) relaxation process (FIFT), which then can then
be followed by the faster spin conserving excitation process
(T";F)). In this case, the dominant events are bunched instead
of antibunched, and the noise thus becomes super-Poissonian
again.

The above discussion is indirectly affected also by pro-
cesses that do not change the number of left movers or right
movers. Of these, the main relevant relaxation rate is F?T,
whose value is independent of the bias voltage [see Eq. (39¢)].
For the parameters used in Fig. 4, the value is ~5.63 in the
units of the figure. Although such processes do not directly
contribute to correlated transport events, they enter the steady-
state density matrix p and the polarization. As a consequence,
the noise or Fano factor depends also on F?T and FSB. The
rate F(T) , on the other hand is exponentially suppressed in the
regime Az > kgT.

The above qualitative discussion can be accompanied by a
more quantitative analysis. A direct calculation shows that the
eigenvalues of £(0) are 0 and I'. Using these eigenvalues and
that the QD has only two states we find that

Q

1
QTO)Q: T (43)

Using Eq. (26) and Eq. (25) we find

o 1 (T = (TN T
Oy = DNdr = — L ! 44
/o e TR ATVA) “9
O
= T 45)

This illustrates that because in our case the time evolution is a
simple exponential decay, the probability of two successive
scattering events determines the bunching behavior, which
determines the sign of the deviation from the Poissonian Fano
factor. Inserting Eq. (39) and Eq. (38a) into Eq. (44) we find
oo DR = (CFpy + T )?
80 —1= , (46)
(T ((Tv))

where we noted py + p, = 1. In terms of the conditional
density matrices Eq. (41), we have

—{(TuD e + {T))
) 0)—1 = wlle,pu I3 47
8,,,(0) T 47)
—{(Tu))

Here, ((J.)) e, = TrlJ, p*1 = ((JuJw)) /({J,)). The denom-
inators above are all positive. Note that elastic processes
cancel here, because they do not change the state of the
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FIG. 8. Fano factor (black, solid) as well as Poissonian contribu-
tion (blue, dash-dotted) and the contributions of correlated events for
mJ/vp = 0.1, Ay = 15kgT, 6, =7/3, a/hfvp = 1073, and K =
0.8. The Poissonian part and contributions by correlations are given
by the first and the second term in Eq. (28). In the inset the weight
factors |1, /I| (red, dashed) and |I_/I| (blue, dash dotted) are shown.

QD and so cannot contribute correlated events. The bunching
behavior is thus obtained by comparing rates of two conse-
quent events to the steady-state rates of the single events,
or equivalently, whether the conditional total rate of inelastic
electron-transferring scattering events increases or decreases.
Finally, consider the situation where one of the two rates
is larger than the other [so that, e.g., (F?¢)2 > F’T‘J‘fT >
(F‘f?)z]. If the steady-state spin polarization does not sig-

nificantly block the fast process (e.g., p, ~ 1), gﬁ;(O) <1
from Eq. (46) and we find sub-Poissonian noise. In contrast,
if the spin polarization blocks the fast process (p;, ~ 0), then
g&f}t (0) > 1 and the noise becomes super-Poissonian. In sum-
mary, we find that the sub/super-Poissonian noise regimes
arise due to a combination of the relative magnitudes of the
rates of the QD relaxation/excitation processes, and the po-
larization of the QD blocking some of them, which depends
on the sign of the bias voltage.

E. Effects of electron-electron interactions in the edge channel

We can also include electron-electron interactions in the
helical edge state (the case K < 1), which modifies the tun-
neling rates, which are proportional to the lead correlation
functions F. For |w — 0,,eV | > kgT, the correlation functions
F,5(w), n = & behave as

Fyp(w) o« (0 — 0,eV)B /2y

1 w—o,eV >0
exp((w —0,eV)B) w—o,eV <0’

Without interactions, this function transitions from exponen-
tial to linear behavior. With interactions, the linear behavior
is replaced by a power law with an exponent of 2K — 1, and
for K < 1 this generally shifts the weight of the rates towards
w ~ o,eV.

In Fig. 8, the Fano factor and the different terms from
Eq. (28) are shown, including interaction in the edge states.
The region of the sub-Poissonian noise at V > 0 is reduced.

(49)

By looking at the contribution of the correlated scattering
events (red dashed), we however, find that this occurs even
though the events are antibunched. A closer look at the weight
factors |L/I| shows that at eV ~ A, there is a total increase
in the rate of scattering events that reduce the number of left-
movers (|I_/I), even though the voltage is positive, such that
the ratio (I, — I_)/I = (|I| + |I_])/I increases. Similarly, as
in the thermal noise region, this results to F > 1 even though
the events are uncorrelated. As the sub-Poissonian behavior is
compressed towards eV & Ay due to the power-law behavior
of the transition rates, the antibunching is almost not visible in
the Fano factor. Hence, the system here is an example of the
problem mentioned in Sec. II B: In the presence of multiple
types of scattering events, the value of the Fano factor may
be unrelated to information about the correlations between
the events, even in a parameter region nominally away from
the thermal noise region.

This behavior originates from the process described by
[PV which is a relaxation process that decreases the num-
ber of left movers. It is a spin conserving relaxation process,
so its rate is large and it is energetically allowed for eV < Az.
For |eV| < Az, the QD polarization approaching the ground
state however suppresses its contribution to /_. This suppres-
sion is weakest for eV ~ Az, where the rate moreover is in a
transition region between algebraic and exponential behavior,
which results to the nonmonotonicity in /_. This transition
region has a width of kzT, which determines the magnitude
of the feature. For the polarization and the other rates, how-
ever, the behavior is determined by |eV|/A; such that the
region of the sub-Poissonian noise increases for increasing
Az. By choosing the Zeeman splitting large enough the sub-
Poissonian behavior can thus be restored for the interacting
problem.

The validity of the perturbation theory in the coupling
between the HES and the impurity spin (H;(x)) is con-
trolled by the smallness of J. In the presence of repulsive
electron-electron interactions (K < 1) one needs to consider
the renormalization group flow of the coupling constants
towards small energies. We therefore present here some state-
ments about the validity of our perturbative approach. First,
the Markov and secular approximations employed to arrive
at Eq. (36) is valid as long as #%J%/v2B < kzT, Az. When
interactions in the HES are turned on (K < 1), the correla-
tion functions Fy +(w) grow upon reducing the energy scales
(B —1 ¢V, w). For example, for V = w = 0, the thermal energy
B! sets the relevant energy scale. Using renormalization
group arguments, the impurity strength becomes energy de-
pendent. When stopping the renormalization group flow of
the short-distance cut-off « at a corresponding energy scale of
B!, the effective impurity strength for our problem becomes
(Jh2/4na)(£0ﬂ)1’K where gy &~ hv/«a is the high energy cut-
off of the theory. This high-energy cut-off we can relate
to the bandwidth D of the HES D ~ hvg/«. The exponent
1 — K is the scaling dimension of the operator SLi, which
describes backscattering of electrons in the HES [51]. For
the perturbation theory in H;(x) to be valid, we demand the
effective impurity strength to be smaller than D, which implies
(Jh/4m vp)(goB) K « 1. In the noninteracting limit K = 1,
this is just achieved because (J7i/vr) is small. With repulsive
interactions K < 1, there is a critical (minimal) temperature so
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that the effective energy scale becomes on the order of D and
perturbation theory is not valid anymore [51]. The stronger
the interaction (smaller K), the larger this temperature be-
comes. For the parameters used in Fig. 8, and using reasonable
bandwidths for real topological insulators (D ~ 10 meV) and
feasible low temperatures (T &~ 100 mK), the perturbative ap-
proach is valid. Note, that the correlation functions in Eq. (37)
are valid in the presence of interactions (K < 1) as long as
hv/L < B~' where L is the length of the (interacting) helical
edge channel.

F. Parameters and physical implementation

In this section, we discuss the parameter regime of the
model and its physical implementation (cf. Ref. [25]). The
physical realization of the Zeeman field on the QD by a
magnetic field that has negligible effects on the HES can be
implemented either by local magnetic fields provided by the
exchange interaction with a magnetic insulator [52-54] or by
nanomagnets creating local magnetic fields in the submicron
range [55,56], or by a global external magnetic field. In the
latter case, time-reversal symmetry is not only broken locally
at the QD but globally. This in principle can also influence the
properties of the HES. However, as we argued in Ref. [25],
the Zeeman effect in the helical edge states is suppressed
if the Fermi level is far away from the Dirac point of the
spectrum (on the scale of the Zeeman energy Ay), see also
Ref. [57]. A magnetic field will also have an orbital effect
on the HES; however, it is expected to be negligible up to
several Tesla [58—60]. As concluded in Ref. [25], therefore,
unwanted magnetic field effects in the HES can in principle be
suppressed efficiently. This suppression is also reflected in the
elastic backscattering due to scalar impurities, and we expect
that in a suitable parameter regime, ballistic motion reaching
micrometers is possible in HgTe/CdTe QWs [25].

Regarding possible observations of the predicted effects,
we note that we consider the parameter regime kg7 < Az <
eV < D. Here, D ~ hvg/a is the bandwidth of the HES and
is comparable to the Fermi energy /ivpkr. For HgTe/CdTe

QWs, D~ 10 meV and similar values hold for the QSHI
based on InAs/GaAs QWs. The temperature used in the plots
in this paper is correspondingly 7 & 100 mK with a backscat-
tering current I defined in Eq. (27) on the order of several
PA, which is within experimental feasibility. This temperature
corresponds to a Zeeman energy with B = 14 mT for g = 10.

IV. CONCLUSIONS

We have studied the noise properties of a spin-1/2 im-
purity, e.g., in a quantum dot, weakly coupled to a helical
edge of a two-dimensional topological insulator. In a setup
where the spin is subject to a Zeeman field but where the
effect of such a field is negligible in the helical edge, the
Fano factor of backscattering events for electrons in the helical
edge states shows a characteristic antibunching (F < 1) to
bunching (F' > 1) transition behavior with sweeping the bias
voltage in the helical edge in a regime where the bias voltage
is comparable to the Zeeman splitting. We show that this
transition of the noise properties is only present when the
tilt-angle 6, of the magnetic field with respect to the quan-
tization axis of the helical edge states satisfies 0 < 67 < 7 /2.
Note that at 8, = 7 /2, the specifics of spin helical leads
is effectively absent in the backscattering current, since the
spin exchange with the spin-1/2 impurity is not locked to
the direction of momentum exchange. The antibunching to
bunching transition in the Fano factor is therefore a unique
signature of helical edge states.
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